KR20230048906A - Apparatus and method for tracking the trajectory of an aircraft - Google Patents

Apparatus and method for tracking the trajectory of an aircraft Download PDF

Info

Publication number
KR20230048906A
KR20230048906A KR1020210131881A KR20210131881A KR20230048906A KR 20230048906 A KR20230048906 A KR 20230048906A KR 1020210131881 A KR1020210131881 A KR 1020210131881A KR 20210131881 A KR20210131881 A KR 20210131881A KR 20230048906 A KR20230048906 A KR 20230048906A
Authority
KR
South Korea
Prior art keywords
trajectory
vehicle
tracking device
determining
signal noise
Prior art date
Application number
KR1020210131881A
Other languages
Korean (ko)
Inventor
명환춘
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020210131881A priority Critical patent/KR20230048906A/en
Publication of KR20230048906A publication Critical patent/KR20230048906A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present disclosure relates to a method for tracking a trajectory of an aircraft in an aircraft warning system. According to the present disclosure, an operation method of a trajectory tracking apparatus comprises the following steps of: determining a signal noise model related to distribution of a signal to noise ratio (SNR); determining, in the signal noise model, a detector gain variable based on a calibration observation; updating the signal noise model based on the detector gain variable; and determining a detection reference value for detection of the aircraft using the updated signal noise model.

Description

비행체의 궤도를 추적하기 위한 장치 및 방법{APPARATUS AND METHOD FOR TRACKING THE TRAJECTORY OF AN AIRCRAFT}Apparatus and method for tracking the trajectory of an aircraft {APPARATUS AND METHOD FOR TRACKING THE TRAJECTORY OF AN AIRCRAFT}

본 개시(disclosure)는 일반적으로 비행체 경보 시스템에 관한 것으로, 보다 구체적으로 비행체 경보 시스템에서 비행체의 궤도를 정밀하게 추적하기 위한 장치 및 방법에 관한 것이다.TECHNICAL FIELD [0002] The present disclosure relates generally to vehicle warning systems, and more specifically to an apparatus and method for precisely tracking the trajectory of an aircraft in an aircraft warning system.

비행체 경보 시스템은 적외선 유도를 통해 비행체의 접근을 탐지하고, 이를 알리는 경보 시스템을 지시한다. 비행체 경보 시스템에서 궤도 추적 장치는 미사일, 무인 항공기와 같이 적군이 발사한 비행체를 검출하고 비행체의 궤도를 추적한다. 이후, 궤도 추적 장치는 적군 비행체 검출 내용 및 궤도 추적 정보를 아군의 대공 무기 운용부에 전달하고, 이에 대응하여 대공 무기 운용부는 적군 비행체를 요격할 수 있다.The aircraft warning system detects the approach of an aircraft through infrared induction and directs an alert system to notify it. In an aircraft warning system, a trajectory tracking device detects an enemy-launched vehicle, such as a missile or an unmanned aerial vehicle, and tracks the vehicle's trajectory. Thereafter, the trajectory tracking device transmits the enemy aircraft detection information and the trajectory tracking information to the anti-aircraft weapon operation unit of the friendly army, and the anti-aircraft weapon operation unit may intercept the enemy aircraft in response thereto.

비행체 경보 시스템에서, 궤도 추적 장치의 비행체 검출 원리는 주로 미사일의 화염 특성에 기인한다. 즉, 궤도 추적 장치는 추진제나 연료의 연소에 기반하여 발생되는 화염의 화학적 발광이나 가열된 미립자들의 복사 작용들을 관측하고, 이에 따라 비행체의 궤도를 추적한다. 이와 함께, 궤도 추적 장치는 미사일 동체의 대기 마찰열에 의한 발열 현상 또한 적외선 관측 신호를 추가적으로 고려하여 비행체의 궤도를 추적한다.In the air vehicle warning system, the air vehicle detection principle of the trajectory tracking device is mainly due to the flame characteristics of the missile. That is, the trajectory tracking device observes the chemiluminescence of a flame generated based on the combustion of propellant or fuel or the radiation action of heated particles, and tracks the trajectory of the aircraft accordingly. In addition, the trajectory tracking device tracks the trajectory of the vehicle by additionally considering the heating phenomenon caused by the frictional heat of the atmosphere of the missile body and the infrared observation signal.

일반적으로, 화염 특성은 가시광선, 적외선 등 다양한 범위의 파장 특성들을 가지고 있으며, 특히 적외선 파장 범위에서 가장 큰 세기의 신호를 방출한다. 이러한 화염 특성으로 인하여, 궤도 추적 장치는 미사일과 같은 비행체의 발사 여부를 탐지하기 위하여, 적외선 센서의 파장 대역을 주요 관측 채널로 사용하고, 가시광선 및 자외선 파장 대역을 비행체 탐지의 보조적 역할을 수행하기 위한 보조적 관측 채널로 사용한다. In general, flame characteristics have wavelength characteristics of various ranges such as visible light and infrared rays, and in particular, signals of the greatest intensity are emitted in the infrared wavelength range. Due to these flame characteristics, the track tracking device uses the wavelength band of the infrared sensor as the main observation channel to detect whether an aircraft such as a missile is launched, and uses the visible and ultraviolet wavelength bands to play an auxiliary role in detecting the vehicle. It is used as an auxiliary observation channel for

비행체 경보 시스템은 조기 경보 장치, 요격 무기 등을 통한 통합 감시 체계로 운용될 수 있다. 즉, 비행체 경보 시스템은 미사일 탐지 기능뿐만 아니라, 다양한 고도에서 탐지된 미사일을 직접적 요격하는 기능을 수행할 수 있다. 여기서 조기 경보 장치는 조기 경보 위성이나 조기 경보 레이더를 지시할 수 있다. 조기 경보 장치 각각은 궤도 추적 장치를 구비할 수 있고, 궤도 추적 장치를 이용하여 미사일을 탐지하거나 비행체의 궤도를 추적하는 임무를 수행할 수 있다.The air vehicle warning system can be operated as an integrated surveillance system through early warning devices and interception weapons. That is, the flight vehicle warning system may perform a function of directly intercepting missiles detected at various altitudes as well as a missile detection function. Here, the early warning device may indicate an early warning satellite or an early warning radar. Each early warning device may include a trajectory tracking device, and may perform a mission of detecting a missile or tracking the trajectory of an air vehicle using the trajectory tracking device.

종래에 따르면, 조기 경보 위성이 궤도 추적 장치를 이용하여 적군 비행체를 검출하는 경우, 우주 환경에 존재하는 잡음들로 인하여 비행체 검출에 관한 오보경보율이 높고 궤도 추적이 정밀하지 못한 문제가 있었다. 이에 대응하여 현재, 경보 위성에 구비된 궤도 추적 장치의 궤도 추적 성능을 향상시키기 위한 기술 개발이 요구되고 있다.According to the prior art, when an early warning satellite detects an enemy aircraft using a trajectory tracking device, there is a problem in that the false alarm rate for the object detection is high and the trajectory tracking is inaccurate due to noise existing in the space environment. Corresponding to this, there is a demand for technology development for improving the trajectory tracking performance of the orbit tracking device provided in the warning satellite.

전술한 기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지 기술을 지시하지 않는다.The foregoing technology is technical information that the inventor possessed for derivation of the present invention or acquired during the derivation process of the present invention, and does not necessarily indicate a known technology disclosed to the general public prior to filing the present invention.

상술한 바와 같은 논의를 바탕으로, 본 개시는 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 장치 및 방법을 제공한다.Based on the above discussion, the present disclosure provides an apparatus and method for tracking the trajectory of an aircraft in an aircraft warning system.

또한, 본 개시는 비행체 경보 시스템에서, 궤도 추적 장치가 신호 잡음 모델을 이용하여 비행체를 탐지하기 위한 장치 및 방법을 제공한다.In addition, the present disclosure provides an apparatus and method for a trajectory tracking device to detect an aircraft using a signal noise model in an aircraft warning system.

또한, 본 개시는 비행체 경보 시스템에서, 궤도 추적 장치가 비행체에 관한 위치 정보 및 위치 변화량 정보를 획득하여 비행체의 궤도를 추적하기 위한 장치 및 방법을 제공한다.In addition, the present disclosure provides an apparatus and method for tracking a trajectory of an air vehicle by obtaining position information and position change information about the air vehicle by a trajectory tracking device in an air vehicle warning system.

또한, 본 개시는 비행체 경보 시스템에서, 궤도 추적 장치가 단기 알고리즘을 이용하여 비행체의 궤도를 예측하기 위한 장치 및 방법을 제공한다.In addition, the present disclosure provides an apparatus and method for a trajectory tracking device to predict a trajectory of an air vehicle using a short-term algorithm in an air vehicle warning system.

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법은 SNR(signal to noise ratio)의 분포에 관련된 신호 잡음 모델을 결정하는 단계, 상기 신호 잡음 모델에서, 보정 관측에 기반하여 검출기 이득 변수를 결정하는 단계, 상기 검출기 이득 변수에 기반하여 상기 신호 잡음 모델을 갱신하는 단계, 및 상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 탐지를 위한 탐지 기준 값을 결정하는 단계를 포함할 수 있다.According to various embodiments of the present disclosure, in an air vehicle warning system, a method of operating a trajectory tracking device for tracking a trajectory of an air vehicle includes determining a signal noise model related to a distribution of a signal to noise ratio (SNR), the signal noise In the model, determining a detector gain parameter based on calibration observations, updating the signal noise model based on the detector gain parameter, and using the updated signal noise model as a detection criterion for detection of the vehicle. It may include determining a value.

다른 일 실시 예에 따르면, 상기 검출기 이득 변수는 가우시안 확률 변수를 포함하고, 상기 신호 잡음 모델은, 상기 가우시안 확률 변수에 기반하고, 상기 검출기에 입력되는 광원의 세기와 SNR에 관한 비선형 모델에 따른 SNR의 확률 분포를 지시하는 모델을 포함할 수 있다.According to another embodiment, the detector gain variable includes a Gaussian random variable, and the signal noise model is based on the Gaussian random variable, and SNR according to a nonlinear model related to the intensity and SNR of a light source input to the detector It may include a model indicating the probability distribution of .

다른 일 실시 예에 따르면, 궤도 추적 장치의 동작 방법은 상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 궤도 상에서 상기 검출기의 카메라 노출 시간, 누적 횟수 중 적어도 하나를 결정하는 단계를 더 포함할 수 있다. According to another embodiment, the operating method of the trajectory tracking device may further include determining at least one of a camera exposure time and an accumulation count of the detector on the trajectory of the vehicle using the updated signal noise model. .

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법은 상기 비행체를 탐지하는 단계, 궤도 결정기를 이용하여, 상기 비행체의 위치 정보를 획득하는 단계, 상기 궤도 결정기를 이용하여, 상기 비행체의 위치 변화량 정보를 획득하는 단계, 및 상기 위치 정보와 상기 위치 변화량 정보에 기반하여, 상기 비행체의 3차원 궤도를 결정하는 단계를 포함할 수 있다.According to various embodiments of the present disclosure, in a vehicle warning system, a method of operating a trajectory tracking device for tracking a trajectory of an aircraft includes detecting the vehicle, and acquiring location information of the vehicle using a trajectory determiner. , Obtaining position change information of the vehicle using the trajectory determiner, and determining a three-dimensional trajectory of the vehicle based on the position information and the position change information.

다른 일 실시 예에 따르면, 상기 궤도 결정기는 상기 비행체의 2차원 궤도를 결정하는 2차원 궤도 결정기를 포함하고, 상기 위치 정보는 상기 비행체의 2차원 궤도에 관한 지구 중심의 좌표 정보를 포함하고, 상기 위치 변화량 정보는 상기 비행체의 속도 정보를 포함할 수 있다.According to another embodiment, the trajectory determiner includes a 2-dimensional trajectory determiner for determining a 2-dimensional trajectory of the vehicle, and the location information includes coordinate information of the center of the earth regarding the 2-dimensional trajectory of the vehicle, wherein the Position change information may include speed information of the vehicle.

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법은 단기 유전 알고리즘에 기반하여, 상기 비행체의 궤도를 결정하기 위한 복수의 파라미터들의 초기 값들을 결정하는 단계, 및 상기 초기 값들에 기반하여 상기 비행체의 궤도 추정 위치를 예측하는 단계를 포함하고, 상기 단기 유전 알고리즘은 복수의 세대들(generations)에 걸쳐 상기 복수의 파라미터들의 초기 값을 결정하는 알고리즘을 포함하고, 상기 복수의 세대들의 수는 미리 설정된 임계 세대 수보다 작을 수 있다.According to various embodiments of the present disclosure, in a vehicle warning system, a method of operating a trajectory tracking device for tracking a trajectory of a vehicle is based on a short-term genetic algorithm, and initial values of a plurality of parameters for determining the trajectory of the vehicle are determined. determining, and predicting an estimated position of the trajectory of the vehicle based on the initial values, wherein the short-term genetic algorithm determines the initial values of the plurality of parameters over a plurality of generations. Including, the number of the plurality of generations may be less than a preset threshold number of generations.

다른 일 실시 예에 따르면, 상기 복수의 파라미터들은 매스(mass), 비추력(specific impulse), 추력(thrust force), 양력 계수(lift coefficient), 피치(pitch), 요(yaw), 위도(latitude), 경도(longitude), 고도(altitude) 중 적어도 하나를 포함할 수 있다.According to another embodiment, the plurality of parameters are mass, specific impulse, thrust force, lift coefficient, pitch, yaw, latitude , longitude, and altitude.

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치는 제어부, 및 상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 SNR(signal to noise ratio)의 분포에 관련된 신호 잡음 모델을 결정하고, 상기 신호 잡음 모델에서, 보정 관측에 기반하여 검출기 이득 변수를 결정하고, 상기 검출기 이득 변수에 기반하여 상기 신호 잡음 모델을 갱신하고, 상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 탐지를 위한 탐지 기준 값을 결정할 수 있다.According to various embodiments of the present disclosure, in a vehicle warning system, a trajectory tracking device for tracking a trajectory of a vehicle includes a control unit and at least one processor functionally coupled to the control unit, and the at least one processor performs SNR Determining a signal noise model related to the distribution of (signal to noise ratio), determining a detector gain variable based on a calibration observation in the signal noise model, and updating the signal noise model based on the detector gain variable, A detection reference value for the detection of the vehicle may be determined using the updated signal noise model.

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치는 제어부, 및 상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 상기 비행체를 탐지하고, 궤도 결정기를 이용하여, 상기 비행체의 위치 정보를 획득하고, 상기 궤도 결정기를 이용하여, 상기 비행체의 위치 변화량 정보를 획득하고, 상기 위치 정보와 상기 위치 변화량 정보에 기반하여, 상기 비행체의 3차원 궤도를 결정할 수 있다.According to various embodiments of the present disclosure, in a vehicle warning system, a trajectory tracking device for tracking a trajectory of an aircraft includes a controller and at least one processor functionally coupled to the controller, wherein the at least one processor Detect the aircraft, obtain position information of the aircraft using a trajectory determiner, obtain position change information of the aircraft using the trajectory determiner, and based on the position information and the position change information, The 3D trajectory of the aircraft can be determined.

본 개시의 다양한 실시 예들에 따르면, 비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치는 제어부, 및 상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는 단기 유전 알고리즘에 기반하여, 상기 비행체의 궤도를 결정하기 위한 복수의 파라미터들의 초기 값들을 결정하고, 상기 초기 값들에 기반하여 상기 비행체의 궤도 추정 위치를 예측하고, 상기 단기 유전 알고리즘은 복수의 세대들(generations)에 걸쳐 상기 복수의 파라미터들의 초기 값을 결정하는 알고리즘을 포함하고, 상기 복수의 세대들의 수는 미리 설정된 임계 세대 수보다 작을 수 있다.According to various embodiments of the present disclosure, in a vehicle warning system, a trajectory tracking device for tracking a trajectory of a vehicle includes a controller and at least one processor functionally coupled to the controller, wherein the at least one processor Based on a genetic algorithm, determining initial values of a plurality of parameters for determining the trajectory of the vehicle, predicting the estimated position of the trajectory of the vehicle based on the initial values, and the short-term genetic algorithm is performed in a plurality of generations ( and an algorithm for determining initial values of the plurality of parameters over generations, wherein the number of the plurality of generations may be less than a preset threshold number of generations.

본 발명의 다양한 각각의 측면들 및 특징들은 첨부된 청구항들에서 정의된다. 종속 청구항들의 특징들의 조합들(combinations)은, 단지 청구항들에서 명시적으로 제시되는 것뿐만 아니라, 적절하게 독립항들의 특징들과 조합될 수 있다.Each of the various aspects and features of the invention are defined in the appended claims. Combinations of features of the dependent claims may be combined with features of the independent claims as appropriate, not just those explicitly set forth in the claims.

또한, 본 개시에 기술된 임의의 하나의 실시 예(any one embodiment) 중 선택된 하나 이상의 특징들은 본 개시에 기술된 임의의 다른 실시 예 중 선택된 하나 이상의 특징들과 조합될 수 있으며, 이러한 특징들의 대안적인 조합이 본 개시에 논의된 하나 이상의 기술적 문제를 적어도 부분적으로 경감시키거나, 본 개시로부터 통상의 기술자에 의해 식별될 수 있는(discernable) 기술적 문제를 적어도 부분적으로 경감시키고, 나아가 실시 예의 특징들(embodiment features)의 이렇게 형성된 특정한 조합(combination) 또는 순열(permutation)이 통상의 기술자에 의해 양립 불가능한(incompatible) 것으로 이해되지만 않는다면, 그 조합은 가능하다.In addition, one or more selected features of any one embodiment described in this disclosure may be combined with one or more selected features of any other embodiment described in this disclosure, and alternatives of such features The combination of the present disclosure at least partially alleviates one or more technical problems discussed in the present disclosure, or at least partially alleviates the technical problems discernable by a person skilled in the art from the present disclosure, and further features of the embodiments ( A particular combination or permutation so formed of embodiment features is possible, provided that it is not understood by a person skilled in the art to be incompatible.

본 개시에 기술된 임의의 예시 구현(any described example implementation)에 있어서 둘 이상의 물리적으로 별개의 구성 요소들은 대안적으로, 그 통합이 가능하다면 단일 구성 요소로 통합될 수도 있으며, 그렇게 형성된 단일한 구성 요소에 의해 동일한 기능이 수행된다면, 그 통합은 가능하다. 반대로, 본 개시에 기술된 임의의 실시 예(any embodiment)의 단일한 구성 요소는 대안적으로, 적절한 경우, 동일한 기능을 달성하는 둘 이상의 별개의 구성 요소들로 구현될 수도 있다.In any described example implementation, two or more physically separate components may alternatively be integrated into a single component, where such integration is possible, and a single component so formed If the same function is performed by , the integration is possible. Conversely, a single component in any embodiment described in this disclosure may alternatively be implemented as two or more separate components that achieve the same function, where appropriate.

본 발명의 특정 실시 예들(certain embodiments)의 목적은 종래 기술과 관련된 문제점 및/또는 단점들 중 적어도 하나를, 적어도 부분적으로, 해결, 완화 또는 제거하는 것에 있다. 특정 실시 예들(certain embodiments)은 후술하는 장점들 중 적어도 하나를 제공하는 것을 목적으로 한다.It is an object of certain embodiments of the present invention to address, mitigate, or eliminate, at least in part, at least one of the problems and/or disadvantages associated with the prior art. Certain embodiments aim to provide at least one of the advantages described below.

본 개시의 다양한 실시 예들에 따른 장치 및 방법은 비행체 경보 시스템에서 조기 경보 장치를 이용함으로써, 비행체의 궤도를 추적할 수 있게 한다.Devices and methods according to various embodiments of the present disclosure enable an aircraft trajectory to be tracked by using an early warning device in a vehicle warning system.

또한, 본 개시의 다양한 실시 예들에 따른 장치 및 방법은 비행체 경보 시스템에서, 비선형 신호 잡음 모델을 이용함으로써 궤도 추적 장치의 비행체 탐지율을 증가시킬 수 있게 한다.In addition, the device and method according to various embodiments of the present disclosure enable an air vehicle detection rate of a trajectory tracking device to be increased by using a nonlinear signal noise model in an air vehicle warning system.

또한, 본 개시의 다양한 실시 예들에 따른 장치 및 방법은 비행체 경보 시스템에서, 비행체에 관한 위치 정보와 위치 변화량 정보를 획득함으로써 궤도 추적 장치의 궤도 추적 정밀도를 증가시킬 수 있게 한다.In addition, the device and method according to various embodiments of the present disclosure enable the flight vehicle warning system to increase the trajectory tracking accuracy of the trajectory tracking device by acquiring location information and position change information about the vehicle.

또한, 본 개시의 다양한 실시 예들에 따른 장치 및 방법은 비행체 경보 시스템에서, 단기 알고리즘을 이용하여 비행체 궤도를 예측하고, 예측 처리 속도를 증가시킬 수 있게 한다.In addition, an apparatus and method according to various embodiments of the present disclosure enable a vehicle trajectory to be predicted using a short-term algorithm in a vehicle warning system, and the prediction processing speed to be increased.

본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtainable in the present disclosure are not limited to the effects mentioned above, and other effects not mentioned may be clearly understood by those skilled in the art from the description below. will be.

도 1은 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템을 도시한다.
도 2는 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템에서, 궤도 추적 장치를 도시한다.
도 3은 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템에서, 궤도 추적 장치의 오보경보 확률과 정상 경보 확률에 관한 그래프를 도시한다.
도 4는 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템에서, 궤도 추적 장치가 탐지 임계 값을 결정하는 방법에 관한 흐름도를 도시한다.
도 5는 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템에서, 비행체의 궤도를 지시하는 궤도 그래프를 도시한다.
도 6은 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템에서, 궤도 추적 장치가 비행체의 3차원 궤도를 추적하는 방법에 관한 흐름도를 도시한다.
도 7은 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템에서, 궤도 추적 장치가 궤도 추정 위치를 예측하는 방법에 관한 흐름도를 도시한다.
1 illustrates a vehicle warning system according to various embodiments of the present disclosure.
2 illustrates a trajectory tracking device in a vehicle warning system according to various embodiments of the present disclosure.
3 illustrates a graph of a false alarm probability and a normal alarm probability of a trajectory tracking device in a vehicle warning system according to various embodiments of the present disclosure.
4 is a flowchart illustrating a method for determining a detection threshold by a trajectory tracking device in a trajectory warning system according to various embodiments of the present disclosure.
5 illustrates a trajectory graph indicating a trajectory of an aircraft in a trajectory warning system according to various embodiments of the present disclosure.
6 is a flowchart illustrating a method for a trajectory tracking device to track a 3D trajectory of an air vehicle in a trajectory warning system according to various embodiments of the present disclosure.
7 is a flowchart illustrating a method for predicting an estimated orbit position by a orbit tracking device in a orbit warning system according to various embodiments of the present disclosure.

본 개시에서 사용되는 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 개시에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 개시에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 개시에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 개시에서 정의된 용어일지라도 본 개시의 실시 예들을 배제하도록 해석될 수 없다.Terms used in the present disclosure are only used to describe a specific embodiment, and may not be intended to limit the scope of other embodiments. Singular expressions may include plural expressions unless the context clearly dictates otherwise. Terms used herein, including technical or scientific terms, may have the same meaning as commonly understood by one of ordinary skill in the art described in this disclosure. Among the terms used in the present disclosure, terms defined in general dictionaries may be interpreted as having the same or similar meanings as those in the context of the related art, and unless explicitly defined in the present disclosure, ideal or excessively formal meanings. not be interpreted as In some cases, even terms defined in the present disclosure cannot be interpreted to exclude embodiments of the present disclosure.

이하에서 설명되는 본 개시의 다양한 실시 예들에서는 하드웨어적인 접근 방법을 예시로서 설명한다. 하지만, 본 개시의 다양한 실시 예들에서는 하드웨어와 소프트웨어를 모두 사용하는 기술을 포함하고 있으므로, 본 개시의 다양한 실시 예들이 소프트웨어 기반의 접근 방법을 제외하는 것은 아니다.In various embodiments of the present disclosure described below, a hardware access method is described as an example. However, since various embodiments of the present disclosure include technology using both hardware and software, various embodiments of the present disclosure do not exclude software-based access methods.

이하 본 개시는 비행체 경보 시스템에서 비행체의 궤도를 추적하기 위한 장치 및 방법에 관한 것이다. 구체적으로, 본 개시는 비행체 경보 시스템에서 비행체를 검출하고 비행체의 궤도를 추적 및 예측하기 위한 기술을 설명한다.Hereinafter, the present disclosure relates to an apparatus and method for tracking the trajectory of an aircraft in a vehicle warning system. Specifically, the present disclosure describes techniques for detecting vehicles and tracking and predicting the trajectory of vehicles in a vehicle warning system.

아래에서는 첨부한 도면을 참조하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 다양한 실시예들을 상세히 설명한다. 그러나 본 개시의 기술적 사상은 다양한 형태로 변형되어 구현될 수 있으므로 본 명세서에서 설명하는 실시예들로 제한되지 않는다. 본 명세서에 개시된 실시예들을 설명함에 있어서 관련된 공지 기술을 구체적으로 설명하는 것이 본 개시의 기술적 사상의 요지를 흐릴 수 있다고 판단되는 경우 그 공지 기술에 대한 구체적인 설명을 생략한다. 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, various embodiments will be described in detail so that those skilled in the art can easily implement the present disclosure with reference to the accompanying drawings. However, since the technical spirit of the present disclosure may be implemented in various forms, it is not limited to the embodiments described herein. In describing the embodiments disclosed in this specification, if it is determined that a detailed description of a related known technology may obscure the gist of the technical idea of the present disclosure, a detailed description of the known technology will be omitted. The same or similar components are assigned the same reference numerals, and duplicate descriptions thereof will be omitted.

본 명세서에서 어떤 요소가 다른 요소와 "연결"되어 있다고 기술될 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라 그 중간에 다른 요소를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 어떤 요소가 다른 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 요소 외에 또 다른 요소를 배제하는 것이 아니라 또 다른 요소를 더 포함할 수 있는 것을 의미한다.In this specification, when an element is described as being “connected” to another element, this includes not only the case of being “directly connected” but also the case of being “indirectly connected” with another element intervening therebetween. When an element "includes" another element, this means that it may further include another element without excluding another element in addition to the other element unless otherwise stated.

일부 실시예들은 기능적인 블록 구성들 및 다양한 처리 단계들로 설명될 수 있다. 이러한 기능 블록들의 일부 또는 전부는 특정 기능을 실행하는 다양한 개수의 하드웨어 및/또는 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 개시의 기능 블록들은 하나 이상의 마이크로프로세서들에 의해 구현되거나, 소정의 기능을 위한 회로 구성들에 의해 구현될 수 있다. 본 개시의 기능 블록들은 다양한 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 본 개시의 기능 블록들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 본 개시의 기능 블록이 수행하는 기능은 복수의 기능 블록에 의해 수행되거나, 본 개시에서 복수의 기능 블록이 수행하는 기능들은 하나의 기능 블록에 의해 수행될 수도 있다. 또한, 본 개시는 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다.Some embodiments may be described as functional block structures and various processing steps. Some or all of these functional blocks may be implemented with any number of hardware and/or software components that perform a particular function. For example, functional blocks of the present disclosure may be implemented by one or more microprocessors or circuit configurations for a predetermined function. The functional blocks of this disclosure may be implemented in a variety of programming or scripting languages. The functional blocks of this disclosure may be implemented as an algorithm running on one or more processors. The functions performed by the function blocks of the present disclosure may be performed by a plurality of function blocks, or the functions performed by the plurality of function blocks in the present disclosure may be performed by one function block. In addition, the present disclosure may employ prior art for electronic environment setting, signal processing, and/or data processing.

또한, 본 개시에서, 특정 조건의 만족(satisfied), 충족(fulfilled) 여부를 판단하기 위해, 초과 또는 미만의 표현이 사용되었으나, 이는 일 예를 표현하기 위한 기재일 뿐 이상 또는 이하의 기재를 배제하는 것이 아니다. '이상'으로 기재된 조건은 '초과', '이하'로 기재된 조건은 '미만', '이상 및 미만'으로 기재된 조건은 '초과 및 이하'로 대체될 수 있다. In addition, in the present disclosure, the expression of more than or less than is used to determine whether a specific condition is satisfied or fulfilled, but this is only a description to express an example and excludes more or less description. It's not about doing it. Conditions described as 'above' may be replaced with 'exceeds', conditions described as 'below' may be replaced with 'below', and conditions described as 'above and below' may be replaced with 'above and below'.

도 1은 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템(100)을 도시한다. 1 shows a vehicle warning system 100 according to various embodiments of the present disclosure.

비행체 경보 시스템(100)은 적군이 발사한 비행체에 관하여, 적외선 채널을 이용하여 비행체를 탐지하고 적군 비행체의 접근을 아군에 알리는 경보 시스템을 지시한다. 이하에서 비행체는 적군이 발사한 미사일을 지시할 수 있다. 비행체 경보 시스템(100)은 비행체를 탐지하고 비행체의 궤도를 추적하는 장치와 비행체를 공중에서 요격하는 장치 사이의 정보 공유를 통하여 운용될 수 있고, 적군의 비행체 공격에 대응하는 기능을 수행할 수 있다. 본 개시의 일 실시 예에 따르면, 비행체 경보 시스템(100)은 적군의 미사일(101), 조기 경보 위성(103)이나 조기 경보 레이더(105)와 같은 조기 경보 장치, 요격 무기(107)를 포함할 수 있다.The vehicle warning system 100 detects an aircraft launched by an enemy using an infrared channel and instructs a warning system notifying friendly forces of the approach of an enemy aircraft. In the following, the aircraft can direct missiles fired by the enemy. The aircraft warning system 100 can be operated through information sharing between a device for detecting an aircraft and tracking the trajectory of the aircraft and a device for intercepting the aircraft in the air, and can perform a function to respond to an attack by an enemy aircraft. . According to an embodiment of the present disclosure, the vehicle warning system 100 may include an enemy missile 101, an early warning device such as an early warning satellite 103 or an early warning radar 105, and an interceptor weapon 107. can

미사일(101)은 적군이 미사일 발사대를 통해 적군이 발사한 미사일을 지시한다. 본 개시의 일 실시 예에 따르면, 미사일(101)은 발사 후 이동에 따라 발광과 복사와 같은 화염 특성을 가질 수 있다.The missile 101 directs a missile fired by the enemy through a missile launch pad. According to an embodiment of the present disclosure, the missile 101 may have flame characteristics such as light emission and radiation according to movement after launch.

조기 경보 장치는 미사일(101)을 탐지하고, 미사일(101)의 궤도를 추적하는 장치를 지시한다. 조기 경보 장치는 조기 경보 위성(103), 조기 경보 레이더(105) 중 적어도 하나를 지시할 수 있고, 조기 경보 위성(103)과 조기 경보 레이더(105)는 각각 독자적인 탐지 영역에서 지속적으로 미사일(101)을 탐지할 수 있다.The early warning device detects the missile (101) and directs the device to track the trajectory of the missile (101). The early warning device may indicate at least one of the early warning satellite 103 and the early warning radar 105, and the early warning satellite 103 and the early warning radar 105 continuously operate the missile 101 in an independent detection area. ) can be detected.

조기 경보 장치는 미사일을 탐지 및 추적하기 위하여 궤도 추적 장치를 구비할 수 있다. 조기 경보 장치는 궤도 추적 장치를 이용하여 미사일(101)을 탐지하고, 미사일(101)에 관한 정보를 통해 미사일의 궤도를 추적할 수 있다. 조기 경보 장치는 미사일(101)의 탐지 결과, 추적된 미사일(101)의 궤도에 관한 정보를 요격 무기(107)에 송신할 수 있다. 조기 경보 장치는 비행체 경보 시스템(100)의 통합 감시 체계에 따라 운용될 수 있고, 그에 따라 적군의 미사일(101)에 관한 정보를 요격 무기(107)와 공유할 수 있다.The early warning system may include a trajectory tracking device to detect and track the missile. The early warning device may detect the missile 101 using a trajectory tracking device and track the trajectory of the missile through information about the missile 101 . As a result of the detection of the missile 101, the early warning device may transmit information about the trajectory of the tracked missile 101 to the interceptor weapon 107. The early warning device may be operated according to the integrated monitoring system of the vehicle warning system 100, and accordingly, information on the missile 101 of the enemy may be shared with the interception weapon 107.

요격 무기(107)는 적군에게 물리적인 타격을 가하는 무장 수단을 지시한다. 요격 무기(107)는 비행체 경보 시스템의 통합 감시 체계에 따라 미사일(101)을 공중에서 요격하는 기능을 수행할 수 있다. 본 개시의 일 실시 예에 따르면, 요격 무기(107)는 조기 경보 장치로부터 미사일(101)의 궤도에 관한 정보를 수신하고, 수신된 정보에 기반하여 미사일(101)을 요격할 수 있다.The interception weapon 107 indicates an armed means that inflicts physical damage on the enemy. The interception weapon 107 may perform a function of intercepting the missile 101 in the air according to the integrated monitoring system of the vehicle warning system. According to an embodiment of the present disclosure, the interception weapon 107 may receive information about the trajectory of the missile 101 from the early warning device and intercept the missile 101 based on the received information.

도 2는 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템(100)에서, 궤도 추적 장치(200)를 도시한다. 이하 사용되는 '…부', '…기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 궤도 추적 장치(200)는 통신부(210), 메모리(220), 제어부(230)를 포함한다. 적어도 하나의 프로세서는 제어부에 기능적으로 결합되어 궤도 추적 장치(200)의 전반적인 동작을 제어할 수 있다.2 shows a trajectory tracking device 200 in the vehicle warning system 100 according to various embodiments of the present disclosure. '...' is used below. wealth', '… A term such as 'group' refers to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software. The trajectory tracking device 200 includes a communication unit 210, a memory 220, and a control unit 230. At least one processor may be functionally coupled to the control unit to control overall operations of the trajectory tracking device 200 .

통신부(210)는 무선 채널을 통해 신호를 송수신하는 기능들을 수행한다. 통신부(210)의 전부 또는 일부는 송신부, 수신부, 송수신부로 지칭될 수 있다. 본 개시의 일 실시 예에 따르면, 통신부(210)는 적군이 발사한 미사일을 검출하기 위한 신호를 송신할 수 있다. 통신부(210)는 미사일로부터 반사된 신호나 미사일에 기반하여 생성된 신호를 수신할 수 있다. 또한, 통신부(210)는 미사일의 궤도에 관한 정보를 송신할 수 있다. The communication unit 210 performs functions of transmitting and receiving signals through a wireless channel. All or part of the communication unit 210 may be referred to as a transmission unit, a reception unit, or a transmission/reception unit. According to an embodiment of the present disclosure, the communication unit 210 may transmit a signal for detecting a missile launched by an enemy force. The communication unit 210 may receive a signal reflected from the missile or a signal generated based on the missile. Also, the communication unit 210 may transmit information about the trajectory of the missile.

메모리(220)는 궤도 추적 장치(200)의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장하는 기능을 수행한다. 메모리(220)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 그리고, 메모리(220)는 제어부(230)의 요청에 따라 저장된 데이터를 제공한다.The memory 220 performs a function of storing data such as a basic program for operating the trajectory tracking device 200, an application program, and setting information. The memory 220 may include volatile memory, non-volatile memory, or a combination of volatile and non-volatile memories. And, the memory 220 provides the stored data according to the request of the control unit 230.

제어부(230)는 궤도 추적 장치(200)의 전반적인 동작들을 제어한다. 예를 들어, 제어부(230)는 통신부(210)를 통해 신호를 송신 및 수신할 수 있다. 또한, 제어부(230)는 메모리(220)에 데이터를 기록하거나, 메모리(220)로부터 데이터를 전달받을 수 있다. 본 개시의 다양한 실시 예들에 따르면, 제어부(230)는 미사일을 탐지하기 위한 기능, 미사일의 궤도를 추적하기 위한 기능을 수행할 수 있다. 예를 들어, 제어부(230)는 궤도 추적 장치(200)가 후술하는 다양한 실시 예들에 따른 동작들을 수행하도록 제어할 수 있다.The controller 230 controls overall operations of the trajectory tracking device 200 . For example, the control unit 230 may transmit and receive signals through the communication unit 210 . Also, the controller 230 may write data to the memory 220 or receive data from the memory 220 . According to various embodiments of the present disclosure, the controller 230 may perform functions for detecting a missile and tracking a trajectory of the missile. For example, the controller 230 may control the trajectory tracking device 200 to perform operations according to various embodiments described later.

도 3은 본 개시의 다양한 실시 예들에 따른 비행체 경보 시스템(100)에서, 궤도 추적 장치의 오보경보 확률과 정상 경보 확률에 관한 그래프(300)를 도시한다. 도 3을 참고하면, 그래프(300)의 가로 축은 빛의 세기(intensity)를 지시하고, 세로 축은 확률 분포(probability density)를 지시한다.FIG. 3 illustrates a graph 300 of a false alarm probability and a normal alarm probability of a trajectory tracking device in the vehicle warning system 100 according to various embodiments of the present disclosure. Referring to FIG. 3 , the horizontal axis of the graph 300 indicates the intensity of light, and the vertical axis indicates the probability density.

궤도 추적 장치(200)는 광원을 측정하는 검출기를 포함할 수 있다. 궤도 추적 장치(200) 검출기를 이용하여 광원의 세기를 파악하고, 광원의 세기에 따른 신호 대 잡음 비(signal to noise ratio, SNR)를 이용하여 미사일을 검출할 수 있다. 궤도 추적 장치(200)는 오보경보 확률을 최소화 하기 위하여, 검출기의 SNR을 기준으로 하는 최적의 탐지 기준 값을 설정하여야 한다. 그러나, 우주 궤도에서 검출기는 균질한 광량의 물체를 지속적으로 관찰해야 함에 따라 별도의 장시간 보정 관측을 수행하는 것이 허용될 수 없다는 점에서, SNR을 정확하게 측정하는 것은 실질적으로 어렵다. 그에 따라, 궤도 추적 장치(200)는 검출기의 비선형의 신호 잡음 모델을 이용하여 검출기의 최적화된 탐지 기준 값을 결정할 수 있다.The trajectory tracking device 200 may include a detector that measures a light source. The intensity of the light source may be determined using the detector of the trajectory tracking device 200, and the missile may be detected using a signal to noise ratio (SNR) according to the intensity of the light source. The trajectory tracking device 200 should set an optimal detection reference value based on the SNR of the detector in order to minimize the false alarm probability. However, it is practically difficult to accurately measure the SNR in that a detector in space orbit must continuously observe an object with a homogeneous amount of light, so that it cannot be allowed to perform separate long-term calibration observations. Accordingly, the trajectory tracking device 200 may determine an optimized detection reference value of the detector using a nonlinear signal noise model of the detector.

도 3을 참고하면 광원의 세기에 따른 제1 확률 분포(310)와, 제2 확률 분포(360)가 도시된다. 제1 확률 분포(310)는 잡음에 관한 광원의 세기 구간 별 확률 분포를 지시하고, 제1 확률 분포(310)와 X축 사이의 면적은 오보경보 확률 Pfa를 지시할 수 있다. 제2 확률 분포(360)는 잡음과 통신 신호가 중첩된 신호에 관한 광원의 세기 구간 별 확률 분포를 지시하고 제2 확률 분포(360)와 X축 사이의 면적은 비행체에 관한 탐지 확률 Pd를 지시할 수 있다. Referring to FIG. 3 , a first probability distribution 310 and a second probability distribution 360 according to the intensity of a light source are shown. The first probability distribution 310 may indicate a probability distribution for each intensity section of a light source related to noise, and an area between the first probability distribution 310 and the X-axis may indicate a false alarm probability P fa . The second probability distribution 360 indicates the probability distribution for each intensity section of the light source for the signal in which the noise and the communication signal overlap, and the area between the second probability distribution 360 and the X-axis represents the detection probability P d for the aircraft. can instruct

궤도 추적 장치(200)는 탐지의 민감도를 결정하기 위하여 탐지 기준 값을 결정할 수 있다. 여기서, 탐지 기준 값은 비행체를 탐지하기 위한 광원의 최소 세기 값을 지시한다. 도 3을 참고하면, 궤도 추적 장치(200)는 탐지 기준 값을 제1 탐지 기준 값(321) 또는 제2 탐지 기준 값(323) 중 하나로 결정할 수 있다. 제1 탐지 기준 값(321)은 광원의 세기에 관한 임계 값이 낮다. 그에 따라, 탐지 기준 값이 제1 탐지 기준 값(321)으로 설정된 경우, 궤도 추적 장치(200)는 잡음 신호를 민감하게 검출하여 오보경보 확률이 높은 반면 비행체의 탐지 확률을 증가시킬 수 있다. 반대로, 제2 탐지 기준 값(323)은 광원의 세기에 관한 임계 값이 높다. 그에 따라, 탐지 기준 값이 제2 탐지 기준 값(323)으로 설정된 경우, 궤도 추적 장치(200)는 잡음 신호에 둔감하고 오보경보 확률이 낮은 반면 비행체의 탐지 확률도 함께 감소된다. 따라서, 궤도 추적 장치(200)는 최적의 탐지 기준 값을 결정함으로써 궤도 추적 장치의 비행체 탐지 정확도를 향상시킬 수 있다.The trajectory tracking device 200 may determine a detection reference value to determine detection sensitivity. Here, the detection reference value indicates a minimum intensity value of a light source for detecting an air vehicle. Referring to FIG. 3 , the trajectory tracking device 200 may determine a detection reference value as one of a first detection reference value 321 and a second detection reference value 323 . The first detection reference value 321 has a low threshold value related to the intensity of the light source. Accordingly, when the detection reference value is set to the first detection reference value 321, the trajectory tracking device 200 can sensitively detect the noise signal to increase the detection probability of the aircraft while the false alarm probability is high. Conversely, the second detection reference value 323 has a high threshold value related to the intensity of the light source. Accordingly, when the detection reference value is set to the second detection reference value 323, the trajectory tracking device 200 is insensitive to noise signals and has a low false alarm probability, while the vehicle detection probability is also reduced. Accordingly, the trajectory tracking device 200 may improve the vehicle detection accuracy of the trajectory tracking device by determining the optimal detection reference value.

궤도 추적 장치(200)의 검출기는 적외선 검출기를 포함할 수 있고, 적외선 검출기는 입력 광원의 세기가 커질수록 화소(pixel)가 포화되는 성질에 의하여 비선형적인 출력을 내보내게 된다. 이러한 비선형성으로 인하여 검출기의 실제 궤도 상에서 검출기의 선형 모델을 이용한 노출 시간 및 누적 횟수의 계산에 오차가 발생할 수 있다. 따라서, 본 개시에 따르면, 궤도 추적 장치(200)는 검출기에 존재하는 비선형적인 특성을 반영한 비선형 신호 잡음 모델을 사용하여 최종적으로 SNR 분포도를 확인할 수 있다. 또한, 궤도 추적 장치(200)는 입력 광원의 세기에 상관없이 노출 시간 및 누적 횟수를 결정할 수 있다. 비선형 신호 잡음 모델에 관한 SNR 확률 분포는 <수학식 1>과 같이 결정될 수 있다.The detector of the trajectory tracking device 200 may include an infrared detector, and the infrared detector emits a nonlinear output due to the property of pixels being saturated as the intensity of the input light source increases. Due to this nonlinearity, an error may occur in calculating the exposure time and the number of accumulations using the linear model of the detector on the actual trajectory of the detector. Accordingly, according to the present disclosure, the trajectory tracking device 200 may finally check the SNR distribution by using a nonlinear signal noise model reflecting the nonlinear characteristics present in the detector. Also, the trajectory tracking device 200 may determine the exposure time and the number of accumulations regardless of the intensity of the input light source. The SNR probability distribution for the nonlinear signal noise model can be determined as shown in Equation 1.

Figure pat00001
Figure pat00001

<수학식 1>을 참고하면, fsnrI는 SNR 확률 분포, σgso는 표준 편차, mgso는 평균, gso는 검출기 이득 변수를 지시한다. 즉, 검출기의 비선형성을 고려한 SNR 확률 분포는 검출기의 이득 변수 gso에 기반하여 변경될 수 있고, gso는 보정 관측을 통하여 결정될 수 있다. Referring to Equation 1, f snrI indicates an SNR probability distribution, σ gso indicates a standard deviation, m gso indicates an average, and g so indicates a detector gain variable. That is, the SNR probability distribution considering the nonlinearity of the detector may be changed based on the gain variable g so of the detector, and g so may be determined through correction observation.

궤도 추적 장치(200)는 검출기의 신호 잡음 모델을 결정한 이후에, 결정된 신호 잡음 모델에서 주기적으로 수행되는 광학 보정을 통하여 SNR 모델의 검출기 변수를 결정할 수 있다. 이후, 궤도 추적 장치(200)는 보정된 검출기 이득 변수를 이용하여 검출기의 신호 잡음 모델을 갱신하고, 갱신된 신호 잡음 모델을 이용하여 탐지 기준 값을 결정할 수 있다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 비선형성이 고려된 신호 잡음 모델에 기반하여, 비행체에 관한 탐지 확률과 오보경보 확률의 차이가 가장 큰 값을 탐지 기준 값으로 결정할 수 있다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 갱신된 신호 잡음 모델을 이용하여 비행체의 궤도 상에서 검출기의 카메라 노출 시간, 누적 횟수 중 적어도 하나를 결정할 수 있다.After determining the signal noise model of the detector, the trajectory tracking device 200 may determine detector parameters of the SNR model through optical correction periodically performed on the determined signal noise model. Thereafter, the trajectory tracking device 200 may update a signal noise model of the detector using the corrected detector gain variable and determine a detection reference value using the updated signal noise model. According to an embodiment of the present disclosure, the trajectory tracking device 200 may determine, as a detection reference value, a value having the largest difference between a detection probability and a false alarm probability of an air vehicle based on a signal noise model in which nonlinearity is considered. there is. According to an embodiment of the present disclosure, the trajectory tracking device 200 may determine at least one of a camera exposure time and an accumulation count of the detector on the trajectory of the vehicle using the updated signal noise model.

도 4는 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템(100)에서, 궤도 추적 장치(200)가 탐지 임계 값을 결정하는 방법에 관한 흐름도(400)를 도시한다. 궤도 추적 장치(200)는 탐지 기준 값을 결정하는 과정을 통하여, 비행체를 정밀하게 탐지할 수 있다. FIG. 4 is a flowchart 400 of a method for determining a detection threshold value by the trajectory tracking device 200 in the trajectory warning system 100 according to various embodiments of the present disclosure. The trajectory tracking device 200 may accurately detect an air vehicle through a process of determining a detection reference value.

도 4를 참고하면 단계(401)에서, 궤도 추적 장치(200)는 SNR의 분포에 관련된 신호 잡음 모델을 결정한다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 적외선 검출기의 비선형성을 고려하여, SNR 확률 분포에 관한 초기 신호 잡음 모델을 결정할 수 있다.Referring to FIG. 4, in step 401, the trajectory tracking device 200 determines a signal noise model related to the SNR distribution. According to an embodiment of the present disclosure, the trajectory tracking device 200 may determine an initial signal noise model for an SNR probability distribution in consideration of nonlinearity of an infrared detector.

단계(403)에서, 궤도 추적 장치(200)는 신호 잡음 모델에서, 보정 관측에 기반하여 검출기 이득 변수를 결정한다. 궤도 추적 장치(200)는 광학 보정을 주기적으로 수행하여, SNR 확률 분포에 관한 신호 잡음 모델의 검출기 변수 이득을 결정할 수 있다. 본 개시의 일 실시 예에 따르면, 검출기 이득 변수는 가우시안 확률 변수를 포함할 수 있다. 신호 잡음 모델은 가우시안 확률 변수에 기반하고 검출기에 입력되는 광원의 세기와 SNR에 관한 비선형 모델에 따른 SNR의 확률 분포를 지시하는 모델을 포함할 수 있다.In step 403, the trajectory tracking device 200 determines a detector gain variable based on the calibration observations in the signal noise model. The trajectory tracking device 200 may periodically perform optical correction to determine a detector variable gain of a signal noise model with respect to an SNR probability distribution. According to an embodiment of the present disclosure, the detector gain variable may include a Gaussian random variable. The signal noise model may include a model that is based on a Gaussian random variable and indicates a probability distribution of SNR according to a nonlinear model for the SNR and the intensity of a light source input to the detector.

단계(405)에서, 궤도 추적 장치(200)는 검출기 이득 변수에 기반하여 신호 잡음 모델을 갱신한다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 보정 관측에 기반하여 결정된 검출기 이득 변수를 초기 신호 잡음 모델에 대입하여, 신호 잡음 모델을 갱신할 수 있다.In step 405, the trajectory tracking device 200 updates the signal noise model based on the detector gain parameters. According to an embodiment of the present disclosure, the trajectory tracking device 200 may update the signal noise model by substituting the detector gain variable determined based on the correction observation into the initial signal noise model.

단계(407)에서, 궤도 추적 장치(200)는 갱신된 신호 잡음 모델을 이용하여 비행체의 탐지를 위한 탐지 기준 값을 결정한다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 갱신된 신호 잡음 모델에 기반하여 최적의 탐지 기준 값을 결정함으로써 궤도 추적 장치의 비행체 탐지 정확도를 향상시킬 수 있다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 갱신된 신호 잡음 모델에 기반하여, 비행체에 관한 탐지 확률과 오보경보 확률의 차이가 최대가 되는 탐지 기준 값을 결정할 수 있다. 궤도 추적 장치(200)는 갱신된 신호 잡음 모델을 이용하여 비행체의 궤도 상에서 검출기의 카메라 노출 시간, 누적 횟수 중 적어도 하나를 결정할 수 있다. 그에 따라, 궤도 추적 장치(200)는 비행체를 정밀하게 검출할 수 있다.In step 407, the trajectory tracking device 200 determines a detection reference value for vehicle detection using the updated signal noise model. According to an embodiment of the present disclosure, the trajectory tracking device 200 may improve the vehicle detection accuracy of the trajectory tracking device by determining an optimal detection reference value based on the updated signal noise model. According to an embodiment of the present disclosure, the trajectory tracking device 200 may determine a detection criterion value at which a difference between a detection probability and a false alarm probability of a vehicle is maximized based on the updated signal noise model. The trajectory tracking device 200 may determine at least one of a camera exposure time and an accumulation count of the detector on the trajectory of the vehicle by using the updated signal noise model. Accordingly, the trajectory tracking device 200 may accurately detect the vehicle.

도 5는 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템(100)에서, 비행체의 궤도를 지시하는 궤도 그래프(500)를 도시한다. 도 5는 비행체에 관한 3차원 궤도 그래프(510)와 2차원 궤도 그래프(560)를 예시한다. 3차원 궤도 그래프(510)와 2차원 궤도 그래프(560)에서, 가로 축, 세로 축, 및 높이 축은 모두 거리를 지시한다.5 illustrates a trajectory graph 500 indicating a trajectory of an aircraft in the trajectory warning system 100 according to various embodiments of the present disclosure. FIG. 5 illustrates a 3D trajectory graph 510 and a 2D trajectory graph 560 of an aircraft. In the 3D trajectory graph 510 and the 2D trajectory graph 560, the horizontal axis, the vertical axis, and the height axis all indicate distance.

비행체는 3차원 공간에서 이동하지만, 궤도 추적 장치(200)는 일반적으로 비행체의 궤도에 관한 2차원 궤도 검출기를 구비한다. 즉, 한 대의 2차원 검출기로 3차원의 비행체의 궤도를 관측하는 경우, 정보 손실로 인한 비행 궤도 추정의 오차가 발생한다. 도 5를 참고하면, 3차원 궤도 그래프(510)에 도시된 바와 같이 제1 비행체에 관한 제1 궤도(511)와 제2 비행체에 관한 제2 궤도(513)는 서로 상이하다. 그러나, 궤도 추적 장치(200)가 2차원 궤도 검출기를 이용하여 제1 궤도(511)와 제2 궤도(513)를 확인하는 경우, 제1 궤도(511)와 제2 궤도(513) 모두 유사하게 제3 궤도(561)와 같이 표시되게 된다.An aircraft moves in a three-dimensional space, but the trajectory tracking device 200 generally includes a two-dimensional trajectory detector for the trajectory of the vehicle. That is, when observing the trajectory of a 3-dimensional aircraft with one 2-dimensional detector, an error in flight trajectory estimation occurs due to information loss. Referring to FIG. 5 , as shown in the 3D trajectory graph 510, the first trajectory 511 for the first vehicle and the second trajectory 513 for the second vehicle are different from each other. However, when the trajectory tracking device 200 checks the first trajectory 511 and the second trajectory 513 using a two-dimensional trajectory detector, both the first trajectory 511 and the second trajectory 513 are similarly It is displayed like the third trajectory 561.

2차원 궤도 검출기를 이용하여 검출되는 궤도 상의 차이는 비행체의 탄도 지점을 추정하는데 있어서 수십에서 수백 킬로미터의 오차를 발생시킬 수 있다. 이에 대응하여, 궤도 추적 장치(200)는 궤도 추적에 관한 오차를 감소시키기 위하여, 비행체의 궤도를 추정하는 경우 비행체의 위치 정보뿐만 아니라 위치 변화량 정보를 사용할 수 있다. 구체적으로, 궤도 추적 장치(200)는 궤도 결정기를 이용하여 비행체의 위치 정보와 위치 변화량 정보를 모두 획득하고, 위치 정보와 위치 변화량 정보를 모두 사용함으로써, 비행체의 궤도 추적의 성능을 향상 시킬 수 있다. 동일한 방법을 복수의 궤도 추적 장치들에 적용하는 경우, 하나의 궤도 추적 장치를 적용하는 경우 대비 오차를 더욱 감소시킬 수 있고, 탄도 지점을 정확하게 추적할 수 있다. 2차원의 궤도를 추적하는 궤도 결정기를 이용한 궤도 추적 장치(200)의 동작 방법은 도 5에 상세히 설명된다.Differences in trajectories detected using a two-dimensional trajectory detector may cause errors of several tens to hundreds of kilometers in estimating the trajectory point of an aircraft. Correspondingly, the trajectory tracking device 200 may use position change information as well as location information of the vehicle when estimating the trajectory of the vehicle in order to reduce an error related to trajectory tracking. Specifically, the trajectory tracking device 200 obtains both position information and position change information of the vehicle using a trajectory determiner, and uses both the position information and the position change amount information, thereby improving the trajectory tracking performance of the vehicle. . When the same method is applied to a plurality of trajectory tracking devices, an error can be further reduced compared to a case where one trajectory tracking device is applied, and a trajectory point can be accurately tracked. An operating method of the trajectory tracking device 200 using a trajectory determiner for tracking a two-dimensional trajectory is described in detail with reference to FIG. 5 .

도 6은 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템(100)에서, 궤도 추적 장치(200)가 비행체의 3차원 궤도를 추적하는 방법에 관한 흐름도(600)를 도시한다. 궤도 추적 장치(200)는 2차원 궤도 결정기를 이용하여 비행체의 3차원 궤도를 결정할 수 있다. 6 is a flowchart 600 of a method for tracking a 3D trajectory of an air vehicle by the trajectory tracking device 200 in the trajectory warning system 100 according to various embodiments of the present disclosure. The trajectory tracking device 200 may determine a 3D trajectory of an aircraft using a 2D trajectory determiner.

도 6을 참고하면 단계(601)에서, 궤도 추적 장치(200)는 비행체를 탐지한다. 궤도 추적 장치(200) SNR 분포에 관련된 신호 잡음 모델을 이용하여 비행체를 탐지할 수 있다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 도 4와 같이 SNR 분포에 관한 신호 잡음 모델을 이용하여 비행체를 탐지할 수 있다.Referring to FIG. 6 , in step 601, the trajectory tracking device 200 detects an air vehicle. The vehicle may be detected using a signal noise model related to the SNR distribution of the trajectory tracking device 200 . According to an embodiment of the present disclosure, the trajectory tracking device 200 may detect an air vehicle using a signal noise model for SNR distribution as shown in FIG. 4 .

단계(603)에서, 궤도 추적 장치(200)는 궤도 결정기를 이용하여, 비행체의 위치 정보를 획득한다. 궤도 추적 장치(200)는 궤도 결정기를 이용하여 비행체의 2차원의 위치 정보를 획득할 수 있다. 그에 따라, 궤도 결정기는 비행체의 2차원 궤도를 결정하는 2차원 궤도 결정기를 포함할 수 있다. 본 개시의 일 실시 예에 따르면, 위치 정보는 비행체의 2차원 궤도에 관한 지구 중심의 좌표 정보를 지시할 수 있다.In step 603, the trajectory tracking device 200 obtains positional information of the vehicle by using a trajectory determiner. The trajectory tracking device 200 may obtain 2D location information of the vehicle using a trajectory determiner. Accordingly, the trajectory determiner may include a two-dimensional trajectory determiner for determining the two-dimensional trajectory of the vehicle. According to an embodiment of the present disclosure, the location information may indicate coordinate information of the center of the earth regarding the two-dimensional trajectory of the vehicle.

단계(605)에서, 궤도 추적 장치(200)는 궤도 결정기를 이용하여, 비행체의 위치 변화량 정보를 획득한다. 궤도 추적 장치(200)는 궤도 결정기에서 검출되는 위치 정보에 기반하여 위치 변화량 정보를 계산할 수 있다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 시간 별 위치 정보를 비교하여 위치 변화량을 결정할 수 있다. 본 개시의 다른 일 실시 예에 따르면, 궤도 추적 장치(200)는 궤도 결정기를 이용하여 비행체의 위치 변화량을 지시하는 정보를 획득할 수 있다. 본 개시의 일 실시 예에 따르면, 위치 변화량 정보는 비행체의 속도 정보를 포함할 수 있다.In step 605, the trajectory tracking device 200 obtains position change information of the vehicle by using a trajectory determiner. The trajectory tracking device 200 may calculate location change information based on location information detected by the trajectory determiner. According to an embodiment of the present disclosure, the trajectory tracking device 200 may determine a location change amount by comparing location information by time. According to another embodiment of the present disclosure, the trajectory tracking device 200 may obtain information indicating an amount of change in the position of an air vehicle using a trajectory determiner. According to an embodiment of the present disclosure, the position change amount information may include speed information of the vehicle.

단계(607)에서, 궤도 추적 장치(200)는 위치 정보와 위치 변화량 정보에 기반하여, 비행체의 3차원 궤도를 결정한다. 본 개시의 일 실시 예에 따르면, 궤도 추적 장치(200)는 비행체에 관한 2차원 위치 정보와 비행체의 위치 변화량 정보에 기반하여 비행체의 3차원 궤도를 모델링할 수 있다.In step 607, the trajectory tracking device 200 determines the 3D trajectory of the vehicle based on the location information and the location change amount information. According to an embodiment of the present disclosure, the trajectory tracking device 200 may model a 3-dimensional trajectory of an aircraft based on 2-dimensional positional information about the aircraft and position change information of the aircraft.

도 7은 본 개시의 다양한 실시 예들에 따른 궤도 경보 시스템(100)에서, 궤도 추적 장치(200)가 궤도 추정 위치를 예측하는 방법에 관한 흐름도(700)를 도시한다.7 is a flowchart 700 of a method for predicting an estimated orbit position by the orbit tracking device 200 in the orbit warning system 100 according to various embodiments of the present disclosure.

궤도 추적 장치(200)는 미리 설정된 알고리즘을 이용하여 비행체의 탄착 지점을 예측할 수 있다. 일반적인 최적화 방법은 초기 값에 대한 의존성이 크기 때문에, 국부 최적 값(local optimum)이 여러 개 존재하는 경우에 광역 최적 값(global optimum)을 찾기 어려운 문제가 있다. 이에 대응하여, 인공지능 기법 중의 하나인 유전 알고리즘이 최적화 방법에 사용될 수 있으나, 유전 알고리즘은 최적 값으로 수렴하기 까지 시간이 길어, 비행체의 궤도를 추적하는 경우와 같은 실시간 처리에 적용될 수 없다. 본 개시는 유전 알고리즘에서 최적 값을 찾는 방법이 아니라, 최적 값이 존재할 가능성이 높은 영역을 찾는 방법으로 대체하여, 유전 알고리즘이 궤도 추적에 활용될 수 있게 한다.The trajectory tracking device 200 may predict the point of impact of the aircraft using a preset algorithm. Since a general optimization method has a high dependence on an initial value, it is difficult to find a global optimum when several local optimums exist. Correspondingly, a genetic algorithm, one of artificial intelligence techniques, can be used for the optimization method, but the genetic algorithm takes a long time to converge to an optimal value, so it cannot be applied to real-time processing such as tracking the trajectory of an aircraft. The present disclosure replaces a method for finding an optimal value in a genetic algorithm with a method for finding a region in which an optimal value is likely to exist, so that the genetic algorithm can be used for trajectory tracking.

도 7을 참고하면 단계(701)에서, 궤도 추적 장치(200)는 단기 유전 알고리즘에 기반하여, 비행체의 궤도를 결정하기 위한 복수의 파라미터들의 초기 값들을 결정한다. 궤도 추적 장치(200)는 단기 유전 알고리즘을 이용하여 최적 값이 존재할 가능성이 가장 높은 영역을 결정할 수 있다. 구체적으로, 궤도 추적 장치(200)는 복수의 파라미터들의 값들을 결정하는 과정을 복수의 세대들(generations)에 걸쳐 반복할 수 있다. 여기서, 궤도 추적 장치(200)는 미리 설정된 작은 세대만큼 반복 수행할 수 있다. 여기서, 미리 설정된 작은 세대의 수는 10 세대를 포함할 수 있다. 본 개시의 일 실시 예에 따르면, 복수의 파라미터들은 매스(mass), 비추력(specific impulse), 추력(thrust force), 양력 계수(lift coefficient), 피치(pitch), 요(yaw), 위도(latitude), 경도(longitude), 고도(altitude) 중 적어도 하나를 포함할 수 있다. 단기 유전 알고리즘은 복수의 세대들에 걸쳐 복수의 파라미터들의 초기 값을 결정하는 알고리즘을 포함하고, 복수의 세대들의 수는 미리 설정된 임계 세대 수보다 작도록 결정될 수 있다.Referring to FIG. 7 , in step 701, the trajectory tracking device 200 determines initial values of a plurality of parameters for determining the trajectory of an aircraft based on a short-term genetic algorithm. The trajectory tracking device 200 may determine a region in which an optimal value is most likely to exist by using a short-term genetic algorithm. Specifically, the trajectory tracking device 200 may repeat a process of determining values of a plurality of parameters over a plurality of generations. Here, the trajectory tracking device 200 may repeatedly perform as many preset small generations. Here, the preset number of small generations may include 10 generations. According to an embodiment of the present disclosure, a plurality of parameters are mass, specific impulse, thrust force, lift coefficient, pitch, yaw, and latitude. ), longitude, and altitude. The short-term genetic algorithm includes an algorithm that determines initial values of a plurality of parameters over a plurality of generations, and the number of the plurality of generations may be determined to be less than a preset threshold number of generations.

단계(703)에서, 궤도 추적 장치(200)는 초기 값들에 기반하여 비행체의 궤도 추정 위치를 예측한다. 궤도 추적 장치(200)는 최적 값이 존재할 가능성이 가장 높은 영역을 중심으로 일반적인 최적화 방법을 적용하고, 그에 따라 광역 최적 값을 결정할 수 있다. 본 개시에 따른 단기 유전 알고리즘을 이용한 다단계 최적화 방법을 통하여 유전자 알고리즘의 실시간 활용의 어려움과 초기 값에 의존하는 일반적인 최적화 방법의 문제점들을 모두 극복할 수 있다. 즉, 궤도 추적 장치(200)는 단기 유전 알고리즘을 이용하여 발사 이후 2분 이내에 비행체의 궤도 추정과 탄착 지점의 예측할 수 있다.In step 703, the trajectory tracking device 200 predicts the estimated trajectory position of the vehicle based on the initial values. The trajectory tracking device 200 may apply a general optimization method centered on a region in which an optimal value is most likely to exist, and determine a wide-area optimal value accordingly. Through the multi-step optimization method using the short-term genetic algorithm according to the present disclosure, it is possible to overcome both the difficulty of using the genetic algorithm in real time and the problems of general optimization methods that depend on initial values. That is, the trajectory tracking device 200 may estimate the trajectory of the vehicle and predict the point of impact within 2 minutes after launch using a short-term genetic algorithm.

본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. Methods according to the embodiments described in the claims or specification of the present disclosure may be implemented in the form of hardware, software, or a combination of hardware and software.

소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented in software, a computer readable storage medium storing one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium are configured for execution by one or more processors in an electronic device. One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.

이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(read only memory, ROM), 전기적 삭제가능 프로그램가능 롬(electrically erasable programmable read only memory, EEPROM), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(compact disc-ROM, CD-ROM), 디지털 다목적 디스크(digital versatile discs, DVDs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. Such programs (software modules, software) may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (electrically erasable programmable read only memory (EEPROM), magnetic disc storage device, compact disc-ROM (CD-ROM), digital versatile discs (DVDs), or other It can be stored on optical storage devices, magnetic cassettes. Alternatively, it may be stored in a memory composed of a combination of some or all of these. In addition, each configuration memory may be included in multiple numbers.

또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(local area network), WAN(wide area network), 또는 SAN(storage area network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program is provided through a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WAN), or a storage area network (SAN), or a communication network consisting of a combination thereof. It can be stored on an attachable storage device that can be accessed. Such a storage device may be connected to a device performing an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device performing an embodiment of the present disclosure.

상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present disclosure described above, components included in the disclosure are expressed in singular or plural numbers according to the specific embodiments presented. However, the singular or plural expressions are selected appropriately for the presented situation for convenience of explanation, and the present disclosure is not limited to singular or plural components, and even components expressed in plural are composed of the singular number or singular. Even the expressed components may be composed of a plurality.

한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present disclosure, specific embodiments have been described, but various modifications are possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments and should not be defined by the scope of the claims described below as well as those equivalent to the scope of these claims.

101 미사일 103 조기 경보 위성
105 조기 경보 레이더 107 요격 무기
210 통신부 220 메모리
230 제어부 310 제1 확률 분포
360 제2 확률 분포 321 제1 탐지 기준 값
323 제2 탐지 기준 값 511 제1 궤도
513 제2 궤도 561 제3 궤도
101 missiles 103 early warning satellites
105 Early Warning Radar 107 Intercept Weapon
210 communication unit 220 memory
230 control unit 310 first probability distribution
360 second probability distribution 321 first detection criterion value
323 Second detection reference value 511 First trajectory
513 second orbit 561 third orbit

Claims (13)

비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법에 있어서,
SNR(signal to noise ratio)의 분포에 관련된 신호 잡음 모델을 결정하는 단계;
상기 신호 잡음 모델에서, 보정 관측에 기반하여 검출기 이득 변수를 결정하는 단계;
상기 검출기 이득 변수에 기반하여 상기 신호 잡음 모델을 갱신하는 단계; 및
상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 탐지를 위한 탐지 기준 값을 결정하는 단계를 포함하는 궤도 추적 장치의 동작 방법.
In the flight vehicle warning system, in the operating method of the trajectory tracking device for tracking the trajectory of the vehicle,
determining a signal noise model related to a distribution of signal to noise ratio (SNR);
in the signal noise model, determining a detector gain variable based on calibrated observations;
updating the signal noise model based on the detector gain parameters; and
and determining a detection reference value for the detection of the air vehicle using the updated signal noise model.
청구항 1에 있어서,
상기 검출기 이득 변수는 가우시안 확률 변수를 포함하고,
상기 신호 잡음 모델은,
상기 가우시안 확률 변수에 기반하고, 상기 검출기에 입력되는 광원의 세기와 SNR에 관한 비선형 모델에 따른 SNR의 확률 분포를 지시하는 모델을 포함하는 궤도 추적 장치의 동작 방법.
The method of claim 1,
The detector gain variable includes a Gaussian random variable,
The signal noise model,
A method of operating a trajectory tracking device including a model based on the Gaussian random variable and indicating a probability distribution of SNR according to a nonlinear model related to the intensity and SNR of a light source input to the detector.
청구항 1에 있어서,
상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 궤도 상에서 상기 검출기의 카메라 노출 시간, 누적 횟수 중 적어도 하나를 결정하는 단계를 더 포함하는 궤도 추적 장치의 동작 방법.
The method of claim 1,
The method of operating the trajectory tracking device further comprising determining at least one of a camera exposure time and an accumulation number of the detector on the trajectory of the vehicle using the updated signal noise model.
비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법에 있어서,
상기 비행체를 탐지하는 단계;
궤도 결정기를 이용하여, 상기 비행체의 위치 정보를 획득하는 단계;
상기 궤도 결정기를 이용하여, 상기 비행체의 위치 변화량 정보를 획득하는 단계; 및
상기 위치 정보와 상기 위치 변화량 정보에 기반하여, 상기 비행체의 3차원 궤도를 결정하는 단계를 포함하는 궤도 추적 장치의 동작 방법.
In the flight vehicle warning system, in the operating method of the trajectory tracking device for tracking the trajectory of the vehicle,
detecting the vehicle;
Obtaining positional information of the aircraft using a trajectory determiner;
Obtaining position change information of the vehicle using the trajectory determiner; and
A method of operating a trajectory tracking device comprising determining a three-dimensional trajectory of the vehicle based on the location information and the location change amount information.
청구항 4에 있어서,
상기 궤도 결정기는 상기 비행체의 2차원 궤도를 결정하는 2차원 궤도 결정기를 포함하고,
상기 위치 정보는 상기 비행체의 2차원 궤도에 관한 지구 중심의 좌표 정보를 포함하고,
상기 위치 변화량 정보는 상기 비행체의 속도 정보를 포함하는 궤도 추적 장치의 동작 방법.
The method of claim 4,
The trajectory determiner includes a two-dimensional trajectory determiner for determining a two-dimensional trajectory of the vehicle,
The location information includes coordinate information of the center of the earth regarding the two-dimensional trajectory of the vehicle,
The position change amount information is a method of operating a trajectory tracking device including speed information of the vehicle.
비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치의 동작 방법에 있어서,
단기 유전 알고리즘에 기반하여, 상기 비행체의 궤도를 결정하기 위한 복수의 파라미터들의 초기 값들을 결정하는 단계; 및
상기 초기 값들에 기반하여 상기 비행체의 궤도 추정 위치를 예측하는 단계를 포함하고,
상기 단기 유전 알고리즘은 복수의 세대들(generations)에 걸쳐 상기 복수의 파라미터들의 초기 값을 결정하는 알고리즘을 포함하고,
상기 복수의 세대들의 수는 미리 설정된 임계 세대 수보다 작은 궤도 추적 장치의 동작 방법.
In the flight vehicle warning system, in the operating method of the trajectory tracking device for tracking the trajectory of the vehicle,
determining initial values of a plurality of parameters for determining a trajectory of the vehicle based on a short-term genetic algorithm; and
Predicting an estimated trajectory position of the aircraft based on the initial values;
the short-lived genetic algorithm comprises an algorithm that determines initial values of the plurality of parameters over a plurality of generations;
The method of operating a trajectory tracking device in which the number of the plurality of generations is less than a preset threshold number of generations.
청구항 6에 있어서,
상기 복수의 파라미터들은 매스(mass), 비추력(specific impulse), 추력(thrust force), 양력 계수(lift coefficient), 피치(pitch), 요(yaw), 위도(latitude), 경도(longitude), 고도(altitude) 중 적어도 하나를 포함하는 궤도 추적 장치의 동작 방법.
The method of claim 6,
The plurality of parameters are mass, specific impulse, thrust force, lift coefficient, pitch, yaw, latitude, longitude, and altitude. A method of operating a trajectory tracking device including at least one of (altitude).
비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치에 있어서,
제어부; 및
상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고,
상기 적어도 하나의 프로세서는
SNR(signal to noise ratio)의 분포에 관련된 신호 잡음 모델을 결정하고,
상기 신호 잡음 모델에서, 보정 관측에 기반하여 검출기 이득 변수를 결정하고,
상기 검출기 이득 변수에 기반하여 상기 신호 잡음 모델을 갱신하고,
상기 갱신된 신호 잡음 모델을 이용하여 상기 비행체의 탐지를 위한 탐지 기준 값을 결정하는 궤도 추적 장치.
In the vehicle warning system, in the trajectory tracking device for tracking the trajectory of the vehicle,
control unit; and
including at least one processor functionally coupled to the control unit;
the at least one processor
Determine a signal noise model related to the distribution of signal to noise ratio (SNR);
In the signal noise model, determine a detector gain variable based on calibration observations;
update the signal noise model based on the detector gain parameters;
A trajectory tracking device for determining a detection reference value for detection of the vehicle using the updated signal noise model.
청구항 8에 있어서,
상기 검출기 이득 변수는 가우시안 확률 변수를 포함하고,
상기 신호 잡음 모델은,
상기 가우시안 확률 변수에 기반하고, 상기 검출기에 입력되는 광원의 세기와 SNR에 관한 비선형 모델에 따른 SNR의 확률 분포를 지시하는 모델을 포함하는 궤도 추적 장치.
The method of claim 8,
The detector gain variable includes a Gaussian random variable,
The signal noise model,
A trajectory tracking device comprising a model based on the Gaussian random variable and indicating a probability distribution of SNR according to a nonlinear model related to the intensity and SNR of a light source input to the detector.
비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치에 있어서,
제어부; 및
상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고,
상기 적어도 하나의 프로세서는,
상기 비행체를 탐지하고,
궤도 결정기를 이용하여, 상기 비행체의 위치 정보를 획득하고,
상기 궤도 결정기를 이용하여, 상기 비행체의 위치 변화량 정보를 획득하고,
상기 위치 정보와 상기 위치 변화량 정보에 기반하여, 상기 비행체의 3차원 궤도를 결정하는 궤도 추적 장치.
In the vehicle warning system, in the trajectory tracking device for tracking the trajectory of the vehicle,
control unit; and
including at least one processor functionally coupled to the control unit;
The at least one processor,
detect the aircraft,
Using a trajectory determiner, obtaining positional information of the vehicle,
Using the trajectory determiner, obtaining position change information of the vehicle,
A trajectory tracking device for determining a three-dimensional trajectory of the vehicle based on the location information and the location change amount information.
청구항 10에 있어서,
상기 궤도 결정기는 상기 비행체의 2차원 궤도를 결정하는 2차원 궤도 결정기를 포함하고,
상기 위치 정보는 상기 비행체의 2차원 궤도에 관한 지구 중심의 좌표 정보를 포함하고,
상기 위치 변화량 정보는 상기 비행체의 속도 정보를 포함하는 궤도 추적 장치.
The method of claim 10,
The trajectory determiner includes a two-dimensional trajectory determiner for determining a two-dimensional trajectory of the vehicle,
The location information includes coordinate information of the center of the earth regarding the two-dimensional trajectory of the vehicle,
The positional change amount information includes speed information of the vehicle.
비행체 경보 시스템에서, 비행체의 궤도를 추적하기 위한 궤도 추적 장치에 있어서,
제어부; 및
상기 제어부에 기능적으로 결합되는 적어도 하나의 프로세서를 포함하고,
상기 적어도 하나의 프로세서는
단기 유전 알고리즘에 기반하여, 상기 비행체의 궤도를 결정하기 위한 복수의 파라미터들의 초기 값들을 결정하고,
상기 초기 값들에 기반하여 상기 비행체의 궤도 추정 위치를 예측하고,
상기 단기 유전 알고리즘은 복수의 세대들(generations)에 걸쳐 상기 복수의 파라미터들의 초기 값을 결정하는 알고리즘을 포함하고,
상기 복수의 세대들의 수는 미리 설정된 임계 세대 수보다 작은 궤도 추적 장치.
In the vehicle warning system, in the trajectory tracking device for tracking the trajectory of the vehicle,
control unit; and
including at least one processor functionally coupled to the control unit;
the at least one processor
Based on a short-term genetic algorithm, determining initial values of a plurality of parameters for determining a trajectory of the vehicle;
Predicting the estimated trajectory position of the vehicle based on the initial values,
the short-lived genetic algorithm comprises an algorithm that determines initial values of the plurality of parameters over a plurality of generations;
The number of the plurality of generations is smaller than a preset threshold number of generations.
청구항 12에 있어서,
상기 복수의 파라미터들은 매스(mass), 비추력(specific impulse), 추력(thrust force), 양력 계수(lift coefficient), 피치(pitch), 요(yaw), 위도(latitude), 경도(longitude), 고도(altitude) 중 적어도 하나를 포함하는 궤도 추적 장치.
The method of claim 12,
The plurality of parameters are mass, specific impulse, thrust force, lift coefficient, pitch, yaw, latitude, longitude, and altitude. An orbital tracking device that includes at least one of (altitude).
KR1020210131881A 2021-10-05 2021-10-05 Apparatus and method for tracking the trajectory of an aircraft KR20230048906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210131881A KR20230048906A (en) 2021-10-05 2021-10-05 Apparatus and method for tracking the trajectory of an aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210131881A KR20230048906A (en) 2021-10-05 2021-10-05 Apparatus and method for tracking the trajectory of an aircraft

Publications (1)

Publication Number Publication Date
KR20230048906A true KR20230048906A (en) 2023-04-12

Family

ID=85984090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210131881A KR20230048906A (en) 2021-10-05 2021-10-05 Apparatus and method for tracking the trajectory of an aircraft

Country Status (1)

Country Link
KR (1) KR20230048906A (en)

Similar Documents

Publication Publication Date Title
ES2635268T3 (en) Tracking a moving object for a self defense system
US8550817B2 (en) Trajectory simulation system utilizing dynamic target feedback that provides target position and movement data
US8447563B2 (en) Method and system for determination of detection probability or a target object based on a range
US8025230B2 (en) System and method for prioritizing visually aimed threats for laser-based countermeasure engagement
US8004660B2 (en) Method and system for determination of detection probability of a target object based on vibration
KR102266178B1 (en) Intelligent armed assignment control system and method of control thereof
US20070288156A1 (en) Route search planner
US20110059421A1 (en) Apparatus and method for automated feedback and dynamic correction of a weapon system
US20130234864A1 (en) Reflexive response system for popup threat survival
US20100250188A1 (en) Laser Targeting System
AU2007351370B2 (en) System and method for target tracking
EP2841959B1 (en) Estimating a source location of a projectile
US8563908B1 (en) Methods and systems for threat engagement management
JP5770360B2 (en) Target tracking radar and method responsive to variations in target SNR
US9014958B2 (en) Control apparatus, display apparatus, cooperative operation system, and control method
Majidi et al. Prediction‐discrepancy based on innovative particle filter for estimating UAV true position in the presence of the GPS spoofing attacks
US8340936B2 (en) Methods and systems for locating targets
US8963765B1 (en) System and method for detecting use of booster rockets by ballistic missiles
KR20230048906A (en) Apparatus and method for tracking the trajectory of an aircraft
KR102420585B1 (en) Apparatus and method for determining point cloud information in consideration of the operating environment of a light detection and ranging system
US20220091170A1 (en) Enhanced anechoic chamber
KR102252061B1 (en) Apparatus and method to test location tracking system
US20150268011A1 (en) Preemptive countermeasure management
KR20230000061A (en) Guided missile system and method of generating trigger signal
KR102494974B1 (en) System for calculating shooting specification for improving the accuracy error of landing guns using weather information in ships and method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal