KR20230057583A - The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space - Google Patents

The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space Download PDF

Info

Publication number
KR20230057583A
KR20230057583A KR1020210141496A KR20210141496A KR20230057583A KR 20230057583 A KR20230057583 A KR 20230057583A KR 1020210141496 A KR1020210141496 A KR 1020210141496A KR 20210141496 A KR20210141496 A KR 20210141496A KR 20230057583 A KR20230057583 A KR 20230057583A
Authority
KR
South Korea
Prior art keywords
shielding channel
power cable
channel
ferromagnetic material
type shielding
Prior art date
Application number
KR1020210141496A
Other languages
Korean (ko)
Inventor
임성황
Original Assignee
임성황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임성황 filed Critical 임성황
Priority to KR1020210141496A priority Critical patent/KR20230057583A/en
Publication of KR20230057583A publication Critical patent/KR20230057583A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/24Installation of lines or cables on walls, ceilings or floors by means of insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings
    • H02G3/32Installations of cables or lines on walls, floors or ceilings using mounting clamps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/10Installations of electric cables or lines in or on the ground or water in cable chambers, e.g. in manhole or in handhole

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Problems are resolved by moving facilities on the ground into the ground by constructing a power port-pipe-manhole in the ground and installing a power cable through the power port-pipe-manhole to replace an electric pole for power distribution and a steel tower for power transmission installed in aerial space. However, despite such efforts, power cables have been constructed underground but electromagnetic wave problems recently have been rising in the vicinity where the power cables are constructed. In the present invention, in the case of a single-phase cable, a C-shaped shielding channel, a halved C-shaped shielding channel, or an extended shielding channel is made of a ferromagnetic substance and is installed as if enclosing the vicinity of the power cable, and both ends (the starting point and the ending point) of the C-shaped shielding channel are connected by a wire to form a closed circuit in which the C-shaped shielding channel, the wire, and the C-shaped shielding channel are repeated to form a shielding body in which a circulating current can flow to generate reverse magnetic fields in opposite directions in accordance with Lenz's law to cancel each other out to greatly reduce the magnetic flux density. A ferromagnetic perforated plate or a ferromagnetic net made of a ferromagnetic substance is used as the material of which the C-shaped shielding channel, the halved C-shaped shielding channel, or the extended shielding channel is made to allow the power cable placed in the shielding channel to be seen and allow air to be distributed to be cooled and monitored to greatly increase user satisfaction.

Description

강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비{The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space}The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space}

전력케이블 외부 공간 자속밀도 감소설비Power cable outer space magnetic flux density reduction facility

전력을 수송하기 위한 송배전선을 지탱하기 위하여 지지물로써 송전용 철탑 및 배전용 전주가 건설되어 왔다. 그러나 도심지가 넓어지고 생활 환경이 개선됨에 따라 송전용 철탑 및 배전용 전주는 필요성은 인정하지만 그것들이 차지하는 공간에 대한 미관상 문제, 공간의 접근성 제약, 전자파 발생의 문제 등으로 인해 제거시켜야 할 대상으로 떠오르고 있다. In order to support transmission and distribution lines for transporting electric power, transmission steel towers and distribution poles have been constructed as supports. However, as the downtown area expands and the living environment improves, the necessity of transmission pylons and distribution poles is acknowledged, but they emerge as objects to be removed due to aesthetic problems regarding the space they occupy, space accessibility restrictions, and electromagnetic wave generation problems. there is.

가공 공간에 설치되는 송전용 철탑 및 배전용 전주를 대체하기 위하여 지중에 구조물인 전력구·관로·맨홀을 건설하고, 전력구·관로·맨홀을 통하여 전력케이블을 설치함으로써 지상의 설비들을 지하로 옮겨 문제를 해결하고 있다. 그러나 지하에 전력케이블을 건설함에도 전력케이블이 건설된 인근에 전자파문제가 최근에 대두되고 있다. 전력케이블은 전계는 거의 모두 차폐되므로 문제가 되지 않으며, 전자파문제라는 것도 분석해보면 공간에 분포된 자계의 자속(magnetic flux)의 밀도(Dencity)의 문제라고 할 수 있다. 자속밀도(magnetic flux dencity)는 자계의 특성상 완전히 제거할 수 없는 관계로 "얼마나 감소시킬 수 있는가?" 라는 문제로 귀결된다. 전력케이블에서 전자계 차폐 역할을 하는 금속시스를 사용하고 있는데 현재 채택되고 있는 금속시스는 알루미늄시스(AL sheath)와 동시스(cupper sheath)이다. 출원번호 특1997-039015[파부형 동시스 전력케이블]은 동시스(cupper sheath)에 관한 것이고, 현재 만들어 보편적으로 사용중인 전력케이블의 시스는 알루미늄시스(AL sheath)이다. 시스로 비철금속인 동과 알루미늄을 사용하는 현재 기술적 상황에서 동과 알루미늄의 비투자율이 약1.0이므로 공기, 진공의 비투자율과 거의 같아서 자계밀도 감소 기능이 없다. 전력케이블에서 주변 환경공간에 영향을 주는 자계밀도를 감소시킬 새로운 기술이 개발될 필요가 있다. In order to replace the power transmission towers and distribution poles installed in the processing space, power conduits, conduits, and manholes, which are structures, are constructed underground, and power cables are installed through the conduits, conduits, and manholes to move facilities on the ground underground. I am solving the problem. However, even though the power cable is built underground, electromagnetic wave problems have recently emerged in the vicinity where the power cable is constructed. The power cable is not a problem because it shields almost all electric fields, and if you analyze the electromagnetic wave problem, it can be said that it is a problem of the density of the magnetic flux of the magnetic field distributed in space. Since magnetic flux density cannot be completely eliminated due to the nature of the magnetic field, “How much can it be reduced?” It comes down to the question of A metal sheath that serves as an electromagnetic shield is used in power cables. The currently adopted metal sheaths are an aluminum sheath and a copper sheath. Application No. 1997-039015 [wave type simultaneous sheath power cable] relates to a copper sheath, and the sheath of a power cable currently made and commonly used is an aluminum sheath. In the current technical situation in which non-ferrous metals such as copper and aluminum are used as sheaths, the relative magnetic permeability of copper and aluminum is about 1.0, so it is almost the same as the relative magnetic permeability of air and vacuum, so there is no function to reduce the magnetic field density. It is necessary to develop a new technology to reduce the magnetic field density affecting the surrounding environment space in the power cable.

전력케이블에서 자속밀도(B)가 지속적으로 상당한 큰 수치로 주변 생활환경에 영향을 주는 것으로 보아, 자계의 세기(H)가 너무 클 경우 자계의 세기(H)를 줄이는 방안을 고려한다. 강자성체, 상자성체, 반자성체 등 전력설비에 자속밀도(B)를 감소시키기 위하여 사용할 물질의 특성을 파악한다. 임의의 공간에 자계의 변화가 일어날 때 이러한 변화를 막고자 역방향으로 자계가 형성되는 공간에서 반작용으로 나타나는 현상을 분석하고 이를 자속밀도(B)를 감소시키기 위하여 사용할 이론적 근거를 찾는다. 렌츠의 법칙을 설비구성에 응용할 방법을 강구한다. Considering that the magnetic flux density (B) in the power cable continuously affects the surrounding living environment with a fairly large number, consider reducing the magnetic field strength (H) when the magnetic field strength (H) is too large. Identify the characteristics of materials to be used to reduce magnetic flux density (B) in power facilities such as ferromagnetic, paramagnetic, and diamagnetic materials. When the magnetic field changes in an arbitrary space, to prevent this change, analyze the phenomenon that appears as a reaction in the space where the magnetic field is formed in the reverse direction, and find a theoretical basis to use it to reduce the magnetic flux density (B). We seek ways to apply Lenz's law to equipment configuration.

렌츠의 법칙에 따라 자계의 변화를 방해하는 방향으로 역자계가 발생하도록 전류가 흐르는 원리를 이용한다. 강자성체로 판을 만든 후에, 강자성체로 판의 양끝(시작점과 끝점)을 순환전류가 흐를수 있도록 전선으로 연결하여 강자성체판 - 전선 - 다시 강자성체판으로 반복되는 폐회로를 만들어 순환전류가 흐를 수 있도록 한다. 이 판으로 C형차폐찬넬 또는 반할C형차폐찬넬 또는 연장차폐찬넬을 만든 다음, 전력케이블을 감싸도록 설치하여 전력케이블에서 발생한 자계 또는 자계의 세기가 항상 변화하므로(한전 전력계통에서 교류는 60Hz로 변화하므로) 전력케이블 밖에 감싸도록 설치한 C형차폐찬넬 또는 반할C형차폐찬넬 또는 연장차폐찬넬을 통과한 외부 공간에서는 상당히 감소되어 나타나도록 함. According to Lenz's law, it uses the principle that current flows so that a reverse magnetic field is generated in a direction that opposes the change of the magnetic field. After making a plate with ferromagnetic material, connect both ends (start and end points) of the plate with ferromagnetic material with wires so that circulating current can flow, creating a closed circuit that repeats ferromagnetic plate - wire - again ferromagnetic plate so that circulating current can flow. After making a C-type shielding channel, half C-type shielding channel, or extended shielding channel with this board, it is installed to cover the power cable so that the magnetic field generated from the power cable or the strength of the magnetic field is always changing (AC in the KEPCO power system is 60Hz). As it changes), it should appear significantly reduced in the external space passing through the C-type shielding channel, half-half C-type shielding channel, or extension shielding channel installed to wrap outside the power cable.

사람이 거주하는 도시공간은 점차 넓어지고 철탑과 전주에 의존하여 전력을 공급하던 가공송배전망은 철거 위기에 놓였다. 가공 공간에 설치되는 송전용 철탑 및 배전용 전주를 대체하기 위하여 지중에 전력구·관로·맨홀을 건설하고, 전력구·관로·맨홀을 통하여 전력케이블을 설치함으로써 지상의 설비들을 지하로 옮겨 문제를 해결하고 있다. 그러나 지하에 전력케이블을 건설함에도 전력케이블이 건설된 인근에 전자파문제가 최근에 대두되고 있다. 전력케이블에서 전계는 거의 모두 차폐되므로 문제가 되지 않으며, 전자파문제라는 것도 분석해보면 자속(magnetic flux)의 밀도(Dencity)의 문제라고 할 수 있다. 자속밀도(magnetic flux dencity)는 자계의 특성상 완전히 제거할 수 없는 관계로 "얼마나 감소시킬 수 있는가?" 라는 문제로 귀결된다. The urban space where people live gradually expands, and the overhead transmission and distribution network that relied on steel towers and poles to supply electricity was in danger of being demolished. In order to replace the power transmission towers and distribution poles installed in the processing space, power conduits, conduits, and manholes are built underground, and power cables are installed through the conduits, conduits, and manholes to move facilities on the ground underground to solve problems. are solving However, even though the power cable is built underground, electromagnetic wave problems have recently emerged in the vicinity where the power cable is constructed. Since almost all electric fields are shielded in the power cable, it is not a problem, and if the electromagnetic wave problem is analyzed, it can be said that it is a problem of density of magnetic flux. Since magnetic flux density cannot be completely eliminated due to the nature of the magnetic field, “How much can it be reduced?” It comes down to the question of

본 발명에서는 단상케이블의 경우 강자성체로 C형차폐찬넬 또는 반할C형차폐찬넬 또는 연장차폐찬넬을넬을 만들어 전력케이블 인근을 감싸듯이 설치하고 C형차폐찬넬의 양끝(시작점과 끝점)을 전선으로 연결하여 C형차폐찬넬 - 전선 - 다시 C형차폐찬넬으로 반복되는 폐회로를 만들어 순환전류가 흐를 수 있도록하는 차폐체를 만들어 렌츠의법칙에 따라 반대방향으로 역자계를 만들어 상호 상쇄되도록 하여 자속밀도(magnetic flux dencity)가 매우 감소되도록 하였다. 강자성체로 C형차폐찬넬 또는 반할C형차폐찬넬 또는 연장차폐찬넬을 만드는 재료로 강자성체타공판 또는 강자성체로 만든 강자성체그물을 사용하도록 하여, 차폐찬넬 안에 놓인 전력케이블이 외부에서 보이고 공기가 유통되도록 하여 냉각과 감시가 가능하도록 하여 사용자의 만족도를 매우 높혔다.In the present invention, in the case of a single-phase cable, a C-type shielding channel, a half C-type shielding channel, or an extended shielding channel is made of ferromagnetic material, installed as if wrapping around the power cable, and both ends (start and end points) of the C-type shielded channel are connected with wires. By creating a closed circuit that is repeated with C-type shielding channel - wire - C-type shielding channel again, creating a shielding body that allows circulating current to flow, creating a reverse magnetic field in the opposite direction according to Lenz's law to cancel each other so that magnetic flux density (magnetic flux) density) was greatly reduced. A ferromagnetic perforated board or a ferromagnetic net made of ferromagnetic material is used as a material for making a C-type shielding channel, a half C-type shielding channel, or an extended shielding channel with a ferromagnetic material, so that the power cable placed in the shielding channel is visible from the outside and air is circulated so that cooling and cooling By enabling monitoring, user satisfaction was greatly increased.

도 1은 전력케이블 구조 설명도이다.
도 2는 삼각배열 전력케이블이 단상으로 분리되는 사진 설명도이다.
도 3은 무한장도체 전류에 의한 동심원 자계 형성 설명도이다.
도 4는 전력케이블 외부에 원통형 강자성체 설치사례 설명도이다.
도 5는 역자계유발전류순한회로 설명도이다.
도 6은 원통형 강자성체로 인한 자계의 세기합 설명도이다.
도 7은 C형차폐찬넬 설치 설명도이다.
도 8은 반할C형차폐찬넬 설치 설명도이다.
도 9는 연장차폐찬넬 설치 설명도이다.
도 10은 차폐찬넬에 사용할 강자성체 사례 설명도이다.
도 11은 접지선과 연결된 전류순환회로 설명도이다.
도 12는 차폐찬넬 고정시 절연방법 설명도이다.
1 is an explanatory diagram of a power cable structure;
2 is a photo explanatory diagram in which a triangular array power cable is separated into single phases.
3 is an explanatory diagram of concentric magnetic field formation by endless conductor current.
Figure 4 is an explanatory view of a cylindrical ferromagnetic installation case outside the power cable.
5 is an explanatory diagram of a reverse magnetic field induced current circulating circuit.
6 is an explanatory diagram of the strength sum of a magnetic field due to a cylindrical ferromagnetic material.
7 is a C-type shielding channel installation explanatory diagram.
8 is a diagram illustrating the installation of a half C-type shielding channel.
9 is an explanatory diagram for installing an extension shielding channel.
10 is an explanatory diagram of a ferromagnetic material to be used for a shielding channel.
11 is an explanatory diagram of a current circulation circuit connected to a ground line.
12 is an explanatory diagram of an insulation method when fixing a shielding channel.

도 1은 전력케이블 구조 설명도이다. 전력케이블의 중심에는 전류를 흘리는 도체(11)가 있다. 그리고 고압의 전계를 평활화 시켜주는 반도전테이프(12)와 내부반도전층(13)이 차례로 위치한다. 내부반도전층(13) 밖에는 전위를 낮추어 주는 절연층(14)이 존재한다. 요즈음에는 가교폴리에칠렌(XLPE)이 절연 재질로 주로 사용된다. 절연층(14) 외부에는 압출반도전층(15)과 외부반도전층(16)이 전계 평활화 목적으로 설치된다. 그 외부에는 시스(Sheath)(17)가 설치되어 접지됨으로써 잔류 전하를 버림으로써 영전위를 유지하려고 한다. 보통은 알루미늄시스를 사용하는데, 동시스에 대한 기술도 소개되고 있다. 그리고 시스(Sheath)(17) 밖에는 방식층(18)이 설치되는데 절연성능을 유지시키고, 물과 같은 부식성 물질이 시스(Sheath)(17)와 만나는 것을 차단한다. 이러한 전력케이블은 설치되어도 전자에 의한 전계가 거의 완벽하게 금속 시스(Sheath)(17)에서 제거되어 운전중에 맨손으로 만져도 안전한 설비로 자리 잡았다. 그러나, 자계의 특성상 자계는 완벽하게 막을 수 없어서 전력케이블 외부에 자장을 형성할 수 밖에 없고, 전력구·관로·맨홀 등 전력 구조물을 벗어나 사람들이 생활하는 외부 공간에 까지 자장의 세기(H)에 따라 큰 자속밀도(B)까지 검출되어 전자파 위험까지 불러 일으키고 있다. 자속밀도(B)를 완전히 없앨 수는 없지만 최대한 감소시키기 위한 방안을 본 발명은 제시한다. 1 is an explanatory diagram of a power cable structure; At the center of the power cable is a conductor 11 that carries current. In addition, the semiconductive tape 12 and the inner semiconductive layer 13, which smooth the high-voltage electric field, are sequentially positioned. An insulating layer 14 lowering the potential exists outside the inner semiconducting layer 13 . These days, cross-linked polyethylene (XLPE) is mainly used as an insulating material. Outside the insulating layer 14, an extruded semiconducting layer 15 and an external semiconducting layer 16 are provided for the purpose of electric field smoothing. A sheath 17 is installed on the outside and grounded to try to maintain zero potential by discarding residual charge. Usually, an aluminum sheath is used, but technology for simultaneous sheath is also being introduced. In addition, an anticorrosive layer 18 is installed outside the sheath 17 to maintain insulation performance and prevent corrosive substances such as water from meeting the sheath 17. Even when these power cables are installed, the electric field caused by electrons is almost completely removed from the metal sheath (Sheath) 17, and it has become a safe facility even if touched with bare hands during operation. However, due to the nature of the magnetic field, the magnetic field cannot be completely blocked, so it is inevitable to form a magnetic field outside the power cable, and the intensity (H) of the magnetic field goes beyond power structures such as power outlets, conduits, and manholes to the external space where people live. According to it, even a large magnetic flux density (B) is detected, causing an electromagnetic wave hazard. Although it is impossible to completely eliminate the magnetic flux density (B), the present invention proposes a method for reducing it as much as possible.

도 2는 삼각배열 전력케이블이 단상으로 분리되는 사진 설명도이다. 도1에서 설명한 바와 같이 전력케이블은 외부 공간에 까지 자장을 형성하고 자장의 세기(H)가 영(Zero)이 아닌 값을 가진다. 전력케이블 설치시에는 이를 감안하여 삼상정삼각배열(23)을 원칙으로 한다. 삼상정삼각배열(23)을 하면 외부 공간에 까지 자장을 형성하고 자장의 세기(H)가 영(Zero)이 아닌 값을 가진다고 할 지라도 삼상이 정삼각형 형태로 영향을 미치므로 삼상합이 영(Zero)에 가까운 값을 가지기 때문에 별로 문제될 것이 없다. 그러나 접속 등의 필요에 따라 어쩔 수 없이 삼상정삼각배열(23)을 해체하여 상별고정클리트(22)를 사용하여 단상분리배열(21)을 할 수 밖에 방법이 없는 경우 개별 상마다 자계가 외부의 한 지점에 미치는 영향의 합은 영(Zero)이 아니므로 외부 공간 자계에 문제가 된다.2 is a photo explanatory diagram in which a triangular array power cable is separated into single phases. As described in FIG. 1, the power cable forms a magnetic field up to the outer space, and the strength (H) of the magnetic field has a value other than zero. In consideration of this, when installing power cables, a three-phase regular triangular arrangement (23) is used as a rule. If the three-phase regular triangular array (23) is used, a magnetic field is formed up to the external space, and even if the magnetic field strength (H) has a value other than zero, the three-phase effect is in the form of an equilateral triangle, so the three-phase sum is zero (Zero). ), so there is no problem. However, if there is no other way but to dismantle the three-phase regular triangular array 23 and use the phase-specific fixing cleat 22 to form a single-phase separation array 21 according to the need for connection, etc., the magnetic field for each phase is external. Since the sum of the influences on a point is not zero, it is a problem for the outer space magnetic field.

도 3은 무한장도체 전류에 의한 동심원 자계 형성 설명도이다. 전력케이블은 매우 긴 전력선이므로 해석상 무한장 도체(11)를 지니고 있는 일종의 전선으로 볼 수 있다. 무한장 도체(11)에 무한장도체전류(I)(30) 암페어의 오른손법칙에 따라 그림과 같은 자계가 형성된다. 반경r위치자계세기(31)은

Figure pat00001
, 반경2r위치자계세기(32)는
Figure pat00002
로 계산된다. 전류가 흐르는 도체에서 멀수록 작아짐을 알 수 있다. 3 is an explanatory diagram of concentric magnetic field formation by endless conductor current. Since the power cable is a very long power line, it can be viewed as a kind of wire having an infinite conductor 11 in analysis. A magnetic field as shown in the figure is formed in the infinite conductor (11) according to the right-hand rule of the infinite conductor current (I) (30) Ampere. The radius r position magnetic field strength 31 is
Figure pat00001
, the radius 2r position magnetic field strength 32 is
Figure pat00002
is calculated as It can be seen that the farther from the conductor through which the current flows, the smaller it is.

도 4는 전력케이블 외부에 원통형 강자성체 설치사례 설명도이다. 반경이 r이고 원통길이(44)가 L인 원통형 강자성체(40)가 전력케이블(43) 외부에 설치 한다. 케이블전류에의한H(r)(41)은

Figure pat00003
, 케이블전류에의한H(2r)(42)은
Figure pat00004
로 나타내었다. 자속밀도(B)는 자계의세기(H)에 따라 달라지는데 다음식으로 계산된다.
Figure pat00005
이다. 강자성체는 외부 자기장에 강하게 자화하는 물질이고, 상자성체는 외부 자기장에 약하게 자화하는 물질을 일컫는다. 철은 강자성체로서 비투자율이 탄소성분 포함 비율 및 방향성에 따라 6,000 ∼ 200,000 정도로 큰 값을 보이고, 상자성체인 비철금속 구리, 알루미늄은 비투자율이 약1로서 공기와 자화성능이 같다.Figure 4 is an explanatory view of a cylindrical ferromagnetic installation case outside the power cable. A cylindrical ferromagnetic material 40 having a radius r and a cylinder length 44 L is installed outside the power cable 43. H(r)(41) due to cable current is
Figure pat00003
, H(2r)(42) by cable current is
Figure pat00004
indicated by The magnetic flux density (B) depends on the strength of the magnetic field (H) and is calculated by the following equation.
Figure pat00005
am. A ferromagnetic material is a material that is strongly magnetized in an external magnetic field, and a paramagnetic material is a material that is weakly magnetized in an external magnetic field. Iron is a ferromagnetic material, and its relative magnetic permeability is as high as 6,000 to 200,000 depending on the carbon component content ratio and orientation.

도 5는 역자계유발전류순한회로 설명도이다. 도4에서 반경이 r이고 원통길이(44)가 L인 원통형 강자성체(40)의 시작점과 끝점을 전기적으로 연결하는 폐회로연결전선(53)를 설치하면, 강자성체(40) - 폐회로연결전선(53) - 다시 강자성체(40)의 폐회로로 역자계유발순환전류(i)(54)가 흐르게 된다. 렌츠의 법칙에 의하면 자계 내에 폐회로가 존재하고, 폐회로 내부로 통과하는 자속의 변화가 있으면 이 변화를 방해하는 방향으로 자속이 발생하도록 폐회로에 전류가 흐른다는 것을 알 수 있다. 이 법칙은 자연의 관성에 관한 법칙이다. 폐회로에 전류를 흐르게 하는 역방향 유기기전력은

Figure pat00006
에 의해 발생하고,유기되는 역기전력의 크기는 식을 유도하면,
Figure pat00007
(여기서
Figure pat00008
: 투자율, B: 자속밀도, S: 면적, L: 길이, H; 자계의 세기)이므로
Figure pat00009
값에 비례한다. 따라서
Figure pat00010
값이 큰 강자성체를 택하면 폐회로에 전류는 커지고 렌츠의 법칙에 의거하여 전력케이블에 의해 발생한 자계를 방해하는 역자계의 크기도 커진다. 역자계유발순환전류(i)(54)는
Figure pat00011
(여기서 R: 전류순환회로의 저항)으로 계산된다. 전력케이블(43)에 무한장도체전류(I)(30)가 흐르면 중심에서 거리가 반경r 만큼 떨어진 강자성체(40) 표면과 중심에서 거리가 반경2r 만큼 떨어진 지점의 케이블전류에의한H(41)은
Figure pat00012
, 케이블전류에의한H(2r)(42)은 로
Figure pat00013
나타난다. 렌츠의법칙에 의하여 전력케이블에 의해 발생한 자속과 반대방향으로 역자계전류에의한H(r)(51)인
Figure pat00014
과 역자계전류에의한H(2r)(52)인
Figure pat00015
가 중심에서 거리가 반경r 및 반경2r 만큼 떨어진 지점에 발생한다. 무한장 도체(11)의 무한장도체전류(I)(30)가 일정한 크기를 유지한다고 가정할 경우 케이블 전류에의한 자계의세기(
Figure pat00016
)는 일정한 값을 유지하는 가운데, 이와 반대방향으로 자계가 형성되는 역자계전류(i)에 의한 자계의세기(
Figure pat00017
)는 원통형강자성체(40) 비투자율이 클 수록, 원통길이(44)가 L이 길수록, 원통형 강자성체(40)가 전력케이블(43)과 떨어진 거리r이 가까울수록 큰 값을 나타낸다. 5 is an explanatory diagram of a reverse magnetic field induced current circulating circuit. In FIG. 4, if a closed circuit connection wire 53 electrically connecting the start and end points of a cylindrical ferromagnetic body 40 having a radius r and a cylinder length 44 L is installed, the ferromagnetic body 40 - closed circuit connection wire 53 - The reverse magnetic field induced circulating current (i) (54) flows again into the closed circuit of the ferromagnetic material (40). According to Lenz's law, it can be seen that a closed circuit exists in a magnetic field, and if there is a change in magnetic flux passing through the closed circuit, current flows in the closed circuit so that magnetic flux is generated in a direction that opposes this change. This law is the law of inertia of nature. The reverse induced electromotive force that causes current to flow in a closed circuit is
Figure pat00006
The magnitude of the back electromotive force generated by and induced by deriving the equation,
Figure pat00007
(here
Figure pat00008
: permeability, B: magnetic flux density, S: area, L: length, H; strength of the magnetic field), so
Figure pat00009
proportional to the value thus
Figure pat00010
If a ferromagnetic material with a large value is selected, the current in the closed circuit increases and the magnitude of the reverse magnetic field that interferes with the magnetic field generated by the power cable increases according to Lenz's law. The reverse magnetic field induced circulating current (i) (54) is
Figure pat00011
(Where R: the resistance of the current circulation circuit). When an infinite conductor current (I) (30) flows in the power cable (43), H (41 )silver
Figure pat00012
, H(2r)(42) by cable current is
Figure pat00013
appear. According to Lenz's law, H(r)(51) due to the reverse magnetic field current in the opposite direction to the magnetic flux generated by the power cable
Figure pat00014
H(2r)(52) due to overcurrent
Figure pat00015
occurs at a point away from the center by a distance of radius r and radius 2r. Assuming that the infinite conductor current (I) 30 of the infinite conductor 11 maintains a constant level, the strength of the magnetic field due to the cable current (
Figure pat00016
) maintains a constant value, and the strength of the magnetic field due to the reverse magnetic field current (i) in which the magnetic field is formed in the opposite direction (
Figure pat00017
) shows a larger value as the relative magnetic permeability of the cylindrical ferromagnetic material 40 increases, as the length L of the cylinder length 44 increases, and as the distance r of the cylindrical ferromagnetic material 40 and the power cable 43 decreases.

도 6은 원통형 강자성체로 인한 자계의세기합 설명도이다. 그림에서 중심에서 거리가 반경r의 자계의세기합은 자계시기합(r)(61)인

Figure pat00018
과 중심에서 거리가 반경2r의 자계의세기합은 자계시기합(2r)(62)인
Figure pat00019
로 표시할 수 있다. 원통길이(44)가 L이 길수록, 원통형 강자성체(40)가 전력케이블(43)과 떨어진 거리r이 가까울수록, 원통형 강자성체(40) 비투자율
Figure pat00020
의 값이 클수록 역자계유발순환전류(i)(54)가 커지고 그에 따른
Figure pat00021
Figure pat00022
값이 커질 것이므로 궁극적으로
Figure pat00023
Figure pat00024
이 작아진다. 전력케이블(43)과 멀리 떨어진 중심에서 거리가 반경2r인 지점의 자계의세기는
Figure pat00025
로 작아지므로, 같은 지점의 진공중(또는 공기중; 거의 유사) 자속밀도는
Figure pat00026
로 함께 감소하게 된다. 이렇게 외부공간의 자계밀도가 감소되므로 본 발명의 목표는 달성 가능하다.6 is an explanatory diagram of the strength of a magnetic field due to a cylindrical ferromagnetic material. In the figure, the sum of the magnetic field strengths of the radius r at a distance from the center is the magnetic field sum (r) (61)
Figure pat00018
The sum of magnetic field strengths of radius 2r at a distance from the center is the magnetic field sum (2r) (62)
Figure pat00019
can be displayed as The longer the cylindrical length 44 L, the closer the distance r of the cylindrical ferromagnetic body 40 and the power cable 43 is, the closer the cylindrical ferromagnetic body 40 relative magnetic permeability
Figure pat00020
The larger the value of , the larger the reverse magnetic field induced circulating current (i) (54)
Figure pat00021
Figure pat00022
value will increase, so ultimately
Figure pat00023
and
Figure pat00024
gets smaller The strength of the magnetic field at a point with a radius of 2r from the center far from the power cable 43 is
Figure pat00025
, so the magnetic flux density in vacuum (or in air; almost similar) at the same point is
Figure pat00026
decreases together with Since the magnetic field density in the external space is reduced in this way, the object of the present invention can be achieved.

도7 내지 도11을 함께 설명한다. 도 7은 C형차폐찬넬 설치 설명도이고, 도 8은 반할C형차폐찬넬 설치 설명도이며, 도 9는 연장차폐찬넬 설치 설명도이고, 도 10은 차폐찬넬에 사용할 강자성체 사례 설명도이고, 도 11은 접지선과 연결된 전류순환회로 설명도이다. 전력케이블 설치가 삼상삼각배열(23)일 경우는 삼상평형을 이루어 자계에 대한 대책을 세울 필요가 없으나, 단상분리배열(21)의 경우에는 자계에 대한 대책을 세울 필요가 있다. 도4 내지 도6과 같이 원통형으로 전력케이블을 감싸도록 강자성체(40)를 설치하는 것이 최상이나 전력케이블(43)의 유지보수를 고려하여 원통형에서 일부 면을 제거한 C형차폐찬넬(70)을 기본으로 한다. 도7과 도11과 같이, 전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70)을 설치하고, C형차폐찬넬(70)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 한다. 작동원리는 다음과 같다. 전력케이블(43)에 전류가 흐르면 C형차폐찬넬(70) 주변에 자계의 변화가 발생하고, 이에따라 렌츠의 법칙으로 C형차폐찬넬(70)과 폐회로연결전선(53)을 연결하는 폐회로에는 이러한 자계변화를 막고자하는 방향이 반대이면서, C형차폐찬넬(70)이 강자성체이므로 강한 역자계를 발생시키는 역자계유발순환전류(i)(54)를 유발하게 되어, 외부 공간에 자계의 변화를 감소시킨다. 전력케이블(43)에는 교류가 흐름으로 계속하여 이러한 자계의 변화와 자계의 변화를 막고자하는 방향이 반대인 역자계가 발생하여 서로 상쇄되어 외부 공간에 자계의 변화를 방해하여 감소시킨다. C형차폐찬넬(70)을 만드는 강자성체 중에서 가장 경제적인 철(Fe)을 택하는 것을 우선적으로 고려한다. 원통형에서 일부 면을 제거한 C형차폐찬넬(70)을 보완하기 위하여 C형차폐찬넬(70)에서 제거한 면에 장석(77)을 이용하여 여닫이문(78)을 설치하여 구성하는 것도 본 발명에 포함된다. 그리고 폐회로연결전선(53)에 흐르는 순환전류를 크게 하기 위하여 폐회로연결전선(53) 일측에 리액턴스 보상용 콘덴서(미도시)를 삽입하여 임피던스를 줄이도록 구성하는 것도 본 발명에 포함된다. 폐회로연결전선(53)에 흐르는 순환전류가 커야지 역방향의 자계가 커져 외부로 향하는 자계의 세기가 좀 더 감소된다. 다른 방법으로 도8과 도11과 같이, 전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70)의 설치를 쉽게하기 위하여 C형차폐찬넬(70)을 2등분하여 반할C형차폐찬넬(80)을 만들어 2개의 반할C형차폐찬넬(80)을 결합수단(81)을 통하여 연결하여 C형차폐찬넬(70)을 대신하을 설치하고, 반할C형차폐찬넬(80)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 한다. 그리고 다른 사례로 도9의 좌측 그림과 도11과 같이, 전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70) 대신 단상이면서 둘개 이상의 전력케이블(43)이 내부에 상하로 수직배열되어 들어가도록 강자성체로 C형차폐찬넬을 세로로 길게 연장차폐찬넬(90)을 만들어 설치하고, 연장차폐찬넬(90)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 한다. 여기에서 도9의 우측 그림과 같이, 연장차폐찬넬(90) 안에 여러개의 전력케이블(43)을 동시에 수용하고 각 전력케이블(43) 사이에 강자성체(40)로 제작된 칸막이판(91)을 설치하는 것도 본발명의 범위에 포함된다. 도7 또는 도8 또는 도9에서, 차폐찬넬과 함께 폐회로를 형성하는 폐회로연결전선(53) 양단에 연결슬리브(112)를 활용하여 접지선(113)을 연결하여 구성하는 것도 본 발명에 포함된다. 또한 도7 또는 도8 또는 도9 또는 도10에서, 역자계유발순환전류(i)(54)의 크기 감소를 막기 위하여 강자성체(40)로 만들어진 C형차폐찬넬(70) 또는 반할C형차폐찬넬(80) 또는 연장차폐찬넬(90)을 절연물질로 감싸거나, 전력케이블(43) 주변의 변화를 감시하거나 냉각을 위하여 여닫이문(78)을 포함한 C형차폐찬넬(70) 또는 반할C형차폐찬넬(80) 또는 연장차폐찬넬(90)을 통기구(103)가 다수 형성된 강자성체타공판(101) 또는 강자성체그물(102)으로 만들어 구성하는 것도 본 발명에 포함된다.7 to 11 will be described together. 7 is a C-type shielding channel installation explanatory diagram, FIG. 8 is a half C-type shielding channel installation explanatory diagram, FIG. 9 is an extension shielding channel installation explanatory diagram, and FIG. 11 is an explanatory diagram of the current circulation circuit connected to the ground line. If the power cable installation is a three-phase triangular array (23), three-phase equilibrium is made and there is no need to take countermeasures against the magnetic field, but in the case of a single-phase separation array (21), it is necessary to take countermeasures against the magnetic field. As shown in FIGS. 4 to 6, it is best to install the ferromagnetic material 40 so as to surround the power cable in a cylindrical shape, but in consideration of maintenance of the power cable 43, a C-type shielding channel 70 with some surfaces removed from the cylinder is used as a basis. to be 7 and 11, on the cleat 73 coupled to the horizontal hanger 72 using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the electric power wall 74 A C-type shielding channel 70 made of ferromagnetic material 40 is installed so that the laid power cable 43 is located inside, and one side of the start and end points of the C-type shielding channel 70 is passed through the wire fixing bolt 111. It is characterized in that a closed circuit is formed by connecting a closed circuit connection wire 53, which is an insulated wire. The working principle is as follows. When current flows through the power cable 43, a change in magnetic field occurs around the C-type shielded channel 70, and accordingly, in the closed circuit connecting the C-type shielded channel 70 and the closed circuit connection wire 53 according to Lenz's law, such Since the direction to block the magnetic field change is opposite and the C-type shielding channel 70 is ferromagnetic, it induces a reverse magnetic field induced circulating current (i) 54 that generates a strong reverse magnetic field, thereby preventing a change in magnetic field in the external space. Decrease. As alternating current continues to flow in the power cable 43, a reverse magnetic field in the opposite direction to the change in magnetic field is generated, which cancels each other out, thereby preventing and reducing the change in magnetic field in the external space. Priority is given to selecting iron (Fe), which is the most economical among ferromagnetic materials that make the C-type shielding channel 70. In order to complement the C-type shielding channel (70) with some surfaces removed from the cylinder, the present invention also includes the construction of a casement door (78) installed using feldspar (77) on the surface removed from the C-type shielding channel (70). do. In addition, in order to increase the circulating current flowing through the closed circuit connection wire 53, a reactance compensation capacitor (not shown) is inserted into one side of the closed circuit connection wire 53 to reduce impedance. When the circulating current flowing through the closed circuit connection wire 53 is large, the magnetic field in the reverse direction becomes large, and the intensity of the magnetic field directed to the outside is further reduced. As another method, as shown in FIGS. 8 and 11, the cleat coupled on the horizontal hanger 72 by using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the power wall 74 ( 73) In order to facilitate the installation of the C-type shielding channel 70 made of ferromagnetic material 40 so that the power cable 43 placed on it is located inside, the C-type shielding channel 70 is divided into two and divided into half C-type shielding channels ( 80) and connect the two half-C type shielding channels (80) through the coupling means (81) to install the C-type shielding channel (70) instead, and the starting point and the end point of the half-C type shielding channel (80) It is characterized in that one side is configured by making a closed circuit by connecting the closed circuit connection wire 53, which is an insulated wire, through the wire fixing bolt 111. And as another example, as shown in the left picture of FIG. 9 and FIG. 11, on the horizontal hanger 72 by using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the electric power wall 74 Instead of the C-type shielding channel 70 made of ferromagnetic material 40 so that the power cable 43 placed on the combined cleat 73 is located inside, single-phase and two or more power cables 43 are vertically arranged inside A closed-circuit connection wire (which is an insulated wire) is installed by making and installing a C-type shielding channel vertically extending the C-type shielding channel with ferromagnetic material as shown in Fig. 53) to form a closed circuit. Here, as shown in the right figure of FIG. 9, several power cables 43 are simultaneously accommodated in the extension shielding channel 90, and a partition plate 91 made of ferromagnetic material 40 is installed between each power cable 43. Doing is also included in the scope of the present invention. In FIG. 7 or 8 or 9, it is also included in the present invention to configure the connection sleeve 112 to connect the ground wire 113 to both ends of the closed circuit connection wire 53 forming a closed circuit together with the shielding channel. In addition, in FIG. 7 or 8 or 9 or 10, a C-type shielding channel 70 made of ferromagnetic material 40 or a half C-type shielding channel in order to prevent a decrease in the magnitude of the reverse magnetic field induced circulating current (i) 54 (80) or the extended shielding channel (90) is wrapped with an insulating material, or a C-type shielding channel (70) including a hinged door (78) or half-C-type shielding for monitoring changes around the power cable (43) or for cooling It is also included in the present invention to configure the channel 80 or the extended shielding channel 90 by making a ferromagnetic perforated plate 101 or a ferromagnetic net 102 having a plurality of vents 103 formed thereon.

도 12는 차폐찬넬 고정시 절연방법 설명도이다. C형차폐찬넬(70) 또는 반할C형차폐찬넬(80) 또는 연장차폐찬넬(90)은 설치시 역자계유발순환전류(i)(54)를 최대화 하기 위하여 절연을 철저히 해야 한다. 차폐찬넬에 구멍을 뚫어 설치할 필요가 있을 경우 차폐매트설치구멍(121)을 뚫은 다음 구멍속절연(122)을 철저히 하고, 결합볼트(123)와 결합너트(124)를 사용하여 고정시킨다. 본 발명에서는 강자성체(40)의

Figure pat00027
값이 큰 강자성체를 택하는 것과 발생한 역기전력이 절연차폐매트 일측에서 외부로 누기되지 않도록 강자성체(40) 차폐찬넬을 완벽하게 절연시키는 것이 매우 중요하다.12 is an explanatory diagram of an insulation method when fixing a shielding channel. The C-type shielded channel 70 or the half C-type shielded channel 80 or the extended shielded channel 90 must be completely insulated to maximize the reverse magnetic field induced circulating current (i) 54 when installed. If it is necessary to drill a hole in the shielding channel, drill a shielding mat installation hole (121), thoroughly insulate the hole (122), and fix it using a coupling bolt (123) and a coupling nut (124). In the present invention, the ferromagnetic material 40
Figure pat00027
It is very important to select a ferromagnetic material having a large value and to completely insulate the shielding channel with the ferromagnetic material 40 so that generated counter-electromotive force does not leak to the outside from one side of the insulating shielding mat.

11 : 도체 12 : 반도전테이프
13 : 내부반도전층 14 : 절연층
15 : 압출반도전층 16 : 외부반도전층
17 : 시스(Sheath) 18 : 방식층
21 : 단상분리배열 22 : 상별고정클리트
23 : 삼상정삼각배열 30 : 무한장도체전류(I)
31 : 반경r위치자계세기 32 : 반경2r위치자계세기
40 : 강자성체 41 : 케이블전류에의한H(r)
42 : 케이블전류에의한H(2r) 43 : 전력케이블
44 : 원통길이 51 : 역자계전류에의한H(r)
52 : 역자계전류에의한H(2r) 53 : 폐회로연결전선
54 : 역자계유발순환전류(i) 61 : 자계시기합(r)
62 : 자계시기합(2r) 70 : C형차폐찬넬
71 : 수직서포터 72 : 수평행거
73 : 클리트 74 : 전력구벽
75 : 고정수단 76 : 절연물질
77 : 장석 78 : 여닫이문
80 : 반할C형차폐찬넬 81 : 결합수단
90 : 연장차폐찬넬 91 : 칸막이판
101 : 강자성체타공판 102 : 강자성체그물
103 : 통기구 111 : 전선고정볼트
112 : 연결슬리브 113 : 접지선
121 : 구멍 122 : 구멍속절연
123 : 결합볼트 124 : 결합너트
11: conductor 12: semi-conductive tape
13: internal semiconducting layer 14: insulating layer
15: extruded semiconducting layer 16: external semiconducting layer
17: Sheath 18: Anticorrosive layer
21: single-phase separation arrangement 22: phase-specific fixing cleat
23: three-phase regular triangular array 30: infinite field conductor current (I)
31: Radius r position magnetic field strength 32: Radius 2r position magnetic field strength
40: ferromagnetic material 41: H (r) by cable current
42: H (2r) by cable current 43: power cable
44: cylinder length 51: H (r) by reverse magnetic field current
52: H (2r) by reverse magnetic field current 53: Closed circuit connection wire
54: reverse magnetic field induced circulating current (i) 61: magnetic field timing (r)
62: magnetic timing (2r) 70: C-type shielding channel
71: vertical supporter 72: horizontal hanger
73: cleat 74: power wall
75: fixing means 76: insulating material
77: feldspar 78: hinged door
80: half C-type shielding channel 81: coupling means
90: extended shielding channel 91: partition plate
101: ferromagnetic perforated board 102: ferromagnetic net
103: vent 111: wire fixing bolt
112: connection sleeve 113: ground wire
121: hole 122: insulation in hole
123: coupling bolt 124: coupling nut

Claims (8)

전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70)을 설치하고, C형차폐찬넬(70)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The power cable 43 placed on the cleat 73 coupled to the horizontal hanger 72 using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the power wall 74 is inside A C-type shielding channel 70 made of ferromagnetic material 40 is installed, and one side of the starting point and the end point of the C-type shielding channel 70 is connected through the wire fixing bolt 111 to the closed circuit connection wire 53, which is an insulated wire. ) A power cable external space magnetic flux density reduction facility using a ferromagnetic material, characterized in that it is configured to create a closed circuit by connecting. 제1항에 있어서, 원통형에서 일부 면을 제거한 C형차폐찬넬(70)을 보완하기 위하여 C형차폐찬넬(70)에서 제거한 면에 장석(77)을 이용하여 여닫이문(78)을 설치하여 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The method of claim 1, in order to supplement the C-type shielding channel (70) with some surfaces removed from the cylindrical shape, a casement door (78) is installed using feldspar (77) on the surface removed from the C-type shielding channel (70). A power cable external space magnetic flux density reduction facility using a ferromagnetic material, characterized in that to do. 제1항에 있어서, 폐회로연결전선(53)에 흐르는 순환전류를 크게 하기 위하여 폐회로연결전선(53) 일측에 리액턴스 보상용 콘덴서(미도시)를 삽입하여 임피던스를 줄이도록 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. According to claim 1, in order to increase the circulating current flowing in the closed circuit connection wire (53), a reactance compensation capacitor (not shown) is inserted on one side of the closed circuit connection wire (53) to reduce the impedance. Facility for reducing magnetic flux density in external space of power cable using 전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70)의 설치를 쉽게하기 위하여 C형차폐찬넬(70)을 2등분하여 반할C형차폐찬넬(80)을 만들어 2개의 반할C형차폐찬넬(80)을 결합수단(81)을 통하여 연결하여 C형차폐찬넬(70)을 대신하을 설치하고, 반할C형차폐찬넬(80)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The power cable 43 placed on the cleat 73 coupled to the horizontal hanger 72 using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the power wall 74 is inside In order to facilitate the installation of the C-type shielding channel 70 made of ferromagnetic material 40 to be located on the right, the C-type shielding channel 70 is divided into two to create a half-C-type shielding channel 80 and two half-C-type shielding channels (80) is connected through the coupling means (81) to install the C-type shielding channel (70) instead, and insulate one side of the starting point and the end point of the half C-type shielding channel (80) through the wire fixing bolt (111) A power cable external space magnetic flux density reduction facility using a ferromagnetic material, characterized in that a closed circuit is formed by connecting a closed circuit connection wire 53, which is a wire. 전력구벽(74)에 부착된 수직서포터(71)에 절연물질(76)을 적용한 고정수단(75)을 이용하여 수평행거(72) 위에 결합된 클리트(73) 위에 놓인 전력케이블(43)이 내부에 위치하도록 강자성체(40)로 만들어진 C형차폐찬넬(70) 대신 단상이면서 둘개 이상의 전력케이블(43)이 내부에 상하로 수직배열되어 들어가도록 강자성체로 C형차폐찬넬을 세로로 길게 연장차폐찬넬(90)을 만들어 설치하고, 연장차폐찬넬(90)의 시작점과 끝점의 일측을 전선고정볼트(111)를 통하여 절연전선인 폐회로연결전선(53)을 연결하여 폐회로를 만들어 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The power cable 43 placed on the cleat 73 coupled to the horizontal hanger 72 using the fixing means 75 to which the insulating material 76 is applied to the vertical supporter 71 attached to the power wall 74 is inside Instead of the C-type shielding channel 70 made of ferromagnetic material 40 to be located on the inside, the C-type shielding channel is vertically extended with a ferromagnetic material so that the single-phase and two or more power cables 43 are vertically arranged inside the shielding channel ( 90) is made and installed, and one side of the start point and end point of the extension shielding channel 90 is connected to the closed circuit connection wire 53, which is an insulated wire, through the wire fixing bolt 111 to form a closed circuit. Facility for reducing magnetic flux density in external space of power cable using 제5항에 있어서, 연장차폐찬넬(90) 안에 여러개의 전력케이블(43)을 동시에 수용하고 각 전력케이블(43) 사이에 강자성체로 제작된 칸막이판(91)을 설치하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The ferromagnetic material according to claim 5, characterized in that a plurality of power cables (43) are simultaneously accommodated in the extended shielding channel (90) and a partition plate (91) made of a ferromagnetic material is installed between each power cable (43). Utilized power cable external space magnetic flux density reduction facility. 제1항 및 제4항 내지 제5항에 있어서, 차폐찬넬과 함께 폐회로를 형성하는 폐회로연결전선(53) 양단에 연결슬리브(112)를 활용하여 접지선(113)을 연결하여 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. According to claims 1 and 4 to 5, it is characterized in that the connection sleeve 112 is used to connect the ground wire 113 to both ends of the closed circuit connection wire 53 forming a closed circuit together with the shielding channel. Facility for reducing magnetic flux density in external space of power cable using ferromagnetic material that 제1항 및 제4항 내지 제5항에 있어서, 역자계유발순환전류(i)(54)의 크기 감소를 막기 위하여 강자성체(40)로 만들어진 C형차폐찬넬(70) 또는 반할C형차폐찬넬(80) 또는 연장차폐찬넬(90)을 절연물질로 도포하거나, 전력케이블(43) 주변의 변화를 감시하거나 냉각을 위하여 여닫이문(78)을 포함한 C형차폐찬넬(70) 또는 반할C형차폐찬넬(80) 또는 연장차폐찬넬(90)을 통기구(103)가 다수 형성된 강자성체타공판(101) 또는 강자성체그물(102)으로 만들어 구성하는 것을 특징으로 하는 강자성체를 활용한 전력케이블 외부 공간 자속밀도 감소설비. The C-type shielding channel (70) or half-half C-type shielding channel made of ferromagnetic material (40) in order to prevent the size reduction of the reverse magnetic field induced circulating current (i) (54) according to claims 1 and 4 to 5. (80) or extended shielding channel (90) coated with an insulating material, monitoring changes around the power cable (43) or C-type shielding channel (70) including a hinged door (78) or half C-type shielding for cooling Power cable external space magnetic flux density reduction facility using ferromagnetic material, characterized in that the channel 80 or the extended shielding channel 90 is made of a ferromagnetic perforated plate 101 or a ferromagnetic net 102 having a plurality of ventilation holes 103 formed therein .
KR1020210141496A 2021-10-22 2021-10-22 The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space KR20230057583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210141496A KR20230057583A (en) 2021-10-22 2021-10-22 The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210141496A KR20230057583A (en) 2021-10-22 2021-10-22 The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space

Publications (1)

Publication Number Publication Date
KR20230057583A true KR20230057583A (en) 2023-05-02

Family

ID=86387631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210141496A KR20230057583A (en) 2021-10-22 2021-10-22 The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space

Country Status (1)

Country Link
KR (1) KR20230057583A (en)

Similar Documents

Publication Publication Date Title
US10290392B2 (en) Electric cables having self-protective properties and immunity to magnetic interferences
CA2153834C (en) Power distribution system having effectively zero electromagnetic field radiation
CA2644808C (en) Electric three-phase power cable system
WO2000000989A1 (en) Electric cable with low external magnetic field and method for designing same
JP3822331B2 (en) Neutral wire composite DC power cable and DC power cable line
KR20230057583A (en) The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space
US7923640B2 (en) High current cable
Ippolito et al. Attenuation of low frequency magnetic fields produced by HV underground power cables
KR20230056876A (en) The insulation shielding mat utilizing the ferromagnetic material and power cable structure applying the same
Gupta et al. Coupling of high voltage AC power line fields to metallic pipelines
WO2013072124A1 (en) Steel wire for magnetic field absorption
Popović Transfer characteristics of electric-power lines passing through urban and suburban areas
Caverly et al. Air core reactors: magnetic clearances, electrical connection, and grounding of their supports
Harun et al. Effect of AC Interference on HV Underground Cables Buried Within Transmission Lines Right of Way
KR102672743B1 (en) Structure for shielding magnetic field having dissimilar composite material
JP2000266802A (en) Testing method associated with d.c. current application on d.c. cable
EP1085632A1 (en) Structure of conductors for transmission of electric energy
KR102671149B1 (en) Device for limiting interphase current and leakage current of flooded electric facilities
Habiballah et al. ELF electric and magnetic fields exposure assessment of live-line workers for 132 kv transmission line of SEC
Steenstra et al. Reduction of conducted interference by steel armor in buried cables: Measurements and modeling
Yuan et al. Harmonic impedance of single-core armored cables
JPH04199787A (en) Electromagnetic wave shielding structure for electric cable
KR20150035663A (en) Ground structures for induced magentic current and cable trough having thereof
JPS6122455Y2 (en)
Johnson Field management technologies