KR20230054500A - Steel used for hot stamping, hot stamping process and formed component - Google Patents

Steel used for hot stamping, hot stamping process and formed component Download PDF

Info

Publication number
KR20230054500A
KR20230054500A KR1020237012517A KR20237012517A KR20230054500A KR 20230054500 A KR20230054500 A KR 20230054500A KR 1020237012517 A KR1020237012517 A KR 1020237012517A KR 20237012517 A KR20237012517 A KR 20237012517A KR 20230054500 A KR20230054500 A KR 20230054500A
Authority
KR
South Korea
Prior art keywords
hot stamping
temperature
hot
steel
steel used
Prior art date
Application number
KR1020237012517A
Other languages
Korean (ko)
Inventor
홍량 위
샤오촨 슝
토비아스 오피츠
Original Assignee
이지포밍 스틸 테크놀로지 컴퍼니 리미티드
폭스바겐 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이지포밍 스틸 테크놀로지 컴퍼니 리미티드, 폭스바겐 악티엔게젤샤프트 filed Critical 이지포밍 스틸 테크놀로지 컴퍼니 리미티드
Publication of KR20230054500A publication Critical patent/KR20230054500A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

본 발명은 핫 스탬핑에 사용되는 스틸, 핫 스탬핑 공정 및 성형된 구성성분을 제공한다. 본 발명은 간단한 핫 스탬핑 공정을 이용하여 핫 스탬핑에 사용되는 스틸로 높은 신장률을 달성할 수 있다. 상기 성형된 구성성분은 우수한 항복 강도, 인성 강도 및 신장률을 갖는다. 본 발명에 따른 핫 스탬핑에 사용되는 스틸은, 중량 기준으로, 0.1 ~ 0.19%의 C, 5.09 ~ 9.5%의 Mn, 0.11 ~ 0.4%의 V, 및 0 ~ 2%의 Si + Al을 포함하고, 여기서 C 및 V의 조합은 하기의 2개의 요건을 충족한다: 1) 0.1 ~ 0.17%의 C 및 0.11 ~ 0.4%의 V; 및 2) 0.171 ~ 0.19%의 C 및 0.209 ~ 0.4%의 V.The present invention provides steel used in hot stamping, hot stamping processes and formed components. The present invention can achieve high elongation with steel used for hot stamping by using a simple hot stamping process. The molded component has excellent yield strength, toughness strength and elongation. The steel used for hot stamping according to the present invention comprises, by weight, 0.1 to 0.19% C, 5.09 to 9.5% Mn, 0.11 to 0.4% V, and 0 to 2% Si + Al, Here, the combination of C and V meets the following two requirements: 1) C of 0.1 to 0.17% and V of 0.11 to 0.4%; and 2) C of 0.171 to 0.19% and V of 0.209 to 0.4%.

Description

핫 스탬핑용 강, 핫 스탬핑 공정 및 성형된 구성성분{STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND FORMED COMPONENT}Steel for hot stamping, hot stamping process and formed component {STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND FORMED COMPONENT}

본 발명은, 핫 스탬핑용 강, 핫 스탬핑 공정 및 성형된 구성성분에 관한 것이다.The present invention relates to steels for hot stamping, hot stamping processes and formed components.

자동차 산업의 급속한 발전으로 안전 및 환경오염 문제가 발생한다. 안전성 보장을 전제로 하여, 차량의 경량화는 에너지 소비 및 배기를 효과적으로 줄이고, 차량 성능을 향상시킬 수 있다. 고강도의 강(steel)의 이용은 부품 두께를 줄이고 안전 성능의 요건을 충족할 수 있으므로, 차량의 경량화 및 더 나은 안전성 향상을 위한 핵심 경로이다.With the rapid development of the automobile industry, safety and environmental pollution problems arise. On the premise of ensuring safety, weight reduction of vehicles can effectively reduce energy consumption and emissions, and improve vehicle performance. The use of high-strength steel can reduce the thickness of parts and meet the requirements of safety performance, so it is a key path for reducing the weight of vehicles and improving safety better.

일반적으로 언급하면, 강의 성형 특성은, 이의 강도가 증가함에 따라 감소한다. 핫 스탬핑(hot stamping)은, 강화 전에 차량 부품을 성형함으로써 초고강도 차량 부품을 제조하는 공정이며, 여기서 강화 메커니즘은 마르텐사이트(martensite)의 간극 고체 용액 강화를 기반으로 한다. 핫 스탬핑된 부품은 초고강도 및 형태 정밀도의 장점을 갖고, 냉각 성형 중에 고강도 강의 스프링백(springback)을 효과적으로 방지할 수 있다. 현재 자동차용 고강도 강 중에서, 핫 스탬프된 강 또는 프레스 경화 강(press hardening steel, PHS)만이 1500MPa 이상의 강도를 가질 수 있다.Generally speaking, the forming properties of a steel decrease as its strength increases. Hot stamping is a process for manufacturing ultra-high strength vehicle components by shaping vehicle components prior to strengthening, wherein the strengthening mechanism is based on interstitial solid solution strengthening of martensite. The hot stamped parts have the advantages of ultra-high strength and shape precision, and can effectively prevent the springback of high-strength steel during cold forming. Among high-strength steels for automobiles at present, only hot stamped steel or press hardening steel (PHS) can have a strength of 1500 MPa or more.

추가적인 중량 감소를 달성하기 위해, 차량 안전 구조적 구성성분은 사용되는 재료가, 현재의 PHS 및 22MnB5에 비해, 더 높은 강도 및 더 우수한 연성을 가져야 한다. 특히, 현재 핫 스탬핑된 구성성분은 신장 측면에서 개선될 수 있다.To achieve further weight reduction, vehicle safety structural components require that the materials used have higher strength and better ductility compared to current PHS and 22MnB5. In particular, current hot stamped components can be improved in terms of elongation.

또한, 현재의 코팅된 PHS는 모두 Al-Si 코팅된 시트이며, 이는 부식 방지 성능 면에서 아연 도금된 시트(galvanized sheet)보다 덜 경쟁력이 있고, 용접이 어렵다. 핫 스탬핑 공정에서 900 ℃로 가열될 때, 아연 도금 시트는 극심하게 액화, 기화 및 산화될 수 있으며, 이는 아연 도금 시트를 핫 스탬핑에 적용하는 데 제한을 가한다.In addition, current coated PHSs are all Al-Si coated sheets, which are less competitive than galvanized sheets in terms of anti-corrosion performance and are difficult to weld. When heated to 900 DEG C in the hot stamping process, the galvanized sheet can be severely liquefied, vaporized and oxidized, which limits the application of the galvanized sheet to hot stamping.

중국 특허 No. CN102127675 A는 강 시트, 웜 성형된 부품 및 이의 제조 방법을 제공한다. 개시된 강 구성성분으로, 원하는 기계적 특성을 얻기 위해서, 상기 방법은 핫 스탬핑 온도가 감소된 조건하에서 재료를 730 ℃ 내지 780 ℃ 범위의 온도로 가열하는 단계, 및 재료를 Ms 포인트 이하(즉, 일반적으로 150 ℃ 내지 280 ℃로 냉각)의 30 ℃ 내지 150 ℃ 범위인 온도에서 가열하고, 이어서 상기의 재료를 150 ℃ 내지 450 ℃ 범위의 온도로 추가 가열하고, 온도를 1 내지 5 분 동안 유지하여, 마르텐사이트에서 잔류 오스테나이트(retained austenite)로 탄소를 분할함으로써 최종 상태로 안정화시킨다. 잔류 오스테나이트의 변형 유도 가소성(Transformation Induced Plasticity, TRIP) 효과에 기초하여 재료의 신장을 증가시킬 수 있다.Chinese Patent No. CN102127675 A provides a steel sheet, a warm formed part and a method of manufacturing the same. With the disclosed steel composition, to obtain the desired mechanical properties, the method involves heating the material to a temperature in the range of 730 °C to 780 °C under conditions of reduced hot stamping temperature, and bringing the material below the Ms point (i.e., generally cooling to 150 °C to 280 °C) at a temperature ranging from 30 °C to 150 °C, then further heating the material to a temperature ranging from 150 °C to 450 °C, holding the temperature for 1 to 5 minutes, The final state is stabilized by splitting the carbon into retained austenite at the site. Elongation of the material can be increased based on the transformation induced plasticity (TRIP) effect of retained austenite.

그러나 이 방법에서, 상기 구성성분이, 150 ℃ 내지 450 ℃ 범위의 온도로 가열되기 전에, 150 ℃ 내지 280 ℃ 범위의 특정 온도로 냉각되어야 하고, 상기 온도를 유지하여야 하는데, 이러한 방법에서는, 구성성분의 온도 정확도 및 균일성이 거의 제어될 수 없고, 이의 퀀칭 온도를 제어하는데 복잡한 제조 공정이 요구되며, 이는 핫 스탬핑 구성성분의 실제 제조에 불리하다.However, in this method, the component must be cooled to a specific temperature in the range of 150 °C to 280 °C and maintained at this temperature before being heated to a temperature in the range of 150 °C to 450 °C. The temperature accuracy and uniformity of can hardly be controlled, and a complicated manufacturing process is required to control its quenching temperature, which is disadvantageous to the actual manufacturing of hot stamping components.

본 발명의 목적은 핫 스탬핑, 핫 스탬핑 공정 및 이로부터 제조된 성형된 구성성분에 사용되는 강을 제공하는 것이다. 간단한 핫 스탬핑 공정을 통해 핫 스탬핑에 사용되는 강으로 높은 신장률을 달성할 수 있다. 성형된 구성성분은 우수한 항복 강도(yield strength), 인장 강도 및 신장률을 갖는다.It is an object of the present invention to provide a steel for use in hot stamping, hot stamping processes and shaped components made therefrom. High elongation can be achieved with the steel used for hot stamping through a simple hot stamping process. Molded components have good yield strength, tensile strength and elongation.

본 발명의 기술 해결책 1은 핫 스탬핑에 사용되는 강에 관한 것으로, 중량 기준으로 0.1 ~ 0.19%의 C, 5.09 ~ 9.5%의 Mn, 0.11 ~ 0.4%의 V, 0 ~ 2%의 Si + Al을 포함하며, 여기서 C와 V의 조합은 다음의 2개의 요건 중 하나를 충족한다: 1) 0.1 ~ 0.17%의 C 및 0.11 ~ 0.4%의 V; 및 2) 0.171 ~ 0.19%의 C 및 0.209 ~ 0.4%의 V.Technical solution 1 of the present invention relates to a steel used for hot stamping, which contains, by weight, 0.1 to 0.19% C, 5.09 to 9.5% Mn, 0.11 to 0.4% V, and 0 to 2% Si + Al. , wherein the combination of C and V meets one of the following two requirements: 1) C of 0.1 to 0.17% and V of 0.11 to 0.4%; and 2) C of 0.171 to 0.19% and V of 0.209 to 0.4%.

기술 해결책 1에 따르면, 본 발명의 핫 스탬핑에 사용되는 강은, C 및 Mn과 같은 오스테나이트 안정화 요소를 첨가함으로써, 재료의 마르텐사이트 변환 개시 온도(Ms) 및 마르텐사이트 변환 종결 온도(Mf)를 감소시켜, 퀀칭 상태에서 적당한 양의 잔류 오스테나이트를 유지하기 위해 퀀칭 온도가 더 낮은 온도(예를 들어, 100 ℃ 미만)로 설정될 수 있도록 보장한다. 따라서, 퀀칭 온도는 실온으로 설정될 수 있고, 온도 정확성 및 균일성이 제어하기 쉽고, 공정은 매우 간단하다.According to Technical Solution 1, in the steel used for hot stamping of the present invention, by adding austenite stabilizing elements such as C and Mn, the martensitic transformation start temperature (Ms) and martensitic transformation end temperature (Mf) of the material are adjusted. to ensure that the quenching temperature can be set to a lower temperature (e.g., less than 100° C.) to maintain an adequate amount of retained austenite in the quenched state. Therefore, the quenching temperature can be set to room temperature, the temperature accuracy and uniformity are easy to control, and the process is very simple.

구체적으로, 퀀칭 및 분할(Q & P) 메커니즘을 사용하는 강에서, 초기 퀀칭된 구조는 탄소가 마르텐사이트로부터 잔류 오스테나이트로 확산 될 수 있도록 상당량의 잔류 오스테나이트를 "씨드"로 포함할 필요가 있으며, 이로써 분할 공정에 의해 잔류 오스테나이트의 안정성을 향상시켜 재료 특성을 향상시킨다. 초기 구조가 상당량의 잔류 오스테나이트를 포함할 수 있게 하기 위해, 퀀칭 온도(QT)는 마르텐사이트 변환 개시 온도(Ms)와 마르텐사이트 변환 종결 온도(Mf) 사이에서 설정되어야 한다. 예를 들어, 종래의 Q & P 강에서, Ms가 500 ℃로 설정되고, Mf가 150 ℃로 설정되어 있다. 이러한 상황에서, QT는 200 내지 300 ℃ 범위의 온도로 설정될 필요가 있으며, 퀀칭을 위해, 예컨대 염, 오일 또는 특수 퀀칭 기체 등의 특정 퀀칭 매체가 필요하다. 대조적으로, 본 발명에서, Mf는 반드시 실온보다 낮다. QT가 실온 또는 0 내지 100 ℃ 범위의 온도(매체로서 물)로 설정되더라도, 재료 특성을 보장하기 위해 다량의 잔류 오스테나이트를 함유하는 구조를 용이하게 얻을 수 있다.Specifically, in steels using the quenching and splitting (Q&P) mechanism, the initially quenched structure needs to contain a significant amount of retained austenite as a “seed” so that carbon can diffuse from martensite to retained austenite. Thereby, the stability of retained austenite is improved by the splitting process to improve material properties. In order to allow the initial structure to contain a significant amount of retained austenite, the quenching temperature (QT) must be set between the martensitic transformation start temperature (Ms) and the martensitic transformation end temperature (Mf). For example, in conventional Q&P steel, Ms is set to 500°C and Mf is set to 150°C. In this situation, the QT needs to be set to a temperature in the range of 200 to 300° C., and a specific quenching medium is required for quenching, such as salt, oil or a special quenching gas. In contrast, in the present invention, Mf is necessarily lower than room temperature. Even if the QT is set to room temperature or a temperature ranging from 0 to 100° C. (water as medium), a structure containing a large amount of retained austenite can be easily obtained to ensure material properties.

또한, 본 발명의 핫 스탬핑에 사용되는 강에는 바나듐(V)이 첨가되고, 오스테나이트로부터 V, Ti 및 Nb 등으로 성형된 바나듐 카바이드(VC) 또는 복합 탄질화물의 침전은 공정들에 의해 제어될 수 있다. 한편으로는, 결정립은 정제되며; 다른 한편으로는, 바나듐 카바이드(VC) 또는 복합 탄질화물의 침전은 매트릭스 내 C 함량을 소비하여, 이로써 핫 스탬핑 상태에서 마르텐사이트의 C 함량을 감소시킨다. 2개의 메커니즘, 즉 바나듐 카바이드(VC) 또는 복합 탄질화물의 입자 미세화 및 침전에 의한 매트릭스 내 C 함량의 감소는, 핫 스탬핑 후, 재료의 인성을 보장하고, 신장률은 6% 이상이며, 이로써 지연되는 균열화를 방지하고 용접 및 조립에 대한 요건을 충족한다. 0.1 내지 0.17%의 C가 존재하는 경우, 0.11% 초과의 V는 상기 요건을 충족시키기에 충분한 바나듐 카바이드 침전물을 보장할 수 있고; 0.171 내지 0.19%의 C가 존재하는 경우, 바나듐 카바이드의 성형을 위해, 더 많은 V가 첨가될 필요가 있으며, 매트릭스 내 C 함량을 감소시키는 목적을 충족하기 위해 V는 0.209%보다 높을 필요가 있다.In addition, vanadium (V) is added to the steel used in the hot stamping of the present invention, and precipitation of vanadium carbide (VC) or composite carbonitride formed from austenite with V, Ti and Nb, etc. can be controlled by the processes. can On the one hand, grains are refined; On the other hand, precipitation of vanadium carbide (VC) or complex carbonitrides consumes the C content in the matrix, thereby reducing the C content of martensite in the hot stamping state. The reduction of the C content in the matrix by two mechanisms, namely grain refinement and precipitation of vanadium carbide (VC) or composite carbonitride, ensures the toughness of the material after hot stamping, and the elongation is more than 6%, thereby delaying It prevents cracking and meets the requirements for welding and assembly. When 0.1 to 0.17% C is present, a V greater than 0.11% can ensure sufficient vanadium carbide deposits to meet the above requirements; When 0.171 to 0.19% C is present, more V needs to be added for the formation of vanadium carbide, and V needs to be higher than 0.209% to meet the purpose of reducing the C content in the matrix.

본 발명의 핫 스탬핑에 사용되는 강은 중량% 기준으로, 다음 구성성분 중 적어도 하나를 포함할 수 있다: 0 ~ 5%의 Cr, 0 ~ 0.2%의 Ti, 0 ~ 0.2%의 Nb, 0 ~ 0.2% Zr, 0 ~ 0.005%의 B, 0 ~ 4%의 Ni, 0 ~ 2%의 Cu, 0 ~ 2%의 Mo 및 0 ~ 2%의 W.The steel used in the hot stamping of the present invention may contain, on a weight percent basis, at least one of the following constituents: 0 to 5% Cr, 0 to 0.2% Ti, 0 to 0.2% Nb, 0 to 5% Ti. 0.2% Zr, 0 to 0.005% B, 0 to 4% Ni, 0 to 2% Cu, 0 to 2% Mo, and 0 to 2% W.

C 함량은 바람직하게는 0.12 내지 0.17%의 범위이고, Mn 함량은 바람직하게는 5.09 내지 8%의 범위이다. 본 발명자들은 C 함량이 0.11%인 경우, 1100MPa의 항복 강도가 실질적으로 달성될 수 있더라도, 0.12% 초과의 C 함량은 항복 강도가 1100MPa보다 크다는 것을 추가로 보장할 것이라는 것을 발견하였다. 다른 한편으로는, C 함량이 0.19%인 경우, 핫 스탬핑 중에 취성 균열의 리스크를 실질적으로 피할 수 있더라도, 0.17% 미만의 C 함량은 재료가 핫 스탬핑에서 양호한 인성을 갖도록 추가로 보장할 것이다. 또한, C 함량이 0.12 내지 0.17%로 설정되면, 5.09 ~ 8%의 Mn은 적당한 마르텐사이트 변환 개시 온도를 얻어서 퀀칭 온도를 실온으로 설정하여 부품의 제조를 최대 정도로 용이하게 할 수 있다.The C content is preferably in the range of 0.12 to 0.17%, and the Mn content is preferably in the range of 5.09 to 8%. The inventors have found that although a yield strength of 1100 MPa can be practically achieved with a C content of 0.11%, a C content greater than 0.12% will further ensure that the yield strength is greater than 1100 MPa. On the other hand, if the C content is 0.19%, although the risk of brittle cracking during hot stamping can be substantially avoided, a C content of less than 0.17% will further ensure that the material has good toughness in hot stamping. In addition, when the C content is set to 0.12 to 0.17%, Mn of 5.09 to 8% can obtain a suitable martensitic transformation initiation temperature and set the quenching temperature to room temperature to facilitate the manufacture of parts to the maximum extent.

본 발명의 핫 스탬핑에 사용되는 강은 이의 표면상에 Al-Si 코팅, 아연 도금 코팅 및 고온 산화 코팅을 포함하는 군으로부터 선택한 코팅을 제공할 수 있다. 아연 도금 코팅 및 철은 약 780 ℃의 가장 높은 융점을 갖도록 합금된다. 핫 스탬핑에 사용되는 종래의 강은 일반적으로 오스테나이트 가열 온도가 900 ℃를 초과한다. 핫 스탬핑 중에 아연이 증발하고 아연-철 코팅이 녹을 수 있는데, 이는 액체 아연 유도 취성을 초래하고, 핫 스탬핑에 사용되는 강의 강도와 인성을 감소시킬 수 있다. 또한, 액체 아연은 고온에서 극심하게 산화되며, 핫 스탬핑된 구성성분은 표면상의 산화 아연을 제거하기 위해 고가의 드라이아이스 처리 또는 숏 블라스팅 처리를 거쳐, 후속 페인팅 공정을 보장해야 한다. 바람직하게는, 본 발명의 핫 스탬핑에 사용되는 강의 완전한 오스테나이트화 온도는 780 ℃보다 낮을 수 있고, 650 ℃ 미만의 온도에서 핫 스탬핑이 수행될 수 있으며, 따라서 아연 도금 시트의 핫 스탬핑 성형 요건을 충족시킨다.The steel used in the hot stamping of the present invention may be provided with a coating selected from the group comprising an Al-Si coating, a galvanized coating and a high temperature oxidation coating on its surface. Galvanized coatings and iron are alloyed to have the highest melting point of about 780 °C. Conventional steels used for hot stamping generally have austenite heating temperatures exceeding 900 °C. Zinc evaporates during hot stamping and the zinc-iron coating can melt, which can lead to liquid zinc induced embrittlement and reduce the strength and toughness of the steel used for hot stamping. In addition, liquid zinc is extremely oxidized at high temperatures, and hot stamped components must undergo expensive dry ice treatment or shot blasting treatment to remove zinc oxide on the surface to ensure a subsequent painting process. Preferably, the complete austenitization temperature of the steel used in the hot stamping of the present invention can be lower than 780 ° C, and hot stamping can be performed at a temperature of less than 650 ° C, thus meeting the hot stamping forming requirements of the galvanized sheet. meet

바람직하게는, 핫 스탬핑에 사용된 강의 구성성분 비율은 다음 요건을 충족시킨다: 핫 스탬핑 후, 핫 스탬핑에 사용되는 강의 마르텐사이트 변환 개시 온도(Ms)의 실제 측정 값은 150 내지 280 ℃이다.Preferably, the constituent ratios of the steel used for hot stamping satisfy the following requirements: After hot stamping, the actual measured value of the martensitic transformation start temperature (Ms) of the steel used for hot stamping is 150 to 280 °C.

이에 의해, 부품의 제조를 용이하게 하기 위해 퀀칭 온도가 실온으로 설정될 수 있다는 것을 추가로 보장할 수 있다.This further ensures that the quenching temperature can be set to room temperature to facilitate the manufacture of the part.

본 발명의 기술 해결책 2는 핫 스탬핑 공정에 관한 것으로, 핫 스탬핑 공정은 다음을 포함하는 것을 특징으로 한다: 단계 A: 기술 해결책 1 또는 그 예비 성형된 구성성분의 핫 스탬핑에 사용되는 강을 700 내지 890 ℃ 범위의 온도로 가열하고 0.1 내지 10000 초 동안 상기 온도를 유지하는 단계; 단계 B: 성형된 구성성분을 얻기 위해, 단계 A에서 처리된 핫 스탬핑에 사용된 강 또는 예비 성형된 구성성분을 핫 스탬핑용 다이로 이송하는 단계; 및 단계 C: 성형된 구성성분을 0.1 내지 1000 ℃/s의 평균 냉각 속도로 냉각시키는 단계.Technical Solution 2 of the present invention relates to a hot stamping process, characterized in that the hot stamping process includes: Step A: The steel used for hot stamping of Technical Solution 1 or its preformed component is heating to a temperature in the range of 890° C. and holding the temperature for 0.1 to 10000 seconds; Step B: transferring the preformed component or the steel used for hot stamping processed in step A to a die for hot stamping to obtain a molded component; and Step C: cooling the molded component at an average cooling rate of 0.1 to 1000 °C/s.

단계 A에서, 온도가 700 ℃보다 낮으면, 불충분한 오스테나이트화가 발생하며, 이는 0-10%인 페라이트의 요건을 충족시키지 못할 수 있으며; 다른 한편으로, 온도가 890 ℃를 초과하면, 이는 입자 성장 및 바나듐 카바이드 용해 및 성장으로 이어지고, 이로써 저하된 성능을 초래한다. 또한, 단계 C에서의 평균 냉각 속도는 0.1 내지 1000 ℃/s로 설정되며, 이는 페라이트, 펄라이트, 베이나이트와 같은 비-마르텐사이트 구조를 피하여 우수한 경화성을 갖는 재료를 제공한다.In step A, when the temperature is lower than 700°C, insufficient austenitization occurs, which may not meet the requirement of 0-10% ferrite; On the other hand, when the temperature exceeds 890° C., it leads to grain growth and vanadium carbide dissolution and growth, thereby resulting in degraded performance. Also, the average cooling rate in step C is set to 0.1 to 1000 deg. C/s, which avoids non-martensite structures such as ferrite, pearlite and bainite to provide a material with excellent hardenability.

바람직하게는, 단계 A에서, 기술 해결책 1의 핫 스탬핑 또는 그 예비 성형된 구성성분에 사용되는 강은 740 내지 850 ℃ 범위의 온도로 가열되고, 상기 온도를 유지한다. 가열 온도가 740 ℃보다 높으면, 가열 시간이 더 짧아지고 생산 효율이 증가할 수 있으며; 온도가 850 ℃보다 낮으면, 바나듐 카바이드의 더 우수한 입자 제어 및 침전에 도움이 될 수 있고; 바람직하게는, 온도 유지 시간이 10 내지 800 초 동안 지속되고, 더 짧은 가열 시간은 불균일하고 불안정한 가열을 초래할 수 있으며, 더 긴 가열 시간은 생산 효율이 떨어질 수 있다. 더욱 바람직하게는, 단계 A에서, 기술 해결책 1의 핫 스탬핑 또는 그 예비 성형된 구성성분에 사용되는 강은 740 내지 780 ℃ 범위의 온도로 가열되고 상기 온도를 유지한다. 가열 온도가 780 ℃보다 낮으면, 핫 스탬핑 중 아연 도금 시트의 액화 및 산화가 더 잘 억제될 수 있다.Preferably, in step A, the steel used for hot stamping or preformed components thereof of Technical Solution 1 is heated to a temperature in the range of 740 to 850° C. and maintained at this temperature. When the heating temperature is higher than 740°C, the heating time can be shortened and the production efficiency can be increased; If the temperature is lower than 850° C., it may be conducive to better grain control and precipitation of vanadium carbide; Preferably, the temperature holding time lasts from 10 to 800 seconds, shorter heating times may result in non-uniform and unstable heating, and longer heating times may result in poor production efficiency. More preferably, in step A, the steel used for hot stamping or preformed components thereof of Technical Solution 1 is heated to a temperature in the range of 740 to 780° C. and maintained at this temperature. When the heating temperature is lower than 780 DEG C, liquefaction and oxidation of the galvanized sheet during hot stamping can be better suppressed.

더 바람직하게는, 단계 C에서, 평균 냉각 속도는 1 내지 100 ℃/s이다. 더 느린 냉각 속도는 연장된 냉각 시간 및 열악한 생산 효율을 초래하지만, 더 높은 냉각 속도로 핫 스탬핑 공정을 수행하는 것은 매우 다르다.More preferably, in step C, the average cooling rate is 1 to 100 °C/s. A slower cooling rate results in an extended cooling time and poor production efficiency, but performing a hot stamping process with a higher cooling rate is very different.

본 발명의 기술 해결책 3은 성형된 구성성분에 관한 것으로서, 이는 기술 해결책 1의 핫 스탬핑에 사용되는 강 또는 핫 스탬핑에 사용되는 강을 미리 성형함으로써 제조된 예비 성형된 구성성분을 핫 스탬핑함으로써 얻어지는 성형된 구성성분에 관한 것이다.Technical solution 3 of the present invention relates to a molded component, which is obtained by hot stamping the steel used for hot stamping or a preformed component produced by preforming the steel used for hot stamping of the technical solution 1. It's about the ingredients.

바람직하게는, 성형된 구성성분은, 부피 기준으로, 0.1 내지 5%의 바나듐 카바이드 또는 복합 탄질화물, 2 내지 15%의 잔류 오스테나이트, 0 내지 10%의 페라이트를 포함하며, 잔부는 마르텐사이트이다.Preferably, the molded component comprises, by volume, 0.1 to 5% vanadium carbide or complex carbonitride, 2 to 15% retained austenite, 0 to 10% ferrite, the remainder being martensite. .

본 발명의 기술 해결책 3에 따라 수득된 성형된 구성성분은 6% 이상의 신장률을 가지며, 이는 지연된 균열 및 용접 균열의 방지를 위한 요건을 충족시킬 수 있다.The molded component obtained according to Technical Solution 3 of the present invention has an elongation of 6% or more, which can meet the requirements for preventing delayed cracking and welding cracking.

바람직하게는, 성형된 구성성분은 140 내지 220 ℃의 온도 범위 이내에서 가열 및 유지되며, 가열 및 온도 유지 시간은 1 내지 100000 초이다.Preferably, the molded component is heated and maintained within a temperature range of 140 to 220 DEG C, and the heating and temperature holding time is 1 to 100000 seconds.

바람직하게는, 성형된 구성성분은 차량 구성성분으로 사용되며, 가열 및 온도 유지는 차량 제조 절차의 페인트 베이킹 중에 5 내지 30 분 동안 수행된다.Preferably, the molded component is used as a vehicle component, and heating and temperature maintenance are performed for 5 to 30 minutes during paint baking in vehicle manufacturing procedures.

따라서, 추가적인 열 처리 공정 없이, 차량 조립 절차의 베이킹 및 코팅 절차에서 탄소 분할이 실현될 수 있고, 코팅 및 베이킹된 재료는 신장 및 인성 측면에서 개선되어 충돌 성능 요건을 충족시킬 것이다.Therefore, without an additional heat treatment process, carbon splitting can be realized in the baking and coating process of the vehicle assembly process, and the coated and baked material will be improved in terms of elongation and toughness to meet the crash performance requirements.

바람직하게는, 가열 및 온도 유지 처리 후 성형된 구성성분은, 부피 기준으로, 0.1 내지 2%의 바나듐 카바이드 또는 복합 탄질화물, 5 내지 25%의 잔류 오스테나이트, 0 내지 10%의 페라이트를 포함하며, 나머지는 마르텐사이트이다.Preferably, the formed component after heating and temperature holding treatment comprises, by volume, 0.1 to 2% vanadium carbide or complex carbonitride, 5 to 25% retained austenite, 0 to 10% ferrite, , the remainder being martensite.

가열 및 온도 유지 처리 후 성형된 구성성분은 항복 강도가 1100MPa 이상이고, 인장 강도가 1400MPa 이상이며, 신장률이 10% 이상인데, 이는 충돌 성능 요건을 충족시킬 수 있다.After heating and temperature holding treatment, the molded component has a yield strength of 1100 MPa or more, a tensile strength of 1400 MPa or more, and an elongation of 10% or more, which can meet the crash performance requirements.

본 발명은 초기 마르텐사이트트 내 C 함량을 감소시키고 강의 구성성분을 설정함으로써 퀀칭된 마르텐사이트의 취성을 감소 또는 회피함으로써, 핫 스탬핑 상태 및 6% 이상의 신장률 하에서 구성성분의 안정적인 성능을 보장하고 지연된 균열을 방지하며 용접된 조립에 대한 요건을 충족하고; 또한, 핫 스탬핑 상태하에서 재료는 베이킹 및 페인팅 공정 후, 마르텐사이트로부터 잔류 오스테나이트로의 탄소-분할될 수 있으며, 오스테나이트에 대한 마르텐사이트의 분율에서 역으로 변환되어, 최종적으로 안정된 성능, 1100MPa 이상의 항복 강도, 1400MPa 이상의 인장 강도 및 10% 이상의 신장률인, 5% 이상의 잔류 오스테나이트를 갖는 성형된 구성성분이 될 수 있다. The present invention reduces or avoids the brittleness of quenched martensite by reducing the C content in the initial martensite and setting the composition of the steel, thereby ensuring stable performance of the composition under the hot stamping condition and elongation of 6% or more and delaying cracking. and meets the requirements for welded assemblies; In addition, under the hot stamping condition, after baking and painting process, the material can be carbon-separated from martensite to retained austenite, and inversely converted in the fraction of martensite to austenite, finally stable performance, more than 1100MPa It can be a shaped component having a retained austenite of 5% or more, a yield strength of 1400 MPa or more, a tensile strength of 10% or more, and an elongation of 10% or more.

도 1은 본 발명의 열 처리 공정의 일례를 도시한 것이다.1 shows an example of the heat treatment process of the present invention.

본 발명의 기술 해결책이 구현예를 참조하여 설명될 것이다.The technical solutions of the present invention will be described with reference to embodiments.

본 발명의 핫 스탬핑에 사용되는 강은, 중량 퍼센트 기준으로, 다음의 구성성분을 포함한다: 0.1 ~ 0.19%의 C, 5.09 ~ 9.5%의 Mn, 0.11 ~ 0.4%의 V, 및 0 ~ 2%의 Si + Al. 핫 스탬핑에 사용되는 강은 다음 구성요소 중 적어도 하나를 포함할 수도 있다: 0 ~ 5%의 Cr, 0 ~ 0.2%의 Ti, 0 ~ 0.2%의 Nb, 0 ~ 0.2%의 Zr, 0 ~ 0.005% B, 0 ~ 4%의 Ni, 0 ~ 2%의 Cu, 0 ~ 2%의 Mo, 0 ~ 2%의 W로, 이의 함량은 중량 퍼센트로도 계산된다. 핫 스탬핑에 사용되는 강의 구성성분 비율은, 핫 스탬핑 후, 핫 스탬핑에 사용되는 강의 마르텐사이트 변환 개시 온도(Ms)의 실제 측정값이 150 내지 280 ℃가 되는 방식으로 제작된다.The steel used in the hot stamping of the present invention contains, by weight percent, the following constituents: 0.1 to 0.19% C, 5.09 to 9.5% Mn, 0.11 to 0.4% V, and 0 to 2%. of Si + Al. The steel used for hot stamping may contain at least one of the following components: 0 to 5% Cr, 0 to 0.2% Ti, 0 to 0.2% Nb, 0 to 0.2% Zr, 0 to 0.005 % B, 0 to 4% Ni, 0 to 2% Cu, 0 to 2% Mo, 0 to 2% W, the contents of which are also calculated as weight percent. The constituent ratios of the steel used for hot stamping are made in such a way that, after hot stamping, the actual measured value of the martensitic transformation start temperature (Ms) of the steel used for hot stamping is 150 to 280 °C.

본 발명의 핫 스탬핑에 사용되는 강의 화학적 구성성분은 다음과 같은 이유로 열거된다:The chemical composition of the steel used in the hot stamping of the present invention is listed for the following reasons:

C: 0.1% 내지 0.19%C: 0.1% to 0.19%

탄소는 간극 고체 용액에 의해 강의 강도를 크게 증가시킬 수 있는 가장 저렴한 요소이다. 그리고 탄소 함량의 증가는 완전한 오스테나이트화 온도(Ac3)를 크게 감소할 것이며, 이로써 가열 온도를 낮추고 에너지를 절약할 것이다. 탄소가 마르텐사이트 변환 개시 온도를 크게 감소할 수 있더라도, 280℃ 이하인 마르텐사이트 변환 개시 온도에 대한 합금 디자인에 대한 요건 및 강의 미세구조에 대한 요건이 충족되어야 하고, 탄소가 가장 중요한 간극 고체 용매 강화 원소이며, 따라서 탄소 함량의 하한이 0.1%이다. 하지만, 과량으로의 고 탄소 함량은 강의 기계적 성능에 영향을 미치고 강도의 큰 증가 및 강의 인성의 감소를 야기하므로, 탄소의 상한은 0.19%이며, 상기 값보다 높은 탄소 함량은 핫 스탬핑 상태하에서 강의 취성 균열을 야기할 것이다. 더 바람직하게는, C 함량은 0.12% 내지 0.17% 범위이다. Carbon is the least expensive element that can significantly increase the strength of steel by interstitial solid solution. And the increase of the carbon content will greatly reduce the complete austenitization temperature (Ac3), thereby lowering the heating temperature and saving energy. Although carbon can significantly reduce the martensitic transformation onset temperature, the requirements for the alloy design for the martensitic transformation onset temperature below 280 °C and the microstructure of the steel must be met, with carbon being the most important interstitial solid solvent strengthening element. , and therefore the lower limit of the carbon content is 0.1%. However, an excessively high carbon content affects the mechanical performance of steel and causes a large increase in strength and a decrease in toughness of steel, so the upper limit of carbon is 0.19%, and a carbon content higher than the above value causes brittleness of steel under hot stamping condition. will cause cracks. More preferably, the C content ranges from 0.12% to 0.17%.

Mn: 5.09% 내지 9.5%Mn: 5.09% to 9.5%

Mn은 본 발명에서 중요한 요소이다. Mn은 우수한 탈산화제 및 탈황제이다. Mn은 오스테나이트 영역을 확장시키고 Ac3 온도를 감소시킬 수 있는 오스테나이트 안정화 원소이다. Mn은 오스테나이트에서 페라이트로의 변환을 억제하고 강의 경화성을 향상시키는데 우수한 효과가 있다. 열 처리 중 가열 온도를 감소시키기 위해, 마르텐사이트 변환 개시 온도가 280 ℃ 이하가 되도록 재료의 Mn의 하한을 5.09%로 설정되고, 한편 재료의 완전한 오스테나이트화 온도(Ac3)는, 핫 스탬핑에 의한 아연 도금 시트의 성형을 용이하게 하기 위해, 780 ℃ 이하임을 보장한다. Mn을 너무 많은 첨가는, 퀀칭 후 재료가 취성의 마르텐사이트를 형성하게 되므로, Mn의 상한은 9.5%로 설정된다. 보다 바람직하게는, Mn 함량은 5.09 내지 8%의 범위이다.Mn is an important element in the present invention. Mn is an excellent deoxidizing and desulfurizing agent. Mn is an austenite stabilizing element that can expand the austenite region and decrease the Ac3 temperature. Mn has an excellent effect in suppressing conversion from austenite to ferrite and improving hardenability of steel. In order to reduce the heating temperature during heat treatment, the lower limit of Mn of the material is set to 5.09% so that the martensitic transformation start temperature is 280 ° C or less, while the complete austenitization temperature (Ac3) of the material is reduced by hot stamping. In order to facilitate the forming of the galvanized sheet, it is ensured that it is 780 ° C or less. Since too much addition of Mn causes the material to form brittle martensite after quenching, the upper limit of Mn is set to 9.5%. More preferably, the Mn content is in the range of 5.09 to 8%.

V: 0.11% 내지 0.4%V: 0.11% to 0.4%

바나듐은 강한 카바이드로 침전된다. 바나듐 카바이드의 침전은 입자 미세화 및 강도 개선의 효과를 달성할 수 있다. 바나듐 카바이드는 오스테나이트화 단계 및 핫 스탬핑 단계 동안 바나듐으로부터 침전되고, 이는, 한편으로는, 원 오스테나이트 입자를 정제하고, 다른 한편으로는, 매트릭스 내 탄소 함량을 감소시켜, 이로써 핫 스탬핑 후 낮은 수준의 마르텐사이트 내 탄소 함량을 유지시킨다. 본 발명은, 핫 스탬핑된 재료의 신장 및 신장 안정성을 보장하기 위해, 바나듐 원소를 첨가하고 바나듐 카바이드를 침전시킴으로써, 핫 스탬핑 후 마르텐사이트 내 탄소 함량을 제어한다. 0.11% 미만의 V는 본 발명의 명백한 효과를 달성할 수 없고 본 발명의 재료의 설계 요건을 충족시키지 못한다. 그러나 다량의 바나듐 원소의 첨가는 VC의 크기 및 강 비용에의 증가를 초래할 것이다. 핫 스탬핑 후 초기 강의 안정적인 신장을 유지하기 위해, V 함량은 0.4%를 초과하지 않아야 한다.Vanadium is precipitated as strong carbide. Precipitation of vanadium carbide can achieve the effect of particle refinement and strength improvement. Vanadium carbide is precipitated from vanadium during the austenitization step and the hot stamping step, which, on the one hand, refines the original austenite grains and, on the other hand, reduces the carbon content in the matrix, thereby lowering the level after hot stamping. maintains the carbon content in martensite. The present invention controls the carbon content in martensite after hot stamping by adding elemental vanadium and precipitating vanadium carbide to ensure elongation and elongation stability of the hot stamped material. A V of less than 0.11% cannot achieve the obvious effect of the present invention and does not meet the design requirements of the material of the present invention. However, the addition of large amounts of elemental vanadium will result in an increase in the size of VC and cost of the steel. In order to maintain stable elongation of the initial steel after hot stamping, the V content should not exceed 0.4%.

Si+Al: 0% 내지 2%Si+Al: 0% to 2%

Si 및 Al은 모두 카바이드 형성을 억제할 수 있다. 강이 실온으로 퀀칭된 후 Ac1 온도 미만의 온도 범위에서 유지될 때, Si 및 Al은 모두 마르텐사이트에서 카바이드의 침전을 억제하고 잔류 오스테나이트로 탄소를 분할하여 오스테나이트의 안정성을 개선하고, 생성물인 강의 강도 및 신장률을 개선할 수 있다. 산업적 생산에서, 너무 많은 Al은 연속 주조에서 노즐을 차단하여 연속 주조의 난이도를 증가시킬 수 있으며, Al은 마르텐사이트 변환 개시 온도 및 재료의 완전한 오스테나이트화 온도를 증가시킬 수 있는데, 이는 본 발명의 강의 구조 온도 제어의 요건을 충족시키지 못한다. 높은 Si 함량은 강 내 더 많은 불순물을 초래할 것이다. 본 발명은 140 내지 220 ℃ 범위의 저온에서 탄소 분할을 채택한다. 저온 범위 중, 시멘타이트의 형성이 억제되고, 변환 카바이드의 일부만이 형성될 수 있지만, 상기 카바이드의 일부는 재료의 인성에 크게 영향을 미치지 않을 것이다. 다량의 Si 및 Al의 첨가는 변환 카바이드의 생성을 억제할 수 없으므로, 본 발명은 Si + Al의 첨가에 의존하지 않는다. 본 발명에서 Si + Al의 함량은 2%를 초과하지 않는다.Both Si and Al can inhibit carbide formation. When the steel is quenched to room temperature and then held in a temperature range below the Ac1 temperature, both Si and Al inhibit the precipitation of carbides in martensite and split carbon into retained austenite to improve the stability of austenite, resulting in The strength and elongation of steel can be improved. In industrial production, too much Al may block nozzles in continuous casting, increasing the difficulty of continuous casting, and Al may increase the martensitic transformation initiation temperature and complete austenitization temperature of the material, which is The steel structure does not meet the temperature control requirements. A high Si content will result in more impurities in the steel. The present invention employs carbon splitting at a low temperature in the range of 140 to 220 °C. During the low temperature range, the formation of cementite is suppressed and only a part of the converted carbide can be formed, but the part of the carbide will not significantly affect the toughness of the material. Since the addition of large amounts of Si and Al cannot suppress the formation of conversion carbide, the present invention does not rely on the addition of Si+Al. In the present invention, the content of Si + Al does not exceed 2%.

Cr: 0% 내지 5%Cr: 0% to 5%

Cr은 또한, 재료의 경화성을 향상시키고 마르텐사이트 변환 개시 온도를 감소시킬 수 있는 원소이다. 따라서, 강 내 Mn 및 Cr의 백분율은 마르텐사이트 변환 개시 온도 및 강 내 탄소 함량에 대한 합금 디자인의 요건에 따라 결정된다. Mn 및 Cr은 단독으로 또는 둘 다 첨가된다. 바람직하게는, Cr은 높은 비용으로 인해 첨가되지 않는다.Cr is also an element capable of improving the hardenability of the material and reducing the martensitic transformation onset temperature. Therefore, the percentages of Mn and Cr in the steel are determined by the requirements of the alloy design for the martensitic transformation onset temperature and the carbon content in the steel. Mn and Cr are added singly or both. Preferably, Cr is not added due to its high cost.

Ti, Nb, Zr: 0% 내지 0.2%Ti, Nb, Zr: 0% to 0.2%

Ti, Nb 및 Zr은 강의 결정립을 정제하고, 강의 강도를 증가시키며 강을 우수한 열 처리 특성으로 만든다. Ti, Nb 및 Zr의 과도한 저농도는 효과가 없으나, 0.2%를 초과하면 불필요한 비용이 증가한다. 본 발명의 강은 C 및 Mn의 합리적인 설계로 인해 1600MPa 이상의 강도 및 우수한 신장률을 얻을 수 있으므로, 비용 절감을 위해, 바람직하게는 여분의 Ti, Nb 및 Zr을 첨가할 필요가 없다.Ti, Nb and Zr refine the grains of the steel, increase the strength of the steel and make the steel excellent heat treatment properties. Excessively low concentrations of Ti, Nb, and Zr are ineffective, but exceeding 0.2% increase unnecessary costs. Since the steel of the present invention can obtain strength of 1600 MPa or more and excellent elongation due to the rational design of C and Mn, it is not necessary to preferably add extra Ti, Nb and Zr for cost reduction.

B: 0% 내지 0.005%B: 0% to 0.005%

오스테나이트 입자 경계에서 B의 분리는 페라이트의 핵 생성을 방지하여 강의 경화성을 크게 향상시키고 열 처리 후 강의 강도를 크게 향상시킬 수 있다. 0.005% 초과의 B 함량은 상기 효과를 명백히 개선할 수 없다. 본 발명의 강 중 높은 Mn 함량의 설계는 높은 경화성을 갖기 때문에, 비용 절감을 위해 바람직하게는 여분의 B를 첨가할 필요가 없다.Separation of B at the austenite grain boundary can prevent the nucleation of ferrite, greatly improving the hardenability of the steel and greatly improving the strength of the steel after heat treatment. A B content of more than 0.005% cannot obviously improve the above effect. Since the high Mn content design of the steel of the present invention has high hardenability, there is preferably no need to add extra B to reduce cost.

Ni: 0% 내지 4%; Cu:0% 내지 2% Ni: 0% to 4%; Cu: 0% to 2%

Ni는 강의 강도를 높이고 강의 가소성 및 인성을 유지시킨다. Ni의 농도가 4.0%를 초과하면 비용이 증가할 것이다. Cu는 강도 및 인성, 특히 대기 내식성을 증가시킬 수 있다. Cu 함량이 2%보다 크면, 가공성이 저하되어, 열간 압연 중에 액상이 형성되어, 균열이 발생하게 된다. 고 Cu 함량은 불필요한 비용의 증가를 야기할 수 있다. 본 발명의 강은 C 및 Mn의 합리적인 설계로 인해 1600MPa 이상의 강도 및 우수한 신장률을 얻을 수 있으므로, 바람직하게는 비용 절감을 위해 여분의 Ni 및 Cu를 첨가할 필요는 없다.Ni increases the strength of the steel and maintains the plasticity and toughness of the steel. If the concentration of Ni exceeds 4.0%, the cost will increase. Cu can increase strength and toughness, especially atmospheric corrosion resistance. When the Cu content is greater than 2%, workability is lowered, and liquid phase is formed during hot rolling, resulting in cracking. A high Cu content may cause an unnecessary cost increase. Since the steel of the present invention can obtain strength of 1600 MPa or more and excellent elongation due to rational design of C and Mn, it is not necessary to add extra Ni and Cu preferably for cost reduction.

Mo 및 W: 0% 내지 2% Mo and W: 0% to 2%

Mo 및 W는 강의 경화성을 향상시키고 강의 강도를 효과적으로 증가시킬 수 있다. 또한, 고온 성형 공정 동안 다이와의 불안정한 접촉으로 인해 강이 충분히 냉각되지 않더라도, 강은 Mo 및 W로 인한 경화성이 증가하여 여전히 적당한 강도를 가질 수 있다. Mo 및 W가 2%보다 크면, 추가 효과를 달성할 수 없으며, 대신 비용이 상승한다. 본 발명의 강 내 높은 Mn 함량의 설계는 높은 경화성을 갖기 때문에, 비용 절감을 위해 바람직하게는 여분의 Mo 및 W를 첨가할 필요가 없다.Mo and W can improve the hardenability of steel and effectively increase the strength of steel. Also, even if the steel is not sufficiently cooled due to unstable contact with the die during the hot forming process, the steel can still have adequate strength due to increased hardenability due to Mo and W. When Mo and W are greater than 2%, additional effects cannot be achieved, and costs rise instead. Since the high Mn content design in the steel of the present invention has high hardenability, there is preferably no need to add extra Mo and W for cost reduction.

P, S 및 N과 같은 불가피한 불순물Inevitable impurities such as P, S and N

일반적으로, P, S 및 N과 같은 불가피한 불순물은, 강의 냉간 취성을 증가시키고, 용접성을 악화시키며, 가소성을 감소시키고, 냉간 벤딩 특성을 저하할 수 있다. 일반적으로 언급하면, S도 유해한 원소이며, 이는 강의 고온 취성을 유발하고 강의 신장 및 용접성을 감소시킬 수 있다. N은 강에 불가피한 원소이다. N은 기능면에서 탄소와 유사하며 베이킹 경화에 도움이 된다.In general, unavoidable impurities such as P, S, and N may increase cold brittleness of steel, deteriorate weldability, reduce plasticity, and deteriorate cold bending properties. Generally speaking, S is also a detrimental element, which can cause high temperature brittleness of steel and reduce elongation and weldability of steel. N is an unavoidable element in steel. N is similar in function to carbon and aids in bake hardening.

본 발명의 핫 스탬핑에 사용되는 강 또는 본 발명의 수행되는 구성성분은 핫 스탬핑된다.The steel used in the hot stamping of the present invention or the component to be performed of the present invention is hot stamped.

일 구현예에서, 핫 스탬핑에 사용되는 강 또는 이의 예비 성형된 구성성분은 700 내지 890 ℃ 범위의 온도로 가열되고 온도를 0.1 내지 10000 초 동안 유지한다(단계 A). 실험에 사용된 공정에서, 가열 온도는 750 내지 840 ℃이며 온도는 5 분 동안 유지된다. 도 1에 도시된 바와 같이, 가열 온도는 780 ℃ 일 수 있고 온도를 5 분 동안 유지한다. 그 후, 핫 스탬핑에 사용되는 강 또는 그 예비 성형된 구성성분은 핫 스탬핑을 위한 다이로 이송되고(단계 B), 성형된 구성성분은 공기 또는 다른 수단에 의해 평균 냉각 속도 0.1 내지 1000 ℃/s(단계 C)로 냉각된다. 일정 시간 후, 가공된 구성성분은 가열되고 탄소-분할 처리를 위해 140 내지 220 ℃의 온도 범위에서 1 내지 100000 초 동안 온도를 유지시킨 다음, 실온으로 냉각시킨다. 냉각 매체는 공기, 물, 오일 및 다이 표면을 포함할 수 있지만, 이에 제한되지는 않는다. 실험에 사용된 공정에서, 가열 및 온도 유지는 150 내지 210 ℃의 온도 내에서 5 내지 30 분 동안 수행된다. 도 1에 도시된 바와 같이, 가열 및 온도 유지는 차량 제조 절차의 페인트 베이킹 동안 수행될 수 있다.In one embodiment, the steel or preformed component thereof used for hot stamping is heated to a temperature in the range of 700 to 890 °C and held at the temperature for 0.1 to 10000 seconds (step A). In the process used in the experiment, the heating temperature is 750 to 840 DEG C and the temperature is maintained for 5 minutes. As shown in Fig. 1, the heating temperature may be 780 °C and the temperature is maintained for 5 minutes. Then, the steel used for hot stamping or its preformed component is transferred to a die for hot stamping (Step B), and the formed component is cooled by air or other means at an average cooling rate of 0.1 to 1000 °C/s. (step C). After a period of time, the processed component is heated and held at a temperature in the temperature range of 140 to 220° C. for 1 to 100000 seconds for carbon-splitting treatment and then cooled to room temperature. Cooling media may include, but are not limited to, air, water, oil, and die surfaces. In the process used in the experiment, heating and temperature holding are performed within a temperature of 150 to 210 DEG C for 5 to 30 minutes. As shown in FIG. 1 , heating and maintaining temperature may be performed during paint baking in a vehicle manufacturing process.

표 1은 일 구현예에서 사용되는 강의 구성성분을 나타낸다. 강은 다음 공정에 의해 시트로 제조될 수 있는데, 즉, 주조 블랭크(cast blank)는 1200 ℃의 온도에서 3 시간 동안 유지되고 나서, 시트 블랭크로 단조되고, 균질화 처리를 하기 전, 시트 블랭크는 1200 ℃의 온도에서 10 시간 동안 유지되고, 분쇄하여 표면 탈탄층(superficial decarburized layer)을 박리한 다음, 1200 ℃로 가열하고 800 ℃에서 1200 ℃ 범위의 온도에서 열간 압연하여 압연 시트를 형성하기 전에 1 시간 동안 상기 온도를 유지시킨다. 상기 열간 압연 절임 시트는 10 시간 동안 600 ℃의 온도에서 유지되어, 후드 어닐링을 시뮬레이션하여 냉간 압연을 위해 열간 압연 시트의 강도를 감소시키고, 열간 압연, 절임 및 어닐링된 시트는 예를 들어 1.5mm 두께로 냉간 압연되고, 냉간 압연된 시트는 산업용 냉간 압연 시트 연속 어닐링 또는 코팅된 시트 제조 공정을 시뮬레이션하여 핫 스탬핑에 사용되는 강 시트를 얻기 위해 어닐링된다.Table 1 shows the composition of the steel used in one embodiment. The steel can be made into sheet by the following process, i.e. a cast blank is kept at a temperature of 1200° C. for 3 hours, then forged into a sheet blank, and before homogenizing treatment, the sheet blank is heated to 1200° C. °C for 10 hours, pulverized to peel off the superficial decarburized layer, then heated to 1200 °C and hot-rolled at a temperature ranging from 800 °C to 1200 °C for 1 hour before forming a rolled sheet. while maintaining the temperature. The hot-rolled pickled sheet is maintained at a temperature of 600° C. for 10 hours to simulate hood annealing to reduce the strength of the hot-rolled sheet for cold rolling, and the hot-rolled, pickled and annealed sheet is, for example, 1.5 mm thick. cold rolled into a furnace, and the cold-rolled sheet is annealed to obtain a steel sheet used for hot stamping by simulating industrial cold-rolled sheet continuous annealing or coated sheet manufacturing process.

표에서, BT 시리즈는 본 발명의 강이고, CT 시리즈는 비교된 강이며, CT 시리즈 강의 구성성분은 본 발명의 범위를 넘어서 확장된다.In the table, the BT series is the steel of the present invention, the CT series is the compared steel, and the composition of the CT series steel extends beyond the scope of the present invention.

표 2는 채택된 공정을 보여주고, 표 3은 표 2에 나타낸 공정으로 표1의 강을 처리하여 얻어진 성형된 구성성분의 특성을 보여준다. Table 2 shows the process adopted, and Table 3 shows the properties of the molded components obtained by treating the steel of Table 1 with the process shown in Table 2.

[표 1] 강의 주된 화학적 구성 요소[Table 1] Main chemical composition of steel

Figure pat00001
Figure pat00001

[표 2] 강의 열 처리 공정[Table 2] Steel heat treatment process

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

[표 3] 성형된 구성성분의 기계적 특성[Table 3] Mechanical properties of molded components

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

가열 및 온도 유지 처리(베이킹 처리)를 거치지 않은 성형된 구성성분은, 부피 기준으로, 0.1 내지 5%의 바나듐 카바이드 또는 복합 탄질화물, 2 내지 15%의 잔류 오스테나이트, 0 내지 10%의 페라이트, 잔부는 마르텐사이트의 구조를 포함한다. 표 3의 1-1, 1-2, 1-3, 1-4, 1-5, 2-1, 2-2, 2-3, 2-4, 3-1 및 4-1에서 알려진 바와 같이, 이의 성형된 구성성분 모두 6% 이상의 신장률을 갖는다.Molded components that have not been subjected to heating and temperature holding treatment (baking treatment) contain, by volume, 0.1 to 5% vanadium carbide or complex carbonitrides, 2 to 15% retained austenite, 0 to 10% ferrite, The remainder contains the structure of martensite. As known from 1-1, 1-2, 1-3, 1-4, 1-5, 2-1, 2-2, 2-3, 2-4, 3-1 and 4-1 in Table 3 , all of its molded components have an elongation of at least 6%.

가열 및 온도 유지 처리를 거친, 성형된 구성성분은, 부피 기준으로, 다음과 같은 구조를 포함한다: 0.1 내지 2%의 바나듐 카바이드 또는 복합 탄질화물, 5 내지 25%의 잔류 오스테나이트, 0 내지 10%의 페라이트, 잔부는 마르텐사이트이다. 표 3의 1-1-200, 1-2-200, 1-5-170, 2-4-180, 3-1-200 및 4-1-200에서 알려진 바와 같이, 이 성형된 구성성분 모두 1100MPa 이상의 항복 강도, 1400MPa 이상의 인장 강도 및 10% 이상의 신장률을 갖는다.The shaped component, which has been subjected to a heating and temperature holding treatment, contains, by volume, the following structure: 0.1 to 2% vanadium carbide or complex carbonitride, 5 to 25% retained austenite, 0 to 10%. % ferrite, balance martensite. As known from 1-1-200, 1-2-200, 1-5-170, 2-4-180, 3-1-200 and 4-1-200 in Table 3, all of these molded components are 1100 MPa It has a yield strength of 1400 MPa or more, a tensile strength of 1400 MPa or more, and an elongation of 10% or more.

대조적으로, 열 처리 공정에 관계없이, 비교예에서의 강의 CT1, CT2, CT3는 모두 본 발명의 강의 4 가지 특성을 충족시키지 못한다: 핫 스탬핑 상태에서 6% 이상의 신장률(탄소-분할 전); 1100MPa 이상의 항복 강도, 1400MPa 이상의 인장 강도 및 10% 이상의 신장률. 특히, CT1-1, CT1-2, CT2-1, CT2-2, CT3-1, CT3-2에서 알려진 바와 같이, 비교예에서의 강 CT1, CT2 및 CT3은 탄소-분할 전에 취성 균열이 발생할 가능성이 매우 높은 반면, 본 발명의 강은 6% 이상의 신장률을 갖지만, 이는 취성 균열을 방지하고 용접 조립 요건을 충족시킬 수 있다.In contrast, regardless of the heat treatment process, all of the steels CT1, CT2, and CT3 in the comparative examples fail to satisfy the four characteristics of the steels of the present invention: elongation of 6% or more in the hot stamping state (before carbon-splitting); Yield strength of 1100 MPa or more, tensile strength of 1400 MPa or more, and elongation of 10% or more. In particular, as known from CT1-1, CT1-2, CT2-1, CT2-2, CT3-1, and CT3-2, the steels CT1, CT2, and CT3 in Comparative Examples have the possibility of brittle cracking before carbon-splitting. While this is very high, the steel of the present invention has an elongation of 6% or more, but it can prevent brittle cracking and meet the welding assembly requirements.

본 발명의 성형된 구성성분은 B-포스트 보강재, 범퍼, 차량 도어 충돌 방지 빔 및 휠 스포크를 포함하지만 이에 제한되지 않는 육상의 차량용 고강도 구성성분으로 사용될 수 있다.Molded components of the present invention may be used as high-strength components for land vehicles, including but not limited to B-post stiffeners, bumpers, vehicle door anti-collision beams, and wheel spokes.

상기 구현예 및 실험 데이터는 본 발명을 예시적으로 설명하기 위한 것이다. 당업자는 본 발명이 이 구현예들에 제한되지 않으며, 본 발명의 보호 범위를 벗어나지 않고 변경될 수 있음을 이해해야 한다.The above embodiments and experimental data are intended to illustrate the present invention. A person skilled in the art should understand that the present invention is not limited to these embodiments, and may be modified without departing from the protection scope of the present invention.

Claims (11)

핫 스탬핑 공정으로서,
단계 A: 핫 스탬핑에 사용되는 강 또는 상기 핫 스탬핑에 사용되는 강을 예비 성형하여 수득된 예비 성형된 구성성분을 740 내지 780 ℃ 범위의 온도로 가열하고, 0.1 내지 10000 초 동안 상기 온도를 유지하는 단계로서,
상기 핫 스탬핑에 사용되는 강은 중량 기준으로, 0.12 ~ 0.17%의 C, 5.09 ~ 8%의 Mn, 0.25 ~ 0.4%의 V, 및 0 ~ 2%의 Si + Al의 구성성분을 포함하는 단계;
단계 B: 핫 스탬핑된 구성성분을 얻기 위해, 단계 A에서 처리된 핫 스탬핑에 사용되는 강 또는 예비 성형된 구성성분을 핫 스탬핑용 다이로 이송하는 단계; 및
단계 C: 단계 B에서 얻은 상기 핫 스탬핑된 구성성분을 0.1 내지 1000 ℃/s의 평균 냉각 속도로 냉각시키는 단계
를 포함하는 핫 스탬핑 공정.
As a hot stamping process,
Step A: heating the steel used for hot stamping or a preformed component obtained by preforming the steel used for hot stamping to a temperature in the range of 740 to 780 ° C, and holding the temperature for 0.1 to 10000 seconds As a step,
The steel used for the hot stamping contains, by weight, 0.12 to 0.17% C, 5.09 to 8% Mn, 0.25 to 0.4% V, and 0 to 2% Si + Al;
Step B: transferring the steel used for hot stamping or the preformed component processed in step A to a die for hot stamping to obtain a hot stamped component; and
Step C: Cooling the hot stamped component obtained in Step B at an average cooling rate of 0.1 to 1000 °C/s
A hot stamping process comprising a.
제1항에 있어서,
상기 핫 스탬핑에 사용되는 강은, 하기의 구성성분 중 적어도 하나를 더 포함하는 것을 특징으로 하는, 핫 스탬핑 공정:
0 ~ 5%의 Cr, 0 ~ 0.2%의 Ti, 0 ~ 0.2%의 Nb, 0 ~ 0.2% Zr, 0 ~ 0.005%의 B, 0 ~ 4%의 Ni, 0 ~ 2%의 Cu, 0 ~ 2%의 Mo 및 0 ~ 2%의 W.
According to claim 1,
The hot stamping process, characterized in that the steel used for the hot stamping further comprises at least one of the following components:
0 to 5% Cr, 0 to 0.2% Ti, 0 to 0.2% Nb, 0 to 0.2% Zr, 0 to 0.005% B, 0 to 4% Ni, 0 to 2% Cu, 0 to 0.2% 2% Mo and 0 to 2% W.
제1항 또는 제2항에 있어서,
상기 핫 스탬핑에 사용되는 강은 이의 표면상에 Al-Si 코팅, 아연 도금 코팅 및 고온 산화 코팅을 포함하는 군으로부터 선택되는 코팅이 제공되는 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 1 or 2,
The hot stamping process according to claim 1, wherein the steel used for hot stamping is provided with a coating selected from the group consisting of an Al-Si coating, a galvanized coating and a high-temperature oxidation coating on its surface.
제1항 또는 제2항에 있어서,
상기 핫 스탬핑에 사용되는 강의 구성성분 비율은 하기의 요건을 충족하는 것을 특징으로 하는, 핫 스탬핑 공정:
핫 스탬핑 후에 핫 스탬핑에 사용되는 강의 마르텐사이트 변환 개시 온도(Ms)의 실제 측정 값이 150 내지 280 ℃임.
According to claim 1 or 2,
The hot stamping process, characterized in that the component proportions of the steel used in the hot stamping satisfy the following requirements:
After hot stamping, the actual measured value of the martensitic transformation start temperature (Ms) of the steel used for hot stamping is 150 to 280 ° C.
제1항에 있어서,
단계 C에서, 상기 평균 냉각 속도는 1 내지 100 ℃/s인 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 1,
In step C, the hot stamping process, characterized in that the average cooling rate is 1 to 100 ° C / s.
제1항에 있어서,
단계 C 이후, 상기 핫 스탬핑된 구성성분은,
부피 기준으로, 다음의 구조를 갖는 것을 특징으로 하는, 핫 스탬핑 공정:
0.1 내지 5%의 바나듐 카바이드 또는 복합 탄질화물, 2 내지 15%의 잔류 오스테나이트, 0 내지 10%의 페라이트, 잔부는 마르텐사이트.
According to claim 1,
After step C, the hot stamped component is
A hot stamping process, characterized by having the following structure on a volume basis:
0.1 to 5% vanadium carbide or complex carbonitride, 2 to 15% retained austenite, 0 to 10% ferrite, balance martensite.
제1항에 있어서,
상기 핫 스탬핑된 구성성분은 6% 이상의 신장률을 갖는 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 1,
The hot stamping process according to claim 1, wherein the hot stamped component has an elongation of at least 6%.
제1항에 있어서,
상기 핫 스탬핑 공정은 단계 C 이후의 단계 D를 더 포함하고,
상기 단계 D에서,
상기 핫 스탬핑된 구성성분은 가열되고, 140 내지 220℃ 범위의 온도 이내에서 유지되며, 온도 유지를 위한 시간은 1 내지 100000 초 동안 지속하는 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 1,
The hot stamping process further includes step D after step C,
In step D,
The hot stamping process, characterized in that the hot stamped component is heated and maintained within a temperature range of 140 to 220 ° C, and the time for maintaining the temperature lasts for 1 to 100000 seconds.
제8항에 있어서,
상기 핫 스탬핑된 구성성분은 차량 구성성분으로서 사용되고,
차량 제조 절차의 페인트 베이킹 중에 온도 유지는 5 내지 30 분 동안 수행되는 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 8,
the hot stamped component is used as a vehicle component;
The hot stamping process, characterized in that the temperature maintenance during paint baking in vehicle manufacturing procedures is performed for 5 to 30 minutes.
제8항에 있어서,
단계 D 이후에,
상기 핫 스탬핑된 구성성분은
부피 기준으로, 하기의 구조를 갖는 것을 특징으로 하는, 핫 스탬핑 공정:
0.1 내지 2%의 바나듐 카바이드 또는 복합 탄질화물, 5 내지 25%의 잔류 오스테나이트, 0 내지 10%의 페라이트, 잔부는 마르텐사이트.
According to claim 8,
After step D,
The hot stamped component is
A hot stamping process, characterized by having the following structure on a volume basis:
0.1 to 2% vanadium carbide or complex carbonitride, 5 to 25% retained austenite, 0 to 10% ferrite, balance martensite.
제8항에 있어서,
상기 핫 스탬핑된 구성성분은 1100MPa 이상의 항복 강도, 1400MPa 이상의 인장 강도 및 10% 이상의 신장률을 갖는 것을 특징으로 하는, 핫 스탬핑 공정.
According to claim 8,
The hot stamping process, characterized in that the hot stamped component has a yield strength of 1100 MPa or more, a tensile strength of 1400 MPa or more, and an elongation of 10% or more.
KR1020237012517A 2017-11-02 2018-10-29 Steel used for hot stamping, hot stamping process and formed component KR20230054500A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711063360.6A CN107815612A (en) 2017-11-02 2017-11-02 Hot press-formed steel, hot press-formed technique and formed parts
CN201711063360.6 2017-11-02
PCT/CN2018/112367 WO2019085855A1 (en) 2017-11-02 2018-10-29 Steel used for hot stamping, hot stamping process and formed component
KR1020207015802A KR20200072552A (en) 2017-11-02 2018-10-29 Steel for hot stamping, hot stamping process and molded components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207015802A Division KR20200072552A (en) 2017-11-02 2018-10-29 Steel for hot stamping, hot stamping process and molded components

Publications (1)

Publication Number Publication Date
KR20230054500A true KR20230054500A (en) 2023-04-24

Family

ID=61604648

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237012517A KR20230054500A (en) 2017-11-02 2018-10-29 Steel used for hot stamping, hot stamping process and formed component
KR1020207015802A KR20200072552A (en) 2017-11-02 2018-10-29 Steel for hot stamping, hot stamping process and molded components

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207015802A KR20200072552A (en) 2017-11-02 2018-10-29 Steel for hot stamping, hot stamping process and molded components

Country Status (6)

Country Link
US (1) US20200263271A1 (en)
EP (1) EP3704282A4 (en)
JP (1) JP7269588B2 (en)
KR (2) KR20230054500A (en)
CN (2) CN107815612A (en)
WO (1) WO2019085855A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
CN107815612A (en) * 2017-11-02 2018-03-20 重庆哈工易成形钢铁科技有限公司 Hot press-formed steel, hot press-formed technique and formed parts
CN108588612B (en) * 2018-04-28 2019-09-20 育材堂(苏州)材料科技有限公司 Hot press-formed component, hot press-formed pre- coating steel plate and hot press-formed technique
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109719182A (en) * 2018-11-16 2019-05-07 唐山钢铁集团有限责任公司 The method of the high-strength component of Low Temperature Thermal punching production coating
CN110055465B (en) * 2019-05-16 2020-10-02 北京科技大学 Medium-manganese ultrahigh-strength steel and preparation method thereof
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN110157973B (en) * 2019-07-04 2021-07-20 广西大学 High-strength corrosion-resistant stainless steel plate for automobile and preparation method thereof
CN111057966A (en) * 2019-12-19 2020-04-24 安徽五秒达网络科技有限公司 Corrosion-resistant high-strength solar photovoltaic bracket and manufacturing process thereof
CN112710803A (en) * 2020-11-25 2021-04-27 河钢股份有限公司 Evaluation method of hot-rolled coil cover retreating treatment process
CN114686651A (en) * 2020-12-31 2022-07-01 通用汽车环球科技运作有限责任公司 Zinc coated steel with reduced susceptibility to Liquid Metal Embrittlement (LME)
CN114150227B (en) * 2021-12-07 2022-11-18 武汉科技大学 High-toughness hot stamping steel rolled by medium and thin slabs with Rm more than or equal to 1500MPa and production method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010971B1 (en) * 2008-03-24 2011-01-26 주식회사 포스코 Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method
KR101382981B1 (en) * 2011-11-07 2014-04-09 주식회사 포스코 Steel sheet for warm press forming, warm press formed parts and method for manufacturing thereof
CN103397275B (en) * 2013-08-09 2016-04-27 钢铁研究总院 A kind of martensite series wear resisting steel and preparation method thereof
WO2015182596A1 (en) * 2014-05-29 2015-12-03 新日鐵住金株式会社 Heat-treated steel material and method for producing same
MX2017005168A (en) * 2014-10-24 2017-07-27 Jfe Steel Corp High-strength hot-pressing member and method for producing same.
CN104846274B (en) * 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 Hot press-formed use steel plate, hot press-formed technique and hot press-formed component
JP6222198B2 (en) * 2015-10-19 2017-11-01 Jfeスチール株式会社 Hot-pressed member and manufacturing method thereof
JP6168118B2 (en) * 2015-10-19 2017-07-26 Jfeスチール株式会社 Hot-pressed member and manufacturing method thereof
KR101677396B1 (en) * 2015-11-02 2016-11-18 주식회사 포스코 Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same
CN105483531A (en) * 2015-12-04 2016-04-13 重庆哈工易成形钢铁科技有限公司 Steel for stamping formation and forming component and heat treatment method thereof
CN106929755A (en) * 2015-12-29 2017-07-07 宝山钢铁股份有限公司 A kind of steel plate and its manufacture method and purposes for producing low temperature drop stamping auto parts and components
CN106906421A (en) * 2015-12-29 2017-06-30 宝山钢铁股份有限公司 A kind of low temperature drop stamping auto parts and components, its drop stamping technique and its manufacture method
CN106906420A (en) * 2015-12-29 2017-06-30 宝山钢铁股份有限公司 A kind of low temperature drop stamping auto parts and components, its drop stamping technique and its manufacture method
CN109072371B (en) * 2016-01-29 2020-08-21 杰富意钢铁株式会社 High-strength steel sheet for warm working and method for producing same
JP6508176B2 (en) * 2016-03-29 2019-05-08 Jfeスチール株式会社 Hot pressed member and method of manufacturing the same
CN106399837B (en) * 2016-07-08 2018-03-13 东北大学 Hot press-formed steel, hot press-formed technique and hot press-formed component
CN107815612A (en) * 2017-11-02 2018-03-20 重庆哈工易成形钢铁科技有限公司 Hot press-formed steel, hot press-formed technique and formed parts

Also Published As

Publication number Publication date
WO2019085855A1 (en) 2019-05-09
KR20200072552A (en) 2020-06-22
EP3704282A1 (en) 2020-09-09
CN114369768A (en) 2022-04-19
US20200263271A1 (en) 2020-08-20
JP2021501833A (en) 2021-01-21
JP7269588B2 (en) 2023-05-09
EP3704282A4 (en) 2021-08-25
CN107815612A (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP7269588B2 (en) Steels used for hot stamping, hot stamping methods and formed components
JP6854271B2 (en) Steel plate used for hot stamping
KR101485306B1 (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
CA3135015A1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
JP2010521584A (en) Equipmentless hot forming or quenching steel with improved ductility
CN109207849B (en) High-strength high-plasticity 1000 MPa-grade hot rolled steel plate and preparation method thereof
RU2725939C1 (en) Method of making part subjected to re-moulding from flat steel product with manganese content and part of such type
CN110093491B (en) Cold-rolled hot-galvanized dual-phase steel and manufacturing method thereof
CN108374118A (en) It is a kind of that there is the hot dip galvanized dual phase steel plate and its manufacturing method for being easy to shaping characteristic
CN103614640A (en) High-temperature oxidation-resistant steel for non-coating hot stamping
CN113061812A (en) 980 MPa-grade cold-rolled alloyed galvanized quenching distribution steel and preparation method thereof
CN113416889A (en) Ultrahigh-strength hot-dip galvanized DH1470 steel with good welding performance and preparation method thereof
US20190226064A1 (en) Micro-alloyed manganese-boron steel
CN111979488A (en) 780 MPa-grade alloying hot-dip galvanized DH steel and preparation method thereof
CN112095047A (en) Cold-rolled hot-dip galvanized DH780 steel with excellent welding performance and preparation method thereof
RU2725936C2 (en) Method of making hot-molded steel part and hot-molded steel part
CN112048670A (en) Cold-rolled hot-galvanized DH590 steel with excellent surface quality and production method thereof
CN116043119B (en) Easily-welded ultra-high reaming performance 800 MPa-grade hot dip galvanized complex phase steel and preparation method thereof
CN113930675B (en) 2200 MPa-grade low-carbon B-free hot forming steel and preparation method thereof
CN116926421A (en) Low Si1600MPa grade coating-free warm forming medium manganese steel and preparation method thereof
WO2023087351A1 (en) High-strength and high-plasticity thermoformed steel having oxidation resistance for automobile, and thermoforming process
KR20100035832A (en) Hot-rolled steel having ultra-high strength, and method for producing the same
CN117867372A (en) 1500MPa battery pack steel for new energy automobile and preparation method thereof
CN116900178A (en) Advanced hot stamping forming method of high Cr-Si alloying plating-free hot forming steel

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application