KR20230053898A - Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof - Google Patents

Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof Download PDF

Info

Publication number
KR20230053898A
KR20230053898A KR1020210137232A KR20210137232A KR20230053898A KR 20230053898 A KR20230053898 A KR 20230053898A KR 1020210137232 A KR1020210137232 A KR 1020210137232A KR 20210137232 A KR20210137232 A KR 20210137232A KR 20230053898 A KR20230053898 A KR 20230053898A
Authority
KR
South Korea
Prior art keywords
graphene oxide
chitosan
adsorption medium
adsorption
solution
Prior art date
Application number
KR1020210137232A
Other languages
Korean (ko)
Other versions
KR102671566B1 (en
Inventor
장윤영
최종수
락시미 프라산나 린감딘네
양재규
자나단 레디 코두루
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020210137232A priority Critical patent/KR102671566B1/en
Priority claimed from KR1020210137232A external-priority patent/KR102671566B1/en
Publication of KR20230053898A publication Critical patent/KR20230053898A/en
Application granted granted Critical
Publication of KR102671566B1 publication Critical patent/KR102671566B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to graphene oxide/a chitosan adsorptive medium for removing heavy metals in water and a preparation method thereof. The graphene oxide/chitosan adsorptive medium according to the present invention can efficiently remove cationic heavy metals in water and, in particular, has excellent performance of adsorbing cationic heavy metals in water, such as cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn), and the like, which is a synergic effect resulting from a combination of graphene oxide having effectiveness in removing heavy metals in water and chitosan having excellent heavy metal adsorption performance. In addition, the graphene oxide/chitosan adsorptive medium in the form of foam according to the present invention has an excellent recovery rate, compared to the graphene oxide in the form of powder according to conventional technology, can be easily applied to a continuous process, and effectively solve the problem of a decrease in coating efficiency and a reduction in stability that occur in a sponge-type adsorptive medium according to the conventional technology.

Description

수중 중금속 제거를 위한 그래핀 산화물/키토산 흡착매질체 및 그 제조방법{Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof} Graphene oxide/chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof}

본 발명은 수중 중금속 제거를 위한 그래핀 산화물/키토산 흡착매질체 및 그 제조방법에 관한 것이다.The present invention relates to a graphene oxide/chitosan adsorption medium for removing heavy metals in water and a manufacturing method thereof.

환경부에서 보도한 폐금속광산 기초환경조사결과(환경부 보도자료, 2014.07)에 따르면 강원지역 110개 폐금속광산 중 73개소에서 토양오염이 확인되었으며, 비소(As)로만 오염된 경우와 비소와 양이온 중금속이 복합적으로 오염된 경우가 빈번하게 관찰되고 있다. 특히, 충북지역에 소재해 있는 폐광산 중 40개를 선정하여 갱내수와 음용수를 분석한 결과 갱내수는 부적합 36건으로 부적합율이 57.1%로 나타났고 음용수는 부적합 163건으로 34.2%의 부적합율을 보였다. 주요 오염물질은 카드뮴, 알루미늄, 망간, 비소 등이 기준을 초과하는 것으로 나타났다(충청북도보건환경연구원보, 2008). According to the results of the basic environmental investigation of abandoned metal mines reported by the Ministry of Environment (Ministry of Environment press release, 2014.07), soil contamination was confirmed in 73 out of 110 abandoned metal mines in the Gangwon area. This complex contamination is frequently observed. In particular, as a result of analyzing mine water and drinking water in 40 abandoned mines located in the Chungbuk region, 36 cases of mine water were non-conformity, with a non-conformity rate of 57.1%, and drinking water, 163 cases of non-conformity, a 34.2% non-conformity rate. Major contaminants such as cadmium, aluminum, manganese, and arsenic were found to exceed the standards (Chungcheongbuk-do Health and Environment Research Institute, 2008).

한편, 사격장 등에는 각종 중금속과 화약류 등의 오염물질이 산재되어 있으며,각종 불발탄 및 군수용품 등에 의한 폐기물 매립도 오염의 한 원인으로 자리 잡고 있다. 군부대 사격장 토양오염조사 자료에 의하면 주된 오염물질은 RDX와 TNT를 포함하는 화약물질과 Cd,Cu,및 Pb과 같은 중금속이다(한국수자원공사,2002). 이러한 중금속들은 인근 지하수와 하천을 오염시켜 주민들의 건강을 위협할 수 있는 문제가 있다. 이러한 수중 독성 중금속 제거를 위한 공정으로는 이온 교환, 막여과, 흡착 등이 알려져 있으며, 이 중 흡착 방법은 적용이 간편하고 처리 과정에서 슬러지와 같은 2차 오염물질을 발생시키지 않는 장점을 가진다.On the other hand, contaminants such as various heavy metals and explosives are scattered in shooting ranges, and landfilling of wastes by various unexploded ordnance and military supplies is also a cause of pollution. According to soil contamination survey data from military shooting ranges, the main contaminants are gunpowder materials including RDX and TNT, and heavy metals such as Cd, Cu, and Pb (Korea Water Resources Corporation, 2002). These heavy metals have a problem that can threaten the health of residents by contaminating nearby groundwater and rivers. As processes for removing toxic heavy metals in water, ion exchange, membrane filtration, adsorption, etc. are known. Among them, the adsorption method has the advantage of being easy to apply and not generating secondary pollutants such as sludge during the treatment process.

한편, 얇은 두께, 화학적 안정성, 표면의 풍부한 산소 함유 관능기를 포함하는 그래핀 산화물(Graphene Oxide, GO)는 양이온 중금속 등 제거에 매우 효과적인 물질로 알려져 있으나, 종래 기술에 따른 분말 형태의 그래핀 산화물의 경우 물에 분산된 이후에 회수가 어렵다는 문제가 있어 연속식 공정에서는 사용이 불가하다. 또한, 모래 등 다른 매질체에 그래핀 산화물을 코팅하여 제조하는 흡착매질체(또는 흡착제)의 경우 그래핀 산화물 건조 과정에서 층간 사이의 재적층(restacking)이 발생하여 고유 특성을 잃어버리기 때문에 반응성이 감소하는 문제가 있다. On the other hand, graphene oxide (GO), which has a thin thickness, chemical stability, and rich oxygen-containing functional groups on the surface, is known as a very effective material for removing cationic heavy metals. In this case, there is a problem that it is difficult to recover after being dispersed in water, so it cannot be used in a continuous process. In addition, in the case of an adsorption medium (or adsorbent) prepared by coating graphene oxide on another medium such as sand, restacking occurs between layers during the drying process of graphene oxide, resulting in loss of intrinsic characteristics, resulting in poor reactivity. There is a problem of decreasing.

본 발명은, 상술한 종래 기술의 문제점을 해결하기 위해 안출한 것으로, 분말 형태의 그래핀 산화물(GO)의 유실 문제 및 모래 등 다른 매질체에 그래핀 산화물을 코팅하는 경우에 나타나는 반응성 저하 등 문제를 극복하여, 높은 수중 양이온 중금속 제거 효율을 가지며, 연속식 공정에 적용이 가능한 폼(foam) 형태의 그래핀 산화물/키토산 흡착매질체 및 그 제조방법을 제공하기 위한 것이다. The present invention was made to solve the above-mentioned problems of the prior art, and problems such as the loss of graphene oxide (GO) in powder form and the decrease in reactivity that occur when graphene oxide is coated on other media such as sand It is an object of the present invention to provide a graphene oxide/chitosan adsorption medium having a high cation heavy metal removal efficiency in water and applicable to a continuous process, and a manufacturing method thereof.

또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. In addition, the technical problem to be solved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned above will become clear to those skilled in the art from the description below. You will be able to understand.

본 명세서에서는, a) 그래핀 산화물 수용액 및 키토산 용액을 혼합하여 그래핀 산화물/키토산 혼합용액을 제조하는 단계; 및 b) 상기 그래핀 산화물/키토산 혼합용액을 동결건조하여 폼(foam) 형태의 흡착매질체를 제조하는 단계; 를 포함하는, 그래핀 산화물/키토산 흡착매질체 제조방법을 제공한다.In the present specification, a) preparing a graphene oxide/chitosan mixed solution by mixing a graphene oxide aqueous solution and a chitosan solution; and b) freeze-drying the graphene oxide/chitosan mixed solution to prepare an adsorption medium in the form of a foam; It provides a method for preparing a graphene oxide/chitosan adsorption medium comprising a.

상기 a 단계의 키토산 용액은 전체 용액 100 중량%를 기준으로, 1 중량%의 아세트산 및 2 중량%의 키토산이 포함된 것일 수 있다. The chitosan solution of step a may contain 1 wt% of acetic acid and 2 wt% of chitosan based on 100 wt% of the total solution.

상기 a 단계의 혼합용액 제조 시, 그래핀 산화물과 키토산은 0.8 내지 1.2 : 0.8 내지 1.2의 중량부 비로 포함되는 것일 수 있다.When preparing the mixed solution of step a, graphene oxide and chitosan may be included in a weight part ratio of 0.8 to 1.2: 0.8 to 1.2.

상기 b 단계의 동결건조는 그래핀 산화물/키토산 혼합용액을 몰드에서 -20 내지 -40 ℃ 온도 범위로 동결한 다음, 내부 트랩 온도가 -65 내지 -75 ℃ 범위인 동결 건조기 내에서 진공 건조하여 수행되는 것일 수 있다. The freeze-drying in step b is performed by freezing the graphene oxide/chitosan mixed solution in a mold at a temperature in the range of -20 to -40 ° C, and then vacuum drying in a freeze dryer having an internal trap temperature in the range of -65 to -75 ° C. it may be

상기 b 단계에서 제조되는 폼(foam)은 그래핀 산화물/키토산 혼합용액을 동결건조한 후 건조된 혼합물을 0.5 M 수산화나트륨 용액에 침지시켜, 가교 반응(cross-linking)을 유도함으로써 제조되는 것일 수 있다.The foam prepared in step b may be prepared by lyophilizing a graphene oxide/chitosan mixed solution and then immersing the dried mixture in a 0.5 M sodium hydroxide solution to induce cross-linking. .

본 명세서에서는, 상기 방법에 따라 제조되는 폼(foam) 형태의 흡착매질체로서, 다공성 구조를 가지며, 하이드록시기(-OH), 카르복시기(-COOH) 및 아미노기(-NH2)를 포함하는, 그래핀 산화물/키토산 흡착매질체를 제공한다.In the present specification, an adsorption medium in the form of a foam prepared according to the above method, has a porous structure, and includes a hydroxy group (-OH), a carboxy group (-COOH) and an amino group (-NH 2 ), A graphene oxide/chitosan adsorption medium is provided.

상기 흡착매질체는 랭뮤어(Langmuir) 등온 흡착 실험 시 카드뮴 양이온에 대해 270 mg/g 이상의 최대 흡착 성능을 나타내는 것일 수 있다. The adsorption medium may exhibit a maximum adsorption performance of 270 mg/g or more for cadmium cations in a Langmuir isothermal adsorption experiment.

본 명세서에서는, 중금속 오염수를 처리하기 위한 방법으로서, 상기 흡착매질체를 오염수에 투입하여, 중금속 양이온을 흡착하여 제거하는, 수중 중금속 흡착 제거 방법을 제공한다.In the present specification, as a method for treating heavy metal contaminated water, a method for adsorbing and removing heavy metals in water is provided in which the adsorption medium is introduced into the contaminated water to adsorb and remove heavy metal cations.

상기 중금속 양이온은 카드뮴(Cd), 납(Pb), 니켈(Ni), 구리(Cu) 및 아연(Zn) 중 선택되는 1종 이상의 중금속 양이온일 수 있다. The heavy metal cation may be at least one heavy metal cation selected from cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), and zinc (Zn).

본 발명에 따른 그래핀 산화물/키토산 흡착매질체는 수중에서 양이온 중금속을 효율적으로 제거할 수 있으며, 특히, 수중 중금속 제거에 효과적인 그래핀 산화물 및 중금속 흡착 성능이 우수한 키토산의 조합으로 인한 시너지로, 카드뮴(Cd), 납(Pb), 니켈(Ni), 구리(Cu) 및 아연(Zn) 등과 같은 수중 양이온 중금속에 대한 흡착 성능이 뛰어나다. The graphene oxide/chitosan adsorption medium according to the present invention can efficiently remove cationic heavy metals from water. It has excellent adsorption performance for cationic heavy metals such as (Cd), lead (Pb), nickel (Ni), copper (Cu) and zinc (Zn) in water.

또한, 본 발명에 따른 폼 형태의 그래핀 산화물/키토산 흡착매질체는 종래 기술에 따른 분말 타입의 그래핀 산화물 대비 회수율 측면에서 우수하여 연속식 공정에 적용하기 용이하며, 종래 기술에 따른 스펀지형 흡착매질체에서 발생하게 되는 코팅 효율 저하 및 안정성 저하 문제를 효과적으로 극복할 수 있다. In addition, the foam-type graphene oxide/chitosan adsorption medium according to the present invention is superior in terms of recovery rate compared to the powder-type graphene oxide according to the prior art, so it is easy to apply to a continuous process, and the sponge-type adsorption according to the prior art It is possible to effectively overcome the problems of deterioration in coating efficiency and deterioration in stability occurring in the medium body.

또한, 본 발명에 따른 그래핀 산화물/키토산 흡착매질체는 제조과정에서, 그래핀 산화물의 뭉침이나 재적층(restacking)이 방지되고, 흡착에 효과적인 그래핀 산화물 간 3차원 네트워크 구조가 형성되어 흡착 성능을 최적화할 수 있다. In addition, the graphene oxide/chitosan adsorption medium according to the present invention prevents agglomeration or restacking of graphene oxide during the manufacturing process, and forms a three-dimensional network structure between graphene oxides effective for adsorption, thereby improving adsorption performance. can be optimized.

도 1은 본 발명의 일실시예에 따른 그래핀 산화물/키토산 흡착매질체 제조과정을 간략히 도식화한 것이다.
도 2는 본 발명의 일실시예에 따른 그래핀 산화물/키토산 흡착매질체 제조방법을 도식화한 것이다.
도 3은 본 발명의 일실시예에 따라 제조된 그래핀 산화물/키토산 흡착매질체의 표면 관능기를확인하기 위한 FT-IR 분석 결과이다.
도 4는 본 발명의 일실시예 및 비교예에 따른 흡착매질체를 이용하여, 수중 카드뮴에 대한 최대 흡착 성능(Maximum Removal Capacity)을 확인하기 위해 실시한 등온 흡착 실험의 결과를 나타낸 것이다.
1 is a schematic diagram of a process for preparing a graphene oxide/chitosan adsorption medium according to an embodiment of the present invention.
2 is a schematic diagram of a method for preparing a graphene oxide/chitosan adsorption medium according to an embodiment of the present invention.
3 is an FT-IR analysis result for confirming surface functional groups of the graphene oxide/chitosan adsorption medium prepared according to an embodiment of the present invention.
Figure 4 shows the results of an isothermal adsorption experiment conducted to confirm the maximum adsorption performance (Maximum Removal Capacity) for cadmium in water using adsorption media according to an embodiment and a comparative example of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 구현예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present description, descriptions of already known functions or configurations will be omitted to clarify the gist of the present description.

상술한 바와 같이, 수중 독성 중금속을 제거하기 위한 공정으로는 이온 교환, 막여과, 흡착 등이 알려져 있으며, 이 중 흡착 방법은 적용이 간편하고 처리 과정에서 슬러지와 같은 2차 오염물질을 발생시키지 않는 장점을 가진다. 한편, 얇은 두께, 화학적 안정성, 표면의 풍부한 산소 함유 관능기를 포함하는 그래핀 산화물(Graphene Oxide, GO)는 양이온 중금속 등 제거에 매우 효과적인 물질로 알려져 있으나, 종래 기술에 따른 분말 타입의 그래핀 산화물 등은 물에 분산된 이후에 회수가 어렵다는 문제가 있다. 또한, 모래 등 다른 매질체에 그래핀 산화물을 코팅하여 제조하는 흡착매질체의 경우 그래핀 산화물 건조 과정에서 층간 사이의 재적층(restacking)이 발생하여 고유 특성을 잃어버리기 때문에 반응성이 감소하는 문제가 있다. As described above, ion exchange, membrane filtration, adsorption, etc. are known as processes for removing toxic heavy metals in water. Among them, the adsorption method is easy to apply and does not generate secondary pollutants such as sludge during the treatment process have an advantage On the other hand, graphene oxide (GO), which has a thin thickness, chemical stability, and rich oxygen-containing functional groups on the surface, is known as a very effective material for removing cationic heavy metals, etc., but powder type graphene oxide according to the prior art There is a problem that recovery is difficult after being dispersed in water. In addition, in the case of an adsorption medium produced by coating graphene oxide on another medium such as sand, restacking occurs between layers during the drying process of graphene oxide, resulting in loss of inherent characteristics, resulting in reduced reactivity. there is.

이에, 본 발명자들은 그래핀 산화물과, 고분자 물질인 키토산(chitosan)을 균질하게 혼합하여 입상 형태로 제조하고, 이를 수중 중금속 흡착 제거, 특히 카드뮴 양이온 제거에 있어서 흡착매질체로 활용하는 경우, 종래 기술에 따른 분말 타입 및 스펀지 등 다른 매질체에 코팅한 타입의 흡착매질체에서 발생한 문제를 효과적으로 해결할 수 있다는 점을 실험을 통하여 확인하고, 본 발명을 완성하게 되었다. Accordingly, the present inventors homogeneously mix graphene oxide and chitosan, which is a polymer material, to prepare them in granular form, and when used as an adsorption medium in the adsorption and removal of heavy metals in water, especially in the removal of cadmium cations, the prior art Through experiments, it was confirmed through experiments that problems occurring in adsorption media of the type coated on other media such as powder type and sponge were effectively solved, and the present invention was completed.

그래핀 산화물/키토산 흡착매질체 및 그 제조방법Graphene oxide/chitosan adsorption medium and manufacturing method thereof

구체적으로 본 발명의 일실시예에 따른 그래핀 산화물/키토산 흡착매질체 제조방법은, a) 그래핀 산화물 수용액 및 키토산 용액을 혼합하여 그래핀 산화물/키토산 혼합용액을 제조하는 단계; 및 b) 상기 그래핀 산화물/키토산 혼합용액을 동결건조하여 폼(foam) 형태의 흡착매질체를 제조하는 단계; 를 포함할 수 있다(도 1 내지 2 참조). Specifically, the method for preparing a graphene oxide/chitosan adsorption medium according to an embodiment of the present invention includes the steps of a) preparing a graphene oxide/chitosan mixed solution by mixing a graphene oxide aqueous solution and a chitosan solution; and b) freeze-drying the graphene oxide/chitosan mixed solution to prepare an adsorption medium in the form of a foam; It may include (see FIGS. 1 and 2).

먼저, 그래핀 산화물(Graphene Oxide, GO) 수용액 및 키토산(Chitosan) 용액을 혼합하여 그래핀 산화물/키토산 혼합용액을 제조한다(단계 a). First, a graphene oxide/chitosan mixed solution is prepared by mixing a graphene oxide (GO) aqueous solution and a chitosan solution (step a).

본 발명에서 그래핀 산화물(Graphene Oxide, GO)은 강산과 산화제로 반응시키는 화학적 박리법인 휴머스 방법(Hummer's method)을 사용하여 흑연을 산화흑연으로 제조한 후, 이후 박리를 유도하여 그래핀이 산화된 형태로 얻은 것일 수 있다. In the present invention, graphene oxide (GO) is produced by chemical exfoliation, Hummer's method, in which a strong acid and an oxidizing agent react to graphite to graphite oxide, and then exfoliation is induced so that graphene is oxidized. may have been obtained in the form of

일반적으로 그래핀 시트의 윗면(basal plane)에는 하이드록실 그룹(-OH)과 에폭시 그룹(C-O-C)이 존재하고, 끝 부분에는 카르복실 그룹(-COOH)이 존재하는 것으로 알려져 있다. 한편, 하이드록실 그룹과 에폭시 그룹은 카르복실 그룹 대비 훨씬 많이 존재하는 것으로 알려져 있다. 이렇듯 풍부한 산소 함유 관능기들 때문에 그래핀 산화물은 친수성이 되고 물에 쉽게 분산되며, 매우 얇은 두께로 인해 플렉서블(flexible)한 특성을 가진다. 그래핀 산화물의 고유 특성과 다양한 화학 반응들을 이용하면 산소 함유 관능기에 원하는 특성을 도입할 수 있고, 이는 양이온형 중금속 등의 제거능을 발현시키는 분야에 활용이 가능하다. In general, it is known that a hydroxyl group (-OH) and an epoxy group (C-O-C) exist on the basal plane of the graphene sheet, and a carboxyl group (-COOH) exists at the end. On the other hand, it is known that hydroxyl groups and epoxy groups are much more present than carboxyl groups. Because of such abundant oxygen-containing functional groups, graphene oxide is hydrophilic and easily dispersed in water, and has a flexible property due to its very thin thickness. By using the unique properties of graphene oxide and various chemical reactions, desired properties can be introduced into the oxygen-containing functional group, which can be used in the field of expressing the ability to remove cationic heavy metals.

한편, 그래핀 산화물 시트가 수중에 분산되는 경우 건조되면서 재적층(restacking) 되어 고유 특성을 잃어버릴 수 있으므로, 2차원의 그래핀 산화물 시트를 고형의 3차원 그래핀 산화물 네트워크 형태로 제조할 필요성이 있다. 특히, 이러한 형태의 그래핀 산화물은 무게 대비 많은 접근 가능한 공극(accessible pore volume)으로 인해 뛰어난 흡착매질체로 활용이 가능하다. On the other hand, when the graphene oxide sheet is dispersed in water, it is restacked while drying and may lose its unique properties, so there is a need to manufacture a 2-dimensional graphene oxide sheet in the form of a solid 3-dimensional graphene oxide network. there is. In particular, this type of graphene oxide can be used as an excellent adsorption medium due to its large accessible pore volume compared to its weight.

구체적으로, 상기 단계에서는 그래핀 산화물 수용액을 준비하고, 키토산 용액과 균질하게 혼합하여 그래핀 산화물/키토산 혼합용액을 제조하되, 상기 키토산 용액은 전체 용액 100 중량%를 기준으로, 1 중량%의 아세트산 및 2 중량%의 키토산이 포함된 것이 사용될 수 있다. 한편, 본 발명의 또 다른 일실시예에서, 상기 a 단계의 혼합용액 제조 시, 그래핀 산화물과 키토산은 0.8 내지 1.2 : 0.8 내지 1.2의 중량부 비, 더 상세하게는 1 : 1의 중량부 비로 포함되는 것일 수 있다. 한편, 그래핀 산화물과 키토산이 상기 중량부 비로 혼합되는 경우, 동결 건조 과정 후 제조되는 흡착매질체의 강도 및 흡착 성능을 최적화할 수 있다. Specifically, in the above step, an aqueous solution of graphene oxide is prepared and homogeneously mixed with a chitosan solution to prepare a mixed solution of graphene oxide/chitosan, wherein the chitosan solution contains 1% by weight of acetic acid based on 100% by weight of the total solution and 2% by weight of chitosan may be used. On the other hand, in another embodiment of the present invention, when preparing the mixed solution in step a, graphene oxide and chitosan are mixed at a weight part ratio of 0.8 to 1.2:0.8 to 1.2, more specifically 1:1. may be included. On the other hand, when graphene oxide and chitosan are mixed in the weight part ratio, the strength and adsorption performance of the adsorption medium produced after the freeze-drying process can be optimized.

한편, 상기 그래핀 산화물 수용액은 그래핀 산화물의 뭉침을 효과적으로 방지하기 위하여 0.5 내지 2.0 mg/mL 범위 내로 분산하며, 염화나트륨(NaCl), 염화마그네슘(MgCl2), 염화칼슘(CaCl2) 등과 같이 용해된 이온성 물질의 전체 이온세기(Ionic Strength)를 0.05M 이하로 하여 전기이중층 압축(Electrical Double Layer Compression) 현상에 그래핀 산화물의 안정성 저하를 억제하고, 그래핀 산화물의 여러 산소 함유 관능기들 간의 반발력을 통하여 뭉침 현상을 억제하기 위하여, 수용액은 pH 4 내지 10 범위로 조절한 다음, 0.5 내지 1.5 시간, 상세하게는 1 시간 초음파 처리하여 분산시킨 것일 수 있다. On the other hand, the graphene oxide aqueous solution is dispersed within the range of 0.5 to 2.0 mg / mL in order to effectively prevent agglomeration of graphene oxide, and dissolved such as sodium chloride (NaCl), magnesium chloride (MgCl 2 ), calcium chloride (CaCl 2 ), etc. By setting the total ionic strength of the ionic material to 0.05M or less, the stability deterioration of graphene oxide due to the electrical double layer compression phenomenon is suppressed, and the repulsive force between various oxygen-containing functional groups of graphene oxide is reduced. In order to suppress the aggregation phenomenon through, the aqueous solution may be adjusted to the pH range of 4 to 10, and then dispersed by ultrasonic treatment for 0.5 to 1.5 hours, specifically 1 hour.

한편, 본 발명의 키토산 용액에 포함되는 키토산(Chitosan)은 키틴의 탈아세틸화를 통해 얻을 수 있는 천연 고분자 물질로서, 갑각류 등에서 유래한 것일 수 있으며, 수용액 내 중금속 흡착 성능을 발현하는 것일 수 있다. On the other hand, chitosan included in the chitosan solution of the present invention is a natural polymer material obtained through deacetylation of chitin, and may be derived from crustaceans, etc., and may exhibit heavy metal adsorption performance in aqueous solution.

다음으로, 그래핀 산화물/키토산 혼합용액을 동결건조하여 폼(foam) 형태의 흡착매질체를 제조한다(단계 b).Next, the graphene oxide/chitosan mixed solution is lyophilized to prepare an adsorption medium in the form of a foam (step b).

본 발명의 일실시예에 따르면, 상기 단계는 그래핀 산화물/키토산 혼합용액을 몰드에서 -20 내지 -40 ℃ 온도 범위로 동결한 다음, 내부 트랩 온도가 -65 내지 -75 ℃ 범위인 동결 건조기 내에서 진공 건조하여 수행되는 것일 수 있다. According to one embodiment of the present invention, the step is to freeze the graphene oxide / chitosan mixed solution in a mold at a temperature in the range of -20 to -40 ° C, and then in a freeze dryer having an internal trap temperature in the range of -65 to -75 ° C. It may be performed by vacuum drying in

한편, 상기 건조 단계 후, 그래핀 산화물 입자들 간 결합을 유도하여, 고형의 3차원 그래핀 산화물 네트워크 형태로 제조하기 위한 가교 반응 유도 단계를 더 포함할 수 있다. 구체적으로, 상기 단계는 동결건조 과정을 통해 얻은 혼합물을 0.5 M 수산화나트륨 용액에 침지시킴으로써 수행되는 것일 수 있다. Meanwhile, after the drying step, a step of inducing a cross-linking reaction to form a solid three-dimensional graphene oxide network by inducing bonding between graphene oxide particles may be further included. Specifically, the step may be performed by immersing the mixture obtained through the lyophilization process in 0.5 M sodium hydroxide solution.

한편, 상술한 일련의 단계를 통해 제조되는 폼(foam) 형태의 그래핀 산화물/키토산 흡착매질체는 그래핀 산화물(GO) 유래 하이드록시기(-OH), 카르복시기(-COOH), 키토산 유래 아미노기(-NH2) 등을 포함할 수 있으며, 다공성 구조를 가질 수 있다. On the other hand, the graphene oxide / chitosan adsorption medium in the form of a foam prepared through the above-described series of steps is graphene oxide (GO) derived hydroxyl group (-OH), carboxy group (-COOH), chitosan-derived amino group (—NH 2 ) and the like, and may have a porous structure.

구체적으로, 본 발명의 일실시예에 따른 그래핀 산화물/키토산 흡착매질체는 그래핀 산화물 간 3차원 네트워크 구조를 가짐으로써, 뛰어난 흡착 성능을 나타내며, 구체적으로 랭뮤어(Langmuir) 등온 흡착 실험 시 카드뮴 양이온(Cd2+)에 대해 270.0 mg/g 이상의 최대 흡착 성능, 상세하게는 276.45 mg/g의 최대 흡착 성능을 나타낸다. 이는 동일한 조건 하에서, 분말 형태의 그래핀 산화물 최대 흡착 성능인 219.22 mg/g 수치 대비 현저히 향상된 수치에 해당한다. Specifically, the graphene oxide/chitosan adsorption medium according to an embodiment of the present invention has a three-dimensional network structure between graphene oxides, thereby exhibiting excellent adsorption performance, and specifically, in the Langmuir isothermal adsorption experiment, cadmium It shows the maximum adsorption performance of 270.0 mg/g or more, specifically 276.45 mg/g, for cations (Cd 2+ ). This corresponds to a significantly improved value compared to the maximum adsorption performance of graphene oxide in powder form of 219.22 mg/g under the same conditions.

수중 중금속 흡착 제거 방법How to adsorb and remove heavy metals in water

본 발명의 일실시예에 따른 그래핀 산화물/키토산 흡착매질체를 사용한 수중 중금속 흡착 제거 방법은, 중금속 오염수를 처리하기 위한 방법으로서, 상기 흡착매질체를 오염수에 투입하여, 중금속 양이온을 흡착하여 제거하는 것일 수 있으며, 일례로, 상기 중금속 양이온은 카드뮴(Cd), 납(Pb), 니켈(Ni), 구리(Cu) 및 아연(Zn) 중 선택되는 1종 이상의 중금속 양이온, 상세하게는 카드뮴 양이온(Cd2+)일 수 있다. A method for adsorbing and removing heavy metals in water using a graphene oxide/chitosan adsorption medium according to an embodiment of the present invention is a method for treating heavy metal contaminated water by injecting the adsorption medium into the contaminated water to adsorb heavy metal cations. For example, the heavy metal cation is one or more heavy metal cations selected from cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), and zinc (Zn), specifically It may be a cadmium cation (Cd 2+ ).

실시예Example

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 구현예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can have various changes and various forms, specific embodiments are exemplified and described in detail below. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

실시예 1Example 1

먼저 휴머스 방법(Hummer's method)으로 준비한 그래핀 산화물을 포함하는 액상 그래핀 산화물(2 mg/mL) 저장용액을 만든 후, 뭉침 현상에 의한 안정성 저하를 방지하기 위해 저장용액의 pH를 9 이상으로 유지시켰다. 다음으로, 키토산을 아세트산 용액에 자석 교반기를 이용하여 충분히 녹여 키토산 용액을 제조하였다. First, a liquid graphene oxide (2 mg/mL) storage solution containing graphene oxide prepared by the Hummer's method was prepared, and then the pH of the storage solution was set to 9 or higher to prevent stability deterioration due to aggregation. kept Next, chitosan was sufficiently dissolved in an acetic acid solution using a magnetic stirrer to prepare a chitosan solution.

상기 방법으로 준비된 그래핀 산화물 수용액에 키토산 용액을 혼합하고 균질한 용액이 될 때까지 충분히 교반하였다. 이때, 그래핀 산화물과 키토산의 중량부 비는 1 : 1이 되도록 혼합하였다. The chitosan solution was mixed with the graphene oxide aqueous solution prepared by the above method and sufficiently stirred until it became a homogeneous solution. At this time, the weight ratio of graphene oxide and chitosan was mixed to be 1:1.

다음으로, 상기 그래핀 산화물/키토산 혼합용액을 몰드에 옮기고, -20 ℃에서 24시간 동안 동결시킨 후, 내부 트랩 온도가 -70 ℃인 동결 건조기를 이용하여 72시간 동안 진공 건조를 진행하였다. Next, the graphene oxide/chitosan mixed solution was transferred to a mold, frozen at -20 °C for 24 hours, and then vacuum dried for 72 hours using a freeze dryer having an internal trap temperature of -70 °C.

다음으로, 동결건조가 완료된 혼합물을 0.5 M 수산화나트륨(NaOH) 용액에 침지시킨 후, 1 시간 동안 가교 결합(cross-linking) 반응을 유도하였으며, 60 ℃에서 12시간 동안 건조하여 폼(foam) 형태를 가지는 그래핀 산화물/키토산 흡착매질체를 제조하였다. Next, the lyophilized mixture was immersed in 0.5 M sodium hydroxide (NaOH) solution, and a cross-linking reaction was induced for 1 hour, and dried at 60 ° C. for 12 hours to form a foam. A graphene oxide/chitosan adsorption medium having a was prepared.

상기 방법으로 제조된 그래핀 산화물/키토산 흡착매질체에 대하여 FT-IR 분석을 수행한 결과, 도 3의 결과와 같이, 그래핀 산화물(GO)의 1056, 1253, 1433, 1699 및 3340 cm-1에서 확인딘 흡수피크들은 각각 C-O, C=C, C=O 및 O-H를 의미한다. 한편, 3100 내지 3600 cm-1 부근의 피크는 N-H 및 O-H 결합을 의미하고, 1156 cm-1에서의 흡수 피크는 아마이드(Amide) 그룹을 의미한다. 분석 결과, 폼 형태의 그래핀 산화물/키토산 흡착매질체는 그래핀 산화물 및 키토산 각각에서 관찰된 관능기(작용기)를 모두 가지고 있는 것으로 확인되었으며, 이에 본 발명에 따른 흡착매질체는 그래핀 산화물과 키토산 각각이 중금속을 흡착하는 기작을 모두 보유하는 것으로 판단할 수 있었다. As a result of performing FT-IR analysis on the graphene oxide/chitosan adsorption medium prepared by the above method, as shown in FIG. 3, graphene oxide (GO) at 1056, 1253, 1433, 1699 and 3340 cm The absorption peaks identified in , respectively, represent CO, C=C, C=O and OH. Meanwhile, peaks around 3100 to 3600 cm -1 indicate NH and OH bonds, and absorption peaks at 1156 cm -1 indicate amide groups. As a result of the analysis, it was confirmed that the foam-type graphene oxide/chitosan adsorption medium had all of the functional groups (functional groups) observed in graphene oxide and chitosan, respectively. Therefore, the adsorption medium according to the present invention is graphene oxide and chitosan. It can be determined that each has all the mechanisms for adsorbing heavy metals.

비교예 1Comparative Example 1

실시예 1과 달리, 아무런 처리하지 않은 그래핀 산화물 분말을 준비하였다. Unlike Example 1, graphene oxide powder was prepared without any treatment.

[실험 1: 수중 카드뮴 흡착 성능 측정을 위한 등온 흡착 실험][Experiment 1: Isothermal adsorption experiment to measure cadmium adsorption performance in water]

수중 카드뮴 흡착 성능 측정을 위하여 실시예 1에 따른 그래핀 산화물/키토산 흡착매질체 및 비교예 1에 따른 그래핀 산화물 분말을 각각 준비하고, 초기 카드뮴 양이온(Cd2+) 농도 범위 10 ~ 300 ppm, 초기 pH 6, 주입 비율 2g/L, 반응 6시간의 조건에서 회분식 흡착 실험을 수행하였으며, 그 결과를 도 4에서 나타내었다. In order to measure cadmium adsorption performance in water, the graphene oxide/chitosan adsorption medium according to Example 1 and the graphene oxide powder according to Comparative Example 1 were prepared, respectively, and the initial cadmium cation (Cd 2+ ) concentration range was 10 to 300 ppm, Batch adsorption experiments were performed under conditions of an initial pH of 6, an injection ratio of 2 g/L, and a reaction time of 6 hours, and the results are shown in FIG. 4 .

랭뮤어 모델(Langmuir model)에 따르면, 실시예 1에 따른 폼 형태의 그래핀 산화물/키토산 흡착매질체의 카드뮴 양이온(Cd2+) 최대 흡착 성능은 276.45 mg/g이었으며, 비교예 1에 따른 분말 타입 그래핀 산화물의 카드뮴 최대 흡착 성능은 219.22 mg/g이었다. According to the Langmuir model, the maximum adsorption performance of cadmium cations (Cd 2+ ) of the foamed graphene oxide/chitosan adsorption medium according to Example 1 was 276.45 mg/g, and the powder according to Comparative Example 1 The maximum cadmium adsorption capacity of type graphene oxide was 219.22 mg/g.

이를 통해, 본 발명에 따른 흡착매질체는 종래 기술에 따른 분말 타입의 그래핀 산화물 대비 수중 내 카드뮴 양이온을 효과적으로 제거할 뿐만 아니라, 수처리 공정 적용 시, 회수가 용이한 점을 확인할 수 있었다. Through this, it was confirmed that the adsorption medium according to the present invention not only effectively removes cadmium cations in water compared to the powder type graphene oxide according to the prior art, but also facilitates recovery when applied to a water treatment process.

앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 구현예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 구현예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In the foregoing, although specific embodiments of the present invention have been described and illustrated, it is common knowledge in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Therefore, such modifications or variations should not be individually understood from the technical spirit or viewpoint of the present invention, and modified implementations should belong to the claims of the present invention.

Claims (9)

a) 그래핀 산화물 수용액 및 키토산 용액을 혼합하여 그래핀 산화물/키토산 혼합용액을 제조하는 단계; 및
b) 상기 그래핀 산화물/키토산 혼합용액을 동결건조하여 폼(foam) 형태의 흡착매질체를 제조하는 단계; 를 포함하는, 그래핀 산화물/키토산 흡착매질체 제조방법.
a) preparing a graphene oxide/chitosan mixed solution by mixing a graphene oxide aqueous solution and a chitosan solution; and
b) preparing an adsorption medium in the form of a foam by freeze-drying the graphene oxide/chitosan mixed solution; A method for preparing a graphene oxide/chitosan adsorption medium comprising a.
제 1 항에 있어서,
상기 a 단계의 키토산 용액은 전체 용액 100 중량%를 기준으로, 1 중량%의 아세트산 및 2 중량%의 키토산이 포함된 것인, 그래핀 산화물/키토산 흡착매질체 제조방법.
According to claim 1,
The chitosan solution in step a contains 1 wt% of acetic acid and 2 wt% of chitosan based on 100 wt% of the total solution.
제 1 항에 있어서,
상기 a 단계의 혼합용액 제조 시, 그래핀 산화물과 키토산은 0.8 내지 1.2 : 0.8 내지 1.2의 중량부 비로 포함되는, 그래핀 산화물/키토산 흡착매질체 제조방법.
According to claim 1,
In preparing the mixed solution of step a, graphene oxide and chitosan are included in a weight part ratio of 0.8 to 1.2: 0.8 to 1.2, graphene oxide / chitosan adsorption medium manufacturing method.
제 1 항에 있어서,
상기 b 단계의 동결건조는 그래핀 산화물/키토산 혼합용액을 몰드에서 -20 내지 -40 ℃ 온도 범위로 동결한 다음, 내부 트랩 온도가 -65 내지 -75 ℃ 범위인 동결 건조기 내에서 진공 건조하여 수행되는, 그래핀 산화물/키토산 흡착매질체 제조방법.
According to claim 1,
The freeze-drying in step b is performed by freezing the graphene oxide/chitosan mixed solution in a mold at a temperature in the range of -20 to -40 ° C, and then vacuum drying in a freeze dryer with an internal trap temperature in the range of -65 to -75 ° C. A method for preparing a graphene oxide/chitosan adsorption medium.
제 1 항에 있어서,
상기 b 단계에서 제조되는 폼(foam)은 그래핀 산화물/키토산 혼합용액을 동결건조한 후 건조된 혼합물을 0.5 M 수산화나트륨 용액에 침지시켜, 가교 반응(cross-linking)을 유도함으로써 제조되는 것인, 그래핀 산화물/키토산 흡착매질체 제조방법.
According to claim 1,
The foam prepared in step b is prepared by lyophilizing the graphene oxide / chitosan mixed solution and then immersing the dried mixture in 0.5 M sodium hydroxide solution to induce cross-linking, Manufacturing method of graphene oxide/chitosan adsorption medium.
제 1 항의 방법에 따라 제조되는 폼(foam) 형태의 흡착매질체로서,
다공성 구조를 가지며, 하이드록시기(-OH), 카르복시기(-COOH) 및 아미노기(-NH2)를 포함하는, 그래핀 산화물/키토산 흡착매질체.
An adsorption medium body in the form of a foam prepared according to the method of claim 1,
A graphene oxide/chitosan adsorption medium having a porous structure and containing a hydroxy group (-OH), a carboxy group (-COOH), and an amino group (-NH 2 ).
제 6 항에 있어서,
상기 흡착매질체는 랭뮤어(Langmuir) 등온 흡착 실험 시 카드뮴 양이온에 대해 270 mg/g 이상의 최대 흡착 성능을 나타내는, 그래핀 산화물/키토산 흡착매질체.
According to claim 6,
The adsorption medium body exhibits a maximum adsorption performance of 270 mg / g or more for cadmium cations during a Langmuir isothermal adsorption experiment, a graphene oxide / chitosan adsorption medium body.
중금속 오염수를 처리하기 위한 방법으로서, 제 6 항의 흡착매질체를 오염수에 투입하여, 중금속 양이온을 흡착하여 제거하는, 수중 중금속 흡착 제거 방법. A method for treating heavy metal-contaminated water, wherein the adsorption medium of claim 6 is introduced into the contaminated water to adsorb and remove heavy metal cations. 제 8 항에 있어서,
상기 중금속 양이온은 카드뮴(Cd), 납(Pb), 니켈(Ni), 구리(Cu) 및 아연(Zn) 중 선택되는 1종 이상의 중금속 양이온인, 수중 중금속 흡착 제거 방법.
According to claim 8,
The heavy metal cation is one or more heavy metal cations selected from cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu) and zinc (Zn).
KR1020210137232A 2021-10-15 Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof KR102671566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210137232A KR102671566B1 (en) 2021-10-15 Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210137232A KR102671566B1 (en) 2021-10-15 Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20230053898A true KR20230053898A (en) 2023-04-24
KR102671566B1 KR102671566B1 (en) 2024-05-31

Family

ID=

Similar Documents

Publication Publication Date Title
Zhang et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr (VI) removal
Escudero-Oñate et al. A review of chitosan-based materials for the removal of organic pollution from water and bioaugmentation
Sone et al. Selective elimination of lead (II) ions by alginate/polyurethane composite foams
Li et al. Ultrahigh efficient and selective adsorption of U (VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism
Zhang et al. Physically-crosslinked activated CaCO3/polyaniline-polypyrrole-modified GO/alginate hydrogel sorbent with highly efficient removal of copper (II) from aqueous solution
Milojković et al. Performance of aquatic weed-Waste Myriophyllum spicatum immobilized in alginate beads for the removal of Pb (II)
CN107141495A (en) A kind of preparation method of crosslinked carboxymethyl chitosan organo montmorillonite efficient heavy adsorbent
Patil et al. Kinetic and Thermodynamic study of removal of Ni (II) ions from aqueous solutions using low cost adsorbents
Arfin Current innovative chitosan-based water treatment of heavy metals: A sustainable approach
KR20230053898A (en) Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof
KR102671566B1 (en) Graphene Oxide/Chitosan absorbent for removal of heavy metal in aqueous system and the manufacturing method thereof
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
Nguyen et al. Improved biosorption of phenol using crosslinked chitosan beads after modification with histidine and Saccharomyces cerevisiae
CN108428486B (en) Cesium ion removal method based on bentonite chitosan composite microspheres
Ng et al. Crosslinked polymer nanocomposites for wastewater heavy metal adsorption: A review.
Kannan et al. Removal of hexavalent chromium from aqueous solution using activated carbon derived from palmyra palm fruit seed
Zhang et al. A facile syntheses of two engineered poly (vinyl alcohol) macroporous hydrogel beads for the application of Cu (II) and Pb (II) removal: batch and fixed bed column
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
KR102457117B1 (en) Sponge type absorbent coated with modified graphene oxide for removal of heavy metal in aqueous system and the manufacturing method thereof
Mala et al. Studies on batch adsorption of gemifloxacin using hybrid beads from biomass
JP2016185500A (en) Cleaning method using cleaning agent and heavy metal adsorbent
US20030176757A1 (en) Method for recombining soil
Kocer et al. The adsorption of Zn (II) ions onto chitin: Determination of equilibrium, kinetic and thermodynamic parameters
CN111871359A (en) Zinc/iron layered double-metal hydroxide modified ceramsite and preparation and application methods thereof
JP3646156B2 (en) Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)