KR20230029033A - Preparing method for gelatin crosslinked particle - Google Patents

Preparing method for gelatin crosslinked particle Download PDF

Info

Publication number
KR20230029033A
KR20230029033A KR1020210111023A KR20210111023A KR20230029033A KR 20230029033 A KR20230029033 A KR 20230029033A KR 1020210111023 A KR1020210111023 A KR 1020210111023A KR 20210111023 A KR20210111023 A KR 20210111023A KR 20230029033 A KR20230029033 A KR 20230029033A
Authority
KR
South Korea
Prior art keywords
gelatin
particles
cross
linked
frozen
Prior art date
Application number
KR1020210111023A
Other languages
Korean (ko)
Other versions
KR102645182B1 (en
Inventor
김장호
권용현
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020210111023A priority Critical patent/KR102645182B1/en
Publication of KR20230029033A publication Critical patent/KR20230029033A/en
Application granted granted Critical
Publication of KR102645182B1 publication Critical patent/KR102645182B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a method for manufacturing gelatin cross-linked particles that are homogeneous by including a step of cross-linking frozen gelatin particles while thawing the same. The method for manufacturing gelatin cross-linked particles according to an embodiment of the present invention can manufacture small and homogeneous gelatin cross-linked particles.

Description

젤라틴 가교입자의 제조 방법{PREPARING METHOD FOR GELATIN CROSSLINKED PARTICLE}Manufacturing method of gelatin crosslinked particles {PREPARING METHOD FOR GELATIN CROSSLINKED PARTICLE}

본 발명은 젤라틴 가교입자의 제조 방법에 관한 것이다.The present invention relates to a method for preparing gelatin crosslinked particles.

최근 수십 년 동안 나노입자는 작은 크기, 안정성 및 생체적합성으로 인해 약물 전달 시스템 및 조직 공학을 비롯한 다양한 생물 의학 분야에서 주목을 받아왔다. 특히, 고분자 기반 나노입자는 다른 나노입자 시스템에 비해 캡슐화 공정이 더 발달되어 질병 표적화에 더 높은 효율을 보였다. In recent decades, nanoparticles have attracted attention in various biomedical fields, including drug delivery systems and tissue engineering, due to their small size, stability and biocompatibility. In particular, polymer-based nanoparticles showed higher efficiency in targeting diseases due to a more developed encapsulation process than other nanoparticle systems.

이러한 나노입자의 표적화 효율은 주로 입자 크기, 표면 전하 및 표면의 변형에 의해 영향을 받으며, 특히, 나노입자의 크기는 세포막과의 상호작용과 생물학적 장벽의 침투를 결정하는 가장 중요한 요인 중 하나로 알려져 있다. 예를 들어, 100 nm 미만의 크기인 나노입자는 뇌-혈액 장벽과 같은 다양한 생물학적 장벽을 관통할 수 있다.The targeting efficiency of these nanoparticles is mainly affected by particle size, surface charge, and surface modification. In particular, nanoparticle size is known to be one of the most important factors determining interaction with cell membranes and penetration of biological barriers. . For example, nanoparticles with a size of less than 100 nm can penetrate various biological barriers such as the brain-blood barrier.

천연고분자인 젤라틴은 나노입자 제조 재료로서 친수성, 생분해성, 무독성, 생체적합성, 낮은 가격 등 많은 장점을 가지고 있다. 이러한 다양한 장점 때문에 많은 연구자들이 다양한 생의학 응용 분야에 젤라틴 기반 나노입자의 사용을 연구해왔다. 그러나, 이전 연구에서 일반적인 탈용매화 방법을 사용해 제조된 젤라틴 입자는 입자가 불안정하고 응집되기 쉬운 경향이 있었다. 이러한 한계를 극복하기 위해 응집되지 않고 안정적인 작은 젤라틴 입자를 제조할 수 있는 2단계(침전-가교) 탈용매화방법이 보고되었으나, 기존의 2단계 탈용매화 방법으로 제조된 젤라틴 입자의 평균 크기는 150~300 nm로 사용상의 제약이 있었다. 예를 들어, 100 nm 보다 큰 나노입자는 간과 비장에 대량으로 축적되는 문제가 있다.Gelatin, a natural polymer, has many advantages as a material for manufacturing nanoparticles, such as hydrophilicity, biodegradability, non-toxicity, biocompatibility, and low price. Because of these various advantages, many researchers have investigated the use of gelatin-based nanoparticles for various biomedical applications. However, gelatin particles prepared using a common desolvation method in previous studies tended to make the particles unstable and prone to aggregation. In order to overcome these limitations, a two-step (precipitation-crosslinking) desolvation method capable of producing small gelatin particles that are stable without aggregation has been reported, but the average size of gelatin particles prepared by the existing two-step desolvation method is 150 to 150 300 nm had limitations in use. For example, nanoparticles larger than 100 nm accumulate in large quantities in the liver and spleen.

한국공개특허 제2010-0081291호는 침전반응을 통한 젤라틴 나노입자의 제조방법을 제시하고 있으나, 상기의 문제점을 해결하지는 못하고 있다.Korean Patent Publication No. 2010-0081291 suggests a method for producing gelatin nanoparticles through a precipitation reaction, but does not solve the above problems.

이에, 작고 균질한 젤라틴 입자를 제조하는 방법에 대한 연구가 필요하다.Therefore, it is necessary to study a method for producing small and homogeneous gelatin particles.

한국공개특허 제2010-0081291호Korean Patent Publication No. 2010-0081291

본 발명은 작고 균질한 젤라틴 가교입자의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing small and homogeneous gelatin crosslinked particles.

1. 냉동된 젤라틴 입자를 해동시키면서 가교하는 단계를 포함하는 젤라틴 가교입자의 제조 방법.1. A method for producing cross-linked gelatin particles comprising cross-linking frozen gelatin particles while thawing them.

2. 위 1에 있어서, 상기 해동은 냉장 하에 수행되는 젤라틴 가교입자의 제조 방법.2. The method for preparing gelatin crosslinked particles according to 1 above, wherein the thawing is performed under refrigeration.

3. 위 1에 있어서, 상기 가교는 글루타르알데하이드와의 반응으로 수행되는 젤라틴 가교입자의 제조 방법.3. The method for preparing gelatin cross-linked particles according to 1 above, wherein the cross-linking is performed by reaction with glutaraldehyde.

4. 위 1에 있어서, 젤라틴 용액으로부터 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 더 포함하는, 젤라틴 가교입자의 제조 방법.4. The method for preparing gelatin crosslinked particles according to 1 above, further comprising obtaining a gelatin precipitation liquid from a gelatin solution and freezing the gelatin solution to obtain the frozen gelatin particles.

5. 위 4에 있어서, 상기 용액의 용매는 물이며, 상기 침전은 아세톤을 첨가하여 수행되는 젤라틴 가교입자의 제조 방법.5. The method for preparing gelatin crosslinked particles according to 4 above, wherein the solvent of the solution is water, and the precipitation is performed by adding acetone.

6. 위 1에 있어서, 젤라틴 용액에서 젤라틴을 침전시키고, 그 침전물을 재용해시키고 산 첨가 후에 재침전시켜 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 더 포함하는 젤라틴 가교입자의 제조 방법.6. The method of 1 above, wherein gelatin is precipitated from the gelatin solution, the precipitate is redissolved and re-precipitated after acid is added to obtain a gelatin precipitated liquid, and frozen to obtain the frozen gelatin particles. Particle manufacturing method.

7. 위 1에 있어서, 가교된 젤라틴 입자에 유기 용매를 첨가하고 원심분리하여 젤라틴 가교입자를 정제하는 단계를 더 포함하는 젤라틴 가교입자의 제조 방법.7. The method for preparing gelatin cross-linked particles according to 1 above, further comprising purifying the gelatin cross-linked particles by adding an organic solvent to the cross-linked gelatin particles and centrifuging.

본 발명의 실시예에 따른 젤라틴 가교입자의 제조 방법은 작고 균질한 젤라틴 가교입자를 제조할 수 있다.The method for preparing gelatin cross-linked particles according to an embodiment of the present invention can produce small and homogeneous gelatin cross-linked particles.

본 발명의 실시예에 따른 젤라틴 가교입자는 세포독성이 없다.The gelatin cross-linked particles according to an embodiment of the present invention are not cytotoxic.

본 발명의 실시예에 따른 젤라틴 가교입자는 약물 전달 시스템 및 조직 공학 등 생체의학 분야에 적용될 수 있다.The gelatin cross-linking particles according to embodiments of the present invention can be applied to biomedical fields such as drug delivery systems and tissue engineering.

도 1은 기존 젤라틴 입자 제조 방법과 실시예의 제조 방법을 도식화하여 비교한다.
도 2는 기존 젤라틴 입자 제조 방법으로 제조된 젤라틴 입자와 실시예의 제조 방법으로 제조된 젤라틴 입자의 SEM 관찰 결과(2a, 2b) 및 크기 분포를 비교한다(2c, 2d).
도 3은 젤라틴과 실시예의 제조 방법으로 제조된 젤라틴 입자의 FT-IR 분석 결과를 나타낸다.
도 4는 실시예의 제조 방법으로 제조된 젤라틴 입자의 농도에 따른 조골세포 및 섬유아세포의 세포생존률을 나타낸다.
도 5는 실시예의 제조 방법으로 제조된 젤라틴 입자의 트리판블루 농도에 따른 약물방출 프로파일을 나타낸다.
도 6은 실시예의 제조 방법으로 제조된 젤라틴 입자의 실제 약물방출 프로파일과 수학적 모델에 따른 약물방출 프로파일을 비교한다.
1 is a schematic comparison between the conventional gelatin particle manufacturing method and the manufacturing method of Examples.
Figure 2 compares the SEM observation results (2a, 2b) and size distributions (2c, 2d) of gelatin particles prepared by the conventional gelatin particle manufacturing method and gelatin particles prepared by the manufacturing method of Examples.
Figure 3 shows the results of FT-IR analysis of gelatin and gelatin particles prepared by the manufacturing method of Example.
Figure 4 shows the cell viability of osteoblasts and fibroblasts according to the concentration of the gelatin particles prepared by the manufacturing method of Example.
Figure 5 shows the drug release profile according to the trypan blue concentration of the gelatin particles prepared by the manufacturing method of Example.
Figure 6 compares the actual drug release profile of the gelatin particles prepared by the manufacturing method of Example and the drug release profile according to the mathematical model.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 냉동된 젤라틴 입자를 해동시키면서 가교하는 단계를 포함하는 젤라틴 가교입자의 제조 방법에 관한 것이다.The present invention relates to a method for producing cross-linked gelatin particles comprising the step of cross-linking frozen gelatin particles while thawing them.

상기 젤라틴은 동물의 가죽·힘줄·연골 등을 구성하는 천연 단백질인 콜라겐에서 얻어지는 유도 단백질의 일종을 의미한다. 젤라틴은 제조공정에서 원료를 산 처리 하여 얻어지는 A타입과, 염기 처리하여 얻어지는 B타입으로 구별되며, 본 발명의 젤라틴은 A타입 또는 B타입의 젤라틴일 수 있다.The gelatin refers to a type of induced protein obtained from collagen, which is a natural protein constituting animal hide, tendon, cartilage, and the like. Gelatin is classified into A-type obtained by acid-treating raw materials in the manufacturing process and B-type obtained by base treatment, and the gelatin of the present invention may be A-type or B-type gelatin.

상기 젤라틴 입자는 젤라틴이 알갱이 형태로 있는 것을 의미하며, 예를 들면 젤라틴을 용해시킨 후 침전 반응을 통해 얻을 수 있다. The gelatin particles mean that gelatin is in the form of granules, and can be obtained, for example, through a precipitation reaction after dissolving gelatin.

상기 냉동은 젤라틴 입자의 온도를 상온 보다 낮은 온도로 내리는 것을 의미한다. 상기 냉동된 젤라틴 입자는 젤라틴 입자의 부피가 온도 감소로 인하여 상온에서의 부피보다 줄어든 상태이면 특별히 제한되지 않으며, 냉동되는 온도는 극저온도를 포함한다. 냉동은 급속 냉동일 수 있으며, 급속 냉동은 물질의 온도를 급속하게 떨어트려 보존하는 방법을 의미한다. 급속 냉동은 예를 들면 급속 냉동 기능이 구비된 냉동고를 통해 수행할 수 있고, 급속 냉동의 방법은 예를 들면 찬 공기를 이용하는 송풍 냉동, 선반에 냉매를 순환시키는 접촉 냉동, 또는 액체 질소를 쓰는 극저온 냉동법일 수 있으나, 이에 제한되는 것은 아니다.The freezing means lowering the temperature of the gelatin particles to a temperature lower than room temperature. The frozen gelatin particles are not particularly limited as long as the volume of the gelatin particles is reduced from the volume at room temperature due to temperature decrease, and the freezing temperature includes cryogenic temperatures. Freezing may be quick freezing, and quick freezing refers to a method of rapidly lowering the temperature of a material to preserve it. Quick freezing can be performed, for example, through a freezer equipped with a quick freezing function, and the method of quick freezing is, for example, blast freezing using cold air, contact freezing by circulating a refrigerant in a shelf, or cryogenic temperature using liquid nitrogen. It may be a freezing method, but is not limited thereto.

냉동된 젤라틴 입자는 예를 들면 용매에 분산된 젤라틴 입자를 냉동시킨 것일 수 있다. 그 경우, 용매에 분산된 젤라틴 입자를 용매의 녹는점 이하의 온도로 냉동시킨 것일 수 있다. 용매는 예를 들면 물일 수 있다.The frozen gelatin particles may be, for example, frozen gelatin particles dispersed in a solvent. In that case, the gelatin particles dispersed in the solvent may be frozen at a temperature below the melting point of the solvent. The solvent may be water, for example.

상기 해동은 젤라틴 입자의 온도를 상기 냉동된 온도와 상온 사이의 온도로 올리는 것을 의미하며, 따라서 상기 해동시키면서 가교하는 단계는 젤라틴 입자가 냉동 전 상태로 완전히 돌아가지 않은 상태에서 가교가 이루어짐을 의미한다. 해동은 예를 들면 냉장 하에 수행될 수 있으며, 냉장 온도는 예를 들면  0 ℃ 내지 10 ℃일 수 있다. The thawing means raising the temperature of the gelatin particles to a temperature between the frozen temperature and the room temperature, and therefore, the step of crosslinking while thawing means that the crosslinking takes place in a state in which the gelatin particles do not completely return to the state before freezing . Thawing may be performed, for example, under refrigeration, and the refrigeration temperature may be, for example,  0 °C to 10 °C.

상기 가교는 젤라틴 입자를 이루는 사슬모양의 젤라틴 분자가 화학결합에 의해 서로 연결되는 것을 의미한다. 상기 젤라틴을 가교하는 단계는 당업자가 통상의 지식에 의해 적절히 선택할 수 있는 가교결합 방법을 통해 수행될 수 있으며 특별히 제한되지 않는다. 예를 들면, 젤라틴의 가교결합은 글루타르알데하이드 또는 제니핀과의 반응으로 수행될 수 있다.The cross-linking means that chain-shaped gelatin molecules constituting the gelatin particles are connected to each other by chemical bonds. The step of crosslinking the gelatin may be performed through a crosslinking method that can be appropriately selected by a person skilled in the art and is not particularly limited. For example, cross-linking of gelatin can be effected by reaction with glutaraldehyde or genipin.

냉동된 젤라틴 입자가 용매에 분산된 젤라틴 입자를 냉동시킨 것이라면, 냉동 상태로 가교제와 반응되기는 어려우므로, 이를 해동시키면서 용매에서 가교제와 젤라틴 입자가 접촉할 수 있도록 하여 가교시킬 수 있다. 젤라틴 입자가 완전히 해동되고 온도가 상승한다면 부피가 다시 팽창될 것이므로, 가교는 완전히 해동되기 전에 수행되는 것이고, 냉동된 젤라틴 입자가 용매에 분산된 젤라틴 입자를 냉동시킨 것이라면, 가교는 완전히 해동되기 전, 예를 들면 살얼음이 끼어 있는 상태에서 수행될 수 있다.If the frozen gelatin particles are frozen gelatin particles dispersed in a solvent, it is difficult to react with the crosslinking agent in a frozen state, so crosslinking can be performed by bringing the crosslinking agent and gelatin particles into contact in the solvent while thawing them. If the gelatin particles are completely thawed and the temperature rises, the volume will expand again, so crosslinking is performed before completely thawing, and if the frozen gelatin particles are frozen gelatin particles dispersed in a solvent, crosslinking is performed before completely thawing, For example, it may be performed in the presence of thin ice.

본 발명은 젤라틴 용액으로부터 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 포함할 수 있다.The present invention may include obtaining a gelatin precipitation liquid from a gelatin solution and freezing it to obtain the frozen gelatin particles.

상기 침전액은 젤라틴 용액에서 젤라틴이 포화에 도달하여 용액 속에 나온 상태를 의미하며, 젤라틴 용액으로부터 젤라틴 침전액을 얻는 방법은 당업자가 통상의 지식에 의해 적절히 선택할 수 있는 침전 반응을 통해 수행될 수 있으며 특별히 제한되지 않는다. 예를 들면 젤라틴 침전 반응은 젤라틴 용액에 침전 시약을 첨가하여 일어날 수 있다. 젤라틴 용액은 예를 들면 젤라틴을 40 ℃ 내지 60 ℃의 용매(ex. 물)에 녹이는 방법으로 얻을 수 있으며, 침전 시약은 예를 들면 젤라틴 수용액일 때, 아세톤, 에탄올, 피크린산용액 및 삼산화크롬용액 중에서 선택된 것일 수 있으나 이에 제한되는 것은 아니다. 상기 침전 반응에 사용되는 용매 및 시약의 양, pH 및 온도 등은 실시 목적에 따라 당업자에 의해 적절히 선택될 수 있다.The precipitation liquid means that the gelatin in the gelatin solution reaches saturation and comes out of the solution, and the method of obtaining the gelatin precipitation liquid from the gelatin solution can be carried out through a precipitation reaction that can be appropriately selected by those skilled in the art by conventional knowledge, Not particularly limited. For example, a gelatine precipitation reaction can occur by adding a precipitation reagent to a gelatin solution. Gelatin solution can be obtained, for example, by dissolving gelatin in a solvent (ex. water) at 40 ° C to 60 ° C, and the precipitation reagent is, for example, gelatin aqueous solution, in acetone, ethanol, picric acid solution and chromium trioxide solution. It may be selected, but is not limited thereto. The amounts of solvents and reagents used in the precipitation reaction, pH, temperature, etc. may be appropriately selected by those skilled in the art according to the purpose of implementation.

상기 냉동은 전술한 냉동과 동일한 의미를 가진다.The freezing has the same meaning as the aforementioned freezing.

본 발명은 젤라틴 용액에서 젤라틴을 침전시키고, 그 침전물을 재용해시키고 산 첨가 후에 재침전시켜 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 포함할 수 있다.The present invention may include the steps of precipitating gelatin from a gelatin solution, re-dissolving the precipitate and reprecipitating it after acid addition to obtain a gelatin precipitate liquid, and freezing it to obtain the frozen gelatin particles.

상기 젤라틴의 침전 및 냉동은 전술한 젤라틴의 침전 및 냉동과 동일한 의미를 가진다.The precipitation and freezing of gelatin has the same meaning as the above-mentioned precipitation and freezing of gelatin.

침전 반응이 수행되기 전의 젤라틴 용액의 pH는 침전을 통해 생성된 젤라틴 입자의 형태 및 크기에 영향을 미친다. 상기 산 첨가는 젤라틴 용액의 pH를 낮춤으로써 용액 속 젤라틴 분자의 표면 전하를 높이며, 이로 인한 젤라틴 분자 사이의 반발력이 침전 반응 시 생성되는 젤라틴 입자의 형태를 균일하고 작게 할 수 있다. 상기 산 첨가를 통해 얻어지는 젤라틴 용액의 pH는 예를 들면 2 내지 4일 수 있으며, 구체적으로 3일 수 있다. 상기 산은 HCl일 수 있으나 이에 제한되는 것은 아니다.The pH of the gelatin solution before the precipitation reaction is performed affects the shape and size of the gelatin particles produced through precipitation. The acid addition lowers the pH of the gelatin solution, thereby increasing the surface charge of the gelatin molecules in the solution, and the resulting repulsive force between the gelatin molecules can make the shape of the gelatin particles produced during the precipitation reaction uniform and small. The pH of the gelatin solution obtained through the acid addition may be, for example, 2 to 4, specifically 3. The acid may be HCl, but is not limited thereto.

본 발명은 이후 가교된 젤라틴 입자에 유기 용매를 첨가하고, 원심분리하여 젤라틴 가교입자를 정제하는 단계를 포함할 수 있다.The present invention may then include adding an organic solvent to the cross-linked gelatin particles and purifying the cross-linked gelatin particles by centrifugation.

상기 유기 용매는 아세톤, 아세토니트릴, 클로로포름, 메탄올, 에탄올 중에서 선택된 것일 수 있으나 이에 제한되는 것은 아니다.The organic solvent may be selected from acetone, acetonitrile, chloroform, methanol, and ethanol, but is not limited thereto.

상기 정제는 냉장 하에 수행될 수 있다. 상기 냉장 온도는 예를 들면  0 ℃ 내지 10 ℃일 수 있다.The purification may be carried out under refrigeration. The refrigerating temperature may be, for example,  0 °C to 10 °C.

본 발명에서 후술하는 약물방출 프로파일은 젤라틴 입자에 약물이 로드될 경우 약물이 방출되는 속도와 경향성을 분석한 것으로서, 본 발명의 젤라틴 입자를 약물 전달 시스템에 사용할 경우 이를 바탕으로 입자의 적정량 사용과 방출 조절이 가능하도록 돕기 위하여 기재되었다.The drug release profile described later in the present invention is an analysis of the rate and tendency of drug release when a drug is loaded into gelatin particles, and when the gelatin particles of the present invention are used in a drug delivery system, the appropriate amount of the particles is used and released based on this. It was written to help control.

이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예를 제시하나, 이는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. Hereinafter, specific examples are presented to aid understanding of the present invention, but these are merely illustrative of the present invention and do not limit the scope of the appended claims, and various examples for the examples within the scope and spirit of the present invention It is obvious to those skilled in the art that changes and modifications are possible, and it goes without saying that these changes and modifications fall within the scope of the appended claims.

실험Experiment

1. 냉동-해동 방법을 통한 젤라틴 가교입자의 제조1. Preparation of gelatin cross-linked particles through freeze-thaw method

젤라틴 A타입 (Sigma, 1.25g)을 50 ℃에서 25 mL의 물에 용해하였다. 젤라틴이 충분히 용해된 후, 25 mL의 아세톤을 첨가한 다음, 혼합액을 빠르게 저어 젤라틴의 침전을 빠르게 하였다. 그 후 상층액을 제거하여 높은 몰 질량의 젤라틴 침전물만을 남겼다. 침전물을 다시 50 ℃에서 25 mL의 물에 용해한 후, HCl 첨가를 통해 혼합액의 pH를 3으로 조정하였다. 그 후 75 mL의 아세톤(Sigma)을 첨가하고 40 ℃에서 600 rpm으로 회전시킨 후, 젤라틴을 압축하기 위해, 젤라틴 용액을 초저온냉동고에서 빠르게 냉동시켰다. 1시간 후, 냉동된 젤라틴 용액을 녹이고 4 ℃의 저온냉장쳄버에서 저어주었다. 그 후 젤라틴 입자의 가교 결합 형성을 위해 280 μL 의 글루타르알데하이드 (25%, v/v)를 첨가하였다. 그 후 젤라틴 입자를 75%의 아세톤 용액에 용해한 후, 4 ℃에서 6500 rpm으로 3회 원심분리하여 젤라틴 가교입자를 정제하였다. 이후 3일 동안 젤라틴 가교입자를 동결 건조하였다.Gelatin type A (Sigma, 1.25 g) was dissolved in 25 mL of water at 50 °C. After the gelatin was sufficiently dissolved, 25 mL of acetone was added, and then the mixed solution was rapidly stirred to accelerate gelatin precipitation. The supernatant was then removed leaving only a high molar mass gelatinous precipitate. After dissolving the precipitate in 25 mL of water at 50 °C again, the pH of the mixed solution was adjusted to 3 by adding HCl. Thereafter, 75 mL of acetone (Sigma) was added and rotated at 600 rpm at 40° C., and the gelatin solution was quickly frozen in a cryogenic freezer to compress the gelatin. After 1 hour, the frozen gelatin solution was thawed and stirred in a cold storage chamber at 4 °C. Then, 280 μL of glutaraldehyde (25%, v/v) was added to form cross-links of the gelatin particles. After dissolving the gelatin particles in a 75% acetone solution, the gelatin crosslinked particles were purified by centrifugation at 4°C and 6500 rpm three times. Afterwards, the gelatin cross-linked particles were freeze-dried for 3 days.

2. 젤라틴 가교입자의 SEM 분석2. SEM analysis of gelatin cross-linked particles

젤라틴 가교입자의 크기를 ImageJ 소프트웨어를 사용한 주사전자현미경(SEM) (JSM-7500F) 으로 관찰하였다. PerkinElmer Spectrum 400 기구를 사용하여 푸리에변환적외선분광법(FT-IR)을 수행하였다.The size of the gelatin cross-linked particles was observed with a scanning electron microscope (SEM) (JSM-7500F) using ImageJ software. Fourier transform infrared spectroscopy (FT-IR) was performed using a PerkinElmer Spectrum 400 instrument.

3. 젤라틴 가교입자의 세포독성 분석3. Cytotoxicity analysis of gelatin cross-linking particles

MG-63 조골세포 및 건세포(tenocyte)에 대한 젤라틴 가교입자의 독성을 분석하기 위해, WST-1 assay를 수행하였다. MG-63 조골세포 및 건세포 각각을 1 × 104 cells/well의 밀도로 96-well plate에 분주한 후, 배양 배지(Cellgro)에서 24시간 동안 배양하였다. 24시간 후, 배양 배지를 젤라틴 가교입자가 각 0.05%, 0.1%, 0.5%, 1% 및 2%(w/v) 포함된 배양 배지로 교체한 후, 다시 24시간 동안 배양하였다. 그 후 WST-1 assay를 통해 생존한 세포의 수를 측정하였다.In order to analyze the toxicity of the gelatin cross-linking particles to MG-63 osteoblasts and tenocytes, WST-1 assay was performed. MG-63 osteoblasts and tenocytes were each dispensed into a 96-well plate at a density of 1 × 104 cells/well, and cultured for 24 hours in a culture medium (Cellgro). After 24 hours, the culture medium was replaced with a culture medium containing 0.05%, 0.1%, 0.5%, 1% and 2% (w/v) of gelatin cross-linking particles, respectively, and cultured for another 24 hours. Then, the number of surviving cells was measured by WST-1 assay.

4. 생체외 젤라틴 가교입자의 약물방출 분석4. In vitro drug release analysis of gelatin crosslinked particles

젤라틴 가교입자의 약물방출 프로파일을 위해 트리판블루를 모델 약물로 사용하였다. 젤라틴 가교입자를 트리판블루 용액(용액의 농도는 각 0.05%, 0.1% 및 0.2% (w/v))에 5 μL/mg의 비율로 함침시킨 후 상온에서 2시간 동안 보존하였다. 그 후, 젤라틴 가교입자를 인산염완충식염수(phosphate-buffered saline)에 1.5 mL/5 mg의 비율로 담근 후 인큐베이터에서 37 ℃에서 20 rpm으로 인버팅(inverting)한다. 이후 분광기에서 595 nm의 파장을 측정하여 상층액의 트리판블루 농도를 측정하였다.Trypan blue was used as a model drug for the drug release profile of the gelatin crosslinked particles. The gelatin cross-linked particles were impregnated with trypan blue solution (concentrations of 0.05%, 0.1%, and 0.2% (w/v) respectively) at a rate of 5 μL/mg, and then preserved at room temperature for 2 hours. Thereafter, the gelatin crosslinked particles are immersed in phosphate-buffered saline at a rate of 1.5 mL/5 mg, and inverted at 20 rpm at 37° C. in an incubator. Then, the concentration of trypan blue in the supernatant was measured by measuring a wavelength of 595 nm in a spectrometer.

5. 약물방출의 수학적 모델 제안5. Proposal of a mathematical model for drug release

Fick’s second law를 바탕으로 간단한 1차원 수학적 모델을 제안하였다. 하기 식은 일반 확산 방정식이다.Based on Fick's second law, a simple one-dimensional mathematical model was proposed. The equation below is the general diffusion equation.

Figure pat00001
(1)
Figure pat00001
(One)

상기 식 중, CA는 시간에 따른 약물 농도이며, A는 입자의 내부 위치, B는 입자의 외부 위치, t는 시간, DAB는 젤라틴 입자의 처음 3일 간의 약물방출 결과를 모델링하여 얻어진 확산 계수를 의미한다.In the above formula, C A is the drug concentration over time, A is the internal position of the particle, B is the external position of the particle, t is the time, D AB is the diffusion obtained by modeling the drug release results for the first 3 days of the gelatin particle means count.

결과result

본 발명은 작은 크기의 젤라틴 가교입자를 제조하기 위하여, 냉동-해동 단계를 바탕으로 한, 두 단계의 탈용매화 방법을 사용하였다. 이 방법은 온도 감소에 따라 물질의 분자의 압축이 증가하고 부피가 줄어드는 자연현상을 바탕으로 한 것이다. In the present invention, a two-step desolvation method based on a freeze-thaw step was used to prepare small-sized gelatin crosslinked particles. This method is based on a natural phenomenon in which the compression of the molecules of a substance increases and the volume decreases as the temperature decreases.

도 1에서 상기 방법을 도식화하였다. 기존 방법에서는 젤라틴을 먼저 침전시키고 입자가 형성되면 글루타르알데하이드를 추가하는 것과 대조적으로, 본 발명에서는 젤라틴의 참전 후, 급속 냉동에 의해 젤라틴 분자 사이의 압축이 촉진되어 평균 100 nm 이하의 젤라틴 나노입자가 제조되었다. 도 2a은 기존 방법으로 제조된 젤라틴 입자의 SEM 이미지를 나타낸 것이며, 더 응집된 형태의 젤라틴 입자가 관찰된다. 도 2b는 냉동-해동 방법을 통해 제조된 젤라틴 가교입자의 SEM 이미지를 나타낸 것이며, 기존 방법으로 제조된 젤라틴 입자와 비교할 때 응집되지 않고 구형의 작은 크기의 입자가 제조되었음을 확인할 수 있다. 기존 방법으로 제조된 젤라틴 입자의 평균적인 크기는 도 2c에서와 같이 150 nm 이상이며, 냉동-해동 방법으로 제조된 젤라틴 가교입자는 평균적으로 최소 40~60 nm에서 최대 100 nm의 크기를 갖는다. The method is schematically illustrated in FIG. 1 . In contrast to conventional methods, in which gelatin is first precipitated and glutaraldehyde is added when particles are formed, in the present invention, compression between gelatin molecules is promoted by rapid freezing after gelatin is added, resulting in gelatin nanoparticles with an average size of 100 nm or less. has been manufactured Figure 2a shows a SEM image of gelatin particles prepared by the conventional method, and more aggregated gelatin particles are observed. Figure 2b shows a SEM image of the gelatin crosslinked particles prepared through the freeze-thaw method, and it can be confirmed that the gelatin particles prepared by the conventional method are not agglomerated and have a small size in a spherical shape. The average size of gelatin particles prepared by the conventional method is 150 nm or more, as shown in FIG.

젤라틴과 본 발명의 젤라틴 가교입자의 화학적 구조를 비교하기 위하여, 젤라틴 및 젤라틴 가교입자의 작용기를 FT-IR로 분석한 결과를, 도 3에서 나타내었다. 3466 cm-1 에 분포하는 N-H stretching으로 인한 amide-A 피크는 가교결합의 정도와 관련되어 있으며, amide I 및 N-H denaturation에 대한 1630 cm-1의 C=0 stretching, amide II에 대한 1565 cm-1 의 C-N stretching이 있다.In order to compare the chemical structure of gelatin and the gelatin crosslinked particles of the present invention, the results of analyzing the functional groups of gelatin and gelatin crosslinked particles by FT-IR are shown in FIG. 3 . The amide-A peak due to NH stretching distributed at 3466 cm -1 is related to the degree of crosslinking, C=0 stretching at 1630 cm -1 for amide I and NH denaturation, and 1565 cm -1 for amide II. There is CN stretching of

입자의 크기는 입자의 세포독성을 결정하는 중요한 요소로 보고되어 왔다. 일반적으로, 100 nm 이하의 입자가 가장 독성이 적으며, 반면에 매우 작은 크기(1 nm 이하)의 입자는 세포독성이 매우 높은 것으로 알려져 있다. 젤라틴 가교입자의 세포독성을 조사하기 위하여, MG-63 조골세포 및 건세포를 각각 조골세포 및 섬유아세포의 모델로 사용하여 WST-1 assay를 수행하였다. 두 세포그룹 모두, 젤라틴 가교입자가 0%인 대조군과 비교하여 더 높은 세포생존력을 나타냈다. 흥미롭게도, 조골세포의 경우는 젤라틴 가교입자 농도가 증가함에 따라 세포생존력이 증가하였다. 상기 결과를 통해 젤라틴 가교입자가 세포독성이 없음을 알 수 있다.Particle size has been reported as an important factor in determining the cytotoxicity of particles. In general, it is known that particles of 100 nm or less are the least toxic, whereas particles of very small size (1 nm or less) are highly cytotoxic. To investigate the cytotoxicity of the gelatin cross-linking particles, WST-1 assay was performed using MG-63 osteoblasts and tenocytes as models for osteoblasts and fibroblasts, respectively. Both cell groups showed higher cell viability compared to the control group containing 0% gelatin cross-linking particles. Interestingly, in the case of osteoblasts, cell viability increased as the concentration of gelatin cross-linking particles increased. It can be seen from the above results that the gelatin cross-linking particles are not cytotoxic.

입자의 크기는 일반적으로 생체내외에서 약물방출속도를 결정하는 중요 요소 중 하나로 알려져 있다. 젤라틴 가교입자의 양물방출속도 프로파일을 확인하기 위하여, 생체외에서 약물방출속도 실험을 수행하였다. 도 5에서, 모델 약물(트리판블루)의 농도가 각 0.05%, 0.1%, 및 0.2% 일 때의 약물방출 프로파일을 나타내었다. 실험결과, 상기 세 가지 농도에서, 각 40%, 30% 및 20%로 로드된(loaded) 약물에 대하여, 처음 3일 동안 초기 약물급속방출이 관찰되었다. 이는 트리판블루가 젤라틴 가교입자의 외부 표면에 흡수되었던 것으로 해석될 수 있다. 더욱이, 젤라틴의 약한 기계적 성질로 인해 초기 방출이 높았던 것으로 해석된다. 위 실험 결과는 초기의 약물급속방출을 보여줄 뿐만 아니라, 세 가지 농도에서 약물방출 곡선이 유사하게 나타남을 보여준다. 그러나, 약물방출속도는 로드된 약물의 양이 많을수록 높았다. 젤라틴 가교입자의 약물방출 메커니즘은, solid matrices의 약물방출에 대한 Higuchi 방정식에 따라, 확산에 의해 제어되는 것으로 알려져 있다. Particle size is generally known as one of the important factors determining the drug release rate in vitro and in vivo. In order to confirm the nutrient release rate profile of the gelatin crosslinked particles, an in vitro drug release rate experiment was performed. In FIG. 5, drug release profiles were shown when the concentrations of the model drug (trypan blue) were 0.05%, 0.1%, and 0.2%, respectively. As a result of the experiment, for the drug loaded at 40%, 30%, and 20%, respectively, at the three concentrations, initial drug rapid release was observed for the first 3 days. This can be interpreted as that trypan blue was absorbed on the outer surface of the gelatin crosslinked particles. Moreover, it is interpreted that the initial release was high due to the weak mechanical properties of the gelatin. The above experimental results show not only the initial rapid release of the drug, but also that the drug release curves are similar at the three concentrations. However, the drug release rate increased as the amount of loaded drug increased. It is known that the drug release mechanism of gelatin cross-linked particles is controlled by diffusion according to the Higuchi equation for drug release in solid matrices.

생체의학에서의 응용에서, 신규한 입자의 약물방출 프로파일에 대한 수학적 모델링은 매우 중요한 요소이다. 수학적 모델링을 통한 입자의 약물방출 프로파일 및 방출 경향에 대한 이해는 입자에 대하여 적정량의 사용과 방출 조절을 가능하도록 해준다. 따라서, 기존 확산 방정식을 사용하여 간단한 수학적 모델을 제시하였다. 전술한 방정식 (1)은, 처음 3일 동안의 약물방출 프로파일에서 얻어진 확산 계수를 사용하였다. 추가적으로, 처음 3일 동안의 급속방출을 고려하여 결과를 보정하였다. 도 6에서 세 가지 농도에서의 방출 모델 결과와 실험 결과를 비교하여 나타내었다. In biomedical applications, mathematical modeling of drug release profiles of novel particles is a very important factor. Understanding of the drug release profile and release tendency of particles through mathematical modeling enables the use of an appropriate amount and control of release of the particles. Therefore, a simple mathematical model was presented using the existing diffusion equation. For the above equation (1), the diffusion coefficient obtained from the drug release profile for the first 3 days was used. Additionally, the results were corrected for rapid release during the first 3 days. In Figure 6, the release model results and experimental results at three concentrations are compared and shown.

Claims (7)

냉동된 젤라틴 입자를 해동시키면서 가교하는 단계를 포함하는 젤라틴 가교입자의 제조 방법.
A method for producing cross-linked gelatin particles comprising the step of cross-linking frozen gelatin particles while thawing them.
청구항 1에 있어서, 상기 해동은 냉장 하에 수행되는 젤라틴 가교입자의 제조 방법.
The method for preparing gelatin crosslinked particles according to claim 1, wherein the thawing is performed under refrigeration.
청구항 1에 있어서, 상기 가교는 글루타르알데하이드와의 반응으로 수행되는 젤라틴 가교입자의 제조 방법.
The method for preparing gelatin cross-linked particles according to claim 1, wherein the cross-linking is performed by reaction with glutaraldehyde.
청구항 1에 있어서, 젤라틴 용액으로부터 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 더 포함하는, 젤라틴 가교입자의 제조 방법.
The method for preparing gelatin cross-linked particles according to claim 1, further comprising obtaining a gelatin precipitation liquid from a gelatin solution and freezing the gelatin solution to obtain the frozen gelatin particles.
청구항 4에 있어서, 상기 용액의 용매는 물이며, 상기 침전은 아세톤을 첨가하여 수행되는 젤라틴 가교입자의 제조 방법.
The method of claim 4, wherein the solvent of the solution is water, and the precipitation is performed by adding acetone.
청구항 1에 있어서, 젤라틴 용액에서 젤라틴을 침전시키고, 그 침전물을 재용해시키고 산 첨가 후에 재침전시켜 젤라틴 침전액을 얻고, 이를 냉동하여 상기 냉동된 젤라틴 입자를 얻는 단계를 더 포함하는 젤라틴 가교입자의 제조 방법.
The gelatin crosslinked particles according to claim 1, further comprising the steps of precipitating gelatin from a gelatin solution, re-dissolving the precipitate, re-precipitating the precipitate after adding acid to obtain a gelatin precipitate liquid, and freezing the precipitate to obtain the frozen gelatin particles. manufacturing method.
청구항 1에 있어서, 가교된 젤라틴 입자에 유기 용매를 첨가하고 원심분리하여 젤라틴 가교입자를 정제하는 단계를 더 포함하는 젤라틴 가교입자의 제조 방법.

The method for preparing gelatin cross-linked particles according to claim 1, further comprising purifying the gelatin cross-linked particles by adding an organic solvent to the cross-linked gelatin particles and centrifuging.

KR1020210111023A 2021-08-23 2021-08-23 Preparing method for gelatin crosslinked particle KR102645182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210111023A KR102645182B1 (en) 2021-08-23 2021-08-23 Preparing method for gelatin crosslinked particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210111023A KR102645182B1 (en) 2021-08-23 2021-08-23 Preparing method for gelatin crosslinked particle

Publications (2)

Publication Number Publication Date
KR20230029033A true KR20230029033A (en) 2023-03-03
KR102645182B1 KR102645182B1 (en) 2024-03-07

Family

ID=85510313

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210111023A KR102645182B1 (en) 2021-08-23 2021-08-23 Preparing method for gelatin crosslinked particle

Country Status (1)

Country Link
KR (1) KR102645182B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046850A (en) * 2004-08-20 2007-05-03 겔리타 아게 Nanoparticles and process for their production
KR20100081291A (en) 2010-06-30 2010-07-14 임광희 Gelatine nano-particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070046850A (en) * 2004-08-20 2007-05-03 겔리타 아게 Nanoparticles and process for their production
KR20100081291A (en) 2010-06-30 2010-07-14 임광희 Gelatine nano-particle

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Food Hydrocolloids, 33(2), p.273-279, 2013. *
journal of bioactive and compatible polymers, 25(5), p.498-512(1-24), 2010. *
Polymers, 13(14), p.1-26, 2021.07.14. *

Also Published As

Publication number Publication date
KR102645182B1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
Mi et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant
Bhattarai et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release
Sharma et al. Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery
Zhang et al. Injectable and fast self-healing protein hydrogels
JP5357015B2 (en) Hydrogels of polysaccharide mixtures for tissue engineering and as active compound carriers
Xie et al. pH‐sensitive hydrogel based on carboxymethyl chitosan/sodium alginate and its application for drug delivery
Chen et al. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin
Gao et al. Injectable shell-crosslinked F127 micelle/hydrogel composites with pH and redox sensitivity for combined release of anticancer drugs
US20130344027A1 (en) Multi-functional polymeric materials and their uses
Su et al. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier
Barker et al. Biodegradable DNA-enabled poly (ethylene glycol) hydrogels prepared by copper-free click chemistry
CN111317709B (en) Injectable dual-drug-loaded composite chitosan hydrogel and preparation method thereof
Zafar et al. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile
Shi et al. A pH-responsive, injectable and self-healing chitosan-coumarin hydrogel based on Schiff base and hydrogen bonds
Pan et al. One-step cross-linked injectable hydrogels with tunable properties for space-filling scaffolds in tissue engineering
Chang et al. Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends
Cho et al. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles
Erfani et al. Biodegradable zwitterionic poly (carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function
Pang et al. Dynamic viscoelasticity and magnetorheological property of magnetic hydrogels
Pal et al. Study on facile designing, swelling properties and structural relationship of gelatin nanoparticles
Li et al. Synthesis and Characterization of Temperature‐/pH‐Responsive Hydrogels for Drug Delivery
KR102645182B1 (en) Preparing method for gelatin crosslinked particle
Wu et al. Stable thermosensitive in situ gel-forming systems based on the lyophilizate of chitosan/α, β-glycerophosphate salts
CN110183595A (en) Alkyloxy-ethers tree shaped polymer/gelatin-compounded freezing gel, preparation method and application
Hu et al. Oxidized Dextran/Chitosan Hydrogel Engineered with Tetrasulfide‐Bridged Silica Nanoparticles for Postsurgical Treatment

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant