KR20230035894A - Manufacturing method of polymethylmethacrylate blown film - Google Patents

Manufacturing method of polymethylmethacrylate blown film Download PDF

Info

Publication number
KR20230035894A
KR20230035894A KR1020210118458A KR20210118458A KR20230035894A KR 20230035894 A KR20230035894 A KR 20230035894A KR 1020210118458 A KR1020210118458 A KR 1020210118458A KR 20210118458 A KR20210118458 A KR 20210118458A KR 20230035894 A KR20230035894 A KR 20230035894A
Authority
KR
South Korea
Prior art keywords
pmma
film
polymethyl methacrylate
resin
polyethylene
Prior art date
Application number
KR1020210118458A
Other languages
Korean (ko)
Inventor
박동일
이수정
허나영
심준엽
정희정
Original Assignee
주식회사 알앤에프케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알앤에프케미칼 filed Critical 주식회사 알앤에프케미칼
Priority to KR1020210118458A priority Critical patent/KR20230035894A/en
Publication of KR20230035894A publication Critical patent/KR20230035894A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/28Storing of extruded material, e.g. by winding up or stacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Abstract

The present invention provides a manufacturing method of a polymethyl methacrylate (PMMA) blown film. The manufacturing method comprises the steps of: supplying a polyethylene (PE) resin to each of a plurality of extruders of a blown film manufacturing device; supplying a polymethyl methacrylate (PMMA) resin to a separate extruder of the blown film manufacturing device; co-extruding the polymethyl methacrylate (PMMA) resin with a polyethylene melt-extrusion resin which is melt-extruded from the extruder to obtain a mixed melt-extruded resin; extruding the mixed melt-extruded resin into a tube and forming bubbles; compressing the bubbles to form a multilayer film in which a polyethylene (PE) film is laminated on both surfaces of a polymethyl methacrylate (PMMA) film; and peeling off the polyethylene (PE) film from the multilayer film and winding only the polymethyl methacrylate (PMMA) film. In the polymethyl methacrylate (PMMA) blown film manufactured according to the present invention, the molecular orientation of the resin occurs in both a machine direction (MD) and a machine transverse direction (TD). Therefore, the polymethyl methacrylate (PMMA) blown film can be biaxially stretched to improve physical properties.

Description

폴리메틸메타크릴레이트(PMMA) 블로운 필름 제조방법{Manufacturing method of polymethylmethacrylate blown film}Manufacturing method of polymethylmethacrylate (PMMA) blown film {Manufacturing method of polymethylmethacrylate blown film}

본 발명은 폴리메틸메타크릴레이트(PMMA) 블로운 필름 제조방법에 관한 것이다.The present invention relates to a method for producing a polymethyl methacrylate (PMMA) blown film.

폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA)는 흔히 아크릴이라고 부르는 메틸메타크릴레이트의 합성중합체로서, 투명성, 광학적 성질, 내마찰성, 인쇄적성이 우수하며, 장기간의 내후성과 투명성을 유지하고, 진공성형 가공 또한 용이하여 건축용 외판자재, 고휘도 반사필름, 자동차 내장재, 광학용도 등으로 다양하게 적용되고 있는 소재이다. Polymethylmethacrylate (PMMA) is a synthetic polymer of methyl methacrylate commonly called acrylic. It has excellent transparency, optical properties, abrasion resistance, and printability, maintains long-term weather resistance and transparency, and can be vacuum-formed. In addition, it is a material that is widely applied to exterior plate materials for construction, high-brightness reflective film, automobile interior materials, and optical applications.

최근에는 고강도의, 폭이 2,000 mm 이상인 장폭 PMMA 필름의 수요가 특히 증가하고 있으나, 종래의 PMMA 필름 생산 방식인 캐스팅 압출 방식에 따라서는 이와 같은 장폭 PMMA 필름 생산이 어려웠다. 또한, 캐스팅 압출 방식으로 생산한 PMMA 필름은 기계방향(MD)으로만 연신이 이루어지기 때문에 물성 면에서 개선의 여지가 많았다.Recently, demand for a high-strength, long-width PMMA film having a width of 2,000 mm or more is particularly increasing, but it is difficult to produce such a long-width PMMA film according to a casting extrusion method, which is a conventional PMMA film production method. In addition, since the PMMA film produced by the casting extrusion method is stretched only in the machine direction (MD), there is a lot of room for improvement in terms of physical properties.

대한민국 등록특허 제10-2106435호는 공압출에 의한 충격 개질 PMMA 필름 제조방법을 개시하고, 대한민국 등록특허 제10-0643549호는 필름-인서트 성형방법에 의한 표면 경화된 PMMA 필름의 제조방법을 개시하고 있으나, 물성이 향상된 장폭 PMMA 필름 생산에 대해서는 기술하고 있지 않다.Korean Patent Registration No. 10-2106435 discloses a method for manufacturing an impact-modified PMMA film by co-extrusion, and Korean Patent Registration No. 10-0643549 discloses a method for manufacturing a surface-cured PMMA film by a film-insert molding method. However, the production of long-width PMMA films with improved physical properties is not described.

용융수지를 압출기 원형 다이를 통과시켜 튜브 형태의 버블을 형성하고 이 버블 내부에 일정 수준의 공기를 불어 넣어 필름 폭을 결정한 후, 닙롤에 의해 접혀지고 튜브 형태로 권취되는 방법을 인플레이션 또는 튜브 공법이라 한다. The molten resin is passed through a circular die of an extruder to form a tube-shaped bubble, and a certain level of air is blown into the bubble to determine the film width, and then the film is folded by nip-rolls and wound into a tube. The method is called inflation or tube method. do.

본 발명자들은 인플레이션 또는 튜브 공법을 PMMA 블로운 필름 생산에 적용하여, 고강도 및 장폭의 PMMA 블로운 필름을 제조할 수 있음을 확인하고 본 발명을 완성하게 되었다.The present inventors have completed the present invention by confirming that a high-strength and long-width PMMA blown film can be manufactured by applying the inflation or tube method to the production of a PMMA blown film.

KRKR 10-2106435 10-2106435 B1B1 KRKR 10-0643549 10-0643549 B1B1

본 발명은 우수한 물성을 갖는 장폭 폴리메틸메타크릴레이트(PMMA) 블로운 필름의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a long-width polymethyl methacrylate (PMMA) blown film having excellent physical properties.

상기 과제를 해결하기 위해, 본 발명은 In order to solve the above problems, the present invention

a) 폴리에틸렌(PE) 수지를 블로운 필름 제조장치의 제1 압출기 및 제3 압출기에 각각 공급하는 단계; b) 폴리메틸메타크릴레이트(PMMA) 수지를 블로운 필름 제조장치의 제2 압출기에 공급하는 단계; c) 상기 제1 압출기 및 제3 압출기에서 용융 압출되어 나오는 각각의 폴리에틸렌 용융 압출 수지와 함께 폴리메틸메타크릴레이트(PMMA) 수지를 공압출하여 혼합 용융 압출 수지를 얻는 단계; d) 상기 혼합 용융 압출 수지를 원형상의 다이(Die)로 통과시켜 튜브 상태로 압출하고 버블을 형성하는 단계; e) 상기 버블을 닙롤(nip roll) 사이로 통과시킴으로써 압착해서 폴리메틸메타크릴레이트(PMMA) 필름의 양 면에 폴리에틸렌(PE) 필름이 적층된 다층 필름을 형성하는 단계; 및 f) 상기 다층 필름으로부터 폴리에틸렌(PE) 필름을 박리시키고 폴리메틸메타크릴레이트(PMMA) 필름만 권취하는 단계를 포함하는 폴리메틸메타크릴레이트(PMMA) 블로운 필름 제조방법을 제공한다. a) supplying polyethylene (PE) resin to the first extruder and the third extruder of the blown film manufacturing apparatus, respectively; b) supplying polymethyl methacrylate (PMMA) resin to the second extruder of the blown film manufacturing apparatus; c) obtaining a mixed melt extrusion resin by co-extruding a polymethyl methacrylate (PMMA) resin with each polyethylene melt extrusion resin melt-extruded from the first extruder and the third extruder; d) passing the mixed melt extrusion resin through a circular die to extrude it into a tube state and form bubbles; e) forming a multi-layer film in which polyethylene (PE) films are laminated on both sides of a polymethyl methacrylate (PMMA) film by compressing the bubble by passing it through nip rolls; and f) peeling the polyethylene (PE) film from the multilayer film and winding only the polymethyl methacrylate (PMMA) film.

또한, 본 발명은 상기 제조방법에 따라 제조한 폴리메틸메타크릴레이트(PMMA) 블로운 필름을 제공한다.In addition, the present invention provides a polymethyl methacrylate (PMMA) blown film prepared according to the above manufacturing method.

본 발명에 따르면 폭이 2,000~4,000 mm인 장폭 PMMA 블로운 필름을 제조할 수 있다. According to the present invention, a long-width PMMA blown film having a width of 2,000 to 4,000 mm can be manufactured.

본 발명에 따라 제조한 PMMA 블로운 필름은 수지의 분자배향이 기계방향(MD)과 기계직각방향(TD) 양쪽으로 일어나기 때문에 이축연신되어 물성이 향상될 수 있다.The PMMA blown film prepared according to the present invention can be biaxially stretched to improve physical properties because the molecular orientation of the resin occurs in both the machine direction (MD) and the machine direction (TD).

본 발명에 따라 제조되는 PMMA 블로운 필름은 팽창비 조정에 따라 분자배향 조절이 가능하므로 기계방향(MD) 및 기계직각방향(TD) 양방향 물성의 균형을 맞출 수 있는 장점이 있다. Since the PMMA blown film manufactured according to the present invention can adjust the molecular orientation according to the adjustment of the expansion ratio, it has the advantage of balancing physical properties in both the machine direction (MD) and the machine direction (TD) direction.

도 1은 블로운 필름 제조장치의 일 례를 모식적으로 나타낸 것이다.
도 2는 본 발명에 따라 제조한 폴리메틸메타크릴레이트(PMMA) 필름(B)의 양 면에 폴리에틸렌(PE) 필름(A-1, A-2)이 적층된 다층 필름을 모식적으로 나타낸 것이다.
1 schematically shows an example of a blown film manufacturing apparatus.
2 schematically shows a multilayer film in which polyethylene (PE) films (A-1 and A-2) are laminated on both sides of a polymethyl methacrylate (PMMA) film (B) prepared according to the present invention. .

도 1은 스크류(Screw)를 구비하는 압출기(Extruder, 10), 블로운 필름 다이(blown film die, 20), 에어 링(air ring, 30), 닙롤(nip roll, 40) 등으로 구성되는 블로운 필름 제조장치의 일 례를 모식적으로 나타낸 것이다. 1 is a block composed of an extruder (10) having a screw, a blown film die (20), an air ring (30), a nip roll (40), and the like. It schematically shows an example of a new film manufacturing apparatus.

도 1을 참조하면, 본 발명의 폴리메틸메타크릴레이트(PMMA) 블로운 필름 제조방법은, 압출기(10) 배럴에서 용융시킨 폴리에틸렌(PE) 수지 및 폴리메틸메타크릴레이트(PMMA) 수지로 이루어진 혼합 용융 수지(80)를 원형상의 블로운 필름 다이(20)로 통과시켜 필름을 형성시킴과 동시에 공랭식으로 냉각하고 냉각된 필름을 튜브 형태로 성형하고 이 튜브내에 공기를 넣어 팽창시키고 동시에 에어링(30)을 통해 튜브 외측으로 냉각공기를 넣어 "버블(Bubble)"이라고 지칭되기도 하는 팽창된 튜브를 만든 다음, 버블을 닙롤(40)에서 권취(Take off)하고 수 개의 가이드롤(Guide Roll)을 거쳐 와인더(70)로 PE 만을 박리시켜 PMMA 필름만을 단독으로 권취하는 공정일 수 있다. Referring to FIG. 1, the polymethyl methacrylate (PMMA) blown film manufacturing method of the present invention is a mixture of polyethylene (PE) resin and polymethyl methacrylate (PMMA) resin melted in the extruder 10 barrel. The molten resin 80 is passed through a circular blown film die 20 to form a film, and at the same time cooled by air cooling, the cooled film is molded into a tube shape, air is injected into the tube to expand it, and at the same time an air ring 30 Cooling air is introduced to the outside of the tube to create an inflated tube, also referred to as "bubble", and then the bubble is taken off from the nip roll 40 and passed through several guide rolls. It may be a process of peeling only the PE with the further 70 and winding only the PMMA film alone.

도 2는 본 발명의 제조공정 중에 얻어지는 폴리메틸메타크릴레이트(PMMA) 필름(B)의 양 면에 폴리에틸렌(PE) 필름(A-1, A-2)이 적층된 다층 필름을 모식적으로 나타낸 것이다.Figure 2 schematically shows a multilayer film in which polyethylene (PE) films (A-1, A-2) are laminated on both sides of a polymethyl methacrylate (PMMA) film (B) obtained during the manufacturing process of the present invention. will be.

본 발명의 제조방법은 코어 층(core layer)으로서 폴리메틸메타크릴레이트(PMMA) 필름(B)의 양 면에 스킨 층(skin layer) 내지 지지필름으로서 폴리에틸렌(PE) 필름(A-1, A-2)이 적층된 다층 필름을 제조하는 단계를 포함한다.The manufacturing method of the present invention is a skin layer (skin layer) on both sides of the polymethyl methacrylate (PMMA) film (B) as a core layer (core layer) or a polyethylene (PE) film (A-1, A as a support film) -2) manufacturing a multilayer film in which these are laminated.

상기 다층 필름에서 폴리에틸렌(PE) 필름(A-1, A-2)은 폴리메틸메타크릴레이트(PMMA) 수지가 안정적으로 버블 성형될 수 있도록 지지대 역할을 한다.In the multilayer film, the polyethylene (PE) films (A-1 and A-2) serve as a support so that the polymethyl methacrylate (PMMA) resin can be bubble molded stably.

상기 단계 a)에서 폴리에틸렌(PE) 수지는 압출 및 블로잉 중 폴리메틸메타크릴레이트(PMMA) 필름의 지지체 역할을 할 수 있도록 2개의 압출기(제1 압출기, 제2 압출기)로 별도 공급된다.In step a), polyethylene (PE) resin is separately supplied to two extruders (a first extruder and a second extruder) to serve as a support for the polymethyl methacrylate (PMMA) film during extrusion and blowing.

상기 폴리에틸렌(PE) 수지는 저밀도폴리에틸렌(LDPE), 선형저밀도폴리에틸렌(LLDPE) 또는 이들의 혼합물일 수 있다.The polyethylene (PE) resin may be low density polyethylene (LDPE), linear low density polyethylene (LLDPE), or a mixture thereof.

상기 폴리에틸렌(PE) 수지는 분자량 분포가 상대적으로 넓고 저밀도 폴리에틸렌(LDPE)가 가장 적합하며, 선형저밀도폴리에틸렌(LLDPE)와 저밀도폴리에틸렌(LDPE)를 혼합하여 제품 생산도 가능하다. 저밀도 폴리에틸렌(LDPE)은 낮은 전단 속도 (1 s-1 이하)에서는 높은 점도를 나타냄으로써 중공 성형 시 패리손(parison)의 안정성에 기여하며 실제 압출가공영역(102~103 s-1)에서는 낮은 점도를 보여 가공부하가 낮게 되는 장점을 갖는다. 또한 저밀도 폴리에틸렌(LDPE) 수지는 LLDPE나 HDPE에 비해 많은 장쇄 분지를 갖기 때문에 용융장력이 상대적으로 높아 블로운 필름 압출 시 버블의 안정성, 압출코팅에서의 Neck-in 문제가 덜 발생하는 장점을 갖는다. The polyethylene (PE) resin has a relatively wide molecular weight distribution, and low density polyethylene (LDPE) is most suitable, and products can be produced by mixing linear low density polyethylene (LLDPE) and low density polyethylene (LDPE). Low-density polyethylene (LDPE) exhibits high viscosity at low shear rates (less than 1 s-1), contributing to parison stability during blow molding, and low viscosity in the actual extrusion processing range (102 ~ 103 s-1) It has the advantage that the processing load is low. In addition, since low-density polyethylene (LDPE) resin has more long-chain branches than LLDPE or HDPE, it has relatively high melt tension, so it has the advantage of bubble stability during blown film extrusion and less neck-in problems in extrusion coating.

본 발명에서 폴리에틸렌(PE) 수지는 폴리메틸메타크릴레이트(PMMA) 수지와 함께 공압출되어, 압출 및 블로잉 중 폴리메틸메타크릴레이트(PMMA) 수지가 안정적으로 버블 성형될 수 있게 지지체로서 역할을 한다.In the present invention, polyethylene (PE) resin is co-extruded with polymethyl methacrylate (PMMA) resin, and serves as a support so that polymethyl methacrylate (PMMA) resin can be bubble molded stably during extrusion and blowing. .

폴리에틸렌(PE) 수지는 비극성 성질을 가지므로 폴리메틸메타크릴레이트(PMMA) 필름의 양 면에 폴리에틸렌(PE) 필름이 적층된 경우에도 극성인 폴리메틸메타크릴레이트(PMMA) 필름과 부착되지 않고 와인더(winder)를 이용하여 박리시킬 수 있다.Polyethylene (PE) resin has a non-polar property, so even when polyethylene (PE) films are laminated on both sides of the polymethyl methacrylate (PMMA) film, it does not adhere to the polar polymethyl methacrylate (PMMA) film and wine It can be peeled off using a winder.

상기 폴리에틸렌(PE) 수지는 ASTM (D-1238)에 따라서 190℃/2.16 kg 하중 조건하에 측정하였을 때 용융 지수(MI)가 0.3 내지 5 g/10분 인 것이 바람직하다.The polyethylene (PE) resin preferably has a melt index (MI) of 0.3 to 5 g/10 min when measured under a load condition of 190° C./2.16 kg according to ASTM (D-1238).

저밀도 폴리에틸렌(LDPE) 수지를 사용하는 경우 용융 지수(MI)가 0.3 내지 3 g/10분인 것이 바람직하고, 선형 저밀도 폴리에틸렌(LLDPE) 수지를 사용하는 경우 용융 지수(MI)가 1 내지 3 g/10분 인 것이 더욱 바람직하다.When using a low-density polyethylene (LDPE) resin, the melt index (MI) is preferably 0.3 to 3 g/10 min, and when using a linear low-density polyethylene (LLDPE) resin, the melt index (MI) is 1 to 3 g/10 Minutes are more preferred.

상기 폴리에틸렌(PE) 수지는 분자량이 120,000 내지 140,000 g/mol일 수 있다.The polyethylene (PE) resin may have a molecular weight of 120,000 to 140,000 g/mol.

상기 폴리메틸메트아크릴레이트(PMMA) 수지는 ASTM (ASTM D1238)에 따라서 230℃/2.16 kg 하중 조건하에 측정하였을 때 용융 지수(MI)가 3 내지 5 g/10분 인 것이 바람직하고, 1 내지 3 g/10분 인 것이 더욱 바람직하다.The polymethyl methacrylate (PMMA) resin preferably has a melt index (MI) of 3 to 5 g/10 min, when measured under a load condition of 230° C./2.16 kg according to ASTM (ASTM D1238), and More preferably g/10 min.

상기 폴리메틸메트아크릴레이트(PMMA) 수지는 분자량이 260,000 내지 400,000 g/mol일 수 있다. The polymethyl methacrylate (PMMA) resin may have a molecular weight of 260,000 to 400,000 g/mol.

상기 단계 c)에서 공압출은 100 내지 260℃에서 수행될 수 있으나, 이에 제한되지는 않는다.Co-extrusion in step c) may be performed at 100 to 260 ° C, but is not limited thereto.

상기 단계 d)는 폴리에틸렌 용융 수지와 폴리메틸메타크릴레이트 용융 수지로 이루어진 혼합 용융 압출 수지를 원형상의 다이(Die)로 통과시켜 "버블 (bubble)" 로도 공지된 튜브형 필름을 형성하는 단계일 수 있다. Step d) may be a step of forming a tubular film, also known as “bubble”, by passing a mixed melt extrusion resin composed of polyethylene molten resin and polymethyl methacrylate molten resin through a circular die. .

상기 단계 d)는 버블의 내부 안으로 공기를 주입시켜 원하는 직경까지 버블을 팽창시키는 단계일 수 있다.Step d) may be a step of inflating the bubble to a desired diameter by injecting air into the inside of the bubble.

상기 공기의 압력은, 버블의 직경을 다이의 직경으로 나눈 것으로 정의되는, 블로우-업 (blow-up) 비율에 의해 특징화될 수 있다.The air pressure can be characterized by the blow-up ratio, defined as the diameter of the bubble divided by the diameter of the die.

또한, 상기 버블 크기는 얻고자 하는 블로운 필름의 폭에 따라 조절될 수 있다.In addition, the bubble size may be adjusted according to the width of the blown film to be obtained.

일 례로 버블의 직경을 450 내지 1,273 mm로 조절함으로써, 1,413 내지 4,000 mm 폭의 블로운 필름을 제조할 수 있다.For example, a blown film having a width of 1,413 to 4,000 mm may be manufactured by adjusting the diameter of the bubble to be 450 to 1,273 mm.

상기 단계 e)에서 버블은 냉각되어 필름 형태로 성형될 수 있다. In step e), the bubbles may be cooled and molded into a film form.

냉각은 공냉식 또는 수냉식일 수 있다. 공냉식은 냉각 공기를 필름 표면에 접선 방향으로 흐르게 하거나, 전체 튜브 성형 구간 내에서 필름 표면에 대해 수직 방향으로 흐르게 하는 과정일 수 있다. 냉각 속도에 따라 수지의 결정 구조가 변화되므로 수냉식의 경우 투명성이 우수한 필름을 만들 수 있다Cooling can be air-cooled or water-cooled. Air-cooling may be a process of flowing cooling air in a tangential direction to the film surface or in a direction perpendicular to the film surface within the entire tube forming section. Since the crystal structure of the resin changes depending on the cooling rate, a film with excellent transparency can be made in the case of water cooling.

상기 단계 e)에서 필름 형태로 성형된 버블은 닙롤(nip roll) 사이로 통과되면서 필름으로 평평해지며 폴리메틸메타크릴레이트(PMMA) 필름의 양 면에 폴리에틸렌(PE) 필름이 적층된 다층 필름을 형성할 수 있다. 이때 적층은 부착을 의미하는 것은 아니다. 폴리에틸렌(PE) 필름은 비극성 성질을 가지므로 극성의 성질을 갖는 폴리메틸메타크릴레이트(PMMA) 필름과 부착되지 않는다.The bubble formed in the form of a film in step e) is flattened into a film while passing between nip rolls, and polyethylene (PE) films are laminated on both sides of the polymethyl methacrylate (PMMA) film to form a multilayer film. can do. At this time, lamination does not mean attachment. Since the polyethylene (PE) film has a non-polar property, it is not attached to a polymethyl methacrylate (PMMA) film having a polar property.

상기 단계 e)에서 닙롤(nip roll) 속도는 10m/min 내지 20m/min로 조절될 수 있다. 10m/min 미만이면 튜브 성형이 불가할 수 있으며, 20m/min 초과이면 필름 권취 시 주름으로 인해 품질 불량이 발생할 수 있다.In step e), the nip roll speed may be adjusted to 10 m/min to 20 m/min. If it is less than 10 m/min, tube molding may not be possible, and if it exceeds 20 m/min, quality defects may occur due to wrinkles during film winding.

압출량이 일정할 때 닙롤 속도 조절에 따라 필름의 두께가 조절될 수 있다. When the amount of extrusion is constant, the thickness of the film can be controlled by adjusting the speed of the nip roll.

바람직하게는 필름의 두께는 닙롤 속도 조절에 의해 20㎛ 내지 100㎛로 조절된다. 20㎛ 미만이면 필름이 중간에 끊어져 정상적인 필름 권취가 불가할 수 있으며, 100㎛ 초과이면 버블 성형이 불가할 수 있다.Preferably, the thickness of the film is adjusted to 20 μm to 100 μm by adjusting the nip roll speed. If it is less than 20 μm, the film may be cut in the middle and normal film winding may not be possible, and if it is more than 100 μm, bubble molding may not be possible.

상기 단계 f)에서는 별도의 와인더(winder)를 이용하여 다층 필름으로부터 폴리에틸렌(PE) 필름을 박리시킬 수 있다.In step f), the polyethylene (PE) film may be peeled from the multilayer film using a separate winder.

폴리에틸렌(PE) 필름은 비극성 성질을 가지므로 극성인 폴리메틸메타크릴레이트(PMMA) 필름과 부착되지 않은 상태이므로 별도의 와인더(winder)를 이용하여 폴리메틸메타크릴레이트(PMMA) 필름에 영향을 주지 않으면서 폴리에틸렌(PE) 필름을 박리시킬 수 있다.Since the polyethylene (PE) film has a non-polar property, it is not attached to the polar polymethyl methacrylate (PMMA) film, so it is not affected by the polymethyl methacrylate (PMMA) film by using a separate winder. The polyethylene (PE) film can be peeled off without giving.

본 발명의 제조방법에 따라 블로운 압출 방식으로 PMMA 필름을 생산 시 튜브 형태로 생산되는 필름의 한 쪽 가장 자리만 절개하여 권취하고, 가공 시 펼쳐 사용하면 폭이 700 ~ 4,000㎜, 바람직하게는 2,000 ~ 4,000 mm, 더욱 바람직하게는 3,000 ~ 4,000 mm인 장폭 필름을 생산할 수 있다.When producing a PMMA film by the blown extrusion method according to the manufacturing method of the present invention, only one edge of the film produced in the form of a tube is cut and wound, and when used unfolded during processing, the width is 700 to 4,000 mm, preferably 2,000 mm. It is possible to produce long-width films of ~ 4,000 mm, more preferably 3,000 ~ 4,000 mm.

본 발명에 따라 제조한 폴리메틸메타크릴레이트(PMMA) 블로운 필름은 실험 결과 인장강도, 연신율, 충격강도, 인열강도 모두 캐스팅 필름에 비해 훨씬 우수하였다.The polymethyl methacrylate (PMMA) blown film prepared according to the present invention was far superior to the cast film in tensile strength, elongation, impact strength, and tear strength as a result of the experiment.

본 발명에 따라 제조한 폴리메틸메타크릴레이트(PMMA) 블로운 필름은 인장강도가 310 kgf/㎠ 이상이고, 연신율이 60% 이상이고, 충격강도가 140 J/m 이상이고, 인열강도가 4 gf 이상일 수 있다.The polymethyl methacrylate (PMMA) blown film prepared according to the present invention has a tensile strength of 310 kgf/cm 2 or more, an elongation of 60% or more, an impact strength of 140 J/m or more, and a tear strength of 4 It can be more than gf.

따라서, 본 발명의 폴리메틸메타크릴레이트(PMMA) 블로운 필름은 건축용 외판자재, 고휘도 반사필름, 자동차 내장재, 광학용 소재로 매우 유용하다.Therefore, the polymethyl methacrylate (PMMA) blown film of the present invention is very useful as an exterior panel material for construction, a high-brightness reflective film, an automobile interior material, and an optical material.

이하, 본 발명의 실시예를 통하여 더욱 상세하게 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, an embodiment of the present invention will be described in more detail. These examples are only presented as an example to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples. .

<재료><Material>

폴리에틸렌(PE) 수지 : MI가 1.6 g/10 min, 분자량이 120,000~140,000 g/mol이고, 제조사는 한화케미칼Polyethylene (PE) resin: MI 1.6 g/10 min, molecular weight 120,000 ~ 140,000 g/mol, manufacturer Hanwha Chemical

폴리메틸메타크릴레이트(PMMA) 수지 : MI가 3 g/10 min, 분자량이 260,000~400,000 g/mol이고, 제조사는 LX MMA.Polymethyl methacrylate (PMMA) resin: MI 3 g/10 min, molecular weight 260,000-400,000 g/mol, manufacturer LX MMA.

<실시예 1> 블로운 필름의 제조<Example 1> Preparation of blown film

50 mm 의 다이 직경, 2.5 의 블로잉 속도, 네크 없이, 그리고 1.4 mm 의 다이 간격을 특징으로 하는 저밀도 구조를 이용하는 블로운 필름 라인 장치 상에서 블로잉 압출하였다. 버블의 냉각을 실온의 공기를 통해서 수행하였고, 이는 오로지 버블의 바깥쪽에서 12 kg/h 의 속도로 수행하였다.Blow extrusion was performed on a blown film line apparatus using a low density structure featuring a die diameter of 50 mm, a blowing speed of 2.5, no neck, and a die spacing of 1.4 mm. Cooling of the bubble was carried out via room temperature air, which was carried out only outside the bubble at a rate of 12 kg/h.

상기 폴리에틸렌(PE) 수지를 제1 압출기 및 제3 압출기에 각각 공급하고, 상기 폴리메틸메타크릴레이트(PMMA) 수지를 제2 압출기에 공급하고, 상기 제1 압출기 및 제3 압출기에서 용융 압출되어 나오는 각각의 폴리에틸렌 용융 압출 수지와 함께 폴리메틸메타크릴레이트(PMMA) 수지를 240 ℃에서 공압출하여 혼합 용융 압출 수지를 얻은 다음, 원형상의 다이(Die)로 통과시켜 튜브 상태로 압출하고 버블을 형성하였다. 이때 버블의 직경은 955mm로 조절하였다. 상기 버블을 17m/min 속도의 닙롤(nip roll) 사이로 통과시켜 폴리메틸메타크릴레이트(PMMA) 필름의 양 면에 폴리에틸렌(PE) 필름(두께: 20㎛)이 적층된 다층 필름을 수득하였다. 별도의 와인더를 이용하여 상기 다층 필름으로부터 폴리에틸렌 필름을 박리시켜 폭이 3000mm인 폴리메틸메타크릴레이트(PMMA) 필름(두께: 100㎛)을 수득하였다. The polyethylene (PE) resin is supplied to the first extruder and the third extruder, respectively, and the polymethyl methacrylate (PMMA) resin is supplied to the second extruder, and is melt-extruded from the first extruder and the third extruder. Polymethyl methacrylate (PMMA) resin was co-extruded at 240 ° C. with each polyethylene melt extrusion resin to obtain a mixed melt extrusion resin, and then passed through a circular die to extrude into a tube state and form bubbles. . At this time, the diameter of the bubble was adjusted to 955 mm. The bubble was passed between nip rolls at a speed of 17 m/min to obtain a multilayer film in which polyethylene (PE) films (thickness: 20 μm) were laminated on both sides of the polymethyl methacrylate (PMMA) film. A polymethyl methacrylate (PMMA) film (thickness: 100 μm) having a width of 3000 mm was obtained by peeling the polyethylene film from the multilayer film using a separate winder.

<비교예 1> 캐스팅 필름의 제조<Comparative Example 1> Preparation of casting film

3-레이어 T-다이 캐스트 압출(3-layer T-die cast extrusion) 방법을 사용하여 폴리메틸메타크릴레이트(PMMA) 필름(두께: 100㎛)의 양 면에 폴리에틸렌(PE) 필름이 적층된 다층 필름을 수득하였다. 이 때 폴리메틸메타크릴레이트(PMMA) 필름의 폭은 1,500mm이었다.Multi-layer polyethylene (PE) film laminated on both sides of a polymethyl methacrylate (PMMA) film (thickness: 100㎛) using a 3-layer T-die cast extrusion method A film was obtained. At this time, the width of the polymethyl methacrylate (PMMA) film was 1,500 mm.

<실험예 1><Experimental Example 1>

실시예 1에서 제조한 블로운 필름과, 비교예 1에서 제조한 캐스팅 필름의 물성을 비교하기 위해, 하기 표 1에 기재된 실험방법에 의해 인장강도, 연신율, 충격강도, 인열강도를 측정하여 그 결과를 하기 표 1에 나타내었다.In order to compare the physical properties of the blown film prepared in Example 1 and the cast film prepared in Comparative Example 1, the tensile strength, elongation, impact strength, and tear strength were measured by the experimental method described in Table 1 below. The results are shown in Table 1 below.

구분division 인장강도 tensile strength
[kgf/cm[kgf/cm 22 ]]
연신율 elongation rate
[%][%]
충격강도 [J/m]Impact strength [J/m] 인열강도tear strength
[gf][gf]
MDMD TDTD MDMD TDTD PMMA 필름PMMA film
(100 ㎛)(100 μm)
캐스팅 필름casting film
(비교예 1)(Comparative Example 1)
350350 270270 8585 5050 120 이하below 120 2.52.5
블로운 필름blown film
(실시예 1)(Example 1)
400400 310310 9090 6060 140140 44
시험방법Test Methods ASTM D882ASTM D882 ASTM D882ASTM D882 ASTM D785ASTM D785 KS M ISO 6383-2:2010KS M ISO 6383-2:2010

상기 표 1에서 보는 바와 같이, 비교예 1에서 제조한 캐스팅 필름에 비해 실시예 1에서 제조한 블로운 필름이 인장강도, 연신율, 충격강도, 인열강도 모두가 훨씬 우수하였다.As shown in Table 1, the blown film prepared in Example 1 was far superior to the cast film prepared in Comparative Example 1 in tensile strength, elongation, impact strength, and tear strength.

10: 압출기
20: 블로운 필름 다이
30: 에어 링
40: 닙 롤
50: 튜브 붕괴 프레임(tube collapsing frame)
60: 엣지 트림(edge trim)
70: 와인더(winder)
80: 혼합 용융 수지
10: extruder
20: blown film die
30: air ring
40: nip roll
50: tube collapsing frame
60: edge trim
70: winder
80: mixed molten resin

Claims (12)

a) 폴리에틸렌(PE) 수지를 블로운 필름 제조장치의 제1 압출기 및 제3 압출기에 각각 공급하는 단계;
b) 폴리메틸메타크릴레이트(PMMA) 수지를 블로운 필름 제조장치의 제2 압출기에 공급하는 단계;
c) 상기 제1 압출기 및 제3 압출기에서 용융 압출되어 나오는 각각의 폴리에틸렌 용융 압출 수지와 함께 폴리메틸메타크릴레이트(PMMA) 수지를 공압출하여 혼합 용융 압출 수지를 얻는 단계;
d) 상기 혼합 용융 압출 수지를 원형상의 다이(Die)로 통과시켜 튜브 상태로 압출하고 버블을 형성하는 단계;
e) 상기 버블을 닙롤(nip roll) 사이로 통과시킴으로써 압착해서 폴리메틸메타크릴레이트(PMMA) 필름의 양 면에 폴리에틸렌(PE) 필름이 적층된 다층 필름을 형성하는 단계; 및
f) 상기 다층 필름으로부터 폴리에틸렌(PE) 필름을 박리시키고 폴리메틸메타크릴레이트(PMMA) 필름만 권취하는 단계
를 포함하는 폴리메틸메타크릴레이트(PMMA) 블로운 필름 제조방법.
a) supplying polyethylene (PE) resin to the first extruder and the third extruder of the blown film manufacturing apparatus, respectively;
b) supplying polymethyl methacrylate (PMMA) resin to the second extruder of the blown film manufacturing apparatus;
c) obtaining a mixed melt extrusion resin by co-extruding a polymethyl methacrylate (PMMA) resin with each polyethylene melt extrusion resin melt-extruded from the first extruder and the third extruder;
d) passing the mixed melt extrusion resin through a circular die to extrude it into a tube state and form bubbles;
e) forming a multi-layer film in which polyethylene (PE) films are laminated on both sides of a polymethyl methacrylate (PMMA) film by compressing the bubble by passing it through nip rolls; and
f) peeling the polyethylene (PE) film from the multilayer film and winding only the polymethyl methacrylate (PMMA) film
Polymethyl methacrylate (PMMA) blown film manufacturing method comprising a.
제1항에 있어서,
상기 폴리에틸렌(PE) 수지는 저밀도폴리에틸렌(LDPE), 선형저밀도폴리에틸렌(LLDPE) 또는 이들의 혼합물인 것인 제조방법.
According to claim 1,
The polyethylene (PE) resin is low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), or a mixture thereof.
제1항에 있어서,
상기 폴리에틸렌(PE) 수지는 ASTM (D-1238)에 따라서 190℃/2.16 kg 하중 조건하에 측정하였을 때 용융 지수(MI)가 0.3 내지 5 g/10분이고, 분자량이 120,000 내지 140,000g/mol인 것인 제조방법.
According to claim 1,
The polyethylene (PE) resin has a melt index (MI) of 0.3 to 5 g/10 min and a molecular weight of 120,000 to 140,000 g/mol when measured under a load condition of 190° C./2.16 kg according to ASTM (D-1238) Phosphorus manufacturing method.
제1항에 있어서,
상기 폴리메틸메트아크릴레이트(PMMA) 수지는 ASTM (ASTM D1238)에 따라서 230℃/2.16 kg 하중 조건하에 측정하였을 때 용융 지수(MI)가 3 내지 5 g/10분이고, 분자량이 260,000 내지 400,000g/mol인 것인 제조방법.
According to claim 1,
The polymethylmethacrylate (PMMA) resin has a melt index (MI) of 3 to 5 g/10 min and a molecular weight of 260,000 to 400,000 g/10 min when measured under a load condition of 230° C./2.16 kg according to ASTM (ASTM D1238). A manufacturing method that will be mol.
제1항에 있어서,
상기 단계 c)에서 공압출은 100 내지 260 ℃에서 수행되는 것인 제조방법.
According to claim 1,
The co-extrusion in step c) is a manufacturing method that is carried out at 100 to 260 ℃.
제1항에 있어서,
상기 단계 d)에서 버블의 직경을 450 내지 1,273 ㎜로 조절하는 것인 제조방법.
According to claim 1,
A manufacturing method in which the diameter of the bubble is adjusted to 450 to 1,273 mm in step d).
제1항에 있어서,
상기 단계 e)에서 압출량이 일정할 때 닙롤(Nip roll) 속도를 10m/min 내지 20m/min로 조절하여 상기 폴리메틸메타크릴레이트(PMMA) 블로운 필름의 두께를 20㎛ 내지 100㎛로 조절하는 것인 제조방법.
According to claim 1,
When the extrusion amount is constant in step e), the thickness of the polymethyl methacrylate (PMMA) blown film is adjusted to 20 μm to 100 μm by adjusting the nip roll speed to 10 m / min to 20 m / min manufacturing method.
제1항에 있어서,
상기 단계 f)에서는 별도의 와인더(winder)를 이용하여 다층 필름으로부터 폴리에틸렌(PE) 필름을 박리시키는 것인 제조방법.
According to claim 1,
In the step f), the manufacturing method of peeling the polyethylene (PE) film from the multilayer film using a separate winder.
제1항에 있어서,
상기 폴리메틸메타크릴레이트(PMMA) 블로운 필름의 폭은 700 내지 4,000 mm인 것인 제조방법.
According to claim 1,
The width of the polymethyl methacrylate (PMMA) blown film is a manufacturing method of 700 to 4,000 mm.
제1항 내지 제9항 중 어느 한 항에 따라 제조한 폴리메틸메타크릴레이트(PMMA) 블로운 필름.
A polymethylmethacrylate (PMMA) blown film prepared according to any one of claims 1 to 9.
제10항에 있어서,
상기 폴리메틸메타크릴레이트(PMMA) 블로운 필름의 폭은 700 내지 4,000 mm인 것인 폴리메틸메타크릴레이트(PMMA) 블로운 필름.
According to claim 10,
The width of the polymethyl methacrylate (PMMA) blown film is 700 to 4,000 mm of polymethyl methacrylate (PMMA) blown film.
제11항에 있어서,
상기 폴리메틸메타크릴레이트(PMMA) 블로운 필름은 인장강도가 310 kgf/㎠ 이상이고, 연신율이 60% 이상이고, 충격강도가 140 J/m 이상이고, 인열강도가 4 gf 이상인 것인 폴리메틸메타크릴레이트(PMMA) 블로운 필름.
According to claim 11,
The polymethyl methacrylate (PMMA) blown film has a tensile strength of 310 kgf / cm 2 or more, an elongation of 60% or more, an impact strength of 140 J / m or more, and a tear strength of 4 gf or more. Methyl methacrylate (PMMA) blown film.
KR1020210118458A 2021-09-06 2021-09-06 Manufacturing method of polymethylmethacrylate blown film KR20230035894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210118458A KR20230035894A (en) 2021-09-06 2021-09-06 Manufacturing method of polymethylmethacrylate blown film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210118458A KR20230035894A (en) 2021-09-06 2021-09-06 Manufacturing method of polymethylmethacrylate blown film

Publications (1)

Publication Number Publication Date
KR20230035894A true KR20230035894A (en) 2023-03-14

Family

ID=85503016

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210118458A KR20230035894A (en) 2021-09-06 2021-09-06 Manufacturing method of polymethylmethacrylate blown film

Country Status (1)

Country Link
KR (1) KR20230035894A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643549B1 (en) 1997-12-05 2006-11-10 룀 게엠베하 Method for producing surface-hardened PMMA films which are highly glossy on both sides, free of gel bodies and can be manipulated in the ?film-insert-moulding? method
KR102106435B1 (en) 2012-04-27 2020-05-04 룀 게엠베하 Co-extruded impact-modified pmma film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643549B1 (en) 1997-12-05 2006-11-10 룀 게엠베하 Method for producing surface-hardened PMMA films which are highly glossy on both sides, free of gel bodies and can be manipulated in the ?film-insert-moulding? method
KR102106435B1 (en) 2012-04-27 2020-05-04 룀 게엠베하 Co-extruded impact-modified pmma film

Similar Documents

Publication Publication Date Title
EP2109534B1 (en) Heat shrinkable foamed sheet
US3888609A (en) Apparatus for producing films in accordance with the blown tube process
US20080272523A1 (en) Manufacturing apparatus and manufacturing method for tubular resin film
JPS61121925A (en) Manufacture of air permeable film
EP1112167B1 (en) Method for producing a biaxially oriented opaque film from a foamed orientable thermoplastic polymer
KR100863058B1 (en) Process for the production of an oriented plastic film
EP1112163B1 (en) Bioriented polyethylene film with a high water vapor transmission rate
CN110303748B (en) Thinner polyolefin shrink film and production process thereof
JP2005297544A (en) Polypropylene type laminated film and package using it
EP3677401B1 (en) Resin for foam molding, foam molded article, and method for producing foam molded article
JP4351168B2 (en) Method for producing polybutylene terephthalate film
KR20230035894A (en) Manufacturing method of polymethylmethacrylate blown film
KR20020073307A (en) Manufacturing method of film-like materials of resin and film-like materials of resin
CA2514919C (en) Manufacturing apparatus for tubular resin film
JPS63193821A (en) Manufacture of film from semicrystalline molten polymer through coextrusion blow molding of tube
JP2000211008A (en) Preparation of pearl lustrous synthetic paper of biaxially orientated polypropylene(bopp) with thickness of 25-250 micron obtained by three-layer coextrusion system
CN113056507A (en) Film for coating metal plate and resin-coated metal plate
JP2002363324A (en) Plastic sheet foamed in gradient manner and manufacturing method therefor
CN114643696B (en) Device and method for blow molding of spiral differential runner of inner and outer mouth molds of crossed film
JP2001064415A (en) Polyamide film improved in sliding property and production of the same film
JP3436579B2 (en) Polyethylene resin for blown film molding and method for producing film
JP2002264161A (en) Method for producing resin film
CN114311898A (en) Polypropylene film for cold-mounted composite film, preparation method of polypropylene film and cold-mounted composite film
CN116261520A (en) Biaxially oriented polyester film and laminate
JP2019202481A (en) Film production method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination