KR20230038839A - 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy - Google Patents

3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy Download PDF

Info

Publication number
KR20230038839A
KR20230038839A KR1020210121419A KR20210121419A KR20230038839A KR 20230038839 A KR20230038839 A KR 20230038839A KR 1020210121419 A KR1020210121419 A KR 1020210121419A KR 20210121419 A KR20210121419 A KR 20210121419A KR 20230038839 A KR20230038839 A KR 20230038839A
Authority
KR
South Korea
Prior art keywords
machine learning
learning algorithm
monitoring system
nozzle
printer
Prior art date
Application number
KR1020210121419A
Other languages
Korean (ko)
Other versions
KR102581949B1 (en
Inventor
이재민
김동성
제이 아그론 다이옐
김다혜
정구상
전진웅
김성남
Original Assignee
금오공과대학교 산학협력단
(주)컨셉션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단, (주)컨셉션 filed Critical 금오공과대학교 산학협력단
Priority to KR1020210121419A priority Critical patent/KR102581949B1/en
Publication of KR20230038839A publication Critical patent/KR20230038839A/en
Application granted granted Critical
Publication of KR102581949B1 publication Critical patent/KR102581949B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)

Abstract

According to the present invention, a 3D printer monitoring system applying a machine learning algorithm comprises: a 3D printer using a fused deposition modeling (FDM) method which generates a 3D output by discharging molten filament through a nozzle to form a plurality of layer; a thermocouple sensor unit which detects a temperature of the nozzle and outputs a detected temperature value as a digital value; a data collector which stores data output from the thermocouple sensor unit; and a control computer which receives data transmitted from the data collector and predicts the temperature value of the nozzle by applying a machine learning algorithm based on a temporal convolution neural network with two-stage sliding window strategy (TCN-TS-SW). Accordingly, deterioration in quality of a result can be reduced, and furthermore, a predicted temperature value can be provided accurately.

Description

TCN-TS-SW 기반의 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템{3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy}3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy}

본 발명은 3D 프린터 모니터링 시스템에 관한 것으로서, 더 상세하게는 TCN-TS-SW 기반의 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템에 관한 것이다.The present invention relates to a 3D printer monitoring system, and more particularly, to a 3D printer monitoring system to which a machine learning algorithm based on TCN-TS-SW is applied.

일반적으로 3차원의 입체 형상을 가진 시제품(Prototype)을 제작하기 위해서는 도면에 의존하여 수작업에 의해 이루어지는 목합 제작방식과 CNC 밀링에 의한 제작방식 등이 있다. 그러나 목합 제작방식은 수작업에 의하므로 정교한 수치제어가 어렵고 많은 시간이 소요되며, CNC 밀링에 의한 제작방식은 정교한 수치제어가 가능하지만 공구간섭에 의하여 가공하기 어려운 형상이 많다. In general, in order to manufacture a prototype having a three-dimensional three-dimensional shape, there are a wooden composite manufacturing method performed by hand depending on drawings and a manufacturing method by CNC milling. However, since the wooden composite manufacturing method is manual, precise numerical control is difficult and takes a lot of time, and the CNC milling manufacturing method enables precise numerical control, but there are many shapes that are difficult to process due to tool interference.

따라서 최근에는 제품의 디자이너 및 설계자가 만들어낸 3차원 모델링에서 생성된 데이터를 저장한 컴퓨터를 이용하여 3차원 입체 형상의 시제품을 제작하는 이른바 3차원 프린터 방식이 등장하게 되었다.Therefore, recently, a so-called 3D printer method has appeared in which a prototype of a 3D solid shape is manufactured using a computer storing data generated from 3D modeling created by product designers and designers.

이러한 3차원 프린터 방식에는 광경화성 수지에 레이저 광선을 주사하여 주사된 부분이 경화되는 원리를 이용한 SLA(StereoLithograhhic Apparatus)와, SLA에서의 광경화성 수지 대신에 기능성 고분자 또는 금속분말을 사용하며 레이저 광선을 주사하여 고결(固結)시켜 성형하는 원리를 이용한 SLS(Selective Laser Sintering)와, 접착제가 칠해져 있는 종이를 원하는 단면으로 레이져 광선을 이용하여 절단하여 한층씩 적층하여 성형하는 LOM(Laminated Object Manufacturing)과, 잉크젯(Ink-Jet) 프린터 기술을 이용한 BPM(Ballistic Particle Manufacturing)과 가열된 노즐을 사용 조형 재료를 녹여 층층히 쌓아올려 조형하는 FDM(Fused deposition modeling)방식 등이 있다.In this 3D printer method, SLA (StereoLithograhhic Apparatus) using the principle that a laser beam is injected into a photocurable resin and the scanned part is hardened, and a functional polymer or metal powder is used instead of a photocurable resin in SLA and laser beam is used. SLS (Selective Laser Sintering), which uses the principle of molding by scanning and solidifying, and LOM (Laminated Object Manufacturing), which cuts adhesive-coated paper into desired cross-sections using laser beams and laminates them one by one, , BPM (Ballistic Particle Manufacturing) using ink-jet printer technology, and FDM (Fused deposition modeling), which uses heated nozzles to melt molding materials and build them up in layers.

FDM(Fused deposition modeling) 방식의 3D 프린터의 원재료인 필라멘트(Filament)는 열에 녹는 물질을 가는 실 형태로 가공하여 스플(Spool)에 감아서 사용하는데, 필라멘트를 이송시키는 피더(Feeder)와 필라멘트(Filament)를 녹여서 분사하기 위한 노즐을 탑재하고 인쇄위치로 이동시키는 캐리어 및 출력물을 적재 및 인쇄 위치를 이동시키는 배드로 구성되고, 스풀에 감겨져 있는 필라멘트는 피더를 통하여 연속으로 이송시켜서 노즐로 주입되고 노즐에 주입된 필라멘트는 노즐에서 발생하는 열에 의해 액체상태로 되어 노즐 밖으로 분사되어 출력물을 적재하는 배드에 쌓이게 되어 분사된 액체상태의 필라멘트는 캐리어와 배드의 이동에 의해 이미지가 형성되어 결과로써 3차원 출력물이 형성되도록 동작된다.Filament, a raw material of FDM (Fused deposition modeling) method 3D printer, is used by processing heat-melting material into a thin thread form and winding it around a spool. ) is composed of a carrier that mounts a nozzle for melting and spraying and moves it to a printing position, and a bed that loads and moves the output, and the filament wound on the spool is continuously transported through a feeder and injected into the nozzle. The injected filament becomes a liquid state by the heat generated from the nozzle and is sprayed out of the nozzle and accumulated on the bed for loading the printed material. operated to form

즉, 보급형 3D 프린터로 많이 사용되는 FDM(Fused Deposition Modeling) 방식은 열가소성 수지인 필라멘트를 가열된 노즐에 투입하여 용융된 필라멘트를 일정량씩 토출한다. 토출된 미량의 필라멘트는 상온에서 경화되고 그 위에 다음 층을 형성하여 3차원 출력물을 형성하게 된다. 균일한 토출량을 얻기 위하여 노즐에 히터블럭을 설치하여 일정온도를 유지하도록 가열한다.That is, in the FDM (Fused Deposition Modeling) method, which is widely used in popular 3D printers, a filament, which is a thermoplastic resin, is injected into a heated nozzle and the molten filament is discharged at a certain amount. A small amount of the discharged filament is cured at room temperature, and a next layer is formed thereon to form a three-dimensional output product. In order to obtain a uniform discharge amount, a heater block is installed on the nozzle and heated to maintain a constant temperature.

이러한 FDM 방식의 3D 프린터에서는 노즐에서 얼마나 정밀한 양을 토출하느냐 뿐만 아니라 토출된 필라멘트가 얼마나 잘 경화되는가도 출력된 제품의 품질에 중요한 요인이다. 따라서 노즐 토출부의 온도를 일정하게 유지하는 것이 매우 중요하다.In these FDM-type 3D printers, not only how precise the amount ejected from the nozzle is, but also how well the ejected filament is cured is an important factor in the quality of the printed product. Therefore, it is very important to keep the temperature of the nozzle discharge part constant.

KRKR 10-2017-007839610-2017-0078396 AA

본 발명은 상기와 같은 기술적 과제를 해결하기 위해 제안된 것으로, FDM(Fused deposition modeling) 방식의 3D 프린팅 기술 향상을 위해 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템을 제공한다.The present invention is proposed to solve the above technical problems, and to improve the 3D printing technology of the FDM (Fused deposition modeling) method, TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy)-based Provides a 3D printer monitoring system to which machine learning algorithms are applied.

상기 문제점을 해결하기 위한 본 발명의 일 실시예에 따르면, 노즐을 통해 용융된 필라멘트를 배출하여 복수의 층을 형성하면서 3차원 출력물을 생성하는 FDM(Fused deposition modeling) 방식의 3D 프린터와, 노즐의 온도를 감지하고 감지된 온도값을 디지털 값으로 출력하는 열전쌍 센서부와, 열전쌍 센서부에서 출력되는 데이터를 저장하는 데이터 수집기와, 데이터 수집기에서 전송된 데이터를 입력받아 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용하여 상기 노즐의 온도 값을 예측하는 제어 컴퓨터를 포함하는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템이 제공된다.According to an embodiment of the present invention for solving the above problems, a 3D printer of a fused deposition modeling (FDM) method that generates a three-dimensional output while forming a plurality of layers by discharging a molten filament through a nozzle, and a nozzle A thermocouple sensor unit that detects temperature and outputs the detected temperature value as a digital value, a data collector that stores data output from the thermocouple sensor unit, and TCN-TS-SW (Temporal Convolution A 3D printer monitoring system applying a machine learning algorithm including a control computer for predicting the temperature value of the nozzle by applying a machine learning algorithm based on a Neural Network with Two-Stage Sliding Window Strategy is provided.

또한, 본 발명에 포함되는 제어 컴퓨터는, 데이터 전처리를 위하여 2번의 슬라이딩 윈도우 기법을 통해 입력된 데이터를 분할함에 있어서, 시간 윈도우 △와 슬라이딩 단계 δ을 사용한 첫 번째 슬라이딩을 진행하고, 예측 간격 h를 사용한 두 번째 슬라이딩을 진행하는 것을 특징으로 한다.In addition, the control computer included in the present invention, in dividing the input data through the sliding window technique twice for data preprocessing, proceeds with the first sliding using the time window Δ and the sliding step δ, and the prediction interval h It is characterized in that the used second sliding is performed.

또한, 본 발명에 포함되는 δ 및 △ 값은 데이터 수집기의 샘플링 용량을 고려하여 선택되는 것을 특징으로 한다.In addition, the δ and Δ values included in the present invention are characterized in that they are selected in consideration of the sampling capacity of the data collector.

또한, 본 발명에 포함되는 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 는, 1차원 causal 컨볼루션을 사용하되, residual 블록을 사용하여 예측 값이 시리즈의 히스토리 값에만 의존하도록 구성되는 것을 특징으로 한다.In addition, the TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) included in the present invention uses a one-dimensional causal convolution, but uses a residual block so that the predicted value depends only on the history value of the series It is characterized in that it is configured to.

본 발명의 실시예에 따른 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템은, FDM(Fused deposition modeling) 방식의 3D 프린팅 기술 향상을 위해 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템을 제안하였다. The 3D printer monitoring system to which the machine learning algorithm according to the embodiment of the present invention is applied is based on TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) to improve the 3D printing technology of the FDM (Fused deposition modeling) method. A 3D printer monitoring system applying a machine learning algorithm based on this was proposed.

즉, 제안하는 기계 학습 알고리즘을 사용하여 3D 프린터의 출력 온도 감소로 인한 결과물의 품질 저하를 줄일 수 있으며, 더 나아가 예측된 온도 값을 정확하게 제공할 수 있다.That is, using the proposed machine learning algorithm, it is possible to reduce the quality degradation of the result due to the decrease in the output temperature of the 3D printer, and furthermore, it is possible to accurately provide the predicted temperature value.

도 1은 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)의 구성도
도 2는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)의 모니터링 프로그램의 프로세스를 나타낸 도면
도 3은 모니터링 프로그램의 순서도
도 4는 데이터 수집 및 저장을 위한 프로그램의 랩뷰 블록 다이어그램
도 5는 데이터 수집 및 저장을 위한 프로그램으로 저장된 데이터세트의 예시도
도 6은 데이터 수집 및 저장 프로그램의 유저 인터페이스의 예시도
도 7은 단계의 슬라이딩 윈도우 기법의 예시도
도 8은 본 발명에서 사용되는 TCN의 구조도(Rb=10, rf=8, db=2, k=3)
도 9는 실제 데이터(검은색)와 예측한 데이터(파란색)를 나타낸 도면
도 10은 두 개의 모델의 대한 정확도를 나타낸 도면이고,
도 11은 두 개의 모델의 손실률을 나타낸 도면
1 is a block diagram of a 3D printer monitoring system 1 to which a machine learning algorithm is applied.
Figure 2 is a diagram showing the process of the monitoring program of the 3D printer monitoring system 1 to which a machine learning algorithm is applied
3 is a flow chart of a monitoring program
Figure 4 is a LabVIEW block diagram of a program for data collection and storage
5 is an exemplary view of a dataset stored as a program for data collection and storage;
6 is an exemplary diagram of a user interface of a data collection and storage program;
7 is an exemplary diagram of a sliding window technique of steps
8 is a structural diagram of TCN used in the present invention (Rb = 10, rf = 8, db = 2, k = 3)
9 is a diagram showing actual data (black) and predicted data (blue)
10 is a diagram showing the accuracy of two models,
11 is a diagram showing loss rates of two models

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시예를 첨부한 도면을 참조하여 설명하기로 한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings in order to describe in detail enough for those skilled in the art to easily implement the technical idea of the present invention.

도 1은 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)의 구성도이다.1 is a configuration diagram of a 3D printer monitoring system 1 to which a machine learning algorithm is applied.

도 1을 참조하면, FDM(Fused deposition modeling) 방식의 3D 프린팅 기술 향상을 위해 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용한 모니터링 시스템은 도 1과 같이 구성된다.Referring to FIG. 1, a monitoring system to which a machine learning algorithm based on TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) is applied to improve 3D printing technology of FDM (Fused deposition modeling) method is shown in FIG. is composed as

기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)은, FDM(Fused deposition modeling) 방식의 3D 프린터(100), 열전쌍 센서부(200), 데이터 수집기(300), 제어 컴퓨터(400)를 포함하여 구성된다.The 3D printer monitoring system 1 to which a machine learning algorithm is applied includes a 3D printer 100 of a fused deposition modeling (FDM) method, a thermocouple sensor unit 200, a data collector 300, and a control computer 400. do.

즉, 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)의 하드웨어는 FDM 프린터(100), K-thermocouple to Digital 컨버터(MAX6675) - 열전쌍 센서부(200) - , 데이터 수집기(Arduino Uno, 300), 제어 컴퓨터(400)로 구성되어 있다. That is, the hardware of the 3D printer monitoring system (1) to which the machine learning algorithm is applied includes the FDM printer (100), K-thermocouple to Digital converter (MAX6675) - thermocouple sensor unit (200) -, data collector (Arduino Uno, 300), It is composed of a control computer 400.

3D 프린터(100)의 노즐에 장착된 열전쌍(Thermocouple) 센서는 최대 350도(섭씨)까지 측정 가능하여 노즐의 높은 온도를 견딜 수 있다. 열전쌍 센서부(200)에서 출력되는 온도 값은 12-bit, 0.25도(섭씨) 단위로 데이터를 생성하는 모듈(MAX6675)을 이용하여 변환되며, 이는 데이터 수집기(300)에 전송된다. 데이터 수집기(300)에 전송된 데이터는 제어 컴퓨터(400)에서 (.csv) 형식으로 저장된다. The thermocouple sensor mounted on the nozzle of the 3D printer 100 can measure up to 350 degrees (Celsius) and can withstand the high temperature of the nozzle. The temperature value output from the thermocouple sensor unit 200 is converted using a module (MAX6675) that generates data in 12-bit, 0.25 degree (Celsius) units, and is transmitted to the data collector 300. Data transmitted to the data collector 300 is stored in a (.csv) format in the control computer 400.

도 2는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템(1)의 모니터링 프로그램의 프로세스를 나타낸 도면이고, 도 3은 모니터링 프로그램의 순서도이고, 도 4는 데이터 수집 및 저장을 위한 프로그램의 랩뷰 블록 다이어그램이다.Figure 2 is a diagram showing the process of the monitoring program of the 3D printer monitoring system 1 to which the machine learning algorithm is applied, Figure 3 is a flow chart of the monitoring program, Figure 4 is a LabVIEW block diagram of the program for data collection and storage.

- 데이터 수집 및 저장 - Data collection and storage

3D 프린터의 노즐 온도는 결과물의 품질에 많은 영향을 미친다. 따라서 제안한 모니터링 시스템은 노즐의 온도 값을 수집 및 저장한다. 이를 위해서 본 실시예에서는 LabVIEW 프로그램을 사용하였다. 노즐의 온도 값이 입력되면 이 값을 통해 데이터를 처리하고 저장한다. The nozzle temperature of a 3D printer has a great influence on the quality of the output. Therefore, the proposed monitoring system collects and stores the temperature value of the nozzle. To this end, the LabVIEW program was used in this embodiment. When the temperature value of the nozzle is entered, the data is processed and saved through this value.

도 5는 데이터 수집 및 저장을 위한 프로그램으로 저장된 데이터세트의 예시도이다. 데이터세트에는 시간, 온도, 습도, 거리가 전압으로 표현된다. 5 is an exemplary view of a dataset stored as a program for data collection and storage. In the dataset, time, temperature, humidity, and distance are expressed as voltage.

- 데이터 전시(표시)- Data display (display)

도 6은 데이터 수집 및 저장 프로그램의 유저 인터페이스의 예시도이다.6 is an exemplary view of a user interface of a data collection and storage program.

입력받은 데이터는 사용자에게 표시되며 이를 통해 사용자는 3D 프린팅이 진행 중의 노즐 온도 값을 쉽게 확인 할 수 있다. 또한 기계 학습을 통해 예측된 온도 값에 이상이 감지될 경우, 결과를 표시함으로써 사용자가 품질 유지 또는 향상을 위한 대응을 진행하도록 한다. 도 6은 데이터 수집 및 저장 프로그램의 UI(User Interface)를 보여준다. UI(User Interface)를 통해 측정된 온도, 습도 거리가 전시(표시)된다.The input data is displayed to the user, and through this, the user can easily check the nozzle temperature value while 3D printing is in progress. In addition, when an abnormality is detected in the temperature value predicted through machine learning, the result is displayed so that the user can proceed with a response to maintain or improve quality. 6 shows a user interface (UI) of a data collection and storage program. The measured temperature, humidity and distance are displayed (displayed) through the UI (User Interface).

- 제안된 기계 학습 알고리즘(TCN-TS-SW)- Proposed Machine Learning Algorithm (TCN-TS-SW)

본 발명의 3D 프린터 모니터링 시스템을 위하여 TCN-TS-SW(Temporal Convolutional Neural Network with a Two-Stage Sling Window strategy)을 제안한다. 제안된 기법은 제어 컴퓨터(400)를 통해 처리될 수 있다. For the 3D printer monitoring system of the present invention, TCN-TS-SW (Temporal Convolutional Neural Network with a Two-Stage Sling Window strategy) is proposed. The proposed technique can be processed through the control computer 400.

제안하는 기법은 TCN(Temporal Convolution Neural Network)를 기반으로 하였으나, 기존 TCN은 RNN에 비해 다음 레이어 입력으로 전체 입력 데이터를 요구하기 때문에 예측에 많은 메모리를 사용하게 된다. 본 발명에서는 메모리 사용량과 예측 시간을 감소시키기 위하여 데이터 사전 처리가 가능한 슬라이딩 윈도우 기술을 적용한다.The proposed method is based on TCN (Temporal Convolution Neural Network), but existing TCN uses a lot of memory for prediction because it requires the entire input data as input to the next layer compared to RNN. In the present invention, a sliding window technology capable of data pre-processing is applied to reduce memory usage and prediction time.

- 슬라이딩 기법을 이용한 데이터 전처리 - Data pre-processing using sliding technique

도 7은 단계의 슬라이딩 윈도우 기법의 예시도이다< a) 시간 윈도우 △와 슬라이딩 단계 δ을 사용한 첫 번째 슬라이딩, (b) 예측 간격 h를 사용한 두 번째 슬라이딩>.7 is an exemplary diagram of a sliding window technique of steps <a) first sliding using time window Δ and sliding step δ, (b) second sliding using prediction interval h>.

데이터 전처리를 위하여 2번의 슬라이딩 윈도우 기법을 통해 입력된 데이터를 나눈다. 첫 번째 슬라이딩 윈도우 기법을 통해 도 7의 (a)와 같이 δ의 슬라이딩 단계와 △의 시간 윈도우 값을 가지고 있는 고정된 길이의 시퀀스로 분할한다. 이때 δ 및 △ 값은 데이터 수집 모듈의 샘플링 용량과 인쇄 속도를 고려하여 선택된다. For data preprocessing, input data is divided through two sliding window techniques. Through the first sliding window technique, as shown in FIG. At this time, the values of δ and Δ are selected in consideration of the sampling capacity and printing speed of the data collection module.

분할 시퀀스는 사전 정의된 전개(unfolding) 레벨과 일치하게 x를 2차원 벡터로 변환한다. The split sequence transforms x into a 2D vector consistent with a predefined level of unfolding.

두 번째 슬라이딩은 도 7의 (b)에서 볼 수 있다. 두 번째 슬라이딩은 데이터가 훈련 세트와 검증 세트로 나눠진 후 수행된다. 이때 길이가 m 인 입력 시리즈와 목표 시리즈 사이의 이동 차이를 통해 계산되는 예측 파라미터 h를 정의하기 위하여 기존에 슬라이딩 된 데이터를 도 7의 (b)처럼 추가로 나누게 된다. 예측 파라미터 h는 오류를 줄이고 더 나은 예측 성능을 가능하게 한다. 두 번째 슬라이딩 윈도우가 수행 된 후 세그먼트 m이 예측 모델에서 처리된다. 이렇게 처리된 데이터는 예측 모델에 사용된다.The second sliding can be seen in Figure 7(b). The second sliding is performed after the data is divided into training and validation sets. At this time, in order to define the prediction parameter h calculated through the movement difference between the input series of length m and the target series, the previously slid data is additionally divided as shown in FIG. 7(b). The prediction parameter h reduces errors and enables better prediction performance. After the second sliding window is performed, segment m is processed in the predictive model. The processed data is used for predictive models.

- TCN 기반 예측 모델- TCN-based prediction model

도 8은 본 발명에서 사용되는 TCN의 구조도(Rb=10, rf=8, db=2, k=3)이다.8 is a structural diagram of TCN used in the present invention (Rb = 10, rf = 8, db = 2, k = 3).

TCN-TS-SW는 TCN에서 사용하는 stacked dilated 컨볼루션 레이어, non-linearity functions, 드롭아웃(dropout) 레이어로 구성된 residual 블록으로 구성된다. 사용되는 TCN의 구조는 도 8과 같다. TCN-TS-SW consists of a residual block composed of stacked dilated convolution layers, non-linearity functions, and dropout layers used in TCN. The structure of the TCN used is shown in FIG. 8.

1차원 causal 컨볼루션을 사용하는 대신 residual 블록을 사용하여 예측 값이 시리즈의 히스토리 값 x에만 의존하도록 한다. 입력과 출력 사이의 동일한 길이를 유지하기 위해 입력에 제로 패딩을 추가하여 각 레이어의 길이 균일성을 보장하고 residual 블록에 있는 dilated convolutional 레이어의 연속 레이어에도 이를 적용한다. Instead of using a one-dimensional causal convolution, we use a residual block so that the predicted value depends only on the historical value x of the series. In order to keep the same length between input and output, zero padding is added to the input to ensure length uniformity in each layer, and this is also applied to successive layers of dilated convolutional layers in the residual block.

Dilated 레이어는 레이어 수를 상대적으로 적게 유지하면서 입력의 수용 필드인 rf를 증가시키기 때문에 Dilated 컨볼루션 레이어로 기존 컨볼루션 레이어를 대체한다. residual 블록 내에 있는 causal 컨볼루션 레이어의 출력 ζ은 가중치 정규화를 사용하여 정규화되고 ReLU(Rectified Linear Unit) 함수를 사용하여 데이터의 비선형 표현을 학습하도록 추가로 변환된다. 모델이 과적합되는 것을 방지하기 위해 컨볼루션 끝에 드롭아웃 레이어가 도입된다. 모델의 최종 출력에서 ReLU는 y가 음수 값을 취하도록 비활성화된다. 마지막으로 네트워크가 예측 값 세트를 획득한 후 '예측 값'인 출력 y가 도 9와 같이 실제 데이터와 함께 그래픽 사용자 인터페이스에 표시된다. - 도 9는 실제 데이터(검은색)와 예측한 데이터(파란색)를 나타낸 도면 - Since dilated layers increase the receptive field rf of the input while keeping the number of layers relatively small, dilated convolution layers replace the existing convolutional layers. The output ζ of the causal convolution layer within the residual block is normalized using weight regularization and further transformed to learn a nonlinear representation of the data using the Rectified Linear Unit (ReLU) function. A dropout layer is introduced at the end of the convolution to prevent the model from overfitting. In the final output of the model, ReLU is disabled so that y takes negative values. Finally, after the network obtains a set of predicted values, the output y, the 'predicted value', is displayed on the graphical user interface along with the actual data as shown in FIG. 9 . - Figure 9 shows actual data (black) and predicted data (blue) -

- TCN-TS-SW의 성능 - Performance of TCN-TS-SW

도 10은 두 개의 모델의 대한 정확도를 나타낸 도면이고, 도 11은 두 개의 모델의 손실률을 나타낸 도면이다.10 is a diagram showing the accuracy of two models, and FIG. 11 is a diagram showing loss rates of the two models.

2단계의 슬라이딩 기법을 도입한 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy)은 기존의 TCN에 비해 높은 정확도와 낮은 손실률을 가짐을 알 수 있다. It can be seen that TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) introducing a two-stage sliding technique has higher accuracy and lower loss rate than conventional TCN.

본 발명의 실시예에 따른 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템은, FDM(Fused deposition modeling) 방식의 3D 프린팅 기술 향상을 위해 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템을 제안하였다. The 3D printer monitoring system to which the machine learning algorithm according to the embodiment of the present invention is applied is based on TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) to improve the 3D printing technology of the FDM (Fused deposition modeling) method. A 3D printer monitoring system applying a machine learning algorithm based on this was proposed.

즉, 제안하는 기계 학습 알고리즘을 사용하여 3D 프린터의 출력 온도 감소로 인한 결과물의 품질 저하를 줄일 수 있으며, 더 나아가 예측된 온도 값을 정확하게 제공할 수 있다.That is, using the proposed machine learning algorithm, it is possible to reduce the quality degradation of the result due to the decrease in the output temperature of the 3D printer, and furthermore, it is possible to accurately provide the predicted temperature value.

이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As such, those skilled in the art to which the present invention pertains will be able to understand that the present invention may be embodied in other specific forms without changing its technical spirit or essential features. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. The scope of the present invention is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention. do.

100 : 3D 프린터
200 : 열전쌍 센서부
300 : 데이터 수집기
400 : 제어 컴퓨터
100: 3D printer
200: thermocouple sensor unit
300: data collector
400: control computer

Claims (4)

노즐을 통해 용융된 필라멘트를 배출하여 복수의 층을 형성하면서 3차원 출력물을 생성하는 FDM(Fused deposition modeling) 방식의 3D 프린터;
상기 노즐의 온도를 감지하고 감지된 온도값을 디지털 값으로 출력하는 열전쌍 센서부;
상기 열전쌍 센서부에서 출력되는 데이터를 저장하는 데이터 수집기; 및
상기 데이터 수집기에서 전송된 데이터를 입력받아 TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 기반의 기계 학습 알고리즘을 적용하여 상기 노즐의 온도 값을 예측하는 제어 컴퓨터;
를 포함하는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템.
A 3D printer of a fused deposition modeling (FDM) method that generates a three-dimensional output while forming a plurality of layers by discharging molten filament through a nozzle;
a thermocouple sensor unit that senses the temperature of the nozzle and outputs the detected temperature value as a digital value;
a data collector to store data output from the thermocouple sensor unit; and
a control computer that receives the data transmitted from the data collector and predicts the temperature value of the nozzle by applying a machine learning algorithm based on TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy);
3D printer monitoring system to which machine learning algorithms are applied.
제1항에 있어서,
상기 제어 컴퓨터는,
데이터 전처리를 위하여 2번의 슬라이딩 윈도우 기법을 통해 입력된 데이터를 분할함에 있어서, 시간 윈도우 △와 슬라이딩 단계 δ을 사용한 첫 번째 슬라이딩을 진행하고, 예측 간격 h를 사용한 두 번째 슬라이딩을 진행하는 것을 특징으로 하는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템.
According to claim 1,
The control computer,
In dividing input data through two sliding window techniques for data preprocessing, first sliding is performed using a time window △ and a sliding step δ, and second sliding is performed using a prediction interval h. Characterized in that 3D printer monitoring system applying machine learning algorithm.
제2항에 있어서,
δ 및 △ 값은 상기 데이터 수집기의 샘플링 용량을 고려하여 선택되는 것을 특징으로 하는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템.
According to claim 2,
The δ and Δ values are 3D printer monitoring systems applying a machine learning algorithm, characterized in that selected in consideration of the sampling capacity of the data collector.
제1항에 있어서,
TCN-TS-SW(Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy) 는,
1차원 causal 컨볼루션을 사용하되, residual 블록을 사용하여 예측 값이 시리즈의 히스토리 값에만 의존하도록 구성되는 것을 특징으로 하는 기계 학습 알고리즘을 적용한 3D 프린터 모니터링 시스템.
According to claim 1,
TCN-TS-SW (Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy),
A 3D printer monitoring system applying a machine learning algorithm, characterized in that the prediction value is configured to depend only on the history value of the series using a one-dimensional causal convolution, but using a residual block.
KR1020210121419A 2021-09-13 2021-09-13 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy KR102581949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210121419A KR102581949B1 (en) 2021-09-13 2021-09-13 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210121419A KR102581949B1 (en) 2021-09-13 2021-09-13 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy

Publications (2)

Publication Number Publication Date
KR20230038839A true KR20230038839A (en) 2023-03-21
KR102581949B1 KR102581949B1 (en) 2023-09-22

Family

ID=85800901

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210121419A KR102581949B1 (en) 2021-09-13 2021-09-13 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy

Country Status (1)

Country Link
KR (1) KR102581949B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615523B1 (en) 2023-05-31 2023-12-20 주식회사 레이아웃 System for 3d printing process automation and operating method thereof
KR102616306B1 (en) 2023-05-31 2023-12-22 주식회사 레이아웃 Method for controlling 3d printer and system therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078396A (en) 2015-12-29 2017-07-07 엔젯 주식회사 Multi-functional 3D Printer Capable of Real-time Control based on Temperature and Humidity
KR20200010634A (en) * 2018-06-25 2020-01-31 신안산대학교 산학협력단 3d-printer having controller for control of printing conditions
CN112925825A (en) * 2021-02-25 2021-06-08 南京大学 Multi-meteorological-factor prediction method for power transmission line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078396A (en) 2015-12-29 2017-07-07 엔젯 주식회사 Multi-functional 3D Printer Capable of Real-time Control based on Temperature and Humidity
KR20200010634A (en) * 2018-06-25 2020-01-31 신안산대학교 산학협력단 3d-printer having controller for control of printing conditions
CN112925825A (en) * 2021-02-25 2021-06-08 南京大学 Multi-meteorological-factor prediction method for power transmission line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615523B1 (en) 2023-05-31 2023-12-20 주식회사 레이아웃 System for 3d printing process automation and operating method thereof
KR102616306B1 (en) 2023-05-31 2023-12-22 주식회사 레이아웃 Method for controlling 3d printer and system therefor

Also Published As

Publication number Publication date
KR102581949B1 (en) 2023-09-22

Similar Documents

Publication Publication Date Title
KR20230038839A (en) 3D printer monitoring system applying machine learning algorithm based on Temporal Convolution Neural Network with Two-Stage Sliding Window Strategy
Bikas et al. A design framework for additive manufacturing
CN112118949B (en) Systems, methods, and media for artificial intelligence feedback control in additive manufacturing
JP2022506523A (en) Intelligent addition manufacturing method
Mercado Rivera et al. Additive manufacturing methods: techniques, materials, and closed-loop control applications
Gleadall FullControl GCode Designer: Open-source software for unconstrained design in additive manufacturing
CN110366463B (en) System and method for controlling microstructure of additively manufactured component
US11506574B2 (en) Methods and apparatuses for diagnosing health state of three-dimensional printer
US10926529B2 (en) Method of additive manufacturing an internal wave sparse structure with varying geometry for localized tunable structural properties throughout a part
US20230367301A1 (en) Predictive process control for a manufacturing process
CN109318485B (en) System and method for controlling an additive manufacturing system
KR20230142650A (en) Systems, methods, and media for artificial intelligence process control in additive manufacturing
TWI804746B (en) Method for three-dimensional (3d) manufacturing, 3d printing device, and related non-transitory tangible computer-readable medium
US11886759B2 (en) Method and system for operating a metal drop ejecting three-dimensional (3D) object printer to compensate for drop size variations
US11660822B2 (en) System and method for improved infilling of part interiors in objects formed by additive manufacturing systems
KR101958998B1 (en) Method for calculating of 3D printer preview based on measured material deformation
Tourloukis et al. Predictive modelling for 3D inkjet printing processes
US20220152936A1 (en) Generating thermal images
Borish et al. Ornl slicer 2.0: towards a new slicing paradigm
Ramani et al. Toward Intelligent Online Scan Sequence Optimization for Uniform Temperature Distribution in LPBF Additive Manufacturing
Kutlu Gündoğdu et al. Some novel preference relations for picture fuzzy sets and selection of 3-D printers in aviation 4.0
CN113950403A (en) Adaptive manufacturing simulation
WO2018226206A1 (en) Thermal volumetric extrusion controller for 3d printers
JP2020001295A (en) Molding prediction system, information processor, program and molding prediction method
Safari et al. Dependency evaluation of defect formation and printing location in additive manufacturing

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant