KR20230033027A - 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 - Google Patents

부호화 방법 및 그 장치, 복호화 방법 및 그 장치 Download PDF

Info

Publication number
KR20230033027A
KR20230033027A KR1020237006622A KR20237006622A KR20230033027A KR 20230033027 A KR20230033027 A KR 20230033027A KR 1020237006622 A KR1020237006622 A KR 1020237006622A KR 20237006622 A KR20237006622 A KR 20237006622A KR 20230033027 A KR20230033027 A KR 20230033027A
Authority
KR
South Korea
Prior art keywords
block
coding unit
coding
current block
determined
Prior art date
Application number
KR1020237006622A
Other languages
English (en)
Inventor
표인지
천제
김찬열
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20230033027A publication Critical patent/KR20230033027A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/88Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving rearrangement of data among different coding units, e.g. shuffling, interleaving, scrambling or permutation of pixel data or permutation of transform coefficient data among different blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/583Motion compensation with overlapping blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

비트스트림으로부터 현재 블록의 분할 여부를 나타내는 분할 정보를 획득하는 단계, 분할 정보가 상기 현재 블록의 분할을 나타내지 않는 때, 현재 블록을 현재 블록의 부호화 정보에 따라 복호화하는 단계, 및 분할 정보가 현재 블록의 분할을 나타낼 때, 현재 블록을 2개 이상의 하위 블록들로 분할하고, 비트스트림으로부터 현재 블록의 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 획득하고, 부호화 순서 정보에 따라, 하위 블록들의 복호화 순서를 결정하고, 복호화 순서에 따라, 하위 블록들을 복호화하는 단계를 포함하는 비디오 복호화 방법이 제공된다.

Description

부호화 방법 및 그 장치, 복호화 방법 및 그 장치{ENCODING METHOD AND DEVICE THEREFOR, AND DECODING METHOD AND DEVICE THEREFOR}
본 발명은 비디오의 부호화 방법 및 복호화 방법에 대한 것으로, 보다 구체적으로는 영상의 부호화/복호화 순서를 방법 및 장치를 위한 인트라 또는 인터 예측 방법에 관한 것이다.
높은 화질의 비디오는 부호화시 많은 양의 데이터가 요구된다. 그러나 비디오 데이터를 전달하기 위하여 허용되는 대역폭은 한정되어 있어, 비디오 데이터 전송시 적용되는 데이터 레이트가 제한될 수 있다. 그러므로 효율적인 비디오 데이터의 전송을 위하여, 화질의 열화를 최소화하면서 압축률을 증가시킨 비디오 데이터의 부호화 및 복호화 방법이 필요하다.
비디오 데이터는 픽셀들 간의 공간적 중복성 및 시간적 중복성을 제거함으로써 압축될 수 있다. 인접한 픽셀들 간에 공통된 특징을 가지는 것이 일반적이기 때문에, 인접한 픽셀들 간의 중복성을 제거하기 위하여 픽셀들로 이루어진 데이터 단위로 부호화 정보가 전송된다.
데이터 단위에 포함된 픽셀들의 픽셀 값은 직접 전송되지 않고, 픽셀 값을 획득하기 위해 필요한 방법이 전송된다. 픽셀 값을 원본 값과 유사하게 예측하는 예측 방법이 데이터 단위마다 결정되며, 예측 방법에 대한 부호화 정보가 부호화기에서 복호화기로 전송된다. 또한 예측 값이 원본 값과 완전히 동일하지 않으므로, 원본 값과 예측 값의 차이에 대한 레지듀얼 데이터가 부호화기에서 복호화기로 전송된다.
예측이 정확해질수록 예측 방법을 특정하는데 필요한 부호화 정보가 증가되지만, 레지듀얼 데이터의 크기가 감소하게 된다. 따라서 부호화 정보와 레지듀얼 데이터의 크기를 고려하여 예측 방법이 결정된다. 특히, 픽처에서 분할된 데이터 단위는 다양한 크기를 가지는데, 데이터 단위의 크기가 클수록 예측의 정확도가 감소할 가능성이 높은 대신, 부호화 정보가 감소하게 된다. 따라서 픽처의 특성에 맞게 블록의 크기가 결정된다.
또한 예측 방법에는 인트라 예측과 인터 예측이 있다. 인트라 예측은 블록의 주변 픽셀들로부터 블록의 픽셀들을 예측하는 방법이다. 인터 예측은 블록이 포함된 픽처가 참조하는 다른 픽처의 픽셀을 참조하여 픽셀들을 예측하는 방법이다. 따라서 인트라 예측에 의하여 공간적 중복성이 제거되고, 인터 예측에 의하여 시간적 중복성이 제거된다.
예측 방법의 수가 증가할수록 예측 방법을 나타내기 위한 부호화 정보의 양은 증가한다. 따라서 블록에 적용되는 부호화 정보 역시 다른 블록으로부터 예측하여 부호화 정보의 크기를 줄일 수 있다.
인간의 시각이 인지하지 못하는 한도에서 비디오 데이터의 손실이 허용되는 바, 레지듀얼 데이터를 변환 및 양자화 과정에 따라 손실 압축(lossy compression)하여 레지듀얼 데이터의 양을 감소시킬 수 있다.
현재 블록의 분할 여부와 하위 블록의 부호화 순서를 결정하고, 현재 블록의 주변 블록들의 부호화 여부에 따라 부호화 방법을 결정하는 비디오 부호화 방법이 개시된다. 또한 현재 블록을 분할하고, 분할된 하위 블록의 부호화 순서를 결정하고, 현재 블록의 주변 블록들의 부호화 여부에 따라 부호화 방법을 결정하는 비디오 복호화 방법이 개시된다. 더불어 본 발명의 일 실시 예에 따른 비디오 부호화 방법 및 비디오 복호화 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 개시된다.
비트스트림으로부터 현재 블록의 분할 여부를 나타내는 분할 정보를 획득하는 단계, 상기 분할 정보가 상기 현재 블록의 분할을 나타내지 않는 때, 상기 현재 블록을 상기 현재 블록의 부호화 정보에 따라 복호화하는 단계, 및 상기 분할 정보가 현재 블록의 분할을 나타낼 때, 상기 현재 블록을 2개 이상의 하위 블록들로 분할하고, 상기 비트스트림으로부터 상기 현재 블록의 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 획득하고, 상기 부호화 순서 정보에 따라, 상기 하위 블록들의 복호화 순서를 결정하고, 상기 복호화 순서에 따라, 상기 하위 블록들을 복호화하는 단계를 포함하는 비디오 복호화 방법이 제공된다.
현재 블록의 분할 여부를 나타내는 분할 정보가 상기 현재 블록의 분할을 나타낼 경우, 상기 현재 블록을 2개 이상의 하위 블록들로 분할하는 블록 분할부, 상기 현재 블록이 상기 하위 블록들로 분할된 때, 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보에 따라, 상기 하위 블록들의 복호화 순서를 결정하는 부호화 순서 결정부, 상기 분할 정보가 상기 현재 블록이 분할되지 않음을 나타낼 경우, 상기 현재 블록의 예측 방법을 결정하는 예측 방법 결정부, 상기 예측 방법에 따른 예측 결과에 따라 상기 현재 블록을 복원하는 복호화부를 포함하는 비디오 복호화 장치가 제공된다.
현재 블록을 2개 이상의 하위 블록들로 분할하는 단계, 상기 현재 블록의 분할 결과에 따라, 상기 현재 블록의 분할 여부를 결정하고, 상기 현재 블록의 분할 여부를 나타내는 분할 정보를 생성하는 단계, 상기 현재 블록의 부호화 효율에 따라, 상기 현재 블록의 상기 하위 블록들의 부호화 순서를 결정하고, 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 획득하는 단계; 및 상기 분할 정보 및 상기 부호화 순서 정보가 포함된 비트스트림을 출력하는 단계를 포함하는 비디오 부호화 방법이 제공된다.
현재 블록을 2개 이상의 하위 블록들로 분할하고, 상기 현재 블록의 분할 결과에 따라, 상기 현재 블록의 분할 여부를 결정하고, 상기 현재 블록의 분할 여부를 나타내는 분할 정보를 생성하고, 상기 현재 블록의 부호화 효율에 따라, 상기 현재 블록의 상기 하위 블록들의 부호화 순서를 결정하고, 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 생성하는 부호화 정보 생성부, 및 상기 분할 정보 및 상기 부호화 순서 정보가 포함된 비트스트림을 출력하는 출력부를 포함하는 비디오 부호화 장치가 제공된다.
상기 비디오 부호화 방법 및 비디오 복호화 방법을 수행하는 프로그램이 기록된 컴퓨터로 기록가능한 비일시적 기록매체가 제고오딘다.
본 실시 예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 이하의 실시 예들로부터 또 다른 기술적 과제들이 유추될 수 있다.
현재 블록의 분할 여부와 하위 블록의 부호화 순서를 결정하고, 하위 블록의 부호화 순서에 따라 하위 블록의 예측 방법이 결정됨으로써, 이미지의 부호화 효율이 향상된다.
도 1a은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 영상 부호화 장치의 블록도를 도시한다.
도 1b는 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 2는 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 3은 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 4는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 5는 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 6은 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 7은 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 8은 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 9는 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 10은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 11은 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 12는 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 13은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 14는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도16은 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 복호화 장치를 도시한다.
도17a 내지 17c은 일 실시 예에 따른 기본 부호화 순서를 도시한다.
도 18a 및 18b는 부호화 단위가 정방향으로 부호화되는 케이스와 부호화 단위가 역방향으로 부호화되는 케이스가 각각 도시한다.
도 19는 최대 부호화 단위와 최대 부호화 단위에 포함된 부호화 단위들의 부호화 순서를 설명하기 위한 최대 부호화 단위의 트리 구조를 나타낸다.
도 20a 및 20b는 수직 또는 수평 방향으로 배열된 3개 이상의 블록들의 부호화 순서가 부호화 순서 플래그에 따라 어떻게 변경되는지 설명한다.
도21은 방향성 인트라 예측 모드에 필요한 참조 샘플의 결정 방법을 나타낸다.
도 22a 및 22b는 우측 블록의 복호화 여부에 따른 DC 모드의 예측 방법을 나타낸다.
도 23a 내지 23c는 우측 블록의 복호화 여부에 따른 플래너 모드의 예측 방법을 나타낸다.
도 24a 내지 24d는 MPI(Multi-Parameter Intra) 모드에 따라 현재 블록을 예측하는 방법을 나타낸다.
도 25a 및 25b는 LM 크로마 모드와 MPC 모드에서 참조하는 참조 영역을 나타낸다.
도 26는 머지 모드와 AMVP 모드에서 현재 블록의 부호화 순서에 따른, 현재 블록의 공간적 인접 블록을 나타낸다.
도 27는 현재 블록의 우측 블록을 이용한 OBMC 모드의 예측 방법을 나타낸다.
도 28a 내지 28c는 현재 블록의 우측 블록을 이용한 서브 블록 MVP 모드의 예측 방법을 나타낸다.
도 29a 및 29b는 현재 블록의 우측 블록을 이용한 아핀 모션 보상 예측 모드의 예측 방법을 나타낸다.
도 30a 및 30b는 현재 블록의 우측 블록을 이용한 FRUC 모드의 예측 방법을 나타낸다.
도 31는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 복호화 방법을 나타낸다.
도32는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 부호화 장치을 나타낸다.
도 33는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 부호화 방법을 나타낸다.
발명의 실시를 위한 최선의 형태
비트스트림으로부터 현재 블록의 분할 여부를 나타내는 분할 정보를 획득하는 단계, 상기 분할 정보가 상기 현재 블록의 분할을 나타내지 않는 때, 상기 현재 블록을 상기 현재 블록의 부호화 정보에 따라 복호화하는 단계, 및 상기 분할 정보가 현재 블록의 분할을 나타낼 때, 상기 현재 블록을 2개 이상의 하위 블록들로 분할하고, 상기 비트스트림으로부터 상기 현재 블록의 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 획득하고, 상기 부호화 순서 정보에 따라, 상기 하위 블록들의 복호화 순서를 결정하고, 상기 복호화 순서에 따라, 상기 하위 블록들을 복호화하는 단계를 포함하는 비디오 복호화 방법이 제공된다.
현재 블록의 분할 여부를 나타내는 분할 정보가 상기 현재 블록의 분할을 나타낼 경우, 상기 현재 블록을 2개 이상의 하위 블록들로 분할하는 블록 분할부, 상기 현재 블록이 상기 하위 블록들로 분할된 때, 상기 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보에 따라, 상기 하위 블록들의 복호화 순서를 결정하는 부호화 순서 결정부, 상기 분할 정보가 상기 현재 블록이 분할되지 않음을 나타낼 경우, 상기 현재 블록의 예측 방법을 결정하는 예측 방법 결정부, 상기 예측 방법에 따른 예측 결과에 따라 상기 현재 블록을 복원하는 복호화부를 포함하는 비디오 복호화 장치가 제공된다.
발명의 실시를 위한 형태
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
"현재 블록"은 현재 부호화 또는 복호화되는 부호화 단위, 예측 단위 및 변환 단위 중 하나를 의미한다. 또한 "하위 블록"은 "현재 블록"으로부터 분할된 데이터 단위를 의미한다. 그리고 "상위 블록"은 "현재 블록"을 포함하는 데이터 단위를 의미한다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
*아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
도 1a는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 영상 부호화 장치(100)의 블록도를 도시한다.
영상 부호화 장치(100)는 최대 부호화 단위 결정부(110), 부호화 단위 결정부(120) 및 출력부(130)를 포함한다.
최대 부호화 단위 결정부(110)는 최대 부호화 단위의 크기에 따라 픽처 또는 픽처에 포함된 슬라이스를 복수의 최대 부호화 단위로 분할한다. 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다. 최대 부호화 단위 결정부(110)는 최대 부호화 단위의 크기를 나타내는 최대 부호화 단위 크기 정보를 출력부(130)에 제공할 수 있다. 그리고 출력부(130)는 최대 부호화 단위 크기 정보를 비트스트림에 포함시킬 수 있다.
부호화 단위 결정부(120)는 최대 부호화 단위를 분할하여 부호화 단위를 결정한다. 부호화 단위는 최대 크기 및 심도로 결정될 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할된 횟수로 정의될 수 있다. 심도가 1 증가할 때마다, 부호화 단위는 2개 이상의 부호화 단위로 분할된다. 따라서 심도가 증가할수록 심도별 부호화 단위의 크기는 감소한다. 부호화 단위의 분할 여부는 율-왜곡 최적화(Rate-Distortion Optimization)에 의하여 부호화 단위의 분할이 효율적인지 여부에 따라 결정된다. 그리고 부호화 단위가 분할되었는지 여부를 나타내는 분할 정보가 생성될 수 있다. 분할 정보는 플래그의 형태로 표현될 수 있다.
부호화 단위는 다양한 방법으로 분할될 수 있다. 예를 들어, 정사각형의 부호화 단위는 너비와 높이가 절반인 4개의 정사각형의 부호화 단위로 분할될 수 있다. 정사각형의 부호화 단위는 너비가 절반인 2개의 직사각형의 부호화 단위로 분할될 수 있다. 정사각형의 부호화 단위는 높이가 절반인 2개의 직사각형의 부호화 단위로 분할될 수 있다. 정사각형의 부호화 단위는 너비 또는 높이를 1:2:1로 분할함으로써 세 개의 부호화 단위로 분할될 수 있다.
너비가 높이의 2배인 직사각형의 부호화 단위는 2개의 정사각형의 부호화 단위로 분할될 수 있다. 너비가 높이의 2배인 직사각형의 부호화 단위는 2개의 너비가 높이의 4배인 직사각형의 부호화 단위로 분할될 수 있다. 너비가 높이의 2배인 직사각형의 부호화 단위는 너비를 1:2:1로 분할함으로써 2개의 직사각형의 부호화 단위와 한 개의 정사각형의 부호화 단위로 분할될 수 있다.
마찬가지로, 높이가 너비의 2배인 직사각형의 부호화 단위는 2개의 정사각형의 부호화 단위로 분할될 수 있다. 또한 높이가 너비의 2배인 직사각형의 부호화 단위는 2개의 높이가 너비의 4배인 직사각형의 부호화 단위로 분할될 수 있다. 마찬가지로 높이가 너비의 2배인 직사각형의 부호화 단위는 높이를 1:2:1로 분할함으로써 2개의 직사각형의 부호화 단위와 한 개의 정사각형의 부호화 단위로 분할될 수 있다.
영상 부호화 장치(100)에서 2개 이상의 분할 방법이 사용가능한 경우, 영상 부호화 장치(100)에서 사용가능한 분할 방법 중 부호화 단위에 사용될 수 있는 분할 방법에 대한 정보가 픽처마다 결정될 수 있다. 따라서 픽처마다 특정한 분할 방법들만이 사용되도록 결정될 수 있다. 만약 영상 부호화 장치(100)가 하나의 분할 방법만을 사용할 경우, 부호화 단위에 사용될 수 있는 분할 방법에 대한 정보가 별도로 결정되지 않는다.
부호화 단위의 분할 정보가 부호화 단위가 분할됨을 나타낼 때, 부호화 단위의 분할 방법을 나타내는 분할 형태 정보가 생성될 수 있다. 만약 부호화 단위사 속한 픽처에서 사용될 수 있는 분할 방법이 하나인 경우, 분할 형태 정보는 생성되지 않을 수 있다. 만약 분할 방법이 부호화 단위 주변의 부호화 정보에 적응적으로 결정될 경우, 분할 형태 정보는 생성되지 않을 수 있다.
최대 부호화 단위는 최소 부호화 단위 크기 정보에 따라 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 심도로 정의될 수 있다. 따라서 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터는 최대 부호화 단위로 분할된다. 그리고 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위를 계층적으로 분할할 수 있는 최대 횟수를 제한하는 최대 심도 또는 부호화 단위의 최소 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는 부호화 단위를 계층적으로 분할하였을 때의 부호화 효율과 부호화 단위를 분할하지 않았을 때의 부호화 효율을 비교한다. 그리고 부호화 단위 결정부(120)는 비교 결과에 따라 부호화 단위를 분할할지 여부를 결정한다. 만약 부호화 단위의 분할이 더 효율적이라고 결정된 경우, 부호화 단위 결정부(120)는 부호화 단위를 계층적으로 분할한다. 만약 비교 결과에 따라 부호화 단위를 분할하지 않는 것이 효율적이라고 결정된 경우, 부호화 단위를 분할하지 않는다. 부호화 단위의 분할 여부는 인접한 다른 부호화 단위의 분할 여부에 독립적으로 결정될 수 있다.
일 실시예에 의하면, 부호화 단위의 분할 여부는 부호화 과정에서 심도가 큰 부호화 단위부터 결정될 수 있다. 예를 들어, 최대 심도의 부호화 단위와 최대 심도보다 1만큼 작은 부호화 단위의 부호화 효율이 비교되어, 최대 부호화 단위의 각 영역마다 최대 심도의 부호화 단위들과 최대 심도보다 1만큼 작은 부호화 단위들 중 어느 것이 더 효율적으로 부호화되는지 판단된다. 그리고 판단 결과에 따라 최대 부호화 단위의 각 영역마다 최대 심도보다 1만큼 작은 부호화 단위의 분할 여부가 결정된다. 그 후 최대 부호화 단위의 각 영역마다 최대 심도보다 2만큼 작은 부호화 단위들과 위의 판단 결과에 기초하여 선택된 최대 심도보다 1만큼 작은 부호화 단위들과 최소 심도의 부호화 단위들의 조합 중 어느 것이 더 효율적으로 부호화되는지 판단된다. 동일한 판단 과정이 심도가 작은 부호화 단위들에 대하여 순차적으로 수행되어, 최종적으로 최대 부호화 단위와 최대 부호화 단위가 계층적으로 분할되어 생성된 계층 구조 중 어느 것이 더 효율적으로 부호화되는지 여부에 따라 최대 부호화 단위의 분할 여부가 결정된다.
부호화 단위의 분할 여부는 부호화 과정에서 심도가 작은 부호화 단위부터 결정될 수 있다. 예를 들어, 최대 부호화 단위와 최대 부호화 단위보다 1만큼 심도가 큰 부호화 단위의 부호화 효율이 비교되어, 최대 부호화 단위와 최대 부호호 단위보다 1만큼 심도가 큰 부호화 단위들 중 어느 것이 더 효율적으로 부호화되는지 판단된다. 만약 최대 부호화 단위의 부호화 효율이 더 좋을 경우, 최대 부호화 단위는 분할되지 않는다. 만약 최대 부호화 단위보다 1만큼 심도가 큰 부호화 단위들의 부호화 효율이 더 좋을 경우, 최대 부호화 단위는 분할되고, 분할된 부호화 단위에 대하여 동일한 비교 과정이 반복된다.
심도가 큰 부호화 단위부터 부호화 효율을 검토할 경우, 연산량이 많으나 부호화 효율이 높은 트리 구조를 획득할 수 있다. 반대로 심도가 작은 부호화 단위부터 부호화 효율을 검토할 경우, 연산량이 적으나 부호화 효율이 낮은 트리 구조를 획득할 수 있다. 따라서 부호화 효율과 연산량을 고려하여 최대 부호화 단위의 계층적 트리 구조를 획득하기 위한 알고리즘이 다양한 방법으로 설계될 수 있다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 효율성을 판단하기 위하여, 부호화 단위에 가장 효율적인 예측 및 변환 방법을 결정한다. 부호화 단위는 가장 효율적인 예측 및 변환 방법을 결정하기 위하여 소정의 데이터 단위들로 분할될 수 있다. 데이터 단위는 부호화 단위의 분할 방법에 따라 다양한 형태를 가질 수 있다. 데이터 단위를 결정하기 위한 부호화 단위의 분할 방법은 파티션 모드라고 정의될 수 있다. 예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 분할되지 않는 경우, 부호화 단위에 포함된 예측 단위의 크기는 2Nx2N이 된다. 크기 2Nx2N의 부호화 단위가 분할될 경우, 부호화 단위에 포함된 예측 단위의 크기는 파티션 모드에 따라 2NxN, Nx2N, NxN 등이 될 수 있다. 일 실시예에 따른 파티션 모드는 부호화 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 데이터 단위들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 데이터 단위들, 사선 방향으로 분할된 데이터 단위들, 기타 기하학적인 형태로 분할된 데이터 단위들, 임의적 형태의 데이터 단위들을 생성할 수 있다.
부호화 단위는 부호화 단위에 포함된 데이터 단위를 기준으로 예측 및 변환이 수행될 수 있다. 그러나 실시 예에 따라 예측을 위한 데이터 단위와 변환을 위한 데이터 단위가 별도로 결정될 수 있다. 예측을 위한 데이터 단위는 예측 단위로, 변환을 위한 데이터 단위는 변환 단위로 정의될 수 있다. 예측 단위에서 적용되는 파티션 모드와 변환 단위에서 적용되는 파티션 모드는 서로 다를 수 있으며, 부호화 단위에서 예측 단위의 예측과 변환 단위의 변환은 병렬적, 독립적으로 수행될 수 있다.
부호화 단위는 효율적인 예측 방법을 결정하기 위하여 한 개 이상의 예측 단위로 분할될 수 있다. 마찬가지로 부호화 단위는 효율적인 변환 방법을 결정하기 위하여 한 개 이상의 변환 단위로 분할 될 수 있다. 예측 단위의 분할과 변환 단위의 분할은 독립적으로 수행될 수 있다. 그러나 부호화 단위 내부의 복원 샘플이 인트라 예측에 사용되는 경우, 부호화 단위에 포함된 예측 단위들 또는 변환 단위들 간에 종속적 관계가 형성되므로 예측 단위와 변환 단위의 분할이 서로 영향을 미칠 수 있다.
부호화 단위에 포함된 예측 단위는 인트라 예측 또는 인터 예측에 의하여 예측될 수 있다. 인트라 예측은 예측 단위 주변의 참조 샘플들을 이용하여 예측 단위의 샘플들을 예측하는 방법이다. 인터 예측은 현재 픽처가 참조하는 참조 픽처로부터 참조 샘플을 획득하여 예측 단위의 샘플들을 예측하는 방법이다.
부호화 단위 결정부(120)는 인트라 예측을 위하여 복수의 인트라 예측 방법을 예측 단위에 적용하여, 가장 효율적인 인트라 예측 방법을 선택할 수 있다. 인트라 예측 방법에는 DC 모드, 플래너(Planar) 모드, 수직 모드 및 수평 모드와 같은 방향성(directional) 모드 등이 포함된다.
인트라 예측은 부호화 단위 주변의 복원 샘플을 참조 샘플로 사용하는 경우 예측 단위마다 수행될 수 있다. 그러나 부호화 단위 내부의 복원 샘플이 참조 샘플로 사용될 경우, 부호화 단위 내부의 참조 샘플의 복원이 예측보다 우선되어야 하므로, 변환 단위의 변환 순서에 예측 단위의 예측 순서가 종속될 수 있다. 따라서 부호화 단위 내부의 복원 샘플이 참조 샘플로 사용될 경우, 예측 단위에 대하여 예측 단위에 대응되는 변환 단위들에 대한 인트라 예측 방법만이 결정되고, 실질적인 인트라 예측은 변환 단위마다 수행될 수 있다.
부호화 단위 결정부(120)는 최적의 움직임 벡터 및 참조 픽처를 결정함으로써 가장 효율적인 인터 예측 방법을 선택할 수 있다. 부호화 단위 결정부(120)는 인터 예측을 위하여 현재 부호화 단위로부터 공간적, 시간적으로 이웃한 부호화 단위로부터 복수의 움직임 벡터 후보를 결정하고, 그 중 가장 효율적인 움직임 벡터를 움직임 벡터로 결정할 수 있다. 마찬가지로 현재 부호화 단위로부터 공간적, 시간적으로 이웃한 부호화 단위로부터 복수의 참조 픽처 후보를 결정하고, 그 중 가장 효율적인 참조 픽처를 결정할 수 있다. 실시 예에 따라 참조 픽처는 현재 픽처에 대하여 미리 결정된 참조 픽처 리스트들 중에서 결정될 수 있다. 실시 예에 따라 예측의 정확성을 위하여 복수의 움직임 벡터 후보 중 가장 효율적인 움직임 벡터를 움직임 벡터 예측자로 결정하고, 움직임 벡터 예측자를 보정하여 움직임 벡터를 결정할 수 있다. 인터 예측은 부호화 단위 내부의 예측 단위별마다 병렬적으로 수행될 수 있다.
부호화 단위 결정부(120)는 스킵 모드에 따라 움직임 벡터 및 참조 픽처를 나타내는 정보만을 획득하여 부호화 단위를 복원할 수 있다. 스킵 모드에 의하면 움직임 벡터 및 참조 픽처를 나타내는 정보를 제외하고 잔차 신호를 포함한 모든 부호화 정보가 생략된다. 잔차 신호가 생략되므로 예측의 정확성이 매우 높은 경우에 스킵 모드가 사용될 수 있다.
예측 단위에 대한 예측 방법에 따라 사용되는 파티션 모드가 제한될 수 있다. 예를 들어 인트라 예측에는 2Nx2N, NxN 크기의 예측 단위에 대한 파티션 모드만이 적용되는 반면, 인터 예측에는 2Nx2N, 2NxN, Nx2N, NxN크기의 예측 단위에 대한 파티션 모드가 적용될 수 있다. 또한, 인터 예측의 스킵 모드에는 2Nx2N 크기의 예측 단위에 대한 파티션 모드만이 적용될 수 있다. 영상 부호화 장치(100)에서 각 예측 방법에 대하여 허용되는 파티션 모드는 부호화 효율에 따라 변경될 수 있다.
영상 부호화 장치(100)는 부호화 단위 또는 부호화 단위에 포함된 변환 단위를 기준으로 변환을 수행할 수 있다. 영상 부호화 장치(100)는 부호화 단위에 포함된 픽셀들에 대한 원본 값과 예측 값의 차이 값인 레지듀얼 데이터를 소정의 과정을 거쳐 변환시킬 수 있다. 예를 들어, 영상 부호화 장치(100)는 레지듀얼 데이터를 양자화 및 DCT/DST 변환을 통해 손실 압축을 할 수 있다. 또는 영상 부호화 장치(100)는 레지듀얼 데이터를 양자화 없이 무손실 압축을 할 수 있다.
영상 부호화 장치(100)는 양자화 및 변환에 가장 효율적인 변환 단위를 결정할 수 있다. 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다. 그리고 영상 부호화 장치(100)는 결정된 변환 단위의 트리 구조에 따라 부호화 단위 및 변환 단위의 분할에 대한 변환 분할 정보를 생성할 수 있다.
영상 부호화 장치(100)는 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
결론적으로, 부호화 단위 결정부(120)는 복수의 인트라 예측 방법 및 인터 예측 방법 중 현재 예측 단위에 가장 효율적인 예측 방법을 결정한다. 그리고 부호화 단위 결정부(120)는 예측 결과에 따른 부호화 효율에 따라 예측 단위 결정 방식을 판단한다. 마찬가지로 부호화 단위 결정부(120)는 변환 결과에 따른 부호화 효율에 따라 변환 단위 결정 방식을 판단한다. 가장 효율적인 예측 단위와 변환 단위의 결정 방식에 따라 최종적으로 부호화 단위의 부호화 효율이 결정된다. 부호화 단위 결정부(120)는 각 심도별 부호화 단위의 부호화 효율에 따라 최대 부호화 단위의 계층 구조를 확정한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 효율성, 예측 방법들의 예측 효율성 등을 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
부호화 단위 결정부(120)는 결정된 최대 부호화 단위의 계층 구조에 따라 부호화 단위의 심도별 분할 여부를 나타내는 분할 정보를 생성할 수 있다. 그리고 부호화 단위 결정부(120)는 분할이 완료된 부호화 단위에 대하여 예측 단위의 결정을 위한 파티션 모드 정보 및 변환 단위의 결정을 위한 변환 단위 분할 정보를 생성할 수 있다. 또한 부호화 단위 결정부(120)는 부호화 단위의 분할 방법이 2개 이상인 경우, 분할 방법을 나타내는 분할 형태 정보를 분할 정보와 함께 생성할 수 있다. 그리고 부호화 단위 결정부(120)는 예측 단위 및 변환 단위에 사용된 예측 방법 및 변환 방법에 관한 정보를 생성할 수 있다.
출력부(130)는 최대 부호화 단위의 계층 구조에 따라 최대 부호화 단위 결정부(110) 및 부호화 단위 결정부(120)가 생성한 정보들을 비트스트림의 형태로 출력할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위, 예측 단위 및 변환 단위의 결정 방식에 대해서는, 도 3 내지 12를 참조하여 상세히 후술한다.
도 1b는 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 영상 복호화 장치(150)의 블록도를 도시한다.
영상 복호화 장치(150)는 수신부(160), 부호화 정보 추출부(170) 및 복호화부(180)를 포함한다.
일 실시예에 따른 영상 복호화 장치(150)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할 정보 등 각종 용어의 정의는, 도 1 및 영상 부호화 장치(100)를 참조하여 전술한 바와 동일하다. 또한 영상 복호화 장치(150)의 목적이 영상 데이터의 복원인 바, 영상 부호화 장치(100)에서 사용된 다양한 부호화 방법들이 영상 복호화 장치(150)에 적용될 수 있다.
수신부(160)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 부호화 정보 추출부(170)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 복호화에 필요한 정보들을 추출하여 복호화부(180)에 제공한다. 부호화 정보 추출부(170)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 부호화 정보 추출부(170)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 복호화부(180)로 출력된다. 복호화부(180)는 최대 부호화 단위를 추출된 최종 심도 및 분할정보에 따라 분할하여 최대 부호화 단위의 트리 구조를 결정할 수 있다.
부호화 정보 추출부(170)가 추출한 분할정보는, 영상 부호화 장치(100)에 의하여, 최소 부호화 오차를 발생시키는 것으로 결정된 트리 구조에 대한 분할정보다. 따라서, 영상 복호화 장치(150)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
부호화 정보 추출부(170)는 부호화 단위에 포함된 예측 단위 및 변환 단위와 같은 데이터 단위에 대한 분할 정보를 추출할 수 있다. 예를 들어, 부호화 정보 추출부(170)는 예측 단위에 대한 가장 효율적인 파티션 모드에 관한 정보를 추출할 수 있다. 그리고 부호화 정보 추출부(170)는 변환 단위에 있어서 가장 효율적인 트리 구조에 대한 변환 분할 정보를 추출할 수 있다.
또한 부호화 정보 추출부(170)는 부호화 단위로부터 분할된 예측 단위들에 대하여 가장 효율적인 예측 방법에 대한 정보를 획득할 수 있다. 그리고 부호화 정보 추출부(170)는 부호화 단위로부터 분할된 변환 단위들에 대하여 가장 효율적인 변환 방법에 대한 정보를 획득할 수 있다.
부호화 정보 추출부(170)는 영상 부호화 장치(100)의 출력부(130)에서 비트스트림을 구성하는 방식에 따라 비트스트림으로부터 정보를 추출한다.
복호화부(180)는 분할정보에 기초하여 최대 부호화 단위를 가장 효율적인 트리구조를 가진 부호화 단위들로 분할할 수 있다. 그리고 복호화부(180)는 파티션 모드에 관한 정보에 따라 부호화 단위를 예측 단위로 분할할 수 있다. 복호화부(180)는 변환 분할 정보에 따라 부호화 단위를 변환 단위로 분할할 수 있다.
복호화부(180)는 예측 단위를 예측 방법에 대한 정보에 따라 예측할 수 있다. 그리고 복호화부(180)는 변환 단위를 변환 방법에 대한 정보에 따라 픽셀의 원본 값과 예측 값의 차이에 해당하는 레지듀얼 데이터를 역양자화 및 역변환할 수 있다. 또한 복호화부(180)는 예측 단위의 예측 결과와 변환 단위의 변환 결과에 따라 부호화 단위의 픽셀들을 복원할 수 있다.
도 2는 일 실시예에 따라 영상 복호화 장치(150)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(150)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
일 실시예에 따라, 영상 복호화 장치(150)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(150)는 분할 형태 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 2를 참조하면, 현재 부호화 단위(200)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(180)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(200)와 동일한 크기를 가지는 부호화 단위(210a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 기초하여 분할된 부호화 단위(210b, 210c, 210d 등)를 결정할 수 있다.
도 2를 참조하면 영상 복호화 장치(150)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(200)를 수직방향으로 분할한 두개의 부호화 단위(210b)를 결정할 수 있다. 영상 복호화 장치(150)는 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(200)를 수평방향으로 분할한 두개의 부호화 단위(210c)를 결정할 수 있다. 영상 복호화 장치(150)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(200)를 수직방향 및 수평방향으로 분할한 네개의 부호화 단위(210d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 3은 일 실시예에 따라 영상 복호화 장치(150)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(150)는 분할 형태 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300 또는 350)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(150)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(300 또는 350)와 동일한 크기를 가지는 부호화 단위(310 또는 360)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 따라 기초하여 분할된 부호화 단위(320a, 320b, 330a, 330b, 330c, 370a, 370b, 380a, 380b, 380c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(150)는 분할 형태 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 3을 참조하면 분할 형태 정보가 두개의 부호화 단위로 현재 부호화 단위(300 또는 350)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(150)는 분할 형태 정보에 기초하여 현재 부호화 단위(300 또는 350)를 분할하여 현재 부호화 단위에 포함되는 두개의 부호화 단위(320a, 320b, 또는 370a, 370b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)가 분할 형태 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(300 또는 350)를 분할하는 경우, 비-정사각형의 현재 부호화 단위(300 또는 350)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)의 형태를 고려하여 현재 부호화 단위(300 또는 350)의 긴 변을 분할하는 방향으로 현재 부호화 단위(300 또는 350)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 정보가 홀수개의 블록으로 부호화 단위를 분할하는 것을 나타내는 경우, 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 정보가 3개의 부호화 단위로 현재 부호화 단위(300 또는 350)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)를 3개의 부호화 단위(330a, 330b, 330c, 380a, 380b, 380c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(330a, 330b, 330c, 380a, 380b, 380c) 중 소정의 부호화 단위(330b 또는 380b)의 크기는 다른 부호화 단위(330a, 330c, 380a, 380c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(300 또는 350)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있다.
일 실시예에 따라 분할 형태 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(150)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 3을 참조하면 영상 복호화 장치(150)는 현재 부호화 단위(300 또는 350)가 분할되어 생성된 3개의 부호화 단위(330a, 330b, 330c, 380a, 380b, 380c)들 중 중앙에 위치하는 부호화 단위(330b, 380b)에 대한 복호화 과정을 다른 부호화 단위(330a, 330c, 380a, 380c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(150)는 중앙에 위치하는 부호화 단위(330b, 380b)에 대하여는 다른 부호화 단위(330a, 330c, 380a, 380c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 4는 일 실시예에 따라 영상 복호화 장치(150)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(400)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 정보가 수평 방향으로 제1 부호화 단위(400)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(150)는 제1 부호화 단위(400)를 수평 방향으로 분할하여 제2 부호화 단위(410)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 결정된 제2 부호화 단위(410)를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 4를 참조하면 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(400)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(410)를 적어도 하나의 제3 부호화 단위(420a, 420b, 420c, 420d 등)로 분할하거나 제2 부호화 단위(410)를 분할하지 않을 수 있다. 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(150)는 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(400)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 410)를 분할할 수 있으며, 제2 부호화 단위(410)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(400)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(400)가 제1 부호화 단위(400)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제2 부호화 단위(410)로 분할된 경우, 제2 부호화 단위(410) 역시 제2 부호화 단위(410)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 420a, 420b, 420c, 420d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(420a, 420b, 420c, 420d 등) 각각을 부호화 단위들로 분할하거나 제2 부호화 단위(410)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(150)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(410)를 홀수개의 제3 부호화 단위(420b, 420c, 420d)로 분할할 수 있다. 영상 복호화 장치(150)는 홀수개의 제3 부호화 단위(420b, 420c, 420d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(150)는 홀수개의 제3 부호화 단위(420b, 420c, 420d) 중 가운데에 위치하는 부호화 단위(420c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다. 도 4를 참조하면, 영상 복호화 장치(150)는 비-정사각형 형태의 제2 부호화 단위(410)에 포함되는 홀수개의 제3 부호화 단위(420b, 420c, 420d)들 중 가운데에 위치하는 부호화 단위(420c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(410)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(420c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(420c)가 다른 부호화 단위(420b, 420d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 13은 일 실시예에 따라 영상 복호화 장치(150)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다. 도 13을 참조하면, 현재 부호화 단위(1300)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(1300)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(1340))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(1300) 내의 소정 위치가 도 13에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(1300)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(150)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(150) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
도 5은 일 실시예에 따라 영상 복호화 장치(150)가 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위한 방법을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 5을 참조하면, 영상 복호화 장치(150)는 현재 부호화 단위(500)를 분할하여 홀수개의 부호화 단위들(520a, 520b, 520c)을 결정할 수 있다. 영상 복호화 장치(150)는 홀수개의 부호화 단위들(520a, 520b, 520c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(520b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(150)는 부호화 단위들(520a, 520b, 520c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(520a, 520b, 520c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(520b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(150)는 부호화 단위들(520a, 520b, 520c)의 좌측 상단의 샘플(530a, 530b, 530c)의 위치를 나타내는 정보에 기초하여 부호화 단위(520a, 520b, 520c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(520b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위(520a, 520b, 520c)에 각각 포함되는 좌측 상단의 샘플(530a, 530b, 530c)의 위치를 나타내는 정보는 부호화 단위(520a, 520b, 520c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위(520a, 520b, 520c)에 각각 포함되는 좌측 상단의 샘플(530a, 530b, 530c)의 위치를 나타내는 정보는 현재 부호화 단위(500)에 포함되는 부호화단위(520a, 520b, 520c)들의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위(520a, 520b, 520c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(150)는 부호화 단위(520a, 520b, 520c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(520b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(520a)의 좌측 상단의 샘플(530a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(520b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(520c)의 좌측 상단의 샘플(530c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(150)는 부호화 단위(520a, 520b, 520c)에 각각 포함되는 좌측 상단의 샘플(530a, 530b, 530c)의 좌표를 이용하여 가운데 부호화 단위(520b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(530a, 530b, 530c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(530b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(520b)를 현재 부호화 단위(500)가 분할되어 결정된 부호화 단위(520a, 520b, 520c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(530a, 530b, 530c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(520a)의 좌측 상단의 샘플(530a)의 위치를 기준으로, 가운데 부호화 단위(520b)의 좌측 상단의 샘플(530b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(520c)의 좌측 상단의 샘플(530c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위(500)를 복수개의 부호화 단위(520a, 520b, 520c)로 분할할 수 있고, 부호화 단위(520a, 520b, 520c)들 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(150)는 부호화 단위(520a, 520b, 520c) 중 크기가 다른 부호화 단위(520b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 상단 부호화 단위(520a)의 좌측 상단의 샘플(530a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(520b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(520c)의 좌측 상단의 샘플(530c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위(520a, 520b, 520c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(150)는 부호화 단위(520a, 520b, 520c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위(520a, 520b, 520c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(150)는 상단 부호화 단위(520a)의 너비를 xb-xa로 결정할 수 있고 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 가운데 부호화 단위(520b)의 너비를 xc-xb로 결정할 수 있고 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(520a) 및 가운데 부호화 단위(520b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(150)는 결정된 부호화 단위(520a, 520b, 520c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 5를 참조하면, 영상 복호화 장치(150)는 상단 부호화 단위(520a) 및 하단 부호화 단위(520c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(520b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(150)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(150)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(150)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(150)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(150)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(150)는 현재 부호화 단위를 분할하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 5에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(150)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다.
도 5을 참조하면 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(500)를 복수개의 부호화 단위들(520a, 520b, 520c)로 분할할 수 있으며, 복수개의 부호화 단위들(520a, 520b, 520c) 중 가운데에 위치하는 부호화 단위(520b)를 결정할 수 있다. 나아가 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(520b)를 결정할 수 있다. 즉, 현재 부호화 단위(500)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(500)의 가운데에 위치하는 샘플(540)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(500)가 복수개의 부호화 단위들(520a, 520b, 520c)로 분할된 경우 상기 샘플(540)을 포함하는 부호화 단위(520b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 5를 참조하면, 영상 복호화 장치(150)는 현재 부호화 단위(500)가 분할되어 결정된 복수개의 부호화 단위들(520a, 520b, 520c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(500) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(500)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. . 즉, 영상 복호화 장치(150)는 현재 부호화 단위(500)의 블록 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(150)는 현재 부호화 단위(500)가 분할되어 결정되는 복수개의 부호화 단위(520a, 520b, 520c)들 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(520b)를 결정하여 소정의 제한을 둘 수 있다. 도 5을 참조하면 일 실시예에 따라 영상 복호화 장치(150)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(500)의 가운데에 위치하는 샘플(540)을 결정할 수 있고, 영상 복호화 장치(150)는 이러한 샘플(540)이 포함되는 부호화 단위(520b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(520b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(500)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(150)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(150)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(150)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 4를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(150)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보에 따라 제1 부호화 단위(600)를 수직 방향으로 분할하여 제2 부호화 단위(610a, 610b)를 결정하거나 제1 부호화 단위(600)를 수평 방향으로 분할하여 제2 부호화 단위(630a, 630b)를 결정하거나 제1 부호화 단위(600)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(650a, 650b, 650c, 650d)를 결정할 수 있다.
도 6을 참조하면, 영상 복호화 장치(150)는 제1 부호화 단위(600)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(610a, 610b)를 수평 방향(610c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(150)는 제1 부호화 단위(600)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(630a, 630b)의 처리 순서를 수직 방향(630c)으로 결정할 수 있다. 영상 복호화 장치(150)는 제1 부호화 단위(600)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(650a, 650b, 650c, 650d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(650e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 6을 참조하면, 영상 복호화 장치(150)는 제1 부호화 단위(600)를 분할하여 복수개의 부호화 단위들(610a, 610b, 630a, 630b, 650a, 650b, 650c, 650d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(610a, 610b, 630a, 630b, 650a, 650b, 650c, 650d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(610a, 610b, 630a, 630b, 650a, 650b, 650c, 650d)을 분할하는 방법은 제1 부호화 단위(600)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(610a, 610b, 630a, 630b, 650a, 650b, 650c, 650d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 6을 참조하면 영상 복호화 장치(150)는 제1 부호화 단위(600)를 수직 방향으로 분할하여 제2 부호화 단위(610a, 610b)를 결정할 수 있고, 나아가 제2 부호화 단위(610a, 610b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 좌측의 제2 부호화 단위(610a)를 수평 방향으로 분할하여 제3 부호화 단위(620a, 620b)로 분할할 수 있고, 우측의 제2 부호화 단위(610b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(150)는 좌측의 제2 부호화 단위(610a)가 분할되어 결정된 제3 부호화 단위(620a, 620b)가 처리되는 순서를 우측의 제2 부호화 단위(610b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(610a)가 수평 방향으로 분할되어 제3 부호화 단위(620a, 620b)가 결정되었으므로 제3 부호화 단위(620a, 620b)는 수직 방향(620c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(610a) 및 우측의 제2 부호화 단위(610b)가 처리되는 순서는 수평 방향(610c)에 해당하므로, 좌측의 제2 부호화 단위(610a)에 포함되는 제3 부호화 단위(620a, 620b)가 수직 방향(620c)으로 처리된 후에 우측 부호화 단위(610b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 7는 일 실시예에 따라 영상 복호화 장치(150)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 획득된 블록 형태 정보 및 분할 형태 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 7를 참조하면 정사각형 형태의 제1 부호화 단위(700)가 비-정사각형 형태의 제2 부호화 단위(710a, 710b)로 분할될 수 있고, 제2 부호화 단위(710a, 710b)는 각각 독립적으로 제3 부호화 단위(720a, 720b, 720c, 720d, 720e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 제2 부호화 단위 중 좌측 부호화 단위(710a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(720a, 720b)를 결정할 수 있고, 우측 부호화 단위(710b)는 홀수개의 제3 부호화 단위(720c, 720d, 720e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 제3 부호화 단위들(720a, 720b, 720c, 720d, 720e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 7을 참조하면, 영상 복호화 장치(150)는 제1 부호화 단위(700)를 재귀적으로 분할하여 제3 부호화 단위(720a, 720b, 720c, 720d, 720e)를 결정할 수 있다. 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(700), 제2 부호화 단위(710a, 710b) 또는 제3 부호화 단위(720a, 720b, 720c, 720d, 720e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(710a, 710b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(720c, 720d, 720e)로 분할될 수 있다. 제1 부호화 단위(700)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(730))가 될 수 있고, 영상 복호화 장치(150)는 우측 제2 부호화 단위(710b)가 홀수개로 분할되어 결정된 제3 부호화 단위(720c, 720d, 720e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 제1 부호화 단위(700)에 포함되는 제3 부호화 단위(720a, 720b, 720c, 720d, 720e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(720a, 720b, 720c, 720d, 720e)의 경계에 따라 제2 부호화 단위(710a, 710b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(710a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(720a, 720b)는 조건을 만족하지만, 우측 제2 부호화 단위(710b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(720c, 720d, 720e)들의 경계가 우측 제2 부호화 단위(710b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(720c, 720d, 720e)는 조건을 만족하지 못하는 것으로 결정될 수 있고, 영상 복호화 장치(150)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(710b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 8은 일 실시예에 따라 영상 복호화 장치(150)가 제1 부호화 단위(800)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다. 일 실시예에 따라 영상 복호화 장치(150)는 수신부(160)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(800)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(800)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 8을 참조하면, 블록 형태 정보가 제1 부호화 단위(800)는 정사각형임을 나타내고 분할 형태 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(150)는 제1 부호화 단위(800)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 정보가 제1 부호화 단위(800)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(150)는 정사각형 형태의 제1 부호화 단위(800)을 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(810a, 810b, 810c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(820a, 820b, 820c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 제1 부호화 단위(800)에 포함되는 제2 부호화 단위(810a, 810b, 810c, 820a, 820b, 820c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(810a, 810b, 810c, 820a, 820b, 820c)의 경계에 따라 제1 부호화 단위(800)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 8을 참조하면 정사각형 형태의 제1 부호화 단위(800)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(810a, 810b, 810c)들의 경계가 제1 부호화 단위(800)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(800)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(800)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(820a, 820b, 820c)들의 경계가 제1 부호화 단위(800)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(800)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(150)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(800)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(150)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 8을 참조하면, 영상 복호화 장치(150)는 정사각형 형태의 제1 부호화 단위(800), 비-정사각형 형태의 제1 부호화 단위(830 또는 850)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 9은 일 실시예에 따라 영상 복호화 장치(150)가 제1 부호화 단위(900)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 수신부(160)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(900)를 비-정사각형 형태의 제2 부호화 단위(910a, 910b, 920a, 920b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(910a, 910b, 920a, 920b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(150)는 제2 부호화 단위(910a, 910b, 920a, 920b) 각각에 관련된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 수직 방향으로 제1 부호화 단위(900)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(910a)를 수평 방향으로 분할하여 제3 부호화 단위(912a, 912b)를 결정할 수 있다. 다만 영상 복호화 장치(150)는 좌측 제2 부호화 단위(910a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(910b)는 좌측 제2 부호화 단위(910a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(910b)가 동일한 방향으로 분할되어 제3 부호화 단위(914a, 914b)가 결정된 경우, 좌측 제2 부호화 단위(910a) 및 우측 제2 부호화 단위(910b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(912a, 912b, 914a, 914b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(150)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 4개의 정사각형 형태의 제2 부호화 단위(930a, 930b, 930c, 930d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 수평 방향으로 제1 부호화 단위(330)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(920a 또는 920b)를 수직 방향으로 분할하여 제3 부호화 단위(922a, 922b, 924a, 924b)를 결정할 수 있다. 다만 영상 복호화 장치(150)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(920a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(920b))는 상단 제2 부호화 단위(920a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 10은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(150)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 분할하여 제2 부호화 단위(1010a, 1010b, 1020a, 1020b 등)를 결정할 수 있다. 분할 형태 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 정보에 따르면, 영상 복호화 장치(150)는 정사각형 형태의 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할하지 못한다. 분할 형태 정보에 기초하여 영상 복호화 장치(150)는 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1010a, 1010b, 1020a, 1020b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(150)는 좌측 제2 부호화 단위(1010a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1012a, 1012b)를 결정할 수 있고, 우측 제2 부호화 단위(1010b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1014a, 1014b)를 결정할 수 있다. 나아가 영상 복호화 장치(150)는 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1016a, 1016b, 1016c, 1016d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1000)가 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(150)는 상단 제2 부호화 단위(1020a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1022a, 1022b)를 결정할 수 있고, 하단 제2 부호화 단위(1020b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1024a, 1024b)를 결정할 수 있다. 나아가 영상 복호화 장치(150)는 상단 제2 부호화 단위(1020a) 및 하단 제2 부호화 단위(1020b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1000)가 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 11는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보에 기초하여 제1 부호화 단위(1100)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 정보가 제1 부호화 단위(1100)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(150)는 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(예를 들면, 1110a, 1110b, 1120a, 1120b, 1130a, 1130b, 1130c, 1130d 등)를 결정할 수 있다. 도 11을 참조하면 제1 부호화 단위1100)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b)는 각각에 대한 블록 형태 정보 및 분할 형태 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(150)는 제1 부호화 단위(1100)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1110a, 1110b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수 있고, 제1 부호화 단위(1100)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1120a, 1120b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1126a, 1126b, 1126c, 1126d)를 결정할 수 있다. 이러한 제2 부호화 단위(1110a, 1110b, 1120a, 1120b)의 분할 과정은 도 9와 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(150)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 6과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 11을 참조하면 영상 복호화 장치(150)는 정사각형 형태의 제1 부호화 단위(1100)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d, 1126a, 1126b, 1126c, 1126d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 제1 부호화 단위(1100)가 분할되는 형태에 따라 제3 부호화 단위(1116a, 1116b, 1116c, 1116d, 1126a, 1126b, 1126c, 1126d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1110a, 1110b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수 있고, 영상 복호화 장치(150)는 좌측 제2 부호화 단위(1110a)에 포함되는 제3 부호화 단위(1116a, 1116b)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1110b)에 포함되는 제3 부호화 단위(1116c, 1116d)를 수직 방향으로 처리하는 순서(1117)에 따라 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1120a, 1120b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1126a, 1126b, 1126c, 1126d)를 결정할 수 있고, 영상 복호화 장치(150)는 상단 제2 부호화 단위(1120a)에 포함되는 제3 부호화 단위(1126a, 1126b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1120b)에 포함되는 제3 부호화 단위(1126c, 1126d)를 수평 방향으로 처리하는 순서(1127)에 따라 제3 부호화 단위(1126a, 1126b, 1126c, 1126d)를 처리할 수 있다.
도 11을 참조하면, 제2 부호화 단위(1110a, 1110b, 1120a, 1120b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d, 1126a, 1126b, 1126c, 1126d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1110a, 1110b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1120a, 1120b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1116a, 1116b, 1116c, 1116d, 1126a, 1126b, 1126c, 1126d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1100)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(150)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 12는 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(150)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 12를 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(150)는 정사각형 형태인 제1 부호화 단위(1200)를 분할하여 하위 심도의 제2 부호화 단위(1202), 제3 부호화 단위(1204) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1200)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1200)의 너비 및 높이를 1/21배로 분할하여 결정된 제2 부호화 단위(1202)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1202)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1204)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1204)의 너비 및 높이는 제1 부호화 단위(1200)의 1/22배에 해당한다. 제1 부호화 단위(1200)의 심도가 D인 경우 제1 부호화 단위(1200)의 너비 및 높이의 1/21배인 제2 부호화 단위(1202)의 심도는 D+1일 수 있고, 제1 부호화 단위(1200)의 너비 및 높이의 1/22배인 제3 부호화 단위(1204)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(150)는 비-정사각형 형태인 제1 부호화 단위(1210 또는 1220)를 분할하여 하위 심도의 제2 부호화 단위(1212 또는 1222), 제3 부호화 단위(1214 또는 1224) 등을 결정할 수 있다.
영상 복호화 장치(150)는 Nx2N 크기의 제1 부호화 단위(1210)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1202, 1212, 1222 등)를 결정할 수 있다. 즉, 영상 복호화 장치(150)는 제1 부호화 단위(1210)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1202) 또는 NxN/2 크기의 제2 부호화 단위(1222)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1212)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(150)는 2NxN 크기의 제1 부호화 단위(1220) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1202, 1212, 1222 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(150)는 제1 부호화 단위(1220)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1202) 또는 N/2xN 크기의 제2 부호화 단위(1212)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1222)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(150)는 NxN 크기의 제2 부호화 단위(1202) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1204, 1214, 1224 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(150)는 제2 부호화 단위(1202)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1204)를 결정하거나 N/2xN/2 크기의 제3 부호화 단위(1214)를 결정하거나 N/2xN/2 크기의 제3 부호화 단위(1224)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 N/2xN 크기의 제2 부호화 단위(1212)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1204, 1214, 1224 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(150)는 제2 부호화 단위(1212)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1204) 또는 N/2xN/2 크기의 제3 부호화 단위(1224)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1214)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 NxN/2 크기의 제2 부호화 단위(1214)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1204, 1214, 1224 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(150)는 제2 부호화 단위(1212)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1204) 또는 N/2xN/2 크기의 제3 부호화 단위(1214)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/2크기의 제3 부호화 단위(1224)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 정사각형 형태의 부호화 단위(예를 들면, 1200, 1202, 1204)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1200)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1210)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1220)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1200, 1202 또는 1204)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1200, 1202 또는 1204)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1214 또는 1224)의 너비 및 높이는 제1 부호화 단위(1210 또는 1220)의 1/2배에 해당할 수 있다. 제1 부호화 단위(1210 또는 1220)의 심도가 D인 경우 제1 부호화 단위(1210 또는 1220)의 너비 및 높이의 1/2배인 제2 부호화 단위(1212 또는 1214)의 심도는 D+1일 수 있고, 제1 부호화 단위(1210 또는 1220)의 너비 및 높이의 1/2배인 제3 부호화 단위(1214 또는 1224)의 심도는 D+2일 수 있다.
도 13은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 정사각형 형태의 제1 부호화 단위(1300)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 13을 참조하면, 영상 복호화 장치(150)는 분할 형태 정보에 따라 제1 부호화 단위(1300)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1302a, 1302b, 1304a, 1304b, 1306a, 1306b, 1306c, 1306d)를 결정할 수 있다. 즉, 영상 복호화 장치(150)는 제1 부호화 단위(1300)에 대한 분할 형태 정보에 기초하여 제2 부호화 단위(1302a, 1302b, 1304a, 1304b, 1306a, 1306b, 1306c, 1306d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1300)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(1302a, 1302b, 1304a, 1304b, 1306a, 1306b, 1306c, 1306d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1300)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1302a, 1302b, 1304a, 1304b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1300)와 비-정사각형 형태의 제2 부호화 단위(1302a, 1302b, 1304a, 1304b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(150)가 분할 형태 정보에 기초하여 제1 부호화 단위(1300)를 4개의 정사각형 형태의 제2 부호화 단위(1306a, 1306b, 1306c, 1306d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1306a, 1306b, 1306c, 1306d)의 한 변의 길이는 제1 부호화 단위(1300)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1306a, 1306b, 1306c, 1306d)의 심도는 제1 부호화 단위(1300)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1310)를 분할 형태 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1312a, 1312b, 1314a, 1314b, 1314c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1320)를 분할 형태 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1322a, 1322b, 1324a, 1324b, 1324c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1310 또는 1320)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(1312a, 1312b, 1314a, 1314b, 1316a, 1316b, 1316c, 1316d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1312a, 1312b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1310)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1302a, 1302b, 1304a, 1304b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1310)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(150)가 분할 형태 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1310)를 홀수개의 제2 부호화 단위(1314a, 1314b, 1314c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1314a, 1314b, 1314c)는 비-정사각형 형태의 제2 부호화 단위(1314a, 1314c) 및 정사각형 형태의 제2 부호화 단위(1314b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1314a, 1314c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1314b)의 한 변의 길이는 제1 부호화 단위(1310)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1314a, 1314b, 1314c)의 심도는 제1 부호화 단위(1310)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(150)는 제1 부호화 단위(1310)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1320)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 13을 참조하면, 홀수개로 분할된 부호화 단위들(1314a, 1314b, 1314c) 중 가운데에 위치하는 부호화 단위(1314b)는 다른 부호화 단위들(1314a, 1314c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1314a, 1314c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1314b)는 다른 부호화 단위들(1314a, 1314c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1314b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1314c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 13을 참조하면 영상 복호화 장치(150)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1310)를 분할하여 짝수개의 부호화 단위(1312a, 1312b)를 결정하거나 홀수개의 부호화 단위(1314a, 1314b, 1314c)를 결정할 수 있다. 영상 복호화 장치(150)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1310)에 대한 분할 형태 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(150)는 제1 부호화 단위(1310)를 3개의 부호화 단위(1314a, 1314b, 1314c)로 분할할 수 있다. 영상 복호화 장치(150)는 3개의 부호화 단위(1314a, 1314b, 1314c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(150)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(150)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1314b)를, 제1 부호화 단위(1310)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 13을 참조하면, 제1 부호화 단위(1310)가 분할되어 생성된 부호화 단위(1314b)는 다른 부호화 단위들(1314a, 1314c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1314a, 1314c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1314b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1314c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(150)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(150)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(150)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(150)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 14는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(150)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(150)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 14를 참조하면, 영상 복호화 장치(150)는 정사각형 형태의 기준 부호화 단위(1400)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1402)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)의 수신부(160)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1400)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 10의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1400)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 11의 현재 부호화 단위(1100 또는 1150)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(150)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(160)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(150)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(150)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(150)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 15는 일 실시예에 따라 픽쳐(1500)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(150)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(150)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(150)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(150)의 수신부(160)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(160)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(150)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 픽쳐(1500)에 포함되는 프로세싱 블록(1502, 1512)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(150)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 15를 참조하면, 영상 복호화 장치(150)는 일 실시예에 따라 프로세싱 블록(1502, 1512)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(150)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(150)는 프로세싱 블록의 크기에 기초하여 픽쳐(1500)에 포함되는 각각의 프로세싱 블록(1502, 1512)을 결정할 수 있고, 프로세싱 블록(1502, 1512)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(150)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(160)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(150)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(160)는 비트스트림으로부터 프로세싱 블록(1502, 1512)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(150)는 상기 프로세싱 블록(1502, 1512)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1500)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 15를 참조하면, 영상 복호화 장치(150)는 각각의 프로세싱 블록(1502, 1512)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1504, 1514)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1502, 1512)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1502)과 관련된 기준 부호화 단위 결정 순서(1504)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1502)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1512)과 관련된 기준 부호화 단위 결정 순서(1514)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1512)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다. 도1 내지 도 15에서는 영상을 최대 부호화 단위로 분할하고, 최대 부호화 단위를 계층적 트리 구조의 부호화 단위들로 분할하는 방법이 설명되었다. 도 16 내지 도 25에서는 부호화 단위를 분할하여 결정된 심도가 1만큼 부호화 단위들에 대하여 어떠한 부호화 순서에 따라 부호화 또는 복호화할 것인지가 설명된다.
도16은 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 복호화 장치(1600)가 도시되어 있다.
비디오 복호화 장치(1600)는 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)를 포함한다. 도 16에서 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)는 별도의 구성 단위로 표현되어 있으나, 실시 예에 따라 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)는 합쳐져 동일한 구성 단위로 구현될 수도 있다.
도 16에서 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)는 하나의 장치에 위치한 구성 단위로 표현되었지만, 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)의 각 기능을 담당하는 장치는 반드시 물리적으로 인접할 필요는 없다. 따라서 실시 예에 따라 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)가 분산되어 있을 수 있다.
블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)는 실시 예에 따라 하나의 프로세서에 의하여 구현될 수 있다. 또한 실시 예에 따라 복수 개의 프로세서에 의하여 구현될 수도 있다.
도 16의 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)에서 수행되는 기능은 도1b의 복호화부(180)에서 수행될 수 있다.
블록 분할부(1610)는 현재 블록의 분할 여부를 나타내는 분할 정보를 획득할 수 있다. 분할 정보는 현재 블록을 2개 이상의 더 작은 블록으로 분할할지 여부를 나타낸다. 그리고 블록 분할부(1610)는 분할 정보가 현재 블록의 분할을 나타낼 경우, 현재 블록을 2개 이상의 하위 블록들로 분할한다.
현재 블록은 현재 블록의 형태에 따라 다양한 형태로 분할될 수 있다. 예를 들어, 현재 블록은 현재 블록이 정사각형일 때, 현재 블록은 분할 정보에 따라 4개의 정사각형 모양의 하위 블록들로 분할될 수 있다.
만약 현재 블록의 형태에 2개 이상의 분할 방법들이 허용될 경우, 블록 분할부(1610)는 분할 형태 정보에 따라 분할 방법을 선택할 수 있다. 따라서 블록 분할부(1610)는 분할 정보가 현재 블록의 분할을 나타낼 경우, 현재 블록의 분할 방법을 나타내는 분할 형태 정보를 획득할 수 있다. 그리고 블록 분할부(1610)는 분할 형태 정보가 나타내는 분할 방법에 따라, 현재 블록을 분할할 수 있다.
예를 들어, 현재 블록이 2Nx2N 크기의 정사각형일 때, 분할 형태 정보는 NxN 분할, 2NxN 분할, Nx2N 분할, 수직 비균등 삼분할 및 수평 비균등 삼분할 중 현재 블록에 적용된 분할 방법을 나타낼 수 있다. NxN 분할은 현재 블록을 4개의 NxN 크기의 블록으로 분할하는 방법이다. 2NxN 분할은 현재 블록을 2NxN 크기의 블록으로 분할하는 방법이다. Nx2N 분할은 현재 블록을 Nx2N 크기의 블록으로 분할하는 방법이다. 수직 비균등 삼분할은 2Nx2N 크기의 블록을 너비가 같고, 높이의 비가 1:2:1인 세 개의 블록으로 분할하는 방법을 의미한다. 수평 비균등 삼분할은 2Nx2N 크기의 블록을 높이가 같고, 너비의 비가 1:2:1인 세 개의 블록으로 분할하는 방법을 의미한다. 이외에도 현재 블록은 다양한 수평 분할 방법 또는 수직 분할 방법들 중 하나에 의하여 분할될 수 있다.
현재 블록이 2NxN 크기의 수직 방향으로 긴 직사각형일 경우, 분할 형태 정보는 NxN 분할, 수직 비균등 삼분할 중 현재 블록에 적용된 분할 방법을 나타낼 수 있다. NxN 분할은 현재 블록을 2개의 NxN 크기의 블록으로 분할하는 방법이다. 수직 비균등 삼분할은 2NxN 크기의 블록을 너비가 같고, 높이의 비가 1:2:1인 세 개의 블록으로 분할하는 방법을 의미한다. 이외에도 현재 블록은 다양한 수평 분할 방법 또는 수직 분할 방법들 중 하나에 의하여 분할될 수 있다.
현재 블록이 Nx2N 크기의 수평 방향으로 긴 직사각형일 경우, 분할 형태 정보는 NxN 분할, 수평 비균등 삼분할 중 현재 블록에 적용된 분할 방법을 나타낼 수 있다. NxN 분할은 현재 블록을 2개의 NxN 크기의 블록으로 분할하는 방법이다. 수평 비균등 삼분할은 Nx2N 크기의 블록을 높이가 같고, 너비의 비가 1:2:1인 세 개의 블록으로 분할하는 방법을 의미한다. 이외에도 현재 블록은 다양한 수평 분할 방법 또는 수직 분할 방법들 중 하나에 의하여 분할될 수 있다.
위의 분할 방법 외에도 비대칭적 비율로 현재 블록을 분할하는 방법, 삼각형의 형태로 분할하는 방법, 기타 기하학적 형태로 분할하는 방법 등이 정사각형 및 직사각형 크기의 현재 블록 분할에 사용될 수 있다.
블록 분할부(1610)는 분할 정보가 현재 블록의 분할을 나타내지 않을 경우, 현재 블록을 분할하지 않는다. 그리고 블록 복호화부(1640)는 현재 블록을 복호화한다.
만약 현재 블록이 부호화 단위일 경우, 블록 분할부(1610)는 현재 블록을 최종 부호화 단위로 결정한다. 최종 부호화 단위는 더 이상 심도가 더 큰 부호화 단위로 분할되지 않는다. 일 실시 예에 따라 최종 부호화 단위인 현재 블록을 부호화 단위가 아닌 다른 데이터 단위로 분할할 경우, 블록 복호화부(1640)는 블록 분할부(1610)가 현재 블록을 분할하도록 할 수 있다.
일 실시 예에 따르면, 블록 분할부(1610)는 현재 블록을 계층적 트리 구조에 따라 하나 이상의 예측 단위로 분할할 수 있다. 마찬가지로 블록 분할부(1610)는 현재 블록을 계층적 트리 구조에 따라 하나 이상의 변환 단위로 분할할 수 있다. 그리고 블록 복호화부(1640)는 현재 블록을 예측 단위에 대한 예측 결과와 변환 단위에 대한 변환 결과에 따라 복원할 수 있다.
만약 현재 블록이 예측 단위라면, 블록 복호화부(1640)는 현재 블록에 대한 예측을 수행할 수 있다. 그리고 현재 블록이 변환 단위라면, 블록 복호화부(1640)는 현재 블록에 대한 양자화된 변환 계수를 역양자화 및 역변환하여 레지듀얼 데이터를 획득할 수 있다.
부호화 순서 결정부(1620)는 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 획득한다. 그리고 부호화 순서 결정부(1620)는 획득된 부호화 순서 정보에 따라, 하위 블록들의 복호화 순서를 결정할 수 있다.
부호화 순서 정보는 현재 블록에 포함된 2개 이상의 하위 블록들의 부호화 순서를 나타낸다. 부호화 순서 정보의 데이터량은 하위 블록들의 수와 부호화 순서 결정 방식에 따라 결정된다.
예를 들어, 하위 블록이 2개일 경우, 부호화 순서 정보는 2개의 하위 블록들 중 먼저 부호화된 하위 블록을 나타내도록 결정될 수 있다. 따라서 1비트의 데이터량을 가지는 플래그의 형태를 가질 수 있다.
그러나 하위 블록이 4개일 경우, 하위 블록의 부호화 순서의 경우의 수는 4!=24이다. 그러므로 24개의 부호화 순서를 나타내기 위하여, 5비트의 데이터량이 요구된다. 즉, 하위 블록의 수가 증가할수록 부호화 순서의 경우의 수가 증가한다. 따라서 부호화 순서 정보의 데이터량을 줄이기 위하여, 미리 정해진 기본 부호화 순서에서 일부 하위 블록 쌍(pair)의 부호화 순서가 스와핑(swap)되는지 여부를 결정하여 부호화 순서를 결정하는 부호화 순서 결정 방식이 사용될 수 있다. 하위 블록 쌍의 부호화 순서의 스와핑 여부를 나타내는 부호화 순서 정보는 기본 부호화 순서에 대하여 정방향 또는 역방향인지 나타낸다.
현재 블록이 포함된 현재 픽처는 기본 부호화 순서에 따라 부호화 및 복호화 된다. 현재 픽처에서 부호화 및 복호화되는 모든 블록 및 픽셀은 동일 레벨에서 기본 부호화 순서에 따라 부호화 및 복호화된다. 그러므로 현재 블록으로부터 분할된 동일 레벨의 하위 블록들 역시 기본 부호화 순서에 따라 부호화 및 복호화된다. 기본 부호화 순서의 일 실시 예가 후술할 도 17a 내지 17c에 도시되어 있다.
따라서 하위 블록 쌍이 기본 부호화 순서에 따라 부호화될 경우, 하위 블록 쌍이 정방향으로 부호화된다고 한다. 반대로 하위 블록 쌍이 기본 부호화 순서의 반대로 부호화될 경우, 하위 블록 쌍이 역방향으로 부호화된다고 한다.
예를 들어, 2개의 하위 블록이 수평 방향으로 인접하고, 정방향으로 부호화된 경우, 좌측의 하위 블록이 먼저 복호화되도록 부호화 순서 정보가 결정될 수 있다. 반대로 수평 방향으로 인접한 2개의 하위 블록이 역방향으로 부호화된 경우, 우측의 하위 블록이 먼저 복호화되도록 부호화 순서 정보가 결정될 수 있다.
마찬가지로, 2개의 하위 블록이 수직 방향으로 인접하고, 정방향으로 부호화된 경우, 상측의 하위 블록이 먼저 복호화되도록 부호화 순서 정보가 결정될 수 있다. 반대로 수직 방향으로 인접한 2개의 하위 블록이 역방향으로 부호화된 경우, 하측의 하위 블록이 먼저 복호화되도록 부호화 순서 정보가 결정될 수 있다.
부호화 순서 정보가 하위 블록 쌍의 부호화 순서만을 나타낼 경우, 부호화 순서 정보는 1비트의 데이터량을 가진다. 1비트의 데이터량을 가지는 부호화 순서 정보는 부호화 순서 플래그라고 정의될 수 있다.
부호화 순서 결정부(1620)는 비트스트림으로부터 부호화 순서 정보를 획득할 수 있다. 부호화 순서 정보는 비트스트림에서 분할 정보 후에 위치할 수 있다.
부호화 순서 결정부(1620)는 부호화 순서 정보를 현재 블록의 주변 환경에 따라 내재적으로 결정할 수 있다. 부호화 순서 정보는 현재 블록에 인접한 주변 블록들의 부호화 여부에 따라 결정될 수 있다. 예를 들어 부호화 순서 결정부(1620)는 하위 블록들 중 인접한 주변 블록이 많은 하위 블록이 먼저 복호화되도록 결정할 수 있다.
부호화 순서 결정부(1620)와 관련하여, 도17a 내지 17c에는 일 실시 예에 따른 기본 부호화 순서가 설명되어 있다. 도17a 내지 17c의 기본 부호화 순서가 Z 부호화 순서이다. Z 부호화 순서에서 따르면 좌측에서 우측 방향으로 데이터 단위들이 부호화되고, 현재 행의 데이터 단위들이 모두 부호화되면 현재 행의 아래 행에 포함된 데이터 단위들이 좌측에서 우측 방향으로 부호화된다. 앞서 설명된Z 부호화 순서를 래스터 스캔 순서(raster scan order)라고 한다.
도 17a에는 현재 픽처(1700)에 포함된 최대 부호화 단위들의 Z 부호화 순서에 의한 부호화 순서들이 도시되어 있다. Z 부호화 순서에 따라 최대 부호화 단위들은 0부터 15까지의 인덱스가 설정되어 있다. Z 부호화 순서에 따라 0 내지 3의 인덱스가 설정된 1행의 최대 부호화 단위들이 먼저 부호화되고, 4 내지 7의 인덱스가 설정된 2행의 최대 부호화 단위들이 좌측에서 우측 방향으로 부호화된다. 최대 부호화 단위 역시 내부적으로 Z 부호화 순서에 따라 부호화 된다.
도 17b에 현재 픽처(1700)에 포함된 최대 부호화 단위들 중 6번 인덱스의 최대 부호화 단위(1710)의 부호화 순서가 도시되어 있다. Z 부호화 순서에 따라 분할이 완료된 최종 심도의 부호화 단위들은 0부터 15까지의 인덱스가 설정되어 있다. Z 부호화 순서는 동일 심도의 데이터 단위에 대하여 적용된다. 그리고 심도n의 부호화 단위의 하위 부호화 단위가 전부 부호화되기 전까지 후순위의 심도 n의 부호화 단위는 부호화되지 않는다. 예를 들어, 인덱스가 5 내지 14인 부호화 단위들이 전부 부호화되기 전까지, 인덱스가 15인 부호화 단위는 부호화되지 않는다. 부호화 단위 역시 내부적으로 Z 부호화 순서에 따라 부호화 된다.
도17c에는 최대 부호화 단위(1710)에 포함된 부호화 단위들 중 6번 인덱스의 부호화 단위(1724)가 참조하는 참조 샘플이 표시되어 있다. 현재 부호화되는 6번 인덱스의 부호화 단위(1724) 주위에는0번 인덱스의 부호화 단위(1712)와 5번 인덱스의 부호화 단위(1722)만이 복원되어 있다. 따라서 부호화 단위(1724)에 대하여 부호화 단위(1712)의 픽셀(1750)과 부호화 단위(1722)의 픽셀(1760)만이 참조 샘플로 사용될 수 있다.
도 17a 내지 17c의 Z 부호화 순서는 데이터 단위에 따라 다른 방향으로 적용될 수도 있다. 예를 들면 Z 부호화 순서는 동일 행에서 우측에서 좌측 방향으로 데이터 단위를 부호화하도록 변경될 수 있다. 또한 Z 부호화 순서는 현재 행의 데이터 단위들이 모두 부호화된 후 현재 행의 위 행에 포함된 데이터 단위들이 부호화되도록 변경될 수 있다. 그리고 Z 부호화 순서는 동일 열에서 위에서 아래로 데이터 단위들이 부호화되고, 현재 열의 데이터 단위들이 모두 부호화된 후 현재 열의 우측 열에 포함된 데이터 단위들이 부호화되도록 변경될 수 있다.
부호화 순서 결정부(1620)와 관련하여, 도 18a 및 18b에는 부호화 단위(1810)가 정방향으로 부호화되는 케이스(1800)와 부호화 단위(1820)가 역방향으로 부호화되는 케이스(1802)가 각각 도시되어 있다. 도 18a 및 18b에 따라 부호화 순서를 변경함으로써 획득되는 이점이 설명된다.
도 18a 및 18b의 부호화 단위(1810, 1820)는 우상측 방향의 인트라 모드에 따라 예측된다. 도 18a 및 18b의 연속선(1830)은 원본 영상에서 직선의 형태로 배열된 일정한 값을 가지는 픽셀들이다. 따라서 현재 부호화 단위가 연속선(1830)의 방향으로 예측될 경우, 부호화 단위(1810,1820)의 예측 정확도는 향상될 것이다.
정방향으로 부호화되는 케이스(1800)에서 현재 부호화 단위(1810)의 좌측 부호화 단위, 상측 부호화 단위 및 우상측 부호화 단위가 현재 부호화 단위(1810)보다 먼저 복원된다. 따라서 현재 부호화 단위(1810)는 좌측 부호화 단위, 상측 부호화 단위 및 우상측 부호화 단위의 픽셀 또는 부호화 정보를 참조한다. 예를 들어, 우상측 부호화 단위의 하측 모서리에 위치한 픽셀들(1816)이 현재 부호화 단위 (1810)의 예측에 사용된다. 픽셀들(1816)은 현재 부호화 단위(1810)으로부터 공간적으로 떨어져 있어 현재 부호화 단위(1810)의 일부분(1814)에 대한 예측 정확도는 낮을 수 있다.
그러나 역방향으로 부호화되는 케이스(1802)에서 현재 부호화 단위(1810)의 우측 부호화 단위, 상측 부호화 단위 및 좌상측 부호화 단위가 현재 부호화 단위(1820)보다 먼저 복원되므로, 인트라 예측에서는 우측 단위의 좌측 모서리에 위치한 픽셀들(1826)이 현재 부호화 단위(1820)의 예측에 사용될 수 있다. 픽셀들(1826)은 현재 부호화 단위(1820)에 인접하고 있으므로, 현재 부호화 단위(1820)의 일부분(1824)에 대한 예측 정확도는 현재 부호화 단위(1810)의 일부분(1814)에 대한 예측 정확도보다 향상될 수 있다.
도 18a 및 18b에서 설명된 인트라 예측에 관한 실시 예와 같이, 인터 예측에 관하여도 역방향에 위치한 블록으로부터 부호화 정보를 획득함으로써 예측 정확도를 높일 수 있는 많은 케이스가 있다. 만약 현재 부호화 단위와 현재 부호화 단위의 우측 부호화 단위가 동일한 객체에 관한 부호화 단위일 경우, 현재 부호화 단위는 우측 부호화 단위의 움직임 정보와 서로 유사할 수 있다. 따라서 현재 부호화 단위의 움직임 정보를 우측 부호화 단위의 움직임 정보로부터 도출함으로써 부호화 효율을 증가시킬 수 있다.
그러므로 현재 부호화 단위에 대하여 정방향에서 부호화한 경우의 부호화 효율과 역방향에서 부호화한 경우의 부호화 효율을 비교하여 부호화 순서를 결정함으로써, 영상의 부호화 효율을 향상시킬 수 있다.
부호화 순서 정보는 현재 블록의 상위 블록에 적용된 부호화 순서 정보와 동일하게 설정될 수 있다. 예를 들어, 부호화 순서 결정부(1620)는 현재 블록이 예측 단위 또는 변환 단위일 때, 현재 블록이 포함된 부호화 단위에 적용된 부호화 순서 정보를 현재 블록에 적용할 수 있다. 다른 예로, 현재 블록이 부호화 단위일 때, 부호화 순서 결정부(1620)는 현재 블록보다 심도가 낮은 부호화 단위에 적용된 부호화 순서 정보를 현재 블록에 적용할 수 있다.
부호화 순서 결정부(1620)는 현재 블록에 대하여 두 개 이상의 부호화 순서 플래그가 있을 때, 한 개의 부호화 순서 플래그만을 비트스트림으로부터 획득하고, 나머지 부호화 순서 플래그는 비트스트림으로부터 획득된 부호화 순서 플래그에 연동되도록 결정할 수 있다.
부호화 순서 결정부(1620)의 부호화 순서 결정과 관련하여 도 19에서는 최대 부호화 단위와 최대 부호화 단위에 포함된 부호화 단위들의 부호화 순서를 설명하기 위한 최대 부호화 단위의 트리 구조를 나타낸다.
최대 부호화 단위(1950)는 복수 개의 부호화 단위들(1956, 1958, 1960, 1962, 1968, 1970, 1972, 1974, 1980, 1982, 1984, 1986)로 분할된다. 최대 부호화 단위(1950)는 트리 구조의 최상위 노드(1900)에 대응된다. 그리고 복수 개의 부호화 단위들(1956, 1958, 1960, 1962, 1968, 1970, 1972, 1974, 1980, 1982, 1984, 1986)은 각각 복수 개의 노드들(1906, 1908, 1910, 1912, 1918, 1920, 1922, 1924, 1930, 1932, 1934, 1936)에 대응된다. 트리 구조에서 부호화 순서를 나타내는 상단 부호화 순서 플래그(1902, 1914, 1926)는 화살표(1952, 1964, 1976)에 대응되고, 상단 부호화 순서 플래그(1904, 1916, 1928)는 화살표(1954, 1966, 1978)에 대응된다.
상단 부호화 순서 플래그는 네 개의 동일 심도의 부호화 단위들 중 상단에 위치한 두 개의 부호화 단위들의 부호화 순서를 나타낸다. 만약 상단 부호화 순서 플래그가 0일 경우, 부호화는 정방향으로 수행된다. 반대로 상단 부호화 순서 플래그가 1일 경우, 부호화는 역방향으로 수행된다.
마찬가지로 하단 부호화 순서 플래그는 네 개의 동일 심도의 부호화 단위들 중 하단에 위치한 두 개의 부호화 단위들의 부호화 순서를 나타낸다. 만약 하단 부호화 순서 플래그가 0일 경우, 부호화는 정방향으로 수행된다. 반대로 하단 부호화 순서 플래그가 1일 경우, 부호화는 역방향으로 수행된다.
예를 들어, 상단 부호화 순서 플래그(1914)가 0이므로 부호화 단위들(1968, 1970) 간의 부호화 순서는 정방향인 좌측에서 우측 방향으로 결정된다. 그리고 하단 부호화 순서 플래그(1916)가 1이므로 부호화 단위들(1972, 1974) 간의 부호화 순서는 역방향인 우측에서 좌측 방향으로 결정된다.
실시 예에 따라, 상단 부호화 순서 플래그와 하단 부호화 순서 플래그가 동일한 값을 가지도록 설정될 수 있다. 예를 들어, 상단 부호화 순서 플래그(1902)가 1로 결정될 경우, 상단 부호화 순서 플래그(1902)에 대응되는 하단 부호화 순서 플래그(1904)도 1로 결정될 수 있다. 1비트로 상단 부호화 순서 플래그와 하단 부호화 순서 플래그의 값이 결정되므로 부호화 순서 정보의 정보량이 감소한다.
실시 예에 따라, 현재 부호화 단위의 상단 부호화 순서 플래그와 하단 부호화 순서 플래그는 현재 부호화 단위보다 심도가 낮은 부호화 단위에 적용된 상단 부호화 순서 플래그 및 하단 부호화 순서 플래그 중 적어도 하나를 참조하여 결정될 수 있다. 예를 들어, 부호화 단위(1980, 1982, 1984, 1986)에 적용된 상단 부호화 순서 플래그(1926)와 하단 부호화 순서 플래그(1928)는 부호화 단위들(1972, 1974)에 적용된 하단 부호화 순서 플래그(1916)에 기초하여 결정될 수 있다. 따라서 상단 부호화 순서 플래그(1926)와 하단 부호화 순서 플래그(1928)는 부호화 순서 플래그(1916)와 동일한 값으로 결정될 수 있다. 상단 부호화 순서 플래그와 하단 부호화 순서 플래그의 값을 현재 부호화 단위의 상위 부호화 단위로부터 결정하므로, 부호화 순서 정보가 비트스트림으로부터 획득되지 않는다. 따라서 부호화 순서 정보의 정보량이 감소한다.
부호화 순서 결정부(1620)의 부호화 순서 결정과 관련하여 도 20a 및20b에는 수직 또는 수평 방향으로 배열된 3개 이상의 블록들의 부호화 순서가 부호화 순서 플래그에 따라 어떻게 변경되는지 설명된다.
도20a의 실시 예는 공간적으로 인접한 부호화 단위들의 부호화 순서가 서로 인접한 경우에만 부호화 순서 플래그에 기초하여 부호화 순서를 스와핑하는 방법에 관한 것이다.
부호화 단위(2000)는 세 개의 부호화 단위들(2010, 2020, 2030)로 분할된다. 기본 부호화 순서가 좌측에서 우측 방향일 때, 부호화 단위(2010), 부호화 단위(2020), 부호화 단위(2030)의 순서로 부호화된다. 그러나 부호화 순서 플래그(2040, 2050)에 따라서 부호화 순서가 변경될 수 있다.
부호화 순서 플래그(2040)은 부호화 단위(2010)과 부호화 단위(2020)의 부호화 순서를 나타낸다. 부호화 순서 플래그(2040)가 0일 경우, 부호화 단위(2010)와 부호화 단위(2020)의 부호화 순서는 정방향으로 결정된다. 따라서 부호화 단위(2010)가 부호화 단위(2020)보다 먼저 부호화 된다. 그러나 부호화 순서 플래그(2040)가 1일 경우, 부호화 단위(2010)와 부호화 단위(2020)의 부호화 순서는 역방향으로 결정되어, 부호화 단위(2020)가 부호화 단위(2010)보다 먼저 부호화 된다.
부호화 순서 플래그(2050)은 부호화 단위(2020)과 부호화 단위(2030)의 부호화 순서를 나타낸다. 부호화 순서 플래그(2050)는 부호화 순서 플래그(2040)가 정방향을 나타낼 때, 획득된다. 만약 부호화 순서 플래그(2040)가 역방향을 나타내면, 부호화 단위(2020)와 부호화 단위(2030)의 부호화 순서가 인접하지 않게 되어, 부호화 순서 플래그(2050)는 획득되지 않는다. 부호화 순서 플래그(2050)가 0일 경우, 부호화 단위(2020)와 부호화 단위(2030)의 부호화 순서는 정방향으로 결정된다. 따라서 부호화 단위(2020)가 부호화 단위(2030)보다 먼저 부호화 된다. 그러나 부호화 순서 플래그(2050)가 1일 경우, 부호화 단위(2020)와 부호화 단위(2030)의 부호화 순서는 역방향으로 결정되어, 부호화 단위(2030)가 부호화 단위(2020)보다 먼저 부호화 된다.
도 20a의 실시 예에 따르면, 3개의 부호화 단위의 부호화 순서는 3가지 케이스가 있다. 따라서 부호화 순서를 결정하기 위하여 1개 또는 2개의 부호화 순서 플래그가 사용된다.
도 20b의 실시 예는 세 개의 부호화 단위에 적용되는 부호화 순서의 방향을 나타내는 부호화 순서 플래그 (2060)에 기초하여 부호화 순서를 결정하는 방법에 관한 것이다.
부호화 순서 플래그 (2060)는 부호화 순서가 정방향 혹은 역방향인지 여부를 나타낸다. 예를 들어, 부호화 순서 플래그 (2060)가 0일 경우, 부호화 단위들 (2010, 2020, 2030)의 부호화 순서는 정방향으로 결정될 수 있다. 따라서 부호화 순서 플래그 (2060)가 0일 때, 부호화 단위 (2010), 부호화 단위 (2020), 부호화 단위 (2030) 순으로 부호화될 수 있다.
반대로 부호화 순서 플래그 (2060)가 1일 경우, 부호화 단위들 (2010, 2020, 2030)의 부호화 순서는 역방향으로 결정될 수 있다. 따라서 부호화 순서 플래그 (2060)가 1일 때, 부호화 단위 (2030), 부호화 단위 (2020), 부호화 단위 (2010) 순으로 부호화될 수 있다.
*도 20b의 실시 예에 따르면, 3개의 부호화 단위의 부호화 순서는 2가지 케이스가 있다. 따라서 부호화 순서를 결정하기 위하여 1개의 부호화 순서 플래그가 사용된다.
도20a 및 20b의 실시 예에서 사용된 부호화 순서 결정 방법들은 4개 이상의 부호화 단위들에 대하여 적용될 수 있다.
부호화 순서 결정부(1620)는 현재 블록의 상위 데이터 단위에 대하여, 부호화 순서 변경 허용 정보를 확인할 수 있다. 부호화 순서 변경 허용 정보는 현재 블록의 상위 데이터 단위에 포함된 블록들에 대하여 부호화 순서의 변경이 허용되었는지 여부를 나타낸다. 만약 부호화 순서 변경 허용 정보가 부호화 순서의 변경이 허용하지 않으면, 상위 데이터 단위의 모든 블록들은 기본 부호화 순서에 따라 복호화된다. 또는 상위 데이터 단위의 모든 블록들은 상위 데이터 단위가 속한 데이터 단위의 부호화 순서에 따라 복호화될 수 있다. 만약 부호화 순서 변경 허용 정보가 현재 블록에 대한 부호화 순서 정보가 부호화되었다고 나타낼 경우, 부호화 순서 결정부(1620)는 부호화 순서 정보를 획득할 수 있다.
부호화 순서 변경 허용 정보는 비디오 파라미터 세트(Video Parameter Set), 시퀀스 파라미터 세트(Sequence Parameter Set), 픽쳐 파라미터 세트(Picture Parameter Set), 슬라이스 세그멘트 헤더(Slice Segment Header), 최대 부호화 단위 헤더 등에 포함되어 있을 수 있다. 그리고 부호화 순서 정보의 종류가 2개 이상일 경우, 각 부호화 순서 정보에 대한 부호화 순서 변경 허용 정보는 서로 다른 헤더에 분할되어 저장될 수 있다.
부호화 순서 변경 허용 정보는 부호화 순서 정보가 제공되는 심도 또는 블록 크기를 나타낼 수 있다. 예를 들어, 부호화 순서 결정부(1620)는 현재 블록의 심도가 부호화 순서 변경 허용 정보가 나타내는 심도에 포함될 경우에만, 부호화 순서 정보를 획득할 수 있다. 다른 예로, 부호화 순서 결정부(1620)는 현재 블록의 심도가 부호화 순서 변경 허용 정보가 나타내는 블록 크기일 경우에만, 부호화 순서 정보를 획득할 수 있다.
예측 방법 결정부(1630)는 분할 정보가 현재 블록의 분할을 나타내지 않을 때, 현재 블록의 부호화 정보 및 현재 블록의 주변 블록들의 복호화 여부에 따라 현재 블록의 예측 방법을 결정할 수 있다.
현재 블록의 부호화 정보는 현재 블록이 어떠한 방식으로 예측되는지를 나타낼 수 있다. 구체적으로, 부호화 정보는 복수의 인트라 예측 모드 및 인터 예측 모드 중 하나의 예측 방법을 나타낼 수 있다. 현재 블록에 적용될 수 있는 인트라 예측 모드에는 방향성 모드, DC 모드, 플래너 모드, MPI 모드(Multi-Parameter Intra prediction mode), LM 크로마 모드(Linear-Model Chroma mode), MPC 모드(Most Probable Chroma mode) 등이 포함될 수 있다. 현재 블록에 적용될 수 있는 인터 예측 모드에는 머지 모드(merge mode), AMVP 모드(Advanced Motion Vector Prediction mode), 인터 스킵 모드(inter skip mode), OBMC 모드(Overlapped Block Motion Compensation mode), 서브 블록 MVP 모드(Sub-block Motion Vector Prediction mode), Affine MC 모드(Affine Motion Compensation mode), FRUC 모드(Frame Rate Up Conversion mode) 등이 포함될 수 있다. 따라서 예측 방법 결정부(1630)는 현재 블록의 부호화 정보에 따라 현재 블록에 적용되는 예측 모드를 결정할 수 있다.
현재 블록의 주변 블록들이 복호화되었는지 여부에 따라, 현재 블록의 예측에 참조되는 참조 블록 및 참조 샘플이 결정될 수 있다. 도 17 a 내지 17c에서 설명된 래스터 스캔에 의하면 현재 블록의 좌측, 상측, 좌상측, 우상측, 좌하측 블록들만이 현재 블록 이전에 복호화될 수 있다. 그러나 부호화 순서 결정부(1620)에 의하여 래스터 스캔과는 다른 부호화 순서에 따라 현재 블록이 속한 부호화 트리 블록이 부호화된 경우, 현재 블록의 우측 블록 및 우하측 블록도 현재 블록 이전에 복호화될 수 있다. 따라서 예측 방법 결정부(1630)는 현재 블록의 좌측, 상측, 좌상측, 우상측, 좌하측, 우측, 우하측 블록들이 복호화되었는지 여부에 따라 현재 블록의 예측에 참조되는 참조 블록 및 참조 샘플을 결정할 수 있다.
예측 방법 결정부(1630)는 현재 블록이 인트라 예측될 때, 현재 블록의 주변 블록의 복호화 여부에 따라 현재 블록이 참조할 참조 샘플들을 결정할 수 있다. 인트라 예측 모드에서는 현재 블록과 인접한 샘플들의 샘플 값을 참조하여 현재 블록의 샘플들의 예측 값이 결정된다. 그러므로 현재 블록의 인접 블록들 중 현재 블록들보다 먼저 복호화되어 현재 블록이 참조할 수 있는 인접 블록만이, 현재 블록의 예측에 사용될 수 있다.
구체적인 예로, 도 17a 내지 17c에서 설명된 래스터 스캔의 정방향에 따라 블록들이 부호화될 경우, 현재 블록의 상측 블록, 좌측 블록, 좌상측 블록, 좌하측 블록 및 우상측 블록의 참조 샘플들이 현재 샘플의 예측에 사용될 수 있다. 반대로, 래스터 스캔의 역방향에 따라 블록들이 부호화될 경우, 현재 블록의 상측 블록, 우측 블록, 우상측 블록, 우하측 블록 및 좌상측 블록의 참조 샘플들이 현재 샘플의 예측에 사용될 수 있다.
예측 방법 결정부(1630)에 관련한 부호화 순서의 방향에 따른 참조 샘플들의 이용 방법이, 도 21 내지 도 25b는 구체적으로 설명된다.
도21은 방향성 인트라 예측 모드에 필요한 참조 샘플의 결정 방법을 나타낸다.
제1 실시 예(2120)는 상측 행의 블록들과 좌측 블록이 복원된 경우, 인트라 예측에 사용되는 참조 샘플들(2102, 2106, 2108, 2110)을 나타낸다. 제1 실시 예(2120)의 경우, 복원된 상측 블록들의 참조 샘플들(2102, 2106)과 복원된 좌측 블록의 참조 샘플들(2108)이 인트라 예측에 사용될 수 있다. 좌하측 블록의 참조 샘플들(2110)은 좌하측 블록이 복원된 경우에만 사용될 수 있다. 참조 샘플들(2102, 2106, 2108, 2110)을 사용하기 위하여 제1 인트라 예측 방향군(2125)에 포함된 예측 방향들이 현재 블록(2100)의 인트라 예측에 사용될 수 있다.
제2 실시 예(2130)는 상측 행의 블록들과 우측 블록이 복원된 경우, 인트라 예측에 사용되는 참조 샘플들(2102, 2104, 2112, 2114)을 나타낸다. 제2 실시 예(2130)의 경우, 복원된 상측 블록들의 참조 샘플들(2102, 2104)과 복원된 우측 블록의 참조 샘플들(2112)이 인트라 예측에 사용될 수 있다. 우하측 블록의 참조 샘플들(2114)은 우하측 블록이 복원된 경우에만 사용될 수 있다. 참조 샘플들(2102, 2104, 2112, 2114)을 사용하기 위하여 제2 인트라 예측 방향군(2135)에 포함된 예측 방향들이 현재 블록(2100)의 인트라 예측에 사용될 수 있다.
제3 실시 예(2140)는 상측 블록, 우측 블록 및 좌측 블록이 복원된 경우, 인트라 예측에 사용되는 참조 샘플들(2102, 2108, 2112)을 나타낸다. 제3 실시 예(2140)의 경우, 상측 블록의 참조 샘플들(2102), 좌측 블록의 참조 샘플들(2108) 및 우측 블록의 참조 샘플들(2112)이 인트라 예측에 사용될 수 있다. 제3 인트라 예측 방향군(2145)에 포함된 예측 방향들이 현재 블록(2100)의 인트라 예측에 사용될 수 있다.
제1 실시 예(2120)와 제2 실시 예(2130)에 의하면, 좌하측 블록의 참조 샘플들(2110)과 우하측 블록의 참조 샘플들(2114)을 사용할 수 없는 경우, 예측의 정확성이 낮을 위험성이 있다. 그러나 제3 실시 예(2140)의 경우, 사용되는 참조 샘플(2102, 2108, 2112)들이 모두 현재 블록에 인접하므로 예측 정확도가 다른 실시 예에 비하여 상대적으로 높을 수 있다.
제4 실시 예(2150)는 상측 행의 블록들만이 복원된 경우, 인트라 예측에 사용되는 참조 샘플들(2102, 2104, 2106)을 나타낸다. 제4 실시 예(2150)의 경우, 복원된 상측 블록들의 참조 샘플들(2102, 2104, 2106)만이 인트라 예측에 사용될 수 있다. 제4 인트라 예측 방향군(2155)에 포함된 예측 방향들이 현재 블록(2100)의 인트라 예측에 사용될 수 있다.
제4 실시 예(2150)에서는 제3실시 예와 다르게, 현재 블록과 인접하는 참조 샘플이 상측 블록의 참조 샘플(2102) 밖에 없다. 또한 참조 샘플(2104, 2106)은 현재 블록으로부터 공간적으로 떨어져 있어, 다른 실시 예들(2120, 2130, 2140)에 비하여 예측 정확도가 낮을 수 있다. 그러므로 제4 실시 예(2150)에 사용되는 인트라 예측 방법은, 현재 블록(2100)과 인접한 상측 블록의 참조 샘플(2102)를 이용하는 수직 모드 또는 수직 모드와 인접한 방향의 방향성 예측 모드인 것이 바람직하다.
Z 부호화 순서에서는 제1 실시 예(2120)에 의한 인트라 예측 방법이 사용되나, 2개의 좌우로 인접한 블록들의 부호화 순서가 스와핑된 경우, 먼저 우측 블록이 제4 실시 예(2150)에 의한 인트라 예측 방법으로 예측될 수 있다. 그리고 우측 블록이 복원된 후 좌측 블록이 제3 실시 예(2140)에 의한 인트라 예측 방법에 의하여 예측됨으로써, 좌측 블록이 복원될 수 있다.
도 22a 및 22b는 우측 블록의 복호화 여부에 따른 DC 모드의 예측 방법을 나타낸다. 도 22a는 현재 블록의 부호화 순서가 래스터 스캔에 따른 기본 부호화 순서로 고정된 경우의 참조 샘플들의 범위를 나타낸다. 그리고 도 22b는 현재 블록의 부호화 순서가 기본 부호화 순서로 고정되지 않은 경우의 참조 샘플들의 범위를 나타낸다.
도 22a에 의하면 현재 블록(2200)의 좌측, 상측, 좌상측에 인접한 샘플들(2210) 중 복호화된 샘플들이 참조 샘플로 사용될 수 있다. 그러나 도 22b의 경우, 현재 블록(2230)의 우측 블록이 현재 블록(2230)보다 먼저 복호화되어 있을 수 있으므로, 현재 블록(2230)의 좌측, 상측, 좌상측, 우상측, 우측에 인접한 샘플들(2240) 중 복호화된 샘플들이 참조 샘플로 사용될 수 있다.
DC 모드에서 현재 블록의 모든 샘플들이 동일한 예측 값을 가지게 되므로, 참조 샘플의 샘플 값과 현재 블록의 샘플의 예측 값 간에 불연속이 발생할 수 있다. 따라서 DC 모드에서 현재 블록의 경계에 위치한 샘플의 예측 값을 인접한 참조 샘플에 따라 필터링함으로써 현재 블록의 샘플의 예측 값에 연속성을 추구할 수 있다. 따라서 DC 모드에 따른 예측 정확성이 증가될 수 있다.
도22a에 의하면, 현재 블록(2200)의 좌측, 상측, 좌상측 샘플만이 참조 샘플로 결정될 수 있으므로, 현재 블록의 좌측, 상측 경계에 위치한 샘플들(2220)의 예측 값만이 예측 값 필터링의 대상이 된다. 그러나 도 22b에 의하면, 현재 블록(2230)의 우측, 우상측 샘플도 참조 샘플로 결정될 수 있으므로, 현재 블록의 좌측, 상측, 우측 경계에 위치한 샘플들(2250)의 예측 값이 예측 값 필터링의 대상이 될 수 있다.
도 23a 내지 23c는 우측 블록의 복호화 여부에 따른 플래너 모드의 예측 방법을 나타낸다. 도 23a는 현재 블록의 부호화 순서가 래스터 스캔에 따른 기본 부호화 순서로 고정된 경우, 플래너 모드에 의한 현재 샘플의 예측 값 결정 방법을 나타낸다. 도 23b 및 23c는 현재 블록의 부호화 순서가 기본 부호화 순서로 고정되지 않은 경우, 플래너 모드에 의한 현재 샘플의 예측 값 결정 방법을 나타낸다.
도 23a에 따르면, 현재 샘플(2300)에 대한 4개의 참조 샘플들(2302, 2304, 2306, 2308)의 이중 보간 값이 현재 샘플의 예측 값으로 결정된다. 제1 모서리 샘플(2302)과 제1 측면 샘플(2304)을 현재 샘플(2300)의 수평 위치에 기초하여 선형 보간함으로써 수평 보간 값이 결정된다. 그리고 제2 모서리 샘플(2306)과 제2 측면 샘플(2308)을 현재 샘플(2300)의 수직 위치에 기초하여 선형 보간함으로써 수직 보간 값이 결정된다. 그리고 수평 보간 값과 수직 보간 값의 평균 값이 현재 샘플(2300)의 예측 값으로 결정된다.
도 23b에서 현재 블록의 좌측 블록이 복호화되지 않고, 현재 블록의 우측 블록이 복호화된 경우, 플래너 모드에 따른 현재 샘플 예측 방법이 설명된다.
도 23b의 경우, 도23a와 대칭적으로 4개의 참조 샘플들(2312, 2314, 2316, 2318)이 결정된다. 도 23b의 플래너 모드 예측 방법은 도23a와 참조 샘플들의 위치가 다를 뿐, 현재 샘플의 예측 값 결정 방법은 도 23a와 유사하다.
구체적으로, 제1 모서리 샘플(2312)과 제1 측면 샘플(2314)을 현재 샘플(2310)의 수평 위치에 기초하여 선형 보간함으로써 수평 보간 값이 결정된다. 그리고 제2 모서리 샘플(2316)과 제2 측면 샘플(2318)을 현재 샘플(2310)의 수직 위치에 기초하여 선형 보간함으로써 수직 보간 값이 결정된다. 그리고 수평 보간 값과 수직 보간 값의 평균 값이 현재 샘플(2310)의 예측 값으로 결정된다.
도 23c에서 현재 블록의 좌측 블록 및 우측 블록이 모두 복호화된 경우, 플래너 모드에 따른 현재 샘플 예측 방법이 설명된다.
도 23c에 의하면, 현재 블록의 상측, 좌측, 우측에 참조 샘플들이 존재하기 때문에, 플래너 모드에 따른 예측 정확도가 증가할 수 있다. 다만 현재 블록의 하측은 복호화되지 않았으므로, 제1 모서리 샘플(2328) 및 제2 모서리 샘플(2330)을 현재 샘플(2320)의 수평 위치에 따라 선형 보간함으로써, 수직 보간 값을 계산하기 위한 하측 중간 값이 결정된다.
그리고 제1 측면 샘플(2322)과 제2 측면 샘플(2324)를 현재 샘플(2320)의 수평 거리에 기초하여 보간함으로써 수평 보간 값이 결정된다. 또한 제3 측면 샘플(2326)과 하측 중간 값을 현재 샘플(2320)의 수직 위치에 기초하여 보간함으로써 수평 보간 값이 결정된다. 그리고 수평 보간 값과 수직 보간 값의 평균 값이 현재 샘플(2310)의 예측 값으로 결정된다.
또한 도 23c와 같이 현재 블록의 좌측 블록 및 우측 블록이 모두 복호화된 경우, 도 23a의 플래너 모드 예측 방법과 도 23b의 플래너 모드 예측 방법 중 하나를 선택하고, 선택된 플래너 모드 예측 방법에 따라 현재 블록이 예측되도록 할 수 있다. 또는 현재 블록의 좌측 블록 및 우측 블록이 모두 복호화되었을 경우, 플래너 모드에 따른 예측 값은 도24a의 방법에 따라 획득된 예측 값과 도24b의 방법에 따라 획득된 예측 값을 평균하여 결정될 수 있다.
또는 현재 블록의 좌측 블록 및 우측 블록이 모두 복호화되었을 경우, 현재 블록의 특정 행(Line)에 위치한 샘플은 좌측 및 우측에 위치한 측면 샘플들(2304, 2314)을 현재 샘플의 위치에 따라 보간함으로써 예측될 수 있다.
도 24a 내지 24d는 MPI(Multi-Parameter Intra) 모드에 따라 현재 블록을 예측하는 방법을 나타내다. MPI 모드는 현재 샘플의 주변 샘플들 중 특정 방향의 복호화된 샘플들 또는 예측된 샘플들을 이용하여 현재 샘플을 예측하는 방법이다. 구체적으로, 현재 샘플은 주변 샘플의 샘플 값들의 가중 평균 값으로 결정되며, 가중 평균 값에 사용되는 가중치는 주변 블록으로부터 예측되거나, 비트스트림으로부터 획득될 수 있다. 현재 블록의 예측에 사용되는 주변 블록들의 샘플 값들은 주변 블록의 예측 값이거나 복원 값일 수 있다.
도 24a는 현재 블록의 부호화 순서가 래스터 스캔에 따른 기본 부호화 순서로 고정된 경우, MPI 모드에 따른 현재 블록 예측 방법을 나타낸다. 그리고 도 24b 내지 24d는 현재 블록의 부호화 순서가 기본 부호화 순서로 고정되지 않은 경우, MPI 모드에 따른 현재 블록 예측 방법을 나타낸다.
도 24a에 따르면, 현재 블록(2400)에 포함된 현재 샘플의 예측 값은 현재 샘플의 좌측 샘플의 샘플 값과 현재 샘플의 상측 샘플의 샘플 값을 평균 또는 가중 평균하여 획득된 평균 값 또는 가중 평균 값으로 결정된다. 도 24a에 따르면, 참조 샘플이 현재 블록(2400)의 좌측 및 상측에 위치하기 때문에, 현재 블록(2400)의 좌상측 샘플부터 먼저 예측된다.
예를 들어, 현재 블록(2400)의 샘플(2402)의 예측 값은 참조 샘플(2412)과 참조 샘플(2414)의 샘플 값들의 가중 평균 값으로 결정된다. 그리고 샘플(2402)의 예측 값 또는 복원 값은 샘플(2402) 우측의 샘플(2404)과 샘플(2402) 하측의 샘플(2406)의 예측에 사용된다. 따라서 샘플(2404)의 예측 값은 샘플(2402)과 참조 샘플(2416)의 샘플 값들의 가중 평균 값으로 결정되며, 샘플(2406)의 예측 값은 샘플(2402)과 참조 샘플(2418)의 샘플 값들의 가중 평균 값으로 결정된다. 이 때 가중 평균값 결정에 사용되는 가중치는 현재 샘플의 위치에 따라 결정될 수 있다. 또한 가중치를 현재 블록(2400)의 나머지 샘플들도 마찬가지 방법으로 예측된다.
도 24b의 경우, 도24a와 반대로 현재 블록(2420)의 상측 블록과 우측 블록이 먼저 복호화되었고, 현재 블록(2420)의 좌측 블록이 복호화되지 않았다. 따라서 도24b에 따르면, 현재 블록(2420)에 포함된 현재 샘플의 예측 값은 현재 샘플의 우측 샘플의 샘플 값과 현재 샘플의 상측 샘플의 샘플 값을 평균 또는 가중 평균하여 획득된 평균 값 또는 가중 평균 값으로 결정된다. 도 24b에 따르면, 참조 샘플이 현재 블록(2420)의 우측 및 상측에 위치하기 때문에, 현재 블록(2420)의 우상측 샘플부터 먼저 예측된다.
예를 들어, 현재 블록(2420)의 샘플(2422)의 예측 값은 참조 샘플(2432)과 참조 샘플(2434)의 샘플 값들의 가중 평균 값으로 결정된다. 그리고 샘플(2422)의 예측 값 또는 복원 값은 샘플(2422) 좌측의 샘플(2424)과 샘플(2422) 하측의 샘플(2426)의 예측에 사용된다. 따라서 샘플(2424)의 예측 값은 샘플(2422)과 참조 샘플(2436)의 샘플 값들의 가중 평균 값으로 결정되며, 샘플(2426)의 예측 값은 샘플(2422)과 참조 샘플(2438)의 샘플 값들의 가중 평균 값으로 결정된다. 이 때 가중 평균값 결정에 사용되는 가중치는 현재 샘플의 위치에 따라 결정될 수 있다. 현재 블록(2420)의 나머지 샘플들도 마찬가지 방법으로 예측된다.
도 24c의 경우, 현재 블록(2440)의 상측 블록만이 먼저 복호화되었고, 현재 블록(2440)의 우측 블록 및 좌측 블록이 모두 복호화되지 않았다. 따라서 도24c에 따르면, 현재 블록의 샘플들을 예측하기 위하여 현재 블록의 상측에 있는 참조 샘플들만이 사용된다. 도 24c의 경우, 도24a와 마찬가지로 현재 블록의 좌상측 샘플부터 우하측 방향으로 현재 블록이 예측될 수 있다. 또한 도 24b와 마찬가지로, 현재 블록의 우상측 샘플부터 우하측 방향으로 현재 블록이 예측될 수도 있다. 따라서 현재 블록의 상측 블록만이 먼저 복호화된 경우, 샘플들의 예측 순서 및 예측 방법은 현재 블록의 주변 블록을 참조하여 결정되거나, 비트스트림으로부터 획득될 수 있다.
도 24c에서는 현재 블록(2440)의 좌상측 샘플부터 우하측 방향으로 현재 블록(2440)이 예측되는 경우를 나타낸다. 도 24c에 의하면 현재 블록(2440)의 예측 방법은 도 24a와 유사하다. 다만, 도 24a와 다르게, 현재 블록(2440)의 좌측 경계에 인접한 샘플들은 좌측에 참조할 샘플이 없으므로 상측 샘플의 샘플 값에 의하여만 예측된다.
예를 들어, 현재 블록(2440)의 샘플(2442)의 예측 값은 참조 샘플(2452) 의 샘플 값으로 결정된다. 그리고 샘플(2442)의 예측 값 또는 복원 값은 샘플(2442) 좌측의 샘플(2444)과 샘플(2442) 하측의 샘플(2446)의 예측에 사용된다. 현재 블록(2440)의 좌측 경계에 위치한 샘플(2446)의 예측 값은 샘플(2442)의 예측 값 또는 복원 값에 기초하여 결정되고, 샘플(2446)의 아래에 위치한 샘플들도 마찬가지 방식으로 예측된다. 현재 블록(2440)의 나머지 부분에 위치한 샘플들은 도 24a와 동일한 방식으로 예측된다.
도 24d의 경우, 현재 블록(2460)의 상측 블록, 우측 블록 및 좌측 블록이 모두 복호화되었다. 따라서 도24d에 따르면, 현재 블록(2460)의 샘플들을 예측하기 위하여 현재 블록(2460)의 상측, 우측 및 좌측에 있는 참조 샘플들이 모두 사용될 수 있다. 그러므로 도 24d의 경우, 현재 블록(2460)의 상측, 우측 및 좌측에 있는 참조 샘플들이 다양한 방식에 의하여 현재 블록(2460)이 예측될 수 있다.
도 24d에 개시된 일 실시예에 따르면, 현재 블록(2460)은 좌측 서브 블록(2470)과 우측 서브 블록(2480)으로 구분된다. 그리고 좌측 서브 블록(2470)은 도 24a와 같이 좌상측 샘플부터 우하측 방향에 따른 순서대로 예측되고, 우측 서브 블록(2480)은 도 24b와 같이 우상측 샘플부터 좌하측 방향에 따른 순서대로 예측된다. 구체적으로, 좌측 서브 블록(2470)의 좌상측 모서리에 위치한 샘플(2472)는 상측 참조 샘플(2490)과 좌측 참조 샘플(2492)의 평균 값 또는 가중 평균 값으로 결정된다. 그리고 좌측 서브 블록(2470)의 나머지 샘플들도 좌측 및 상측의 샘플들의 샘플 값의 평균 값 또는 가중 평균 값으로 결정된다. 우측 서브 블록(2480)의 우상측 모서리에 위치한 샘플(2482)는 상측 참조 샘플(2494)과 우측 참조 샘플(2496)의 평균 값 또는 가중 평균 값으로 결정된다. 그리고 우측 서브 블록(2480)의 나머지 샘플들도 우측 및 상측의 샘플들의 샘플 값의 평균 값 또는 가중 평균 값으로 결정된다.
도 25a 및 25b는 LM 크로마 모드와 MPC 모드에서 참조하는 참조 영역을 설명한다. LM 크로마 모드와 MPC 모드는 동일 위치의 루마 블록으로부터 크로마 블록을 예측하기 위한 예측 모드이다. LM 크로마 모드와 MPC 모드는 공통적으로 루마 샘플과 크로마 샘플이 모두 복호화된 참조 영역을 결정하고, 상기 참조 영역으로부터 루마 샘플과 크로마 샘플의 상관 관계를 획득하고, 크로마 블록에 대응되는 루마 블록의 샘플 값과 상기 루마 샘플과 크로마 샘플의 상관 관계에 따라 크로마 블록을 예측하는 것을 특징으로 한다.
다만, LM 크로마 모드는 참조 영역으로부터 획득된 루마 샘플의 샘플 값과 크로마 샘플의 샘플 값의 상관 관계로부터 루마-크로마 선형 모델을 유도하고, 상기 루마-크로마 선형 모델에 따라 동일 위치의 루마 블록으로부터 크로마 블록을 예측한다. 그리고 MPC 모드는 참조 영역으로부터 획득된 루마 샘플의 샘플 값과 크로마 샘플의 샘플 값의 상관 관계로부터 각 루마 샘플 값에 대한 최빈 크로마(MPC, Most Probable Chroma) 값을 결정하고, 최빈 크로마 값 분석 결과에 따라 동일 위치의 루마 블록으로부터 크로마 블록을 예측한다.
도 25a는 현재 블록의 부호화 순서가 래스터 스캔에 따른 기본 부호화 순서로 고정된 경우, LM 크로마 모드와 MPC 모드의 참조 영역을 나타낸다. 그리고 도 25b는 현재 블록의 부호화 순서가 기본 부호화 순서로 고정되지 않은 경우, LM 크로마 모드와 MPC 모드의 참조 영역을 나타낸다.
도 25a에 의하면, 현재 블록(2500)의 좌측, 상측 및 좌상측 블록들이 복호화되어 있다. 따라서 현재 블록(2500)으로부터 좌측, 상측 및 좌상측 방향으로 참조 영역(2510)이 설정된다.
도 25b에 의하면, 도 25a와 반대로 현재 블록(2520)의 우측, 상측 및 우상측 블록들이 복호화되어 있다. 따라서 현재 블록(2520)으로부터 우측, 상측 및 우상측 방향으로 참조 영역(2530)이 설정된다.
만약, 도 25a 및 25b와 달리, 현재 블록의 좌측, 상측, 우측, 좌상측, 우상측 블록들이 모두 복호화된 경우, 참조 영역은 현재 블록의 좌측, 상측, 우측, 좌상측, 우상측 방향으로 설정될 수 있다.
도 25a 및 25b의 참조 영역(2510, 2530)의 폭은 참조 영역 오프셋에 따라 결정된다. 참조 영역 오프셋은 현재 블록(2500, 2520)의 크기에 의하여 결정되거나, 비트스트림으로부터 획득된 부호화 정보에 의하여 결정될 수 있다.
도 21 내지 도 25b에 따라 설명된 인트라 예측 모드 외에도, 예측 방법 결정부(1630)는 우측 블록이 복호화된 경우, 좌측 블록 대신에 또는 좌측 블록과 함께 우측의 참조 샘플을 이용하여 현재 블록을 예측할 수 있다.
예측 방법 결정부(1630)는 현재 블록이 인터 예측될 때, 현재 블록의 주변 블록의 복호화 여부에 따라 현재 블록이 참조할 참조 블록을 결정할 수 있다. 인터 예측 모드에서 예측 방법 결정부(1630)는 현재 블록과 공간적 또는 시간적으로 인접한 블록으로부터 움직임 벡터를 획득하고, 획득된 움직임 벡터에 따라 현재 블록을 예측한다.
시간적으로 인접한 블록을 포함하는 참조 픽처는 현재 픽처보다 먼저 복호화된다. 따라서 블록들의 부호화 순서와 상관 없이 시간적 인접 블록은 동일한 방법으로 결정될 수 있다. 그러나 공간적 인접 블록들 중 일부는 블록들의 부호화 순서에 의하여 복호화되지 않았을 수 있다. 그러므로 복호화 순서에 따라 현재 블록이 참조하는 공간적 인접 블록이 달라질 수 있다.
구체적인 예로, 도 17a 내지 17c에서 설명된 래스터 스캔의 정방향에 따라 블록들이 부호화될 경우, 현재 블록의 상측 블록, 좌측 블록, 좌상측 블록, 좌하측 블록 및 우상측 블록의 움직임 벡터들이 현재 샘플의 예측에 사용될 수 있다. 반대로, 래스터 스캔의 역방향에 따라 블록들이 부호화될 경우, 현재 블록의 상측 블록, 우측 블록, 우상측 블록, 우하측 블록 및 좌상측 블록의 참조 샘플들이 현재 샘플의 예측에 사용될 수 있다.
만약 현재 블록의 좌측 및 우측 블록들이 모두 복호화된 경우, 현재 블록의 상측 블록, 좌측 블록, 우측 블록, 좌상측 블록, 좌하측 블록, 우하측 블록 및 우상측 블록이 모두 사용될 수 있다. 반대로, 현재 블록의 좌측 및 우측 블록들이 모두 복호화되지 않은 경우, 현재 블록의 상측 블록, 좌상측 블록 및 우상측 블록만이 사용될 수 있다.
도 26에서 머지 모드와 AMVP 모드에서 현재 블록의 부호화 순서에 따른, 현재 블록의 공간적 인접 블록이 설명된다.
머지 모드는 현재 블록의 주변 블록들로 구성된 머지 후보 리스트로부터 현재 블록의 참조 블록을 결정하고, 참조 블록으로부터 추출된 움직임 벡터와 참조 픽처 인덱스에 따라 현재 블록을 예측하는 인터 예측 모드이다. 머지 후보 리스트는 우측 블록으로부터 움직임 벡터를 획득할 수 있는지 여부에 따라 다른 방식으로 결정될 수 있다.
우측 블록으로부터 움직임 벡터를 획득할 수 없는 경우, 예측 방법 결정부(1630)는 참조 샘플(2604)을 포함하는 좌측 블록, 참조 샘플(2606)을 포함하는 좌하측 블록, 참조 샘플(2608)을 포함하는 상측 블록, 참조 샘플(2610)을 포함하는 우상측 블록, 참조 샘플(2602)을 포함하는 좌상측 블록의 순서대로 움직임 벡터들을 추출할 수 있다. 그리고 예측 방법 결정부(1630)는 추출된 움직임 벡터들을 순서대로 머지 후보 리스트에 포함시킬 수 있다.
우측 블록으로부터 움직임 벡터를 획득할 수 있는 경우, 예측 방법 결정부(1630)는 참조 샘플(2614)을 포함하는 우측 블록, 참조 샘플(2616)을 포함하는 우하측 블록, 참조 샘플(2612)을 포함하는 상측 블록, 참조 샘플(2602)을 포함하는 좌상측 블록, 참조 샘플(2604)을 포함하는 좌측 블록, 참조 샘플(2610)을 포함하는 우상측 블록의 순서대로 움직임 벡터들을 추출할 수 있다. 그리고 예측 방법 결정부(1630)는 추출된 움직임 벡터들을 순서대로 머지 후보 리스트에 포함시킬 수 있다.
만약 머지 후보 리스트에 최대 5개의 머지 후보만이 포함될 수 있을 경우, 상기 6개의 블록들 중 인터 예측된 블록들만이 상기 순서대로 머지 후보 리스트에 포함될 수 있다. 따라서 우측 블록만이 복호화 및 인터 예측되고, 좌측 블록은 그렇지 않은 경우, 머지 후보 리스트에 좌측 블록만 제외되어, 우측 블록, 우하측 블록, 상측 블록, 좌상측 블록, 우상측 블록이 포함될 수 있다.
AMVP 모드에서는 참조 블록으로부터 움직임 벡터 예측자가 획득되고, 비트스트림으로부터 차분 움직임 벡터와 참조 픽처 인덱스가 별도로 획득된다. 그리고 움직임 벡터 예측자와 차분 움직임 벡터로부터 획득된 움직임 벡터와 참조 픽처 인덱스에 따라 현재 블록을 예측된다. 머지 모드와 유사하게, AMVP 모드에서도 현재 블록의 주변 블록으로부터 획득된 움직임 벡터가 포함된 AMVP 후보 리스트가 획득된다. 또한 AMVP 후보 리스트는 우측 블록으로부터 움직임 벡터를 획득할 수 있는지 여부에 따라 다른 방식으로 결정될 수 있다.
우측 블록으로부터 움직임 벡터를 획득할 수 없는 경우, 예측 방법 결정부(1630)는 참조 샘플(2604)을 포함하는 좌측 블록, 참조 샘플(2606)을 포함하는 좌하측 블록으로부터 제1 움직임 벡터 예측자 후보를 결정할 수 있다. 그리고 예측 방법 결정부(1630)는 참조 샘플(2608)을 포함하는 상측 블록, 참조 샘플(2610)을 포함하는 우상측 블록, 참조 샘플(2602)을 포함하는 좌상측 블록으로부터 제2 움직임 벡터 예측자 후보를 결정할 수 있다. 그리고 예측 방법 결정부(1630)는 제1 움직임 벡터 예측자 후보와 제2 움직임 벡터 예측자 후보를 포함하는 AMVP 후보 리스트로부터 움직임 벡터 예측자를 결정할 수 있다.
우측 블록으로부터 움직임 벡터를 획득할 수 있는 경우, 예측 방법 결정부(1630)는 참조 샘플(2614)을 포함하는 우측 블록, 참조 샘플(2616)을 포함하는 우하측 블록 으로부터 제1 움직임 벡터 예측자 후보를 결정할 수 있다. 그리고 예측 방법 결정부(1630)는 참조 샘플(2608)을 포함하는 상측 블록, 참조 샘플(2610)을 포함하는 우상측 블록, 참조 샘플(2602)을 포함하는 좌상측 블록으로부터 제2 움직임 벡터 예측자 후보를 결정할 수 있다. 그리고 예측 방법 결정부(1630)는 참조 샘플(2604)을 포함하는 좌측 블록, 참조 샘플(2606)을 포함하는 좌하측 블록으로부터 제3 움직임 벡터 예측자 후보를 결정할 수 있다. 만약 좌측 블록 및 좌하측 블록으로부터 움직임 벡터를 추출할 수 없는 경우, 제2 움직임 벡터 예측자 후보를 스케일링하여 획득된 움직임 벡터가 제3 움직임 벡터 예측자 후보로 결정될 수 있다. 그리고 예측 방법 결정부(1630)는 제1 움직임 벡터 예측자 후보, 제2 움직임 벡터 예측자 후보 및 제3 움직임 벡터 예측자 후보를 포함하는 AMVP 후보 리스트로부터 움직임 벡터 예측자를 결정할 수 있다.
머지 모드의 머지 모드 리스트에는 시간적 인접 블록으로부터 획득된 움직임 벡터 후보가 포함될 수 있다. 마찬가지로, AMVP 모드의 AMVP 후보 리스트에서는 시간적 인접 블록으로부터 예측 움직임 벡터 후보가 포함될 수 있다.
인터 예측에서 좌측 주변 블록들은 좌측 블록, 좌상측 블록, 좌하측 블록 등 특정 위치에 제한되지 않으며 우측 주변 블록들도 우측 블록, 우하측 블록, 우상측 블록 등 특정 위치에 제한되지 않으며, 상측 주변 블록도 상측, 좌상측, 우상측 등 특정 위치에 제한되지 않는다. 또한 스킵 모드, 머지 모드 및 AMVP모드에서 좌측 블록과 우측 블록의 복호화 여부에 따라 후보 리스트는 다르게 구성 할수 있으며 허용하는 후보 리스트의 개수도 다를 수 있다.
도 27에서 현재 블록의 우측 블록을 이용한 OBMC 모드의 예측 방법이 설명된다. OBMC 모드에서는, 현재 블록의 경계에 있는 샘플들에 대하여 현재 블록의 움직임 벡터와 현재 블록의 인접 블록의 움직임 벡터를 이용하여 복수의 예측 값이 획득된다. 그리고 복수의 예측 값을 가중 평균하여, 현재 샘플의 최종 예측 값이 획득된다. 가중 평균에 있어서, 일반적으로 현재 움직임 벡터에 대한 가중치가 인접 움직임 벡터에 대한 가중치보다 크다.
예를 들어, 현재 블록(2700)의 좌측 경계에 위치한 샘플(2702)에 대하여, 현재 블록(2700)의 현재 움직임 벡터가 획득되고, 샘플(2702)의 좌측 샘플(2704)을 포함하는 현재 블록(2700)의 좌측 블록으로부터 인접 움직임 벡터가 획득된다. 그리고, 현재 움직임 벡터에 의하여 획득된 예측 값과 인접 움직임 벡터에 의하여 획득된 예측 값을 가중 평균하여 샘플(2702)의 최종 예측 값이 결정된다.
현재 블록(2700)의 좌측 경계와 상측 경계에 모두 인접한 샘플(2706)의 경우, 현재 블록(2700)의 현재 움직임 벡터가 획득되고, 샘플(2706)의 좌측 샘플(2708)을 포함하는 현재 블록(2700)의 좌측 블록으로부터 제1 인접 움직임 벡터가 획득되고, 샘플(2706)의 상측 샘플(2710)을 포함하는 현재 블록(2700)의 상측 블록으로부터 제2 인접 움직임 벡터가 획득된다. 그리고, 현재 움직임 벡터에 의하여 획득된 예측 값, 제1 인접 움직임 벡터에 의하여 획득된 예측 값 및 제2 인접 움직임 벡터에 의하여 획득된 예측 값을 가중 평균하여 샘플(2706)의 최종 예측 값이 결정된다.
현재 블록이 래스터 스캔에 따른 부호화 순서에 따라 복호화되는 경우, 우측 블록이 복호화되지 않은 바, 샘플(2712)에 대한 OBMC 모드에 따른 예측 방법이 적용되지 않는다. 그러나 만약 현재 블록(2700)의 우측 블록이 복호화된 경우, 현재 블록(2700)의 우측 경계에 위치한 샘플들에 대하여도 OBMC 모드에 따른 예측 방법이 적용될 수 있다.
예를 들어, 현재 블록(2700)의 우측 블록이 복호화된 경우, 현재 블록(2700)의 우측 경계에 위치한 샘플(2712)에 대하여, 현재 블록(2700)의 현재 움직임 벡터가 획득되고, 샘플(2712)의 우측 샘플(2714)을 포함하는 현재 블록(2700)의 우측 블록으로부터 인접 움직임 벡터가 획득된다. 그리고, 현재 움직임 벡터에 의하여 획득된 예측 값과 인접 움직임 벡터에 의하여 획득된 예측 값을 가중 평균하여 샘플(2712)의 최종 예측 값이 결정된다.
도 28a 내지 28c에서 현재 블록의 우측 블록을 이용한 서브 블록 MVP 모드의 예측 방법이 설명된다. 서브 블록 MVP 모드는 블록을 서브 블록들로 나누고, 각 서브 블록들에 대하여 움직임 벡터 예측자를 결정하는 인터 예측 모드이다.
도 28a에서 우측 블록이 복호화되지 않았거나 인터 예측되지 않은 경우, 서브 블록 MVP 모드에 따른 현재 블록 예측 방법이 설명된다. 도 28a에 따르면, 현재 블록(2800)의 우측 블록은 복호화되지 않았거나 인터 예측되지 않아 현재 블록(2800)의 인터 예측에 이용될 수 없다. 현재 블록(2800)은 4개의 서브 블록(2802, 2804, 2806, 2808)을 포함한다. 각 서브 블록들(2802, 2804, 2806, 2808)에 대하여, 서브 블록의 좌측 샘플을 포함하는 블록과 상측 샘플을 포함하는 블록으로부터 2개의 공간적 움직임 벡터 후보가 획득된다. 또한 서브 블록과 동일 위치의 샘플을 포함하는 참조 픽처의 블록으로부터 시간적 움직임 벡터가 획득된다. 그리고 2개의 공간적 움직임 벡터 후보와 시간적 움직임 벡터를 평균하여 서브 블록의 움직임 벡터를 결정한다.
예를 들어, 서브 블록(2802)에 대하여, 서브 블록(2802)의 좌측 샘플(2810)을 포함하는 블록으로부터 제1 공간적 움직임 벡터가 획득될 수 있다. 만약 좌측 샘플(2810)을 포함하는 블록이 부호화되지 않았거나, 인터 예측되지 않은 경우, 좌측 샘플(2810)의 아래에 위치한 샘플들을 포함하는 블록을 참조하여 제1 공간적 움직임 벡터가 획득될 수 있다.
그리고 서브 블록(2802)의 상측 샘플(2812)을 포함하는 블록으로부터 제2 공간적 움직임 벡터가 획득될 수 있다. 만약 상측 샘플(2812)을 포함하는 블록이 부호화되지 않았거나, 인터 예측되지 않은 경우, 상측 샘플(2812)의 우측에 위치한 샘플들을 포함하는 블록을 참조하여 제2 공간적 움직임 벡터가 획득될 수 있다.
현재 픽처가 참조하는 참조 픽처로부터 서브 블록(2802)과 동일한 위치에 있는 블록을 참조하여 시간적 움직임 벡터가 획득될 수 있다. 또는 모든 서브 블록들(2802, 2804, 2806, 2808)의 시간적 움직임 벡터를 서브 블록(2808)과 동일한 위치에 있는 블록을 참조 하여 결정할 수 있다.
최종적으로, 제1 공간적 움직임 벡터, 제2 공간적 움직임 벡터 및 시간적 움직임 벡터를 평균함으로써 서브 블록(2802)의 움직임 벡터가 획득된다. 다른 서브 블록들(2804, 2806, 2808)에 대하여도 동일한 방법으로 움직임 벡터가 결정된다.
도 28b에서 현재 블록의 좌측 블록과 우측 블록이 모두 인터 예측 모드에 따라 복호화된 경우, 서브 블록 MVP 모드에 따른 현재 블록 예측 방법이 설명된다. 도 28b에 따르면, 현재 블록(2820)의 좌측에 있는 서브 블록들(2822, 2826)에 대하여 도 28a에 따른 움직임 벡터 결정 방법이 적용될 수 있다. 그러나 현재 블록(2820)의 우측에 있는 서브 블록들(2824, 2828)에 대하여는, 서브 블록의 우측 샘플을 포함하는 블록으로부터 획득된 제3 공간적 움직임 벡터가 서브 블록의 움직임 벡터 획득을 위하여 추가적으로 획득될 수 있다.
예를 들어, 서브 블록(2824)의 우측 샘플(2830)을 포함하는 블록으로부터 제3 공간적 움직임 벡터가 획득될 수 있다. 만약 우측 샘플(2830)을 포함하는 블록이 부호화되지 않았거나, 인터 예측되지 않은 경우, 우측 샘플(2830)의 하측에 위치한 샘플들을 포함하는 블록을 참조하여 제3 공간적 움직임 벡터가 획득될 수 있다. 그리고 서브 블록(2824)의 제1 공간적 움직임 벡터, 제2 공간적 움직임 벡터 및 시간적 움직임 벡터가 도 28a에서 설명된 방식에 따라 획득될 수 있다.
최종적으로, 서브 블록(2824)의 제1 공간적 움직임 벡터, 제2 공간적 움직임 벡터, 제3 공간적 움직임 벡터가 및 시간적 움직임 벡터를 평균함으로써 서브 블록(2824)의 움직임 벡터가 획득된다. 서브 블록(2828)의 움직임 벡터 역시 마찬가지 방법으로 결정될 수 있다.
도 28c에서 좌측 블록이 복호화되지 않았거나 인터 예측되지 않은 경우, 서브 블록 MVP 모드에 따른 현재 블록 예측 방법이 설명된다. 도 28c에 따르면, 현재 블록(2840)의 좌측 블록은 복호화되지 않았거나 인터 예측되지 않아 현재 블록(2840)의 인터 예측에 이용될 수 없다. 현재 블록(2840)은 4개의 서브 블록(2842, 2844, 2846, 2848)을 포함한다. 각 서브 블록들(2842, 2844, 2846, 2848)에 대하여, 서브 블록의 우측 샘플을 포함하는 블록과 상측 샘플을 포함하는 블록으로부터 2개의 공간적 움직임 벡터 후보가 획득된다. 또한 서브 블록과 동일 위치의 샘플을 포함하는 참조 픽처의 블록으로부터 시간적 움직임 벡터가 획득된다. 그리고 2개의 공간적 움직임 벡터 후보와 시간적 움직임 벡터를 평균하여 서브 블록의 움직임 벡터를 결정한다.
예를 들어, 서브 블록(2844)에 대하여, 서브 블록(2844)의 우측 샘플(2850)을 포함하는 블록으로부터 제1 공간적 움직임 벡터가 획득될 수 있다. 만약 우측 샘플(2850)을 포함하는 블록이 부호화되지 않았거나, 인터 예측되지 않은 경우, 우측 샘플(2850)의 아래에 위치한 샘플들을 포함하는 블록을 참조하여 제1 공간적 움직임 벡터가 획득될 수 있다.
그리고 서브 블록(2844)의 상측 샘플(2852)을 포함하는 블록으로부터 제2 공간적 움직임 벡터가 획득될 수 있다. 만약 상측 샘플(2852)을 포함하는 블록이 부호화되지 않았거나, 인터 예측되지 않은 경우, 상측 샘플(2852)의 좌측에 위치한 샘플들을 포함하는 블록을 참조하여 제2 공간적 움직임 벡터가 획득될 수 있다.
현재 픽처가 참조하는 참조 픽처로부터 서브 블록(2844)과 동일한 위치에 있는 블록을 참조하여 시간적 움직임 벡터가 획득될 수 있다. 또는 모든 서브 블록들(2842, 2844, 2846, 2848)의 시간적 움직임 벡터를 서브 블록(2848)과 동일한 위치에 있는 블록을 참조 하여 결정할 수 있다.
최종적으로, 제1 공간적 움직임 벡터, 제2 공간적 움직임 벡터 및 시간적 움직임 벡터를 평균함으로써 서브 블록(2844)의 움직임 벡터가 획득된다. 다른 서브 블록들(2842, 2846, 2848)에 대하여도 동일한 방법으로 움직임 벡터가 결정된다.
도 29a 및 29b에서 현재 블록의 우측 블록을 이용한 아핀 모션 보상 예측 모드의 예측 방법이 설명된다. 영상에서 객체의 확대 또는 축소, 회전, 원근감 및 기타 불규칙한 동작 등이 나타난다. 이러한 객체의 움직임을 정확하게 예측하기 위하여 아핀 변환(Affine Transform)을 이용하는 아핀 모션 보상 예측 모드가 사용될 수 있다.
아핀 변환(Affine Transform)은 공선점(collinear point)를 보존하는 두 아핀 공간(Affine Space) 상의 변환을 의미한다. 여기서, 아핀 공간은 유클리드 공간을 일반화한 기하학적 구조이며, 아핀 공간에서는 거리와 각도 측정에 대한 속성은 유지되지 않고, 점들 사이의 공선성(Collinearity)과 선들의 평행성, 동일 선상의 점들 간의 길이 비율만이 유지된다. 즉, 아핀 변환에 의하면 직선 및 직선들의 평행 여부를 보존하며, 직선의 방향 및 각도, 직선 간의 거리, 면적을 보존하지 않는다. 따라서 객체가 확대 및 축소되거나, 회전할 때, 아핀 모션 보상 예측 모드에 따라 영상에서 객체가 포함된 영역을 정확하게 예측할 수 있다.
도 29a에서 아핀 변환이 간단하게 설명된다. 블록(2900)의 4개의 꼭지점(2902, 2904, 2906, 2908)은 각각 움직임 벡터(2912, 2914, 2916, 2918)에 대응된다. 움직임 벡터(2912, 2914, 2916, 2918)에 의하여 블록(2900)이 아핀 변환됨으로써, 아핀 변환 블록(2910)이 생성된다. 블록(2900)에 위치한 샘플들은 아핀 변환 블록(2910)의 샘플들에 매칭될 수 있다.
예를 들어, 꼭지점(2906)과 블록(2900) 상단의 중앙에 위치한 샘플(2920)을 잇는 선분에 위치한 샘플(2922)이 아핀 변환된 샘플(2924)은 꼭지점(2906)의 움직임 벡터(2916)가 가리키는 아핀 변환 블록(2910)의 샘플(2926)과 샘플(2920)의 움직임 벡터(2930)가 가리키는 아핀 변환 블록(2910)의 샘플(2928)를 잇는 선분에 위치한다. 아핀 변환된 샘플(2924)의 위치는 샘플(2922)의 위치에 따라 움직임 벡터(2912, 2914, 2916, 2918)를 선형 보간하여 획득된 움직임 벡터(2930)의 의하여 결정될 수 있다. 마찬가지로 블록(2900)의 다른 샘플들도 아핀 변환되어 아핀 변환 블록(2910)의 샘플들과 매칭될 수 있다. 도 29a에서 설명된 바와 같이, 블록의 모든 샘플들은 아핀 변환을 위하여 생성된 움직임 벡터를 이용하여 인터 예측될 수 있다.
도 29b는 아핀 모션 보상 예측 모드에서 참조하는 블록들이 설명된다.
아핀 모션 보상 예측 모드에는 아핀 머지 모드(Affine Merge Mode)와 아핀 AMVP 모드(Affine AMVP Mode)가 있다. 아핀 머지 모드에서는 현재 블록의 주변 블록들 중 아핀 모션 보상 예측 모드에 따라 예측된 블록들이 후보 블록들로 결정된다. 그리고 후보 블록들 중 선택된 블록으로부터 아핀 모션 보상을 위한 정보가 획득된다. 아핀 AMVP 모드에서는 현재 블록의 주변 블록으로부터 아핀 변환에 이용되는 2개 이상의 움직임 벡터 예측자가 결정된다. 그리고 움직임 벡터 예측자와 비트스트림에 포함된 차분 움직임 벡터와 참조 픽처 정보를 이용하여 현재 블록이 예측된다. 구체적으로, 아핀 머지 모드와 아핀 AMVP 모드에 따른 예측 방법이 설명된다.
현재 블록(2950)에 아핀 머지 모드가 적용될 때, 현재 블록(2950)의 아핀 모션 보상 예측 모드로 예측된 주변 블록들로부터 후보 블록들이 결정된다. 블록들 간 부호화 순서의 교체가 허용되지 않는 경우, 현재 블록(2950)의 좌측 샘플(2960)을 포함하는 주변 블록, 상측 샘플(2964)을 포함하는 주변 블록, 우상측 샘플(2966)을 포함하는 주변 블록, 좌하측 샘플(2968)을 포함하는 주변 블록, 좌상측 샘플(2972)을 포함하는 주변 블록의 순서대로, 각 주변 블록이 아핀 모션 보상 예측 모드로 예측되었는지 확인된다. 그리고 아핀 모션 보상 예측 모드로 예측된 주변 블록들이 상기 순서에 따라 아핀 머지 리스트(Affine Merge List)에 포함된다.
블록들 간 부호화 순서의 교체가 허용되는 경우, 현재 블록(2950)의 좌측 샘플(2960)을 포함하는 주변 블록, 우측 샘플(2962)을 포함하는 주변 블록, 상측 샘플(2964)을 포함하는 주변 블록, 우상측 샘플(2966)을 포함하는 주변 블록, 좌하측 샘플(2968)을 포함하는 주변 블록, 우하측 샘플(2970)을 포함하는 주변 블록, 좌상측 샘플(2972)을 포함하는 주변 블록의 순서대로, 각 주변 블록이 아핀 모션 보상 예측 모드로 예측되었는지 확인된다. 마찬가지로 아핀 모션 보상 예측 모드로 예측된 주변 블록들이 상기 순서에 따라 아핀 머지 리스트에 포함된다. 따라서 현재 블록(2950)의 우측 블록과 우하측 블록이 아핀 머지 리스트에 포함될 수 있다.
상기 아핀 머지 리스트의 후보 블록들 중 비트스트림으로부터 획득된 아핀 머지 플래그(Affine merge flag)가 가리키는 블록으로부터 현재 블록(2950)의 아핀 변환을 위한 움직임 벡터들과 참조 픽처 정보가 획득된다. 그리고 움직임 벡터들과 참조 픽처 정보에 따라 현재 블록(2950)이 예측된다.
현재 블록(2950)에 아핀 AMVP 모드가 적용될 때, 2개 이상의 움직임 벡터 예측자가 현재 블록(2950)의 주변 블록들로부터 결정된다. 일 실시예에 따르면 3개의 움직임 벡터 예측자들이 결정될 수 있다. 예를 들어, 제1 움직임 벡터 예측자는 현재 블록(2950)의 좌상측 꼭지점(2952) 주변에 위치한 주변 블록으로부터 획득된다. 상기 좌상측 꼭지점(2952)의 좌상측에 위치한 샘플(2972)을 포함하는 주변 블록, 좌측에 위치한 샘플(2974)을 포함하는 주변 블록 및 상측에 위한 샘플(2976)을 포함하는 주변 블록으로부터 제1 움직임 벡터 예측자가 획득될 수 있다.
제2 움직임 벡터 예측자는 현재 블록(2950)의 우상측 꼭지점(2954) 주변에 위치한 주변 블록으로부터 획득된다. 상기 우상측 꼭지점(2954)의 상측에 위치한 샘플(2964)을 포함하는 주변 블록, 우상측에 위치한 샘플(2966)을 포함하는 주변 블록으로부터 제2 움직임 벡터 예측자가 획득될 수 있다. 만약, 블록들 간 부호화 순서의 교체가 허용되는 경우, 우상측 꼭지점(2954)의 우측에 위치한 샘플(2978)을 포함하는 주변 블록으로부터 제2 움직임 벡터 예측자가 획득될 수 있다.
제3 움직임 벡터 예측자는 현재 블록(2950)의 좌하측 꼭지점(2956) 주변에 위치한 주변 블록으로부터 획득된다. 상기 좌하측 꼭지점(2956)의 좌측에 위치한 샘플(2960)을 포함하는 주변 블록, 좌하측에 위치한 샘플(2968)을 포함하는 주변 블록으로부터 제3 움직임 벡터 예측자가 획득될 수 있다. 만약, 블록들 간 부호화 순서의 교체가 허용되고, 현재 블록(2950)의 좌측 블록이 부호화되지 않고 우측 블록이 먼저 부호화된 경우, 제3 움직임 벡터 예측자는 현재 블록(2950)의 우하측 꼭지점(2958) 주변에 위치한 주변 블록으로부터 획득된다. 따라서 상기 우하측 꼭지점(2958)의 우측에 위치한 샘플(2962)을 포함하는 주변 블록, 우하측에 위치한 샘플(2970)을 포함하는 주변 블록으로부터 제3 움직임 벡터 예측자가 획득될 수 있다.
또는 우측 블록이 먼저 부호화된 경우, 좌상측 꼭지점(2592), 우상측 꼭지점(2954), 우하측 꼭지점(2956)으로부터 획득한 제1 움직임 벡터 예측자, 제2 움직임 벡터 예측자, 제3 움직임 벡터 예측자를 이용하여 유도된 좌하측 꼭지점(2956)에 대한 움직임 벡터 예측값에 기초하여, 제3 움직임 벡터 예측자를 변경할 수 있다. 그리고 변경된 제3 움직임 벡터 예측자를 현재 블록의 예측에 사용할 수 있다.
3개의 움직임 벡터 예측자가 획득된 후, 비트스트림으로부터 획득된 참조 픽처 정보와 3개의 차분 움직임 벡터에 기초하여 아핀 변환에 사용되는 3개의 움직임 벡터가 결정된다. 그리고 3개의 움직임 벡터에 따라 현재 블록(2950)이 예측된다.
이상 설명된 바와 같이, 현재 블록의 우측에 위치한 주변 블록으로부터 아핀 모션 보상 예측 모드에 필요한 정보들이 획득될 수 있다.
도 30a 및 30b에서 현재 블록의 우측 블록을 이용한 FRUC 모드의 예측 방법이 설명된다. 도 30a는 쌍방 매칭 FRUC 모드를 설명하며, 도 30b는 템플릿 매칭 FRUC 모드를 설명한다.
FRUC 모드는 프레임율 증가 변환 테크닉에 기초한 인터 예측 모드이다. FRUC 모드에는 쌍방 매칭 FRUC 모드와 템플릿 매칭 FRUC 모드가 있으며, 둘 다 현재 블록의 머지 후보 리스트를 사용하여 현재 블록의 움직임 벡터를 결정한다는 공통점이 있다.
쌍방 매칭 FRUC 모드는 연속한 픽처들 간에 움직임의 연속성이 있다는 가정 하에, 현재 블록의 움직임 벡터를 찾는 인터 예측 모드이다. 쌍방 매칭 FRUC 모드에 의하면, 예측 방법 결정부(1630)는 머지 후보 리스트로부터 복수의 움직임 벡터 후보를 획득한다. 그리고 예측 방법 결정부(1630)는 각각의 움직임 벡터 후보로부터 참조 블록 쌍을 획득한다. 또한 예측 방법 결정부(1630)는 참조 블록 쌍의 매칭 정확도를 비교하여, 가장 매칭 정확도가 높은 움직임 벡터 후보를 현재 블록의 움직임 벡터 예측자로 결정한다. 그리고 예측 방법 결정부(1630)는 움직임 벡터 예측자가 가리키는 지점의 주위를 스캔하여 움직임 벡터 예측자보다 더 정확한 매칭 정확도를 가지는 움직임 벡터를 결정한다. 최종적으로 예측 방법 결정부(1630)는 움직임 벡터에 따라 현재 블록을 예측한다.
도 30a에 따르면, 현재 픽처(3000)에 위치한 현재 블록(3002)에 대한 머지 후보 리스트로부터 움직임 벡터 후보가 획득된다. 현재 픽처(3000)보다 시간적으로 늦은 제1 참조 픽처(3010)에 대하여, 움직임 벡터 후보에 기초하여 제1 매칭 움직임 벡터(3014)가 결정된다. 그리고 현재 픽처(3000)보다 시간적으로 빠른 제2 참조 픽처(3020)에 대하여, 움직임 벡터 후보에 기초하여 제2 매칭 움직임 벡터(3024)가 결정된다.
제1 매칭 움직임 벡터(3014)와 제2 매칭 움직임 벡터(3024)는 현재 픽처(3000)와 제1 참조 픽처(3010)의 시간적 거리와 현재 픽처(3000)와 제2 참조 픽처(3020)의 시간적 거리에 비례한다. 따라서, 제1 참조 블록(3012), 현재 블록(3002), 제2 참조 블록(3022)는 동일한 움직임 궤도에 위치한다. 그러므로 제1 참조 블록(3012), 현재 블록(3002), 제2 참조 블록(3022) 간의 움직임의 연속성이 있다는 가정 하에, 제1 참조 블록(3012)과 제2 참조 블록(3022)의 매칭 정확도가 계산된다.
머지 후보 리스트의 모든 움직임 벡터 후보들에 대하여 상기와 같은 매칭 정확도 계산 과정이 수행된다. 그리고 가장 매칭 정확도가 높은 움직임 벡터 후보가 현재 블록의 움직임 벡터 예측자로 결정된다.
최종적으로, 제1 참조 픽처(3010) 및 제2 참조 픽처(3020)에 대하여 움직임 벡터 예측자가 가리키는 지점 주변을 스캔하여, 참조 블록들 간 매칭 정확도가 더 높은 움직임 벡터를 찾고, 그 움직임 벡터에 따라 현재 블록(3002)이 예측된다.
쌍방 매칭 FRUC 모드에서 머지 후보 리스트가 사용되는 바, 현재 블록(3002)의 우측 블록(3004)이 복호화된 경우, 도 26에서 설명된 방법에 따라 우측 블록(3004)의 움직임 벡터가 포함된 머지 후보 리스트가 사용될 수 있다.
템플릿 매칭 FRUC 모드는 현재 블록의 템플릿과 머지 후보 리스트의 움직임 벡터 후보에 의하여 대응되는 참조 픽처의 템플릿을 비교하고, 두 템플릿들 간의 매칭 정확도에 따라 현재 블록의 움직임 벡터를 찾는 인터 예측 모드이다. 템플릿 매칭 FRUC 모드에 의하면, 현재 블록의 좌측 및 상측 영역이 현재 블록의 템플릿으로 결정될 수 있다. 만약, 현재 블록의 우측 블록이 복호화된 경우, 현재 블록의 우측 영역 역시 현재 블록의 템플릿으로 결정될 수 있다.
도 30b에 따르면, 현재 픽처(3050)에 위치한 현재 블록(3052)에 대한 머지 후보 리스트로부터 움직임 벡터 후보가 획득된다. 그리고 현재 픽처(3050)와 참조 픽처(3060)의 시간적 거리에 따라, 움직임 벡터 후보로부터 매칭 움직임 벡터(3062)가 결정된다.
현재 블록(3052)의 주변 블록들 중 어떤 주변 블록들이 복호화되었는지 여부에 따라, 현재 블록 템플릿(3054)이 결정된다. 도 30b에 따르면, 현재 블록(3050)의 우측 블록(3056)이 결정된 바, 현재 블록 템플릿(3054)에는 현재 블록(3050)의 우측 영역이 포함되어 있다.
현재 블록 템플릿(3054)으로부터 매칭 움직임 벡터(3062)가 가리키는 지점으로부터 참조 블록 템플릿(3064)이 획득된다. 그리고 현재 블록 템플릿(3054)과 참조 블록 템플릿(3064)을 비교하여, 템플릿 매칭 정확도가 계산된다.
각 움직임 벡터 후보에 대하여 템플릿 매칭 정확도가 계산된다. 그리고 가장 정확한 템플릿 매칭 정확도를 가지는 움직임 벡터 후보가 현재 블록(3050)의 움직임 벡터 예측자로 결정된다.
최종적으로, 참조 픽처(3060)에 대하여 움직임 벡터 예측자가 가리키는 지점 주변을 스캔하여, 템플릿 매칭 정확도가 더 높은 움직임 벡터를 찾고, 그 움직임 벡터에 따라 현재 블록(3052)이 예측된다.
쌍방 매칭 FRUC 모드와 마찬가지로, 템플릿 매칭 FRUC 모드에서 머지 후보 리스트가 사용되는 바, 현재 블록(3002)의 우측 블록(3004)이 복호화된 경우, 도 26에서 설명된 방법에 따라 우측 블록(3004)의 움직임 벡터가 포함된 머지 후보 리스트가 사용될 수 있다.
복호화부(1640)는 예측 방법 결정부(1630)에서 결정된 예측 방법에 따라 현재 블록을 예측하고, 현재 블록의 예측 결과에 기초하여 현재 블록을 복호화할 수 있다.
복호화부(1640)는 분할 정보가 현재 블록의 분할을 나타내지 않을 때, 비트스트림으로부터 현재 블록이 현재 블록이 포함된 부호화 트리 블록의 마지막 블록인지 여부를 나타내는 최종 블록 플래그를 획득할 수 있다.
복호화부(1640)는 최종 블록 플래그가 현재 블록이 부호화 트리 블록의 마지막 블록임을 나타낼 때, 현재 블록의 복호화 이후, 부호화 트리 블록의 복호화를 종료할 수 있다. 현재 블록의 복호화이 완료된 후, 다음 순서의 부호화 트리 블록이 비디오 복호화 장치(1600)에 의하여 복호화될 수 있다. 현재 블록이 포함된 부호화 트리 블록과 마찬가지로, 다음 순서의 부호화 트리 블록에 대하여 비디오 복호화 장치(1600)에 포함된 블록 분할부(1610), 부호화 순서 결정부(1620), 예측 방법 결정부(1630) 및 블록 복호화부(1640)에 의하여 블록 분할, 부호화 순서 결정, 최종 분할 블록의 복호화가 수행될 수 있다.
또한 복호화부(1640)는 비트스트림으로부터 최종 블록 플래그를 획득하지 않고, 부호화 트리 블록에 포함된 블록들 중 현재 블록을 제외한 나머지 블록들의 복호화 여부를 판단하여, 현재 블록이 부호화 트리 블록의 마지막 블록인지 여부를 판단할 수 있다.
복호화부(1640)는 비트스트림으로부터 획득한 신택스 요소(syntax element)를 주변 블록의 문맥에 따라 엔트로피 복호화할 수 있다. 따라서 현재 블록의 우측 블록의 부호화 정보를 여부를 고려하여 신택스 요소가 엔트로피 복호화될 수 있다.
예를 들어, 현재 블록이 스킵 모드에 의하여 부호화되었는지 여부를 나타내는 스킵 플래그는 현재 블록의 주변 블록들의 문맥에 따라 엔트로피 부호화될 수 있다. 그러므로 현재 블록의 우측 블록의 부호화 정보를 고려하여 스킵 플래그가 엔트로피 부호화될 수 있다. 따라서 복호화부(1640)는 현재 블록의 우측 블록의 부호화 정보를 고려하여 스킵 플래그를 엔트로피 부호화할 수 있다
마찬가지로, 현재 블록을 하위 블록으로 분할할지 나타내는 분할 정보, 현재 블록을 어떤 형태로 분할할지 나타내는 분할 형태 정보, 현재 블록이 FRUC 모드에 따라 예측되는지 나타내는 FRUC 모드 플래그, 현재 블록이 FRUC 모드에 따라 예측될 경우, 현재 블록에 어떤 FRUC 모드가 적용되는지 나타내는 FRUC 모드 정보, 현재 블록이 Affine 모드에 따라 예측되는지 나타내는 Affine 모드 플래그, 현재 블록의 움직임 벡터의 최소 단위를 나타내는 움직임 벡터 회소 단위 플래그 등이 현재 블록의 우측 블록을 포함한 주변 블록들의 부호화 정보에 따라 엔트로피 복호화될 수 있다.
복호화부(1640)는 비트스트림으로부터 획득된 레지듀얼 데이터를 역양자화 및 역변환할 수 있다. 그리고 복호화부(1640)는 역양자화 및 역변환된 레지듀얼 데이터와 현재 블록의 예측 결과를 이용하여, 현재 블록을 복원할 수 있다.
도 31에는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 복호화 방법(3100)이 도시되어 있다.
단계 3110에서 비트스트림으로부터 현재 블록의 분할 여부를 나타내는 분할 정보가 획득된다.
분할 정보가 현재 블록의 분할을 나타내지 않을 때, 현재 블록이 현재 블록이 포함된 부호화 트리 블록의 마지막 블록인지 여부를 나타내는 최종 블록 플래그가 획득된다. 그리고 최종 블록 플래그가 현재 블록이 부호화 트리 블록의 마지막 블록임을 나타낼 때, 현재 블록의 복호화 이후, 부호화 트리 블록의 복호화가 종료된다. 최종 블록 플래그가 현재 블록이 부호화 트리 블록의 마지막 블록이 아님을 나타낼 때, 현재 블록의 다음 순서의 블록에 대한 복호화가 수행된다.
단계 3120에서 분할 정보가 현재 블록의 분할을 나타내지 않을 때, 현재 블록이 현재 블록의 부호화 정보에 따라 복호화된다.
분할 정보에 따라 현재 블록이 분할되지 않고, 현재 블록이 인트라 예측될 때, 현재 블록의 좌측 블록 및 우측 블록의 복호화 여부에 따라 현재 블록이 참조할 참조 샘플들이 결정된다. 그리고 참조 샘플들에 따라 현재 블록이 예측 및 복호화된다.
현재 블록의 좌측 블록만이 복호화된 경우, 참조 샘플들에 현재 블록의 좌측 및 상측에 인접한 샘플들이 포함된다. 현재 블록의 우측 블록만이 복호화된 경우, 참조 샘플들에 현재 블록의 우측 및 상측에 인접한 샘플들이 포함된다. 현재 블록의 좌측 및 우측 블록이 모두 복호화된 경우, 참조 샘플들에 현재 블록의 우측, 좌측 및 상측에 인접한 샘플들이 포함된다. 현재 블록의 좌측 및 우측 블록이 모두 복호화되지 않은 경우, 참조 샘플들에 현재 블록의 상측에 인접한 샘플들이 포함된다.
현재 블록이 DC 모드에 의하여 인트라 예측될 때, 현재 블록에 포함된 샘플들의 예측 값은 참조 샘플들의 샘플 값들의 평균값으로 결정되고, 현재 블록의 샘플들 중 참조 샘플들과 인접한 샘플들의 예측 값을 참조 샘플들의 샘플 값에 따라 필터링된다.
현재 블록이 플래너 모드에 의하여 인트라 예측되고, 현재 블록의 우측 블록과 상측 블록이 복호화된 때, 현재 샘플의 예측 값은 참조 샘플들에 포함된 제1 모서리 샘플, 제2 모서리 샘플, 제1 측면 샘플, 제2 측면 샘플에 의하여 결정된다. 상기 제1 모서리 샘플은 현재 샘플이 포함된 현재 블록의 상측면에 인접한 행 및 현재 블록의 좌측면에 인접한 열의 교차점에 위치한다. 그리고 제2 모서리 샘플은 현재 블록의 하측면에 인접한 행 및 현재 블록의 우측면에 인접한 열의 교차점에 위치한다. 제1 측면 샘플은 현재 샘플이 위치한 행 및 현재 블록의 우측면에 인접한 열의 교차점에 위치한다. 제2 측면 샘플은 현재 블록의 상측면에 인접한 행 및 현재 샘플이 위치한 열의 교차점에 위치한다.
현재 블록이 다중 파라미터 인트라 모드에 의하여 인트라 예측되고, 상기 현재 블록의 우측 블록과 상측 블록이 복호화된 때, 현재 샘플의 예측 값은 현재 샘플의 상측에 인접한 상측 샘플의 샘플 값과 현재 샘플의 우측에 인접한 우측 샘플의 샘플 값의 가중 평균에 따라 결정될 수 있다. 이 때 현재 블록에 포함된 샘플들의 예측은 현재 블록의 우상측 모서리에 인접한 샘플부터 시작될 수 있다.
상기의 예와 달리, 현재 블록이 다중 파라미터 인트라 모드에 의하여 인트라 예측되고, 현재 블록의 좌측 블록, 우측 블록 및 상측 블록이 복호화된 때, 현재 블록이 좌측 영역과 우측 영역으로 구분되고, 좌측 영역과 우측 영역의 예측에 사용되는 샘플을 다른 방법에 따라 결정할 수 있다. 또 다른 실시 예에 따르면, 좌측 블록, 우측 블록 및 상측 블록이 모두 복호화 된때, 좌측 영역과 우측 영역의 구분 없이, 좌측 블록 및 상측 블록으로 획득한 예측 값과 우측 블록 및 상측 블록으로 획득한 예측값을 평균 또는 가중평균하여 최종 예측값으로 사용할 수 있다.
현재 샘플이 좌측 영역에 위치한 경우, 현재 샘플의 예측 값은 현재 샘플의 상측에 인접한 상측 샘플의 샘플 값과 현재 샘플의 좌측에 인접한 좌측 샘플의 샘플 값의 가중 평균에 따라 결정된다. 반대로, 현재 샘플이 우측 영역에 위치한 경우, 현재 샘플의 예측 값은 현재 샘플의 상측에 인접한 상측 샘플의 샘플 값과 현재 샘플의 우측에 인접한 우측 샘플의 샘플 값의 가중 평균에 따라 결정된다.
현재 블록이 LM 크로마 모드 또는 MPC 모드 에 의하여 인트라 예측되고, 현재 블록의 우측 블록이 복호화된 경우, 현재 블록의 우측에 위치한 루마-크로마 샘플 쌍들을 참조하여, 현재 블록이 예측될 수 있다.
현재 블록이 인터 예측될 때, 현재 블록의 우측 블록이 인터 예측에 따라 복호화되었는지 확인된다. 그리고 현재 블록의 우측 블록이 인터 예측에 따라 복호화된 때, 우측 블록의 움직임 벡터를 이용하여, 현재 블록의 움직임 벡터가 결정된다.
현재 블록이 머지 모드에 의하여 인터 예측될 때, 현재 블록의 우측 블록, 우하측 블록, 상측 블록, 좌상측 블록, 좌측 블록, 우상측 블록들로부터 움직임 벡터 후보가 획득된다. 그리고 현재 블록이 AMVP 모드에 의하여 인터 예측될 때, 현재 블록의 우측 블록 또는 우하측 블록으로부터 제1 움직임 벡터 후보가 결정되고, 현재 블록의 상측 블록, 우상측 블록 또는 좌상측 블록으로부터 제2 움직임 벡터 후보가 결정된다.
현재 블록이 AMVP 모드에 의하여 인터 예측되고, 현재 블록의 우측 블록이 현재 블록보다 먼저 복호화된 때, 현재 블록의 우측 블록 또는 우하측 블록으로부터 제1 움직임 벡터 후보가 결정되고, 현재 블록의 상측 블록, 우상측 블록 또는 좌상측 블록으로부터 제2 움직임 벡터 후보가 결정될 수 있다.
현재 블록이 OBMC 모드에 의하여 인터 예측되고, 현재 블록의 우측 블록이 현재 블록보다 먼저 복호화된 때, 현재 블록의 우측 블록의 우측 인접 움직임 벡터가 획득된다. 그리고 현재 블록의 움직임 벡터에 따른 예측 값과 우측 인접 움직임 벡터에 따른 예측 값을 이용하여 현재 블록의 우측 경계에 위치한 샘플이 예측된다.
*현재 블록이 서브 블록 MVP 모드에 의하여 인터 예측될 때, 현재 블록은 복수의 서브 블록들로 분할된다. 현재 블록의 우측 블록, 좌측 블록, 상측 블록으로부터 하나 이상의 공간적 움직임 벡터가 획득될 수 있다. 현재 블록을 포함하는 참조 픽처로부터 현재 블록과 동일 위치의 동일 위치 블록가 획득되고, 동일 위치 블록으로부터 시간적 움직임 벡터가 획득된다. 적어도 하나의 공간적 움직임 벡터와 시간적 움직임 벡터을 평균하여 서브 블록들의 움직임 벡터가 결정될 수 있다.
현재 블록이 아핀 머지 모드에 의하여 인터 예측될 때, 현재 블록의 주변 블록들 중 복수의 움직임 벡터를 포함하는 아핀 모션 정보에 따라 예측된 아핀 후보 블록이 검색되고, 검색된 아핀 후보 블록들을 포함하는 아핀 머지 리스트가 생성된다. 그리고 비트스트림으로부터 획득된 아핀 머지 플래그에 따라, 아핀 머지 리스트로부터 현재 블록의 예측에 사용되는 아핀 후보 블록이 결정된다. 마지막으로 아핀 후보 블록으로부터 아핀 모션 정보가 획득된다. 아핀 머지 리스트는 도29b에서 설명된 방법으로 결정될 수 있다.
현재 블록이 아핀 AMVP 모드에 의하여 인터 예측될 때, 현재 블록의 좌상측 꼭지점에 인접한 블록들로부터 제1 움직임 벡터 예측자가 획득된다. 그리고 현재 블록의 우상측 꼭지점에 인접한 블록들로부터 제2 움직임 벡터 예측자가 획득된다. 현재 블록의 좌측 블록 및 우측 블록 중 좌측 블록이 복호화된 경우, 현재 블록의 좌하측 꼭지점에 인접한 블록들로부터 제3 움직임 벡터 예측자를 획득되고, 현재 블록의 좌측 블록 및 우측 블록 중 우측 블록이 복호화된 경우, 현재 블록의 우하측 꼭지점에 인접한 블록들로부터 제3 움직임 벡터 예측자가 획득된다. 그리고 제1 움직임 벡터 예측자, 제2 움직임 벡터 예측자 및 제3 움직임 벡터 예측자에 따라 현재 블록의 아핀 모션 정보가 획득된다.
현재 블록이 쌍방 매칭 FRUC 모드에 의하여 인터 예측되고, 현재 블록의 우측 블록이 복호화된 때, 현재 블록의 우측 블록, 우하측 블록, 상측 블록, 좌상측 블록, 좌측 블록, 우상측 블록들로부터 복수의 움직임 벡터 후보들이 획득된다. 복수의 움직임 벡터 후보들을 2개 이상의 참조 픽처에 적용하여, 복수의 참조 블록 쌍들이 생성된다. 그리고 복수의 참조 블록 쌍들 중에서 매칭 정확도가 높은 참조 블록 쌍이 선택되고, 선택된 참조 블록 쌍의 생성에 사용된 움직임 벡터 후보가 움직임 벡터 예측자로 결정된다. 움직임 벡터 예측자가 2개 이상의 참조 픽처에 대하여 가리키는 지점 주변을 스캔하여, 움직임 벡터 예측자보다 더 높은 매칭 정확도의 참조 블록 쌍을 생성하는 움직임 벡터가 검색된다. 그리고 검색된 움직임 벡터가 현재 블록의 움직임 벡터로 결정된다.
현재 블록이 템플릿 매칭 FRUC 모드에 의하여 인터 예측되고, 현재 블록의 우측 블록이 복호화된 때, 현재 블록의 우측 블록, 우하측 블록, 상측 블록, 좌상측 블록, 좌측 블록, 우상측 블록들로부터 복수의 움직임 벡터 후보들이 획득된다. 그리고 현재 블록의 상측 영역 및 우측 영역으로부터 현재 블록의 템플릿을 획득된다. 또는 좌측 블록과 우측 블록이 모두 부호화 된 때, 현재 블록의 좌측 블록, 좌하측 블록, 좌상측 블록, 우측 블록, 우하측 블록, 상측 블록, 좌상측 블록, 좌측 블록, 우상측 블록들로부터 복수의 움직임 벡터 후보들이 획득된다. 그리고 현재 블록의 좌측 영역, 상측 영역 및 우측 영역으로부터 현재 블록의 템플릿을 획득된다. 복수의 움직임 벡터를 참조 픽처에 적용하여, 복수의 참조 블록이 획득되고, 복수의 참조 블록의 상측 영역 및 우측 영역으로부터 복수의 참조 블록 템플릿이 획득된다. 그리고 복수의 참조 블록 템플릿 중 현재 블록의 템플릿과 가장 유사한 참조 블록 템플릿에 대응되는 움직임 벡터가 현재 블록의 움직임 벡터 예측자로 결정된다. 또한 움직임 벡터 예측자가 상기 2개 이상의 참조 픽처에 대하여 가리키는 지점 주변을 스캔하여, 움직임 벡터 예측자보다 더 높은 매칭 정확도의 참조 블록 쌍을 생성하는 움직임 벡터가 검색된다. 그리고 검색된 움직임 벡터가 현재 블록의 움직임 벡터로 결정된다.
단계 3130에서 분할 정보가 현재 블록의 분할을 나타낼 때, 현재 블록이 2개 이상의 하위 블록들로 분할되고, 비트스트림으로부터 현재 블록의 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보가 획득되고, 부호화 순서 정보에 따라, 하위 블록들의 복호화 순서가 결정되고, 복호화 순서에 따라, 하위 블록들이 복호화된다.
도 16에서 설명된 비디오 복호화 장치(1600)의 기능이 비디오 복호화 방법(3100)에 포함될 수 있다.
도32에는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 부호화 장치(3200)가 도시되어 있다.
비디오 부호화 장치(3200)는 부호화 정보 생성부(3210) 및 출력부(3220)를 포함한다. 도 32에서 부호화 정보 생성부(3210) 및 출력부(3220)는 별도의 구성 단위로 표현되어 있으나, 실시 예에 따라 부호화 정보 생성부(3210) 및 출력부(3220)는 합쳐져 동일한 구성 단위로 구현될 수도 있다.
도 32에서 부호화 정보 생성부(3210) 및 출력부(3220)는 하나의 장치에 위치한 구성 단위로 표현되었지만, 부호화 정보 생성부(3210) 및 출력부(3220)의 각 기능을 담당하는 장치는 반드시 물리적으로 인접할 필요는 없다. 따라서 실시 예에 따라 부호화 정보 생성부(3210) 및 출력부(3220)가 분산되어 있을 수 있다.
부호화 정보 생성부(3210) 및 출력부(3220)는 실시 예에 따라 하나의 프로세서에 의하여 구현될 수 있다. 또한 실시 예에 따라 복수 개의 프로세서에 의하여 구현될 수도 있다.
도 32의 부호화 정보 생성부(3210) 및 출력부(3220)에서 수행되는 기능은 도1a의 출력부(130)에서 수행될 수 있다.
부호화 정보 생성부(3210)는 현재 블록을 2개 이상의 하위 블록들로 분할하고, 현재 블록의 분할 결과에 따라, 현재 블록의 분할 여부를 결정할 수 있다. 예를 들어, 부호화 정보 생성부(3210)는 현재 블록을 분할할 때 부호화 효율이 좋을 경우, 현재 블록을 분할하도록 결정하고, 현재 블록을 분할하지 않을 때 부호화 효율이 좋을 경우, 현재 블록을 분할하는 않도록 결정할 수 있다.
부호화 정보 생성부(3210)는 현재 블록의 분할 여부를 나타내는 분할 정보를 생성할 수 있다. 그리고 부호화 정보 생성부(3210)는 부호화 효율에 따라 현재 블록의 분할 방법을 결정하고, 현재 블록의 분할 방법을 나타내는 분할 형태 정보를 생성할 수 있다.
부호화 정보 생성부(3210)는 부호화 순서에 따른 부호화 효율에 따라, 현재 블록에 포함된 하위 블록들의 부호화 순서를 결정하고, 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보를 생성할 수 있다.
부호화 정보 생성부(3210)는 현재 블록이 더 이상 부호화되지 않을 경우, 현재 블록에 대한 예측 모드를 결정할 수 있다. 부호화 정보 생성부(3210)는 현재 블록에 적용될 수 있는 예측 모드들의 부호화 효율에 따라, 현재 블록의 예측 모드를 결정할 수 있다. 현재 블록에 적용될 수 있는 예측 모드들에는 방향성 모드, DC 모드, 플래너 모드, 다중 파라미터 인트라 모드, LM 크로마 모드, MPC 모드, 머지 모드, AMVP 모드, OBMC 모드, 서브 블록 MVP 모드, 아핀 머지 모드, 아핀 AMVP 모드, 쌍방 매칭 FRUC 모드, 템플릿 매칭 FRUC 모드 등이 포함된다.
출력부(3220)는 부호화 정보 생성부(3210)에서 생성된 현재 블록의 부호화에 관한 정보가 포함된 비트스트림을 출력한다. 현재 블록의 부호화에 관한 정보에는 분할 정보, 분할 형태 정보, 분할 순서 정보, 예측 모드 정보 등이 포함될 수 있다.
도 33에는 현재 블록의 분할 및 분할된 하위 블록들의 부호화 순서 결정에 관한 일 실시예에 따른 비디오 부호화 방법(3300)이 도시되어 있다.
단계 3310에서, 현재 블록은 2개 이상의 하위 블록들로 분할된다.
단계 3320에서, 현재 블록의 분할 결과에 따라, 현재 블록의 분할 여부가 결정된다.
단계 3330에서, 현재 블록의 부호화 효율에 따라, 현재 블록의 하위 블록들의 부호화 순서가 결정되고, 하위 블록들의 부호화 순서를 나타내는 부호화 순서 정보가 생성된다.
단계 3340에서, 분할 정보 및 부호화 순서 정보가 포함된 비트스트림이 출력된다.
도 32에서 설명된 비디오 부호화 장치(3200)의 기능이 비디오 부호화 방법(3300)에 포함될 수 있다.
도 1 내지 33를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
본 발명은 특정한 최상의 실시 예와 관련하여 설명되었지만, 이외에 본 발명에 대체, 변형 및 수정이 적용된 발명들은 전술한 설명에 비추어 당업자에게 명백할 것이다. 즉, 청구범위는 이러한 모든 대체, 변형 및 수정된 발명을 포함하도록 해석한다. 그러므로 이 명세서 및 도면에서 설명한 모든 내용은 예시적이고 비제한적인 의미로 해석해야 한다.

Claims (5)

  1. 비트스트림으로부터 획득된 현재 블록의 부호화 순서 정보를 이용하여, 상기 현재 블록으로부터 분할된 좌측 하위 블록과 우측 하위 블록 간의 복호화 순서를 결정하는 단계; 및
    상기 결정된 복호화 순서에 따라 상기 우측 하위 블록이 상기 좌측 하위 블록보다 먼저 복호화되고, 어파인 머지 모드가 상기 좌측 하위 블록에 적용될 때, 우측 이웃 블록과 우하측 이웃 블록 중 적어도 하나를 포함하는 이웃 블록들 중에서, 상기 좌측 하위 블록의 어파인 머지 후보 리스트를 결정하는 단계;
    상기 어파인 머지 후보 리스트로부터 결정된 하나의 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 움직임 벡터를 결정하는 단계; 및
    상기 좌측 하위 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 샘플을 결정하는 단계를 포함하는 것을 특징으로 하는 비디오 복호화 방법.
  2. 비트스트림으로부터 획득된 현재 블록의 부호화 순서 정보를 이용하여, 상기 현재 블록으로부터 분할된 좌측 하위 블록과 우측 하위 블록 간의 복호화 순서를 결정하는 복호화 순서 결정부;
    상기 결정된 복호화 순서에 따라 상기 우측 하위 블록이 상기 좌측 하위 블록보다 먼저 복호화되고, 어파인 머지 모드가 상기 좌측 하위 블록에 적용될 때, 우측 이웃 블록과 우하측 이웃 블록 중 적어도 하나를 포함하는 이웃 블록들 중에서, 상기 좌측 하위 블록의 어파인 머지 후보 리스트를 결정하고, 상기 어파인 머지 후보 리스트로부터 결정된 하나의 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 움직임 벡터를 결정하고, 상기 좌측 하위 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 샘플을 결정하는 복호화부를 포함하는 것을 특징으로 하는 비디오 복호화 장치.
  3. 현재 블록으로부터 분할된 좌측 하위 블록과 우측 하위 블록 간의 부호화 순서를 결정하고, 상기 부호화 순서를 나타내는 부호화 순서 정보를 생성하는 단계;
    상기 결정된 부호화 순서에 따라 상기 우측 하위 블록이 상기 좌측 하위 블록보다 먼저 부호화되고, 어파인 머지 모드가 상기 좌측 하위 블록에 적용될 때, 우측 이웃 블록과 우하측 이웃 블록 중 적어도 하나를 포함하는 이웃 블록들 중에서, 상기 좌측 하위 블록의 어파인 머지 후보 리스트를 결정하는 단계;
    상기 어파인 머지 후보 리스트로부터 결정된 하나의 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 움직임 벡터를 결정하는 단계; 및
    상기 좌측 하위 블록의 예측 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 샘플을 결정하는 단계; 및
    상기 부호화 순서 정보가 포함된 비트스트림을 출력하는 단계를 포함하는 것을 특징으로 하는 비디오 부호화 방법.
  4. 현재 블록으로부터 분할된 좌측 하위 블록과 우측 하위 블록 간의 부호화 순서를 결정하고, 상기 부호화 순서를 나타내는 부호화 순서 정보를 생성하고, 상기 결정된 부호화 순서에 따라 상기 우측 하위 블록이 상기 좌측 하위 블록보다 먼저 부호화되고, 어파인 머지 모드가 상기 좌측 하위 블록에 적용될 때, 우측 이웃 블록과 우하측 이웃 블록 중 적어도 하나를 포함하는 이웃 블록들 중에서, 상기 좌측 하위 블록의 어파인 머지 후보 리스트를 결정하고, 상기 어파인 머지 후보 리스트로부터 결정된 하나의 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 움직임 벡터를 결정하고, 상기 좌측 하위 블록의 예측 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 샘플을 결정하는 부호화 정보 생성부; 및
    상기 부호화 순서 정보가 포함된 비트스트림을 출력하는 출력부를 포함하는 것을 특징으로 하는 비디오 부호화 장치.
  5. 비디오 부호화 방법에 의해 생성된 비트스트림을 포함하는 컴퓨터로 판독 가능한 기록 매체에 있어서, 상기 비트스트림은,
    현재 블록으로부터 분할된 좌측 하위 블록과 우측 하위 블록 간의 부호화 순서를 나타내는 부호화 순서 정보를 포함하고,
    상기 비디오 부호화 방법은,
    상기 좌측 하위 블록과 상기 우측 하위 블록 간의 부호화 순서를 결정하고, 상기 부호화 순서를 나타내는 부호화 순서 정보를 생성하는 단계;
    상기 결정된 부호화 순서에 따라 상기 우측 하위 블록이 상기 좌측 하위 블록보다 먼저 부호화되고, 어파인 머지 모드가 상기 좌측 하위 블록에 적용될 때, 우측 이웃 블록과 우하측 이웃 블록 중 적어도 하나를 포함하는 이웃 블록들 중에서, 상기 좌측 하위 블록의 어파인 머지 후보 리스트를 결정하는 단계;
    상기 어파인 머지 후보 리스트로부터 결정된 하나의 블록의 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 움직임 벡터를 결정하는 단계; 및
    상기 좌측 하위 블록의 예측 움직임 벡터를 이용하여 상기 좌측 하위 블록의 예측 샘플을 결정하는 단계; 및
    상기 부호화 순서 정보가 포함된 상기 비트스트림을 출력하는 단계를 포함하는 것을 특징으로 하는 기록 매체.


KR1020237006622A 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 KR20230033027A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662415619P 2016-11-01 2016-11-01
US62/415,619 2016-11-01
PCT/KR2017/012135 WO2018084523A1 (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR1020197003994A KR102504876B1 (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197003994A Division KR102504876B1 (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR20230033027A true KR20230033027A (ko) 2023-03-07

Family

ID=62076204

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237006622A KR20230033027A (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR1020197003994A KR102504876B1 (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197003994A KR102504876B1 (ko) 2016-11-01 2017-10-31 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Country Status (4)

Country Link
US (4) US10798375B2 (ko)
EP (1) EP3522532A1 (ko)
KR (2) KR20230033027A (ko)
WO (1) WO2018084523A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10609423B2 (en) 2016-09-07 2020-03-31 Qualcomm Incorporated Tree-type coding for video coding
CN116320415A (zh) * 2016-11-21 2023-06-23 松下电器(美国)知识产权公司 图像编码装置及方法、图像解码装置及方法
JPWO2018092868A1 (ja) 2016-11-21 2019-10-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 符号化装置、復号装置、符号化方法及び復号方法
EP4283992A3 (en) 2017-09-28 2024-02-28 Samsung Electronics Co., Ltd. Encoding method and device, and decoding method and device
WO2019151297A1 (ja) * 2018-01-30 2019-08-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法
US11218706B2 (en) * 2018-02-26 2022-01-04 Interdigital Vc Holdings, Inc. Gradient based boundary filtering in intra prediction
WO2019182385A1 (ko) * 2018-03-21 2019-09-26 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
CN112514402A (zh) * 2018-07-30 2021-03-16 三星电子株式会社 用于图像编码的方法和设备以及用于图像解码的方法和设备
WO2020040619A1 (ko) * 2018-08-24 2020-02-27 삼성전자 주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020050281A1 (ja) * 2018-09-06 2020-03-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法、および復号方法
KR20210072118A (ko) * 2018-12-07 2021-06-16 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
US11736692B2 (en) * 2018-12-21 2023-08-22 Samsung Electronics Co., Ltd. Image encoding device and image decoding device using triangular prediction mode, and image encoding method and image decoding method performed thereby
US11463723B2 (en) * 2018-12-26 2022-10-04 Apple Inc. Method for encoding/decoding image signal and device therefor
US10742972B1 (en) * 2019-03-08 2020-08-11 Tencent America LLC Merge list construction in triangular prediction
KR20200145749A (ko) * 2019-06-19 2020-12-30 한국전자통신연구원 화면 내 예측 모드 및 엔트로피 부호화/복호화 방법 및 장치
WO2020256483A1 (ko) * 2019-06-21 2020-12-24 삼성전자 주식회사 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
US20220286688A1 (en) * 2019-06-21 2022-09-08 Vid Scale, Inc. Precision refinement for motion compensation with optical flow
WO2020257766A1 (en) * 2019-06-21 2020-12-24 Beijing Dajia Internet Information Technology Co., Ltd. History-based motion vector prediction for video coding
CN114073080A (zh) * 2019-06-26 2022-02-18 三星电子株式会社 通过考虑编码顺序来执行基于仿射模型的预测的视频编码方法及其装置以及通过考虑解码顺序来执行基于仿射模型的预测的视频解码方法及其装置
CN114223197A (zh) * 2019-08-12 2022-03-22 韩华泰科株式会社 用于高级图像划分和图像编码/解码的方法和装置
WO2022177317A1 (ko) * 2021-02-18 2022-08-25 현대자동차주식회사 서브블록 분할 기반 인트라 예측을 이용하는 비디오 코딩방법 및 장치
WO2022197135A1 (ko) * 2021-03-19 2022-09-22 현대자동차주식회사 분할된 서브블록의 적응적 순서를 이용하는 비디오 코딩방법 및 장치
US11936877B2 (en) * 2021-04-12 2024-03-19 Qualcomm Incorporated Template matching based affine prediction for video coding
US11805245B2 (en) * 2021-08-16 2023-10-31 Mediatek Inc. Latency reduction for reordering prediction candidates
WO2023038315A1 (ko) * 2021-09-08 2023-03-16 현대자동차주식회사 서브블록 코딩 순서 변경 및 그에 따른 인트라 예측을 이용하는 비디오 코딩방법 및 장치
WO2023200214A1 (ko) * 2022-04-12 2023-10-19 현대자동차주식회사 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014660B1 (ko) 2003-10-24 2011-02-16 삼성전자주식회사 인트라 예측 방법 및 장치
KR101356448B1 (ko) * 2008-10-01 2014-02-06 한국전자통신연구원 예측 모드를 이용한 복호화 장치
KR101458471B1 (ko) 2008-10-01 2014-11-10 에스케이텔레콤 주식회사 영상 부호화/복호화 방법 및 장치
US8867854B2 (en) 2008-10-01 2014-10-21 Electronics And Telecommunications Research Institute Image encoder and decoder using undirectional prediction
US9877033B2 (en) 2009-12-21 2018-01-23 Qualcomm Incorporated Temporal and spatial video block reordering in a decoder to improve cache hits
US20110200108A1 (en) * 2010-02-18 2011-08-18 Qualcomm Incorporated Chrominance high precision motion filtering for motion interpolation
KR101432771B1 (ko) * 2010-03-05 2014-08-26 에스케이텔레콤 주식회사 영상 부호화 장치, 그 영상 부호화 방법, 영상 복호화 장치 및 그 영상 복호화 방법
US8837577B2 (en) * 2010-07-15 2014-09-16 Sharp Laboratories Of America, Inc. Method of parallel video coding based upon prediction type
US9167253B2 (en) * 2011-06-28 2015-10-20 Qualcomm Incorporated Derivation of the position in scan order of the last significant transform coefficient in video coding
US9445093B2 (en) 2011-06-29 2016-09-13 Qualcomm Incorporated Multiple zone scanning order for video coding
US9756360B2 (en) * 2011-07-19 2017-09-05 Qualcomm Incorporated Coefficient scanning in video coding
KR101423648B1 (ko) * 2011-09-09 2014-07-28 주식회사 케이티 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
US20130114692A1 (en) * 2011-11-04 2013-05-09 Texas Instruments Incorporated Simplified Coefficient Scans for Non-Square Transforms (NSQT) in Video Coding
US9883203B2 (en) * 2011-11-18 2018-01-30 Qualcomm Incorporated Adaptive overlapped block motion compensation
KR102111768B1 (ko) * 2012-01-19 2020-05-15 삼성전자주식회사 계층적 부호화 단위에 따라 스캔 순서를 변경하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
US9036710B2 (en) * 2012-03-08 2015-05-19 Blackberry Limited Unified transform coefficient encoding and decoding
WO2014003421A1 (ko) * 2012-06-25 2014-01-03 한양대학교 산학협력단 비디오 부호화 및 복호화를 위한 방법
US20140286412A1 (en) * 2013-03-25 2014-09-25 Qualcomm Incorporated Intra dc prediction for lossless coding in video coding
CN109743577A (zh) * 2013-10-18 2019-05-10 华为技术有限公司 视频编解码中的块分割方式确定方法及相关装置
KR101648910B1 (ko) 2014-06-26 2016-08-18 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
US9800898B2 (en) * 2014-10-06 2017-10-24 Microsoft Technology Licensing, Llc Syntax structures indicating completion of coded regions
US9936201B2 (en) * 2015-01-27 2018-04-03 Qualcomm Incorporated Contexts for large coding tree units
US20180139453A1 (en) * 2015-03-13 2018-05-17 Lg Electronics Inc. Method of processing video signal and device for same
WO2017118409A1 (en) * 2016-01-07 2017-07-13 Mediatek Inc. Method and apparatus for affine merge mode prediction for video coding system
US11032550B2 (en) * 2016-02-25 2021-06-08 Mediatek Inc. Method and apparatus of video coding
US10880548B2 (en) 2016-06-01 2020-12-29 Samsung Electronics Co., Ltd. Methods and apparatuses for encoding and decoding video according to coding order

Also Published As

Publication number Publication date
US20230308638A1 (en) 2023-09-28
US20190281285A1 (en) 2019-09-12
US11695918B2 (en) 2023-07-04
US20200359015A1 (en) 2020-11-12
WO2018084523A1 (ko) 2018-05-11
US20200359014A1 (en) 2020-11-12
KR102504876B1 (ko) 2023-02-28
EP3522532A4 (en) 2019-08-07
US11405605B2 (en) 2022-08-02
KR20190068517A (ko) 2019-06-18
EP3522532A1 (en) 2019-08-07
US10798375B2 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
KR102504876B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
JP7288111B2 (ja) 符号化方法及びその装置、復号方法及びその装置
KR102524588B1 (ko) 부호화 순서 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
JP7274022B2 (ja) 符号化順序符号化方法及びその装置、該復号方法及びその装置
KR102504877B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102487077B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102444294B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102484387B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102445668B1 (ko) 부호화 순서 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102479494B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR20220116357A (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal