KR20230024393A - Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications - Google Patents

Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications Download PDF

Info

Publication number
KR20230024393A
KR20230024393A KR1020237001519A KR20237001519A KR20230024393A KR 20230024393 A KR20230024393 A KR 20230024393A KR 1020237001519 A KR1020237001519 A KR 1020237001519A KR 20237001519 A KR20237001519 A KR 20237001519A KR 20230024393 A KR20230024393 A KR 20230024393A
Authority
KR
South Korea
Prior art keywords
copper
catalyst
hydrogenation catalyst
producing
activated carbon
Prior art date
Application number
KR1020237001519A
Other languages
Korean (ko)
Inventor
위 샤
리옌 안
지샨 짠
쭈어진 리
하이보 위
천 옌
캉 순
웬 리
Original Assignee
완후아 케미컬 그룹 코., 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 완후아 케미컬 그룹 코., 엘티디 filed Critical 완후아 케미컬 그룹 코., 엘티디
Publication of KR20230024393A publication Critical patent/KR20230024393A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/18Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • C07C33/20Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part monocyclic
    • C07C33/22Benzylalcohol; phenethyl alcohol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 문에서는 구리계 수소화 촉매의 제조방법, 이에 의해 제조된 촉매 및 응용을 개시하였고, 활성탄을 산성 용액, 알칼리성 용액에 순차적으로 함침 처리시킨 후, 구리염과 리튬염이 함유된 에탄올-물 혼합용액에 첨가하여 함침 노화시키며, 그 다음 건조, 배소하여 구리계 수소화 촉매를 얻고, 상기 촉매는 산화구리 3-10wt%, 산화리튬 0.3-3wt%, 나머지가 활성탄인 것으로 조성된다. 제조하여 얻은 촉매는 우수한 골격 강도와 공극 크기 분포, 양호한 물질이동과 열전달 효과를 구비하고, 또한 활성이 높으며, 활성 조성분의 분산도가 높고, 소결 방지 능력이 높으며, 활성 조성분이 쉽게 유실되지 않는 장점을 더 구비하고, α-페네틸 알코올을 제조하기 위한 아세토페논 수소화의 공업 생산에 사용될 수 있다.In this paper, a method for preparing a copper-based hydrogenation catalyst, a catalyst prepared thereby, and applications are disclosed, and activated carbon is sequentially impregnated in an acidic solution and an alkaline solution, followed by an ethanol-water mixture solution containing copper salt and lithium salt. is impregnated and aged, then dried and roasted to obtain a copper-based hydrogenation catalyst, which is composed of 3-10wt% copper oxide, 0.3-3wt% lithium oxide, and the remainder being activated carbon. The catalyst obtained by manufacturing has the advantages of excellent skeleton strength and pore size distribution, good mass transfer and heat transfer effect, high activity, high dispersity of active components, high ability to prevent sintering, and active components not easily lost. and can be used for industrial production of hydrogenation of acetophenone to produce α-phenethyl alcohol.

Description

구리계 수소화 촉매의 제조방법, 이에 의해 제조된 촉매 및 응용Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications

본 출원은 촉매 수소화 기술분야에 속하며, 구체적으로 아세토페논 액상 수소화를 통해 α-페네틸 알코올을 제조하기 위한 촉매, 이의 제조방법 및 응용에 관한 것이다.This application belongs to the field of catalytic hydrogenation technology, and specifically relates to a catalyst for preparing α-phenethyl alcohol through liquid phase hydrogenation of acetophenone, a method for preparing the same, and an application thereof.

α-페네틸 알코올은 중요한 화학공업 중간물이며, 의약, 향료 제조업, 화장품, 식품 및 정밀 화학공업 등 공업에 광범위하게 응용된다. 기존의 α-페네틸 알코올의 합성 방법은 주로 미생물 발효법과 아세토페논 환원/촉매 수소화법 등이 있다.α-Phenethyl alcohol is an important chemical intermediate, widely used in medicine, perfume manufacturing, cosmetics, food and fine chemical industry and other industries. Existing methods for synthesizing α-phenethyl alcohol mainly include microbial fermentation and acetophenone reduction/catalytic hydrogenation.

미생물 발효법은 일반적으로 페닐알라닌, 플루오로페닐알라닌을 원료로 사용하고, 미생물 발효를 통해 전환시켜 α-페네틸 알코올을 제조하는 것이다. 미생물 발효법에 사용된 원료는 가격이 너무 비싸고, 생산 비용이 너무 높다. 현재, 공업에서 α-페네틸 알코올의 생산은 일반적으로 아세토페논 수소화법을 사용하는바, 해당 방법은 생산 비용이 낮고, 부산물이 적으며, 제품 수율이 높고, 제품 순도가 높은 등 장점을 구비함으로써, α-페네틸 알코올의 대규모 생산에 적합하다.Microbial fermentation methods generally use phenylalanine and fluorophenylalanine as raw materials and convert them through microbial fermentation to produce α-phenethyl alcohol. Raw materials used in microbial fermentation are too expensive, and production costs are too high. Currently, the production of α-phenethyl alcohol in industry generally uses the acetophenone hydrogenation method, which has advantages such as low production cost, small by-products, high product yield, and high product purity. , suitable for large-scale production of α-phenethyl alcohol.

아세토페논 수소화 촉매는 주로 백금-팔라듐 귀금속 촉매, 니켈 기반 촉매 및 구리 기반 촉매 등이 있고, 귀금속 촉매와 니켈 기반 촉매는 비용이 높으며, 방향족 고리의 포화 및 페네틸 알코올의 수소화분해를 쉽게 초래함으로써, α-페네틸 알코올의 선택성이 나빠진다. 귀금속 촉매, 니켈 기반 촉매와 비교하면, 구리계 수소화 촉매는 아세토페논 수소화 반응에 사용되어, 활성 및 선택성이 높고, 비용이 낮은 등 우세가 있지만, 촉매 강도가 낮고, 안정성이 나쁘며, 활성 조성분이 쉽게 유실되고, 수소화분해/탈수 부반응(아세토페논 수소화 과정에서 α-페네틸 알코올 수소화분해/탈수 부반응이 극도로 쉽게 발생되어 에틸벤젠/스티렌이 생성되며, 수소화분해 및 탈수반응 속도는 반응 온도의 상승에 따라 신속히 증가하는 것)이 쉽게 발생되는 등 문제가 여전히 존재한다.Acetophenone hydrogenation catalysts mainly include platinum-palladium noble metal catalysts, nickel-based catalysts and copper-based catalysts, etc., noble metal catalysts and nickel-based catalysts are expensive, and easily cause saturation of the aromatic ring and hydrogenolysis of phenethyl alcohol, thereby The selectivity of α-phenethyl alcohol deteriorates. Compared with noble metal catalysts and nickel-based catalysts, copper-based hydrogenation catalysts used in acetophenone hydrogenation have advantages such as high activity and selectivity, and low cost, but have low catalyst strength, poor stability, and easy to obtain active ingredients. is lost, and hydrogenolysis/dehydration side reaction (α-phenethyl alcohol hydrogenolysis/dehydration side reaction occurs extremely easily in the process of acetophenone hydrogenation to produce ethylbenzene/styrene. The problem still exists, such as the rapid increase with

CN1557545A에서는 함침법을 사용하여 Ni-Sn-B/SiO2 촉매를 제조하였고, 저온 배소 후 KBH4를 환원제로 사용하여 환원시키며, 촉매 반응 시, 페네틸 알코올의 최고 선택성은 97.5%에 도달하였지만, 그의 활성 조성분 Ni와 담체 SiO2의 상호 작용력이 약하고, 쉽게 유실된다.In CN1557545A, a Ni-Sn-B/SiO 2 catalyst was prepared using an impregnation method, and after low-temperature roasting, it was reduced using KBH 4 as a reducing agent. During the catalytic reaction, the highest selectivity of phenethyl alcohol reached 97.5%, The interaction force between the active component Ni and the carrier SiO 2 is weak and is easily lost.

US4996374에서는 Pd-C 촉매를 개시하였지만, 촉매의 안정성이 비교적 나쁘며, 그대로 사용할 경우, 반응 온도를 끊임없이 향상시켜야 한다.US4996374 discloses a Pd-C catalyst, but the stability of the catalyst is relatively poor, and when used as it is, the reaction temperature must be constantly raised.

CN1315226A에서는 환원 처리된 구리 기반 촉매 및 이를 사용하여 α-페네틸 알코올을 제조하는 방법을 개시하였지만, 이는 촉매의 안정성을 향상시키기 위해서는 액상 환원의 방법을 사용해야 하기 때문에, 공정이 복잡하고, 비용이 높다.CN1315226A discloses a reduced copper-based catalyst and a method for producing α-phenethyl alcohol using the same, but the process is complicated and expensive because a liquid-phase reduction method must be used to improve the stability of the catalyst. .

CN1911883A에서는 레이니니켈(Raney Nickel)을 촉매로 하여 α-페네틸 알코올을 제조하는 방법을 개시하였지만, 아세토페논 수소화 생성물에 비교적 많은 방향족 고리 수소화 생성물인 α-시클로헥실 에탄올이 나타나 있기 때문에, α-페네틸 알코올의 선택성이 비교적 낮다.CN1911883A discloses a method for producing α-phenethyl alcohol using Raney Nickel as a catalyst, but since α-cyclohexyl ethanol, which is a relatively large amount of aromatic ring hydrogenation product, is shown in the acetophenone hydrogenation product, α-phenol The selectivity of ethyl alcohol is relatively low.

따라서, 기존의 기술에 존재하는 상기 촉매 활성 조성분과 담체의 낮은 결합력, 활성 조성분의 유실로 인한 촉매의 불활성화, 및 활성 조성분의 분산이 균일하지 않는 점 등 문제를 해결함으로써, 구리계 수소화 촉매의 저온 활성을 향상시키고, 촉매 중 구리의 분산성을 개선시키며, 활성 조성분의 유실을 감소시키고, 촉매의 강도를 향상시키며, 부산물의 생성을 억제시킴으로써, 높은 활성, 높은 선택성의 아세토페논 수소화 촉매를 제조하는 것은 중대한 의미를 가지고 있다.Therefore, by solving problems such as low binding force between the catalytically active component and the carrier, inactivation of the catalyst due to loss of the active component, and non-uniform dispersion of the active component, which exist in the existing technology, copper-based hydrogenation catalysts By improving the low-temperature activity, improving the dispersibility of copper in the catalyst, reducing the loss of active components, improving the strength of the catalyst, and suppressing the formation of by-products, to prepare a high activity, high selectivity acetophenone hydrogenation catalyst Doing has great meaning.

하기 내용은 본 문에서 상세히 설명하는 주제에 대한 개요이다. 본 개요는 청구항의 보호범위를 한정하려는 것은 아니다.The following is an overview of the topics detailed in this document. This summary is not intended to limit the scope of protection of the claims.

본 출원의 목적은 기존의 기술에 존재하는 상기 문제를 해결하기 위해, 아세토페논 액상 수소화에 의해 α-페네틸 알코올을 제조하기 위한 구리계 촉매의 제조방법 및 제조하여 얻은 촉매를 제공하고자 하는 것이다.An object of the present application is to provide a method for preparing a copper-based catalyst for preparing α-phenethyl alcohol by liquid-phase hydrogenation of acetophenone and a catalyst obtained by the preparation in order to solve the above problems existing in the existing technology.

본 출원의 구리계 촉매는 활성탄을 담체로 사용하고, 금속 리튬을 보조제로 사용하며, 이온 교환 방법을 통해 제조된다. 제조하여 얻은 촉매는 우수한 골격 강도와 공극 크기 분포, 양호한 물질이동과 열전달 효과를 구비하고, 또한 활성이 높으며, 활성 조성분의 분산도가 높고, 소결 방지 능력이 높으며, 활성 조성분이 쉽게 유실되지 않는 장점을 더 구비한다. The copper-based catalyst of the present application uses activated carbon as a carrier and metal lithium as an adjuvant, and is prepared through an ion exchange method. The catalyst obtained by manufacturing has the advantages of excellent skeleton strength and pore size distribution, good mass transfer and heat transfer effect, high activity, high dispersity of active components, high ability to prevent sintering, and active components not easily lost. provide more

본 출원에 따른 촉매가 α-페네틸 알코올을 제조하기 위한 아세토페논 액상 수소화에 응용될 경우, 촉매는 아주 우수한 저온 활성을 더 구비함으로써, 부산물의 생성을 효과적으로 감소시킬 수 있고, 특히 조성분에 첨가된 보조제인 리튬 원소에 있어서, Cu-Li을 배합하여 사용함으로써, 촉매의 알칼리도를 향상시킬 수 있으며, 수소화분해/탈수 부반응을 효과적으로 억제시킬 수 있고, 또한 긴 주기 안정성 등 장점을 더 구비한다.When the catalyst according to the present application is applied to the liquid phase hydrogenation of acetophenone to produce α-phenethyl alcohol, the catalyst further has excellent low-temperature activity, thereby effectively reducing the production of by-products, especially In the auxiliary lithium element, by using Cu-Li in combination, the alkalinity of the catalyst can be improved, the hydrogenolysis/dehydration side reaction can be effectively suppressed, and further advantages such as long cycle stability are provided.

상기 목적의 일 측면을 구현하기 위하여, 본 출원은 아래와 같은 기술방안을 사용한다.In order to implement one aspect of the above object, the present application uses the following technical measures.

구리계 수소화 촉매의 제조방법은 아래의 단계를 포함한다.The method for preparing a copper-based hydrogenation catalyst includes the following steps.

(1) 활성탄을 산성 용액에 함침 처리시킨 후, 분리, 세척하며;(1) After the activated carbon is impregnated with an acidic solution, it is separated and washed;

(2) 단계 (1)에서 처리된 후의 활성탄을 알칼리성 용액에 함침 처리시킨 후, 분리, 세척, 건조시키며;(2) the activated carbon treated in step (1) is immersed in an alkaline solution, then separated, washed and dried;

(3) 단계 (2)에서 처리된 후의 활성탄을 구리염과 리튬염이 함유된 에탄올-물 혼합용액에 첨가하여 함침 노화시킨 후, 분리, 세척, 건조 및 배소하여, 구리계 수소화 촉매를 얻는다.(3) The activated carbon treated in step (2) is added to an ethanol-water mixture containing a copper salt and a lithium salt, subjected to impregnation aging, and then separated, washed, dried, and roasted to obtain a copper-based hydrogenation catalyst.

본 출원의 제조방법 단계 (1)에서, 상기 산성 용액은 산의 수용액이고, 농도는 0.5-2mol/L이며, 바람직하게 0.8-1.5mol/L이고; 상기 산은 질산, 염산 또는 황산 중의 1종 혹은 여러 종에서 선택되며, 바람직하게 질산이다. 산 농도가 비교적 낮으면, 한편으로, 담체 표면의 그룹(group) 수에 직접적인 영향을 미치게 되고, 다른 한편으로, 산성 용액은 담체 자체에 존재하는 이물질을 제거할 수도 있는데, 산 농도가 낮을 경우, 이물질이 잔류되어, 촉매의 활성과 선택성에 영향을 미치게 되며, 반면, 산 농도가 비교적 높으면, 담체가 파손되어, 담체의 사용 수명에 영향을 미치게 된다.In the production method step (1) of the present application, the acid solution is an aqueous acid solution, and the concentration is 0.5-2 mol/L, preferably 0.8-1.5 mol/L; The acid is selected from one or more of nitric acid, hydrochloric acid or sulfuric acid, and is preferably nitric acid. When the acid concentration is relatively low, on the one hand, it directly affects the number of groups on the surface of the carrier; Foreign matter remains, affecting the activity and selectivity of the catalyst, on the other hand, when the acid concentration is relatively high, the carrier is damaged, affecting the service life of the carrier.

본 출원의 제조방법 단계 (1)에서, 상기 활성탄은 야자각 차콜(coconut shell charcoal) 또는 목질계 탄소 중의 임의의 1종이고, 이의 요오드 값은 600-1500이며, 바람직하게 800-1300이고; 입도(particle size)는 4-60메쉬이며, 바람직하게 8-16메쉬이다. 활성탄의 요오드 값은 실험을 통해 고찰한 것이다. 본 출원에서 합리한 요오드 값 범위는 수소화 반응의 진행을 촉진하는데 유리하지만, 반면, 촉매의 반응 성능과 물리적 성능에 대하여서는 불리하다.In step (1) of the manufacturing method of the present application, the activated carbon is any one of coconut shell charcoal and wood-based carbon, and its iodine value is 600-1500, preferably 800-1300; The particle size is 4-60 mesh, preferably 8-16 mesh. The iodine value of activated carbon was studied experimentally. A reasonable iodine value range in the present application is advantageous for promoting the progress of the hydrogenation reaction, but on the other hand, it is disadvantageous for the reaction performance and physical performance of the catalyst.

본 출원의 제조방법 단계 (1)에서, 상기 함침 처리의 조건은 상압 과잉수 함침(normal pressure excessive impregnation)이고, 함침 온도는 80-140℃이며, 바람직하게 90-130℃이고; 시간은 2-8h이며, 바람직하게 3-6h이다. 상기 함침 처리 과정에서, 본 단계에서는 산성 용액의 사용량에 대해 구체적으로 한정하지 않는바, 활성탄 담체를 완전히 함침시킬 수 있기만 하면 된다. 함침 온도는 주로 담체 표면에 유기 관능기를 형성시키는 데에 촉진 효과가 있기 때문에, 온도가 너무 낮거나 너무 높으면 모두 불리하다.In step (1) of the production method of the present application, the condition of the impregnation treatment is normal pressure excessive impregnation, and the impregnation temperature is 80-140°C, preferably 90-130°C; The time is 2-8h, preferably 3-6h. In the impregnation treatment process, in this step, the amount of acidic solution used is not specifically limited, as long as the activated carbon carrier can be completely impregnated. Since the impregnation temperature mainly has an accelerating effect on the formation of organic functional groups on the surface of the carrier, both too low and too high temperatures are disadvantageous.

본 출원의 제조방법의 단계 (1)에서, 함침 처리 후속의 분리, 세척은 상규적인 조작 방법을 사용하며 구체적인 요구는 없다. 일 실시예에서, 상기와 같은 분리는 원심분리 방식을 사용할 수 있으며, 상기 세척은 수세척 방식을 사용할 수 있다. 단계 (1)에서 산성 용액을 사용하여 활성탄 담체를 함침시킴으로써, 한편으로 활성탄의 이물질을 제거할 수 있고, 다른 한편으로 활성탄 표면의 산소 함유 관능기를 수식시키기 위한 것으로, 활성탄은 그 자체가 불활성 재료이며, 표면에 관능기가 적기 때문에, 산성 용액에서 고온 산화처리를 거친 후, 활성탄 표면에 산소 함유 그룹, 예를 들어 -COOH 등 관능기가 증가하게 되어, 수식 후 다음 단계의 개질을 위해 준비한다.In step (1) of the manufacturing method of the present application, the separation and washing following the impregnation treatment use a conventional operating method and are not specifically required. In one embodiment, the separation may use a centrifugal separation method, and the washing may use a water washing method. By impregnating the activated carbon carrier with an acidic solution in step (1), on the one hand, foreign substances on the activated carbon can be removed, and on the other hand, for modifying oxygen-containing functional groups on the surface of the activated carbon, activated carbon itself is an inert material , Since there are few functional groups on the surface, after high-temperature oxidation treatment in an acidic solution, oxygen-containing groups such as -COOH functional groups increase on the surface of activated carbon, and it is prepared for the next stage of modification after modification.

본 출원의 제조방법의 단계 (2)에서, 상기 알칼리성 용액은 암모늄염이 함유된 알칼리성 수용액이고, 농도는 2-10wt%이며, 바람직하게 3-8wt%이고; 상기 암모늄염은 탄산암모늄 및/또는 탄산수소암모늄에서 선택된다.In step (2) of the production method of the present application, the alkaline solution is an alkaline aqueous solution containing an ammonium salt, and the concentration is 2-10wt%, preferably 3-8wt%; The ammonium salt is selected from ammonium carbonate and/or ammonium hydrogen carbonate.

본 출원에 제조방법의 단계 (2)에서, 상기 함침 처리의 조건은 상압 과잉수 함침(excessive impregnation)이고, 온도는 20-60℃이며, 바람직하게 30-50℃이고; 함침 시간은 2-8h이며, 바람직하게 3-6h이다. 상기 함침 처리 과정에서, 본 단계에서는 알칼리성 용액의 사용량에 대해 구체적으로 한정하지 않는바, 활성탄 담체를 완전히 함침시킬 수 있으면 되지만, 단계 (1)에서 산처리 후의 담체에 생성된 관능기를 충분히 교환시키기 위해서는 용액에 충분한 ?t량의 이온 수가 구비되도록 보장해야 한다. 단계 (2)에서, 암모늄염을 사용하여 활성탄 표면에 대해 개질을 진행하는바, NH4+이온을 이용하여 제1 단계에서 개질된 산소 함유 관능기를 치환하는 것, 예를 들어 -COOH를 -COONH4로 변환시키는 것이고, 개질의 목적은 다음 단계의 구리이온 교환을 위해 준비하는 것이며, 그렇지 않으면 구리이온의 교환 반응에 불리하게 된다.In step (2) of the manufacturing method of the present application, the condition of the impregnation treatment is atmospheric pressure excess water impregnation, and the temperature is 20-60°C, preferably 30-50°C; The soaking time is 2-8h, preferably 3-6h. In the impregnation treatment process, in this step, there is no specific limitation on the amount of alkaline solution used, as long as the activated carbon carrier can be completely impregnated, but in order to sufficiently exchange the functional groups generated in the carrier after acid treatment in step (1) It should be ensured that the solution is provided with sufficient ?t of ionic water. In step (2), an ammonium salt is used to modify the activated carbon surface, NH 4+ ions are used to replace the oxygen-containing functional group modified in the first step, for example, -COOH to -COONH 4 The purpose of reforming is to prepare for copper ion exchange in the next step, otherwise the copper ion exchange reaction is disadvantageous.

본 출원의 제조방법의 단계 (2)에서, 상기 건조 온도는 90-150℃고, 바람직하게 100-130℃며; 시간은 2-8h이고, 바람직하게 3-6h이며; 본 단계에서 분리, 세척은 상규적인 조작방법을 사용하고, 구체적인 요구는 없고, 일부 실예에서, 상기 분리는 원심분리 방식을 사용할 수 있으며, 상기 세척은 수세척을 사용할 수 있다.In step (2) of the production method of the present application, the drying temperature is 90-150°C, preferably 100-130°C; the time is 2-8h, preferably 3-6h; Separation and washing in this step use a regular operation method, and there is no specific requirement. In some examples, the separation may use a centrifugal separation method, and the washing may use water washing.

본 출원의 제조방법의 단계 (3)에서, 상기 구리염과 리튬염이 함유된 에탄올-물 혼합 용액에서, 혼합 용액의 총 중량을 기준으로, 그 중 구리염 농도는 10-45wt%이고, 바람직하게 15-30wt%이며; 리튬염 농도는 10-40wt%이고, 바람직하게 20-30wt%이며; 에탄올 농도는 2-8wt%이고, 바람직하게 3-6wt%이며;In step (3) of the manufacturing method of the present application, in the ethanol-water mixed solution containing the copper salt and the lithium salt, the concentration of the copper salt is 10-45 wt%, based on the total weight of the mixed solution, preferably 15-30wt%; The lithium salt concentration is 10-40wt%, preferably 20-30wt%; Ethanol concentration is 2-8wt%, preferably 3-6wt%;

바람직하게, 상기 구리염은 질산구리, 염화구리 또는 아세트산구리 중의 1종 혹은 여러 종이고;Preferably, the copper salt is one or more of copper nitrate, copper chloride or copper acetate;

바람직하게, 상기 리튬염은 질산리튬 또는 염화리튬 중의 1종 혹은 여러 종이다.Preferably, the lithium salt is one or more of lithium nitrate or lithium chloride.

본 출원의 제조방법의 단계 (3)에서, 상기 함침 노화 과정은 바람직하게 상압 조건에서의 등용성 함침 노화(isovolumetric impregnation Aging)이고, 온도는 20-60℃며, 바람직하게 30-50℃고; 시간은 2-8h이며, 바람직하게 3-6h이다.In step (3) of the manufacturing method of the present application, the impregnation aging process is preferably isovolumetric impregnation aging under normal pressure conditions, and the temperature is 20-60°C, preferably 30-50°C; The time is 2-8h, preferably 3-6h.

본 출원의 제조방법의 단계 (3)에서, 상기 건조의 온도는 90-150℃고, 바람직하게 100-130℃며; 시간은 2-8h이고, 바람직하게 3-6h이며;In step (3) of the production method of the present application, the drying temperature is 90-150°C, preferably 100-130°C; the time is 2-8h, preferably 3-6h;

상기 배소(roasting)의 온도는 300-600℃고, 바람직하게 400-500℃며; 시간은 2-8h이고, 바람직하게 3-6h이다.The roasting temperature is 300-600°C, preferably 400-500°C; The time is 2-8h, preferably 3-6h.

본 단계에서 상기 분리, 세척은 상규적인 조작방법을 사용하고, 구체적인 요구는 없고, 일부 실예에서, 상기와 같은 분리는 여과 방식을 사용할 수 있으며, 상기 세척은 수세척을 사용할 수 있다.In this step, the separation and washing use a regular operation method, and there is no specific requirement. In some examples, the separation may use a filtration method, and the washing may use water washing.

본 출원의 제조방법은 담체에 대한 전처리 단계를 제어하고, 이온 교환방법을 결합하며, 화학결합으로 결합시키는 방식을 사용하여 활성 조성분을 로딩하기 때문에, 조성분이 쉽게 유실되지 않는다. 이로써, 제조된 촉매는 상규적인 함침 방법에 비해 활성 조성분과 담체 사이의 결합력이 더욱 강하고, 안정성이 더욱 우수하다.The production method of the present application controls the pretreatment step for the carrier, combines ion exchange methods, and loads the active ingredients using chemical bonds, so the ingredients are not easily lost. As a result, the prepared catalyst has a stronger binding force between the active component and the carrier and more excellent stability compared to the conventional impregnation method.

본 출원에서, 상기 방법에 의해 제조하여 얻은 구리계 수소화 촉매에 있어서, 촉매의 총 중량을 기준으로, 상기 촉매는 산화구리 3-10wt%, 바람직하게 5-8wt%, 산화리튬 0.3-3wt%, 바람직하게 0.5-2wt%, 나머지가 활성탄인 것으로 조성되고, 이로써 담지형 수소화 촉매(supported hydrogenation catalyst)를 얻으며, 활성 조성분은 난각형(Eggshell type) 분포를 나타낸다.In the present application, in the copper-based hydrogenation catalyst prepared and obtained by the above method, based on the total weight of the catalyst, the catalyst contains 3-10 wt% of copper oxide, preferably 5-8 wt%, 0.3-3 wt% of lithium oxide, It is preferably composed of 0.5-2wt%, the balance being activated carbon, thereby obtaining a supported hydrogenation catalyst, and the active component exhibits an eggshell type distribution.

다른 한 측면에서, 본 출원은 아세토페논 액상 수소화를 통해 α-페네틸 알코올을 제조함에 있어서의 상기 구리계 수소화 촉매의 응용을 더 제공하였다.In another aspect, the present application further provides the application of the copper-based hydrogenation catalyst in preparing α-phenethyl alcohol through liquid phase hydrogenation of acetophenone.

아세토페논 수소화를 통해 α-페네틸 알코올을 제조하는 방법은, 상기 구리계 수소화 촉매 작용 조건에서, 아세토페논 수소화 반응에 의해 α-페네틸 알코올을 제조하여 얻는다.A method for producing α-phenethyl alcohol through acetophenone hydrogenation is obtained by producing α-phenethyl alcohol by acetophenone hydrogenation under the above copper-based hydrogenation catalyst action conditions.

바람직하게, 상기 수소화 반응 조건은 다음과 같다. 반응 압력은 2-5MPa(게이지 압력)이고, 바람직하게 2.5-4MPa(게이지 압력)이며, 반응 온도는 60-100℃고, 바람직하게 70-90℃며, H2/HPA(아세토페논) 몰비는 2-20:1이고, 바람직하게 5-15:1이며, 촉매의 사용량은 0.2-0.6gHPA·gcat-1·h-1이고, 바람직하게 0.3-0.5gHPA·gcat-1·h-1이다.Preferably, the hydrogenation reaction conditions are as follows. The reaction pressure is 2-5 MPa (gauge pressure), preferably 2.5-4 MPa (gauge pressure), the reaction temperature is 60-100 °C, preferably 70-90 °C, and the H 2 /HPA (acetophenone) molar ratio is It is 2-20:1, preferably 5-15:1, and the amount of catalyst used is 0.2-0.6 gHPA·gcat -1 ·h -1 , preferably 0.3-0.5 gHPA·gcat -1 ·h -1 .

바람직하게, 상기 수소화 원료는 용매를 더 포함하고, 상기 용매는 에틸벤젠이며, 용매에서 아세토페논의 농도는 10-15wt%이다.Preferably, the hydrogenation raw material further includes a solvent, the solvent is ethylbenzene, and the concentration of acetophenone in the solvent is 10-15wt%.

본 분야의 당업자가 이해해야 할 것은, 상기 촉매는 환원 활성화가 진행된 후에야만 상응한 촉매 활성을 구비할 수 있으며, 바람직하게 환원 상태의 구리계 수소화 촉매를 α-페네틸 알코올을 제조하기 위한 아세토페논 수소화에 사용한다.It should be understood by those skilled in the art that the catalyst can have a corresponding catalytic activity only after undergoing reduction activation, and preferably, the copper-based hydrogenation catalyst in a reduced state is converted to acetophenone hydrogenation to produce α-phenethyl alcohol. use for

상기 수소화 촉매의 환원 활성화는 본 분야의 상규적인 조작이다. 바람직한 실시 형태에서, 본 출원에 따른 촉매의 환원 활성화 방법은 다음과 같은 내용을 포함한다: 수소가스와 질소가스의 혼합 가스 부피 공간 속도(mixed gas volume space velocity)를 300-1000h-1로 유지시키고, 바람직하게 먼저 반응기 온도를 160-180℃까지 상승시키며, 1-2h 동안 항온(constant temperature) 하에 촉매에 흡착된 물리적인 물을 제거한 후, 10v%를 초과하지 않는 부피분율의 H2를 함유한, 예를 들어 (5v%±2v%) H2를 함유한 상기 수소가스와 질소가스의 혼합 가스를 주입하여 상기 촉매에 대해 적어도 0.5h 동안 사전 환원시키되, 예를 들어 1h, 1.5h 또는 2h 동안 사전 환원시킨 후 수소가스와 질소가스의 혼합 가스 중의 수소가스 비율을 점차적으로 향상시키는바, 예를 들어 점차적으로 10v%, 20v%, 50v%, 100%까지 상승시키고, 해당 과정에서 촉매층 핫스팟 온도가 220℃를 초과하지 않도록 제어하며, 마지막에 200-220℃로 승온시키고 순수한 수소가스 분위기에서 2-5h 동안, 예를 들어 3h 또는 4h 동안 환원시켜 활성화된 촉매를 얻는다.Reductive activation of the hydrogenation catalyst is a routine operation in the art. In a preferred embodiment, the reduction activation method of the catalyst according to the present application includes: maintaining the mixed gas volume space velocity of hydrogen gas and nitrogen gas at 300-1000h -1 ; , Preferably first, the reactor temperature is raised to 160-180 ° C., and the physical water adsorbed on the catalyst is removed at a constant temperature for 1-2 h, and then the volume fraction of H 2 not exceeding 10v% is contained. For example, by injecting a mixed gas of hydrogen gas and nitrogen gas containing (5v% ± 2v%) H 2 , the catalyst is pre-reduced for at least 0.5 h, for example, for 1 h, 1.5 h or 2 h. After pre-reduction, the hydrogen gas ratio in the mixed gas of hydrogen gas and nitrogen gas is gradually increased, for example, gradually increased to 10v%, 20v%, 50v%, or 100%, and in the process, the catalyst layer hot spot temperature is increased. It is controlled not to exceed 220°C, and finally heated to 200-220°C and reduced in a pure hydrogen gas atmosphere for 2-5h, for example 3h or 4h, to obtain an activated catalyst.

기존의 기술에 비해, 본 출원의 기술방안의 유익한 효과는 다음과 같다.Compared to the existing technology, the beneficial effects of the technical solution of the present application are as follows.

본 출원에서 활성탄을 촉매 담체로 사용하고, 구리-리튬 두 금속의 시너지 효과를 이용하고, 또한 이온 교환의 방법을 사용하여 제조하여 얻은 촉매는 활성 조성분의 분산 정도를 향상시키고, 촉매의 활성이 높으며, 기존의 구리계 촉매에 비해 양호한 저온 활성을 구비하고, 활성 조성분이 쉽게 유실되지 않아, 촉매의 긴 주기 안정성을 향상시킬 뿐만 아니라, 촉매의 소결 방지 능력도 향상시키며, 또한, 촉매는 야자각 차콜 등 담체를 사용함으로써 우수한 골격 강도와 공극 크기 분포를 구비하기 때문에, 반응 물질의 확산 효과에 유리하고, 양호한 물질이동과 열전달 효과를 구비한다. 해당 촉매는 α-페네틸 알코올을 제조하기 위한 아세토페논 수소화에 사용됨으로써, 촉매의 수소화 능력을 효과적으로 향상시킬 수 있고, 또한 페네틸 알코올의 탈수 등 부반응을 억제시키기 때문에, 높은 활성, 높은 선택성 등 장점을 구비한다.In this application, the catalyst obtained by using activated carbon as a catalyst carrier, utilizing the synergistic effect of copper-lithium two metals, and also using the ion exchange method, improves the degree of dispersion of active components, and has high catalytic activity. , It has good low-temperature activity compared to conventional copper-based catalysts, and active components are not easily lost, which not only improves the long cycle stability of the catalyst, but also improves the ability of the catalyst to prevent sintering. In addition, the catalyst is coconut shell charcoal Since the use of such a carrier provides excellent skeleton strength and pore size distribution, it is advantageous for the diffusion effect of the reactant material and has good mass transfer and heat transfer effects. Since the catalyst is used for hydrogenation of acetophenone to produce α-phenethyl alcohol, it can effectively improve the hydrogenation ability of the catalyst and suppresses side reactions such as dehydration of phenethyl alcohol, so it has advantages such as high activity and high selectivity. to provide

상세한 설명을 읽고 이해하였을 경우, 기타 측면도 알 수 있다.Other aspects may become apparent when the detailed description is read and understood.

아래, 실시예를 결합하여 본 출원의 방법을 상세히 설명하되, 실시예에 한정되는 것은 아니다.Below, the method of the present application is described in detail by combining examples, but is not limited to the examples.

1. 실시예 및 비교예 중 주요 원료의 유래:1. Origin of main raw materials in Examples and Comparative Examples:

야자각 차콜: 입도는 8-16메쉬이고, 요오드 값은 800-1300이며, 공극부피(pore volume)는 0.38cm3/g이고, Mls Co., Ltd.에서 구입한다.Coconut shell charcoal: particle size 8-16 mesh, iodine value 800-1300, pore volume 0.38 cm 3 /g, purchased from Mls Co., Ltd.

산화알루미늄 담체: 입도는 8-30메쉬이고, 비표면적은 274m2/g이며, 공극부피는 0.86cm3/g이고, SHANDONG ALUMINIUM INDUSTRY CO., LTD.에서 구입한다.Aluminum oxide carrier: particle size 8-30 mesh, specific surface area 274 m 2 /g, pore volume 0.86 cm 3 /g, purchased from SHANDONG ALUMINIUM INDUSTRY CO., LTD.

특별한 설명이 없는 한, 기타 원료는 모두 일반적으로 시판되는 제품이며, 시약은 모두 분석용 시약이다.Unless otherwise specified, all other raw materials are generally commercially available products, and all reagents are reagents for analysis.

2. 실시예 및 비교예의 제품 분석 방법:2. Product Analysis Methods of Examples and Comparative Examples:

촉매 중의 원소 함량은 X선 형광 분광계(X-ray Fluorescence Spectrometer, XRF)를 사용하여 측정한다.The element content in the catalyst is measured using an X-ray Fluorescence Spectrometer (XRF).

수소화 용액 중 구리 이온은 유도 결합 플라즈마 방출분광기 질량 분석기(ICP)를 사용하여 측정한다.Copper ions in the hydrogenation solution are measured using inductively coupled plasma emission spectrometry (ICP) mass spectrometry.

촉매의 횡압축강도는 D-III형 강도 측정기를 사용하여 테스트하고, 50개의 샘플을 테스트하여, 평균값을 취한다. The transverse compressive strength of the catalyst was tested using a type D-III strength tester, 50 samples were tested, and the average value was taken.

원료에 함유된 아세토페논의 몰 수, 생성된 페네틸 알코올의 몰 수 및 부반응에 의해 생성된 에틸벤젠, 스티렌의 몰 수는 애질런트(Agilent) 7820A 가스 크로마토그래피를 사용하여 분석한 후 계산하고, 테스트 조건은 다음과 같이 포함한다: DB-5 크로마토그래피 컬럼, FID 검출기를 사용하고, 기화 챔버 온도는 260℃며, 검출기 온도는 260℃고, 운반가스는 유속이 30ml/min인 고순도 N2이다.The number of moles of acetophenone contained in the raw material, the number of moles of phenethyl alcohol produced, and the number of moles of ethylbenzene and styrene produced by side reactions were analyzed using an Agilent 7820A gas chromatography and then calculated and tested. The conditions include: DB-5 chromatography column, FID detector is used, the vaporization chamber temperature is 260°C, the detector temperature is 260°C, and the carrier gas is high purity N 2 with a flow rate of 30 ml/min.

아세토페논 전환율=(1-반응액에 잔류된 아세토페논의 몰 수/원료에 함유된 아세토페논의 몰 수)*100%;Acetophenone conversion rate = (1- number of moles of acetophenone remaining in the reaction solution/number of moles of acetophenone contained in the raw material) * 100%;

페네틸 알코올 선택성=생성된 페네틸 알코올의 몰 수/이미 전환된 아세토페논의 몰 수*100%;phenethyl alcohol selectivity=number of moles of phenethyl alcohol produced/number of moles of acetophenone already converted*100%;

에틸벤젠 선택성, 스티렌 선택성의 계산 방법은 페네틸 알코올의 선택성 계산 방법과 같다.The calculation methods for ethylbenzene selectivity and styrene selectivity are the same as those for phenethyl alcohol.

실시예 1Example 1

구리계 수소화 촉매의 제조:Preparation of copper-based hydrogenation catalyst:

(1) 농도가 1mol/L인 질산 수용액 50ml를 배합 제조하고, 15g의 활성탄을 질산 수용액에 첨가한 다음, 90℃까지 가열하고 항온에서 4h 동안 과잉수 함침시킨 후, 원심분리 및 수세척을 진행한다.(1) 50 ml of an aqueous nitric acid solution having a concentration of 1 mol/L is prepared by blending, 15 g of activated carbon is added to the aqueous nitric acid solution, heated to 90° C., immersed in excess water at a constant temperature for 4 h, followed by centrifugation and water washing. .

(2) 농도가 5wt%인 탄산암모늄 수용액 50g을 배합 제조하고, 단계 (1) 처리를 거친 활성탄을 탄산암모늄 수용액에 첨가하며, 25℃ 실온에서 4h 동안 과잉수 함침시킨 후, 원심분리, 수세척을 진행하고, 100℃에서 4h 동안 건조시킨다.(2) 50 g of an aqueous solution of ammonium carbonate having a concentration of 5 wt% was blended, and the activated carbon treated in step (1) was added to the aqueous solution of ammonium carbonate, impregnated with excess water at room temperature at 25° C. for 4 h, centrifuged, and washed with water. and dried at 100° C. for 4 h.

(3) 질산구리와 질산리튬의 에탄올-물 혼합 용액 9.13g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 11.6wt%이고, 질산리튬은 22.7wt%이며, 에탄올은 5wt%이고; 그리고 단계 (2) 처리를 거친 활성탄을 첨가하며, 25℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 다시 400℃에서 4h 동안 배소하여, 산화구리 함량이 3wt%, 산화리튬 함량이 3wt%인 촉매 A를 얻는다.(3) 9.13 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 11.6 wt%, lithium nitrate was 22.7 wt%, and ethanol was 5wt%; Then, activated carbon subjected to step (2) treatment was added, followed by isolytic impregnation aging at room temperature of 25 ° C for 4 h, drying at 100 ° C for 4 h, and roasting at 400 ° C for 4 h, so that the copper oxide content was 3 wt%, A catalyst A having a lithium oxide content of 3 wt% is obtained.

실시예 2Example 2

구리계 수소화 촉매의 제조:Preparation of copper-based hydrogenation catalyst:

(1) 농도가 1.5mol/L인 염산 수용액 50ml를 배합 제조하고, 15g의 활성탄을 염산 수용액에 첨가한 후, 90℃까지 가열하고 항온에서 4h 동안 과잉수 함침시킨 후, 원심분리 및 수세척을 진행한다.(1) 50 ml of an aqueous hydrochloric acid solution having a concentration of 1.5 mol/L was prepared by blending, 15 g of activated carbon was added to the aqueous hydrochloric acid solution, heated to 90° C., impregnated with excess water at a constant temperature for 4 h, followed by centrifugation and water washing. do.

(2) 농도가 8wt%인 탄산수소암모늄 수용액 50g을 배합 제조하고, 단계 (1) 처리를 거친 활성탄을 탄산수소암모늄 수용액에 첨가하며, 25℃ 실온에서 4h 동안 과잉수 함침시킨 후, 원심분리, 수세척을 진행하고, 90℃에서 5h 동안 건조시킨다.(2) 50 g of an aqueous solution of ammonium bicarbonate having a concentration of 8 wt% is blended, and the activated carbon treated in step (1) is added to the aqueous solution of ammonium bicarbonate, impregnated with excess water at room temperature at 25° C. for 4 h, centrifuged, and Proceed with washing and drying at 90° C. for 5 h.

(3) 질산구리와 질산리튬의 에탄올-물 혼합 용액 7.4g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 14.3wt%이고, 질산리튬은 4.7wt%이며, 에탄올은 5wt%이고; 그리고 단계 (2) 처리를 거친 활성탄을 첨가하며, 25℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 다시 450℃에서 4h 동안 배소하여, 산화구리 함량이 3wt%, 산화리튬 함량이 0.5wt%인 촉매 B를 얻는다.(3) 7.4 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 14.3 wt%, lithium nitrate was 4.7 wt%, and ethanol was 5wt%; Then, activated carbon subjected to step (2) treatment was added, followed by isolytic impregnation aging at room temperature of 25 ° C for 4 h, drying at 100 ° C for 4 h, and roasting at 450 ° C for 4 h, so that the copper oxide content was 3 wt%, A catalyst B having a lithium oxide content of 0.5 wt% is obtained.

실시예 3Example 3

구리계 수소화 촉매의 제조:Preparation of copper-based hydrogenation catalyst:

(1) 농도가 0.5mol/L인 황산 수용액 50ml를 배합 제조하고, 15g의 활성탄을 황산 수용액에 첨가한 후, 90℃까지 가열하고 항온에서 4h 동안 과잉수 함침시킨 후, 원심분리 및 세척을 진행한다.(1) 50 ml of aqueous sulfuric acid solution having a concentration of 0.5 mol/L is prepared by blending, 15 g of activated carbon is added to the aqueous sulfuric acid solution, heated to 90° C., impregnated with excess water at a constant temperature for 4 h, followed by centrifugation and washing .

(2) 농도가 5wt%인 탄산암모늄 수용액 50g을 배합 제조하고, 단계 (1) 처리를 거친 활성탄을 탄산암모늄 용액에 첨가하며, 45℃ 실온에서 4h 동안 과잉수 함침시킨 후, 원심분리, 수세척을 진행하고, 90℃에서 5h 동안 건조시킨다.(2) 50 g of an aqueous solution of ammonium carbonate having a concentration of 5 wt% was blended, and the activated carbon treated in step (1) was added to the ammonium carbonate solution, impregnated with excess water at room temperature of 45° C. for 4 h, centrifuged, and washed with water. and dried at 90° C. for 5 h.

(3) 질산구리와 질산리튬의 에탄올-물 혼합 용액 10.6g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 33.4wt%이고, 질산리튬은 9.8wt%이며, 에탄올은 5wt%이고; 그리고 단계 (2) 처리를 거친 활성탄을 첨가하며, 30℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 400℃에서 4h 동안 배소하여, 산화구리 함량이 10wt%, 산화리튬 함량이 1.5wt%인 촉매 C를 얻는다.(3) 10.6 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 33.4 wt%, lithium nitrate was 9.8 wt%, and ethanol was 5wt%; Then, activated carbon subjected to step (2) treatment was added, followed by isolytic impregnation and aging at 30° C. room temperature for 4 h, drying at 100° C. for 4 h, and roasting at 400° C. for 4 h. Catalyst C having a lithium content of 1.5 wt% is obtained.

실시예 4Example 4

구리계 수소화 촉매의 제조:Preparation of copper-based hydrogenation catalyst:

(1) 농도가 2mol/L인 질산 수용액 50ml를 배합 제조하고, 15g의 활성탄을 질산 수용액에 첨가한 다음, 80℃까지 가열하고 항온에서 4h 동안 과잉수 함침시킨 후, 원심분리 및 세척을 진행한다.(1) 50 ml of a nitric acid aqueous solution having a concentration of 2 mol/L is blended, 15 g of activated carbon is added to the nitric acid aqueous solution, heated to 80° C., immersed in excess water at a constant temperature for 4 h, followed by centrifugation and washing.

(2) 농도가 10wt%인 탄산암모늄 수용액 50g을 배합 제조하고, 단계 (1) 처리를 거친 활성탄을 탄산암모늄 용액에 첨가하며, 20℃ 실온에서 4h 동안 과잉수 함침시킨 후, 원심분리, 수세척을 진행하고, 90℃에서 5h 동안 건조시킨다.(2) 50 g of an aqueous solution of ammonium carbonate having a concentration of 10 wt % was blended, and the activated carbon treated in step (1) was added to the ammonium carbonate solution, impregnated with excess water at room temperature at 20° C. for 4 h, centrifuged, and washed with water. and dried at 90° C. for 5 h.

(3) 질산구리와 질산리튬의 에탄올-물 혼합 용액 10.6g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 33.4wt%이고, 질산리튬은 9.8wt%이며, 에탄올은 5wt%이고; 그리고 단계 (2) 처리를 거친 활성탄을 첨가하며, 30℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 400℃에서 4h 동안 배소하여, 산화구리 함량이 10wt%, 산화리튬 함량이 1.5wt%인 촉매 D를 얻는다.(3) 10.6 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 33.4 wt%, lithium nitrate was 9.8 wt%, and ethanol was 5wt%; Then, activated carbon subjected to step (2) treatment was added, followed by isolytic impregnation and aging at 30° C. room temperature for 4 h, drying at 100° C. for 4 h, and roasting at 400° C. for 4 h. Catalyst D having a lithium content of 1.5 wt % is obtained.

실시예 5Example 5

구리계 수소화 촉매의 제조:Preparation of copper-based hydrogenation catalyst:

(1) 농도가 2mol/L인 질산 수용액 50ml를 배합 제조하고, 15g의 활성탄을 질산 수용액에 첨가한 다음, 80℃까지 가열하고 항온에서 4h 동안 과잉수 함침시킨 후, 원심분리 및 세척을 진행한다.(1) 50 ml of a nitric acid aqueous solution having a concentration of 2 mol/L is blended, 15 g of activated carbon is added to the nitric acid aqueous solution, heated to 80° C., immersed in excess water at a constant temperature for 4 h, followed by centrifugation and washing.

(2) 농도가 10wt%의 탄산암모늄 수용액 50g을 배합 제조하고, 단계 (1) 처리를 거친 활성탄을 탄산암모늄 용액에 첨가하며, 20℃ 실온에서 4h 동안 과잉수 함침시킨 후, 원심분리, 수세척을 진행하고, 90℃에서 5h 동안 건조시킨다.(2) 50 g of an aqueous solution of ammonium carbonate having a concentration of 10 wt% was mixed and prepared, the activated carbon treated in step (1) was added to the ammonium carbonate solution, impregnated with excess water at room temperature at 20 ° C for 4 h, centrifuged and washed with water and dried at 90° C. for 5 h.

(3) 질산구리와 질산리튬의 에탄올-물 혼합 용액 9.1g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 31.3wt%이고, 질산리튬은 2.3wt%이며, 에탄올은 2wt%이고; 그리고 단계 (2) 처리를 거친 활성탄을 첨가하며, 30℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 400℃에서 4h 동안 배소하여, 산화구리 함량이 8wt%, 산화리튬 함량이 0.3wt%인 촉매 E를 얻는다.(3) 9.1 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 31.3 wt%, lithium nitrate was 2.3 wt%, and ethanol was 2wt%; Then, activated carbon subjected to step (2) treatment was added, followed by isolytic impregnation and aging at 30° C. Catalyst E having a lithium content of 0.3 wt% is obtained.

비교예 1Comparative Example 1

실시예 1의 제조방법을 참조하고, 상이한 점은 단지 단계 (2)의 알칼리성 용액 함침 처리를 거치지 않고, 구리 함량이 3wt%, 산화리튬 함량이 3wt%인 촉매 F를 얻는 것이다.Referring to the production method of Example 1, the only difference is that catalyst F having a copper content of 3 wt% and a lithium oxide content of 3 wt% is obtained without undergoing the alkaline solution impregnation treatment in step (2).

비교예 2Comparative Example 2

실시예 2의 제조방법을 참조하고, 상이한 점은 단지 단계 (1)의 산성 용액 함침 처리를 거치지 않고, 산화구리 함량이 3wt%, 산화리튬 함량이 0.5wt%인 촉매 G를 얻는 것이다.Referring to the production method of Example 2, the only difference is that catalyst G having a copper oxide content of 3 wt% and a lithium oxide content of 0.5 wt% is obtained without undergoing the acidic solution impregnation treatment in step (1).

비교예 3Comparative Example 3

실시예 1의 제조방법을 참조하고, 상이한 점은 단지 단계 (3)에서 질산리튬을 첨가하지 않고, 산화구리 함량이 3wt%인 촉매 H를 얻는 것이다.Referring to the production method of Example 1, the only difference is that in step (3), lithium nitrate is not added, and catalyst H having a copper oxide content of 3 wt% is obtained.

비교예 4Comparative Example 4

실시예 2의 제조방법을 참조하고, 상이한 점은 단지 단계 (3)에서 질산리튬을 0.43g의 질산나트륨으로 대체하여, 산화구리 함량이 3wt%, 산화나트륨 함량이 0.5wt%인 촉매 I를 얻는 것이다.Referring to the production method of Example 2, the only difference is that lithium nitrate is replaced with 0.43 g of sodium nitrate in step (3) to obtain catalyst I having a copper oxide content of 3 wt% and a sodium oxide content of 0.5 wt%. will be.

비교예 5Comparative Example 5

실시예 2의 제조방법을 참조하고, 상이한 점은 단지 단계 (3)에서 활성탄을 동일한 질량의 산화알루미늄으로 대체하여, 산화구리 함량이 3wt%, 산화리튬 함량이 0.5wt%인 촉매 J를 얻는 것이다.Referring to the preparation method of Example 2, the only difference is that in step (3), the activated carbon is replaced with the same mass of aluminum oxide to obtain a catalyst J with a copper oxide content of 3wt% and a lithium oxide content of 0.5wt%. .

비교예 6Comparative Example 6

실시예 1의 제조방법을 참조하고, 상이한 점은 단지 단계 (1)과 단계 (2)의 순서를 교환하는바, 먼저 단계 (2)의 알칼리성 용액 함침 처리를 진행한 다음, 단계 (1)의 산성 용액 함침 처리를 진행하여, 산화구리 함량이 3wt%, 산화리튬 함량이 0.5wt%인 촉매 K를 얻는 것이다.Referring to the production method of Example 1, the only difference is that the order of step (1) and step (2) is exchanged. An acidic solution impregnation treatment is performed to obtain a catalyst K having a copper oxide content of 3 wt% and a lithium oxide content of 0.5 wt%.

비교예 7Comparative Example 7

질산구리와 질산리튬의 에탄올-물 혼합 용액 8.07g을 배합 제조하고, 혼합 용액의 총 중량을 기준으로, 그 중 질산구리는 13.4wt%이고, 질산리튬은 25.7wt%이며, 에탄올은 3.7wt%이고; 미처리된 활성탄을 상기 용액에 첨가하며, 25℃ 실온에서 4h 동안 등용성 함침 노화시킨 후, 100℃에서 4h 동안 건조시키고, 400℃에서 4h 동안 배소하여, 산화구리 함량이 3wt%, 산화리튬 함량이 3wt%인 촉매 L을 얻는다.8.07 g of an ethanol-water mixed solution of copper nitrate and lithium nitrate was blended and prepared, based on the total weight of the mixed solution, of which copper nitrate was 13.4 wt%, lithium nitrate was 25.7 wt%, and ethanol was 3.7 wt%. ego; Untreated activated carbon was added to the solution, followed by isolytic impregnation aging at 25° C. room temperature for 4 h, followed by drying at 100° C. for 4 h and roasting at 400° C. for 4 h, so that the copper oxide content was 3 wt% and the lithium oxide content was A 3 wt% catalyst L is obtained.

촉매의 응용 실예Catalyst Application Examples

실시예 1-5 및 비교예 1-7에서 제조된 구리계 수소화 촉매를 α-페네틸 알코올을 제조하기 위한 아세토페논 수소화 반응에 각각 사용하는바, 단계는 다음과 같다.The copper-based hydrogenation catalysts prepared in Examples 1-5 and Comparative Examples 1-7 were used in the acetophenone hydrogenation reaction to produce α-phenethyl alcohol, and the steps are as follows.

촉매 환원: 촉매를 고정상 수소화 반응기에 넣으며, 촉매의 충진량은 20ml이다. 촉매는 사용하기 전 질소가스와 수소가스의 혼합 가스 조건에서 환원되는바, 환원 과정에서 혼합 가스 부피 공간 속도를 300h-1로 유지시키고, 먼저 반응기 온도를 160℃까지 상승시키며, 2h 동안 항온하에 촉매에 흡착된 물리적인 물을 제거한 후, 부피분율이 5v%인 H2가 함유된 수소가스와 질소가스의 혼합 가스를 주입하여 1h 동안 사전 환원시킨 후, 수소가스와 질소가스의 혼합 가스 중의 수소가스 비율을 점차적으로 10v%, 20v%, 50v%, 100%까지 상승시키고, 해당 과정에서 촉매층 핫스팟 온도가 220℃를 초과하지 않도록 제어하며, 마지막에 220℃로 승온시키고 순수한 수소가스 분위기에서 3h 동안 환원시킨다.Catalyst reduction: The catalyst is put into the fixed bed hydrogenation reactor, and the filling amount of the catalyst is 20ml. The catalyst is reduced under a mixed gas condition of nitrogen gas and hydrogen gas before use. In the reduction process, the volumetric space velocity of the mixed gas is maintained at 300h -1 , the reactor temperature is first raised to 160°C, and the catalyst is kept at a constant temperature for 2h. After removing the physical water adsorbed on it, a mixture of hydrogen gas and nitrogen gas containing H 2 with a volume fraction of 5v% was injected to pre-reduce for 1 hour, and then the hydrogen gas in the mixture gas of hydrogen gas and nitrogen gas was reduced. The ratio is gradually raised to 10v%, 20v%, 50v%, and 100%, and in the process, the catalyst layer hot spot temperature is controlled so that it does not exceed 220 ° C, and finally the temperature is raised to 220 ° C and reduced for 3 h in a pure hydrogen gas atmosphere. let it

수소화 원료는 15wt% 아세토페논의 에틸벤젠 용액으로 조성되며, 압력이 2.5MPa(게이지 압력), 온도가 70℃, H2/HPA 몰비가 5:1, 촉매 처리량이 0.3gHPA/gcat/h인 조건에서 반응이 진행된다.The hydrogenation raw material is composed of an ethylbenzene solution of 15 wt% acetophenone, and the pressure is 2.5 MPa (gauge pressure), the temperature is 70 ° C, the H 2 /HPA molar ratio is 5: 1, and the catalyst throughput is 0.3 gHPA / gcat / h. The reaction proceeds in

24h마다 수소화 용액을 취하여, 수소화 용액 중 구리이온의 함량을 측정한다. 1000h 동안 반응이 진행된 후, 반응기로부터 촉매를 분리시키고 공극 크기가 2mm인 스테인리스강 샘플 분리 스크린으로 촉매를 체가름하며, 입경이 <1mm인 촉매 입자 질량이 촉매 총 질량에서 차지하는 비율을 계산하고, 이를 촉매 파손율로 한다.The hydrogenation solution is taken every 24 h, and the content of copper ions in the hydrogenation solution is measured. After the reaction proceeds for 1000 h, the catalyst is separated from the reactor, the catalyst is sieved with a stainless steel sample separation screen with a pore size of 2 mm, and the proportion of the mass of catalyst particles with a particle size of <1 mm to the total mass of the catalyst is calculated, which is It is set as the catalyst breakage rate.

촉매 성능, 수소화 반응 결과 및 수소화 용액 중 구리이온의 평균 함량은 표 1을 참조한다.See Table 1 for catalyst performance, hydrogenation reaction results, and average copper ion content in the hydrogenation solution.

표 1Table 1

Figure pct00001
Figure pct00001

표 1로부터 알 수 있다시피, 촉매 A 내지 촉매 E, 및 촉매 H, 촉매 I와 촉매 J를 사용할 경우, 수소화 용액에서는 구리가 검출되지 않았고, 촉매 F, 촉매 G, 촉매 K와 촉매 L은 ICP 분석을 거쳐 나타난 바와 같이 수소화 용액 중 구리 함량이 비교적 높은바, 이는 촉매가 명확히 유실되었음을 설명한다. 또한, 촉매 A 내지 촉매 E는 활성이 높고, 수소화분해에 의한 에틸벤젠의 생성 및 탈수에 의한 스티렌의 생성 등 부반응을 효과적으로 억제시킬 수 있고, 반면 비교예 1 내지 비교예 7에 따른 촉매는 활성이 낮다. 또한 1000h 동안의 긴 주기 안정적인 실행을 거쳐, 촉매 A 내지 촉매 E의 아세토페논 전환율은 99%보다 크고, α-페네틸 알코올의 선택성은 99%보다 크다.As can be seen from Table 1, when Catalysts A to E, Catalyst H, Catalyst I and Catalyst J were used, copper was not detected in the hydrogenation solution, and Catalyst F, Catalyst G, Catalyst K and Catalyst L were analyzed by ICP. The copper content in the hydrogenation solution is relatively high, as shown through , which explains the clear loss of the catalyst. In addition, catalysts A to E have high activity and can effectively suppress side reactions such as generation of ethylbenzene by hydrocracking and generation of styrene by dehydration, whereas the catalysts according to Comparative Examples 1 to 7 have high activity. low. Further, after a long cycle stable run for 1000 h, the acetophenone conversion rate of catalysts A to E is greater than 99%, and the selectivity of α-phenethyl alcohol is greater than 99%.

실시예 6Example 6

실시예 2에서 제조된 구리계 수소화 촉매 B를 α-페네틸 알코올을 제조하기 위한 아세토페논 수소화 반응에 사용하고, 실시예 4의 방법을 기준으로 반응 온도를 조절하는바, 수소화 반응 결과는 표 2와 같다.The copper-based hydrogenation catalyst B prepared in Example 2 was used in the hydrogenation reaction of acetophenone to produce α-phenethyl alcohol, and the reaction temperature was adjusted based on the method of Example 4. The hydrogenation reaction results are shown in Table 2. Same as

표 2Table 2

Figure pct00002
Figure pct00002

표 2로부터 볼 수 있다시피, 60-100℃의 수소화 반응 온도에서는 모두 비교적 높은 아세토페논 전환율을 획득할 수 있고, 아세토페논의 전환율은 온도가 상승함에 따라 상승되지만, α-페네틸 알코올의 선택성은 감소되는바, 70-80℃가 가장 우수한 조건이고, α-페네틸 알코올의 선택성은 모두 99% 이상이며, 이는 촉매가 아주 우수한 저온 활성을 구비함을 설명한다.As can be seen from Table 2, at the hydrogenation reaction temperature of 60-100 ° C., all relatively high conversion rates of acetophenone can be obtained, and the conversion rate of acetophenone increases with increasing temperature, but the selectivity of α-phenethyl alcohol As it decreases, 70-80 DEG C is the most excellent condition, and the selectivity of α-phenethyl alcohol is all 99% or more, which explains that the catalyst has very good low-temperature activity.

Claims (12)

(1) 활성탄을 산성 용액에 함침 처리시킨 후, 분리, 세척하는 단계;
(2) 단계 (1)에서 처리된 후의 활성탄을 알칼리성 용액에 함침 처리시킨 후, 분리, 세척, 건조시키는 단계;
(3) 단계 (2)에서 처리된 후의 활성탄을 구리염과 리튬염이 함유된 에탄올-물 혼합용액에 첨가하여 함침 노화시킨 후, 분리, 세척, 건조 및 배소하여, 구리계 수소화 촉매를 얻는 단계; 를 포함하는 구리계 수소화 촉매의 제조방법.
(1) impregnating activated carbon with an acidic solution, separating and washing;
(2) immersing the activated carbon treated in step (1) in an alkaline solution, followed by separation, washing and drying;
(3) Adding the activated carbon treated in step (2) to an ethanol-water mixture solution containing copper salt and lithium salt, subjecting it to impregnation aging, followed by separation, washing, drying, and roasting to obtain a copper-based hydrogenation catalyst. ; Method for producing a copper-based hydrogenation catalyst comprising a.
제 1 항에 있어서,
단계 (1)에서, 상기 산성 용액은 산의 수용액이고, 농도는 0.5-2mol/L이며, 바람직하게 0.8-1.5mol/L이고; 상기 산은 질산, 염산 또는 황산 중의 1종 혹은 여러 종에서 선택되며, 바람직하게 질산이고;
상기 활성탄은 야자각 차콜 또는 목질계 탄소 중의 임의의 1종이며, 이의 요오드 값은 600-1500이고, 바람직하게 800-1300이며; 입도는 4-60메쉬이고, 바람직하게 8-16메쉬인 구리계 수소화 촉매의 제조방법.
According to claim 1,
In step (1), the acidic solution is an aqueous solution of acid, and the concentration is 0.5-2 mol/L, preferably 0.8-1.5 mol/L; The acid is selected from one or more of nitric acid, hydrochloric acid or sulfuric acid, preferably nitric acid;
The activated carbon is any one of coconut shell charcoal or wood-based carbon, and its iodine value is 600-1500, preferably 800-1300; Method for producing a copper-based hydrogenation catalyst having a particle size of 4-60 mesh, preferably 8-16 mesh.
제 1 항 또는 제 2 항에 있어서,
단계 (1)에서, 상기 함침 처리의 함침 온도는 80-140℃고, 바람직하게 90-130℃며; 시간은 2-8h이고, 바람직하게 3-6h인 구리계 수소화 촉매의 제조방법.
According to claim 1 or 2,
In step (1), the impregnation temperature of the impregnation treatment is 80-140°C, preferably 90-130°C; Method for producing a copper-based hydrogenation catalyst in which the time is 2-8 h, preferably 3-6 h.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
단계 (2)에서, 상기 알칼리성 용액은 암모늄염이 함유된 알칼리성 수용액이고, 농도는 2-10wt%이며, 바람직하게 3-8wt%이고; 상기 암모늄염은 탄산암모늄 및/또는 탄산수소암모늄에서 선택되는 구리계 수소화 촉매의 제조방법.
According to any one of claims 1 to 3,
In step (2), the alkaline solution is an alkaline aqueous solution containing an ammonium salt, and the concentration is 2-10wt%, preferably 3-8wt%; The ammonium salt is a method for producing a copper-based hydrogenation catalyst selected from ammonium carbonate and / or ammonium hydrogen carbonate.
제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
단계 (2)에서, 상기 함침 처리의 함침 온도는 20-60℃고, 바람직하게 30-50℃며; 함침 시간은 2-8h이며, 바람직하게 3-6h인 구리계 수소화 촉매의 제조방법.
According to any one of claims 1 to 4,
In step (2), the impregnation temperature of the impregnation treatment is 20-60°C, preferably 30-50°C; The impregnation time is 2-8h, preferably 3-6h, a method for producing a copper-based hydrogenation catalyst.
제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
단계 (3)에서, 상기 구리염과 리튬염이 함유된 에탄올-물 혼합 용액에서, 혼합 용액의 총 중량을 기준으로, 그 중 구리염 농도는 10-45wt%이고, 바람직하게 15-30wt%이며; 리튬염 농도는 10-40wt%이고, 바람직하게 20-30wt%이며; 에탄올 농도는 2-8wt%이고, 바람직하게 3-6wt%이며;
바람직하게, 상기 구리염은 질산구리, 염화구리 또는 아세트산구리 중의 1종 혹은 여러 종이고;
바람직하게, 상기 리튬염은 질산리튬 또는 염화리튬 중의 1종 혹은 여러 종인 구리계 수소화 촉매의 제조방법.
According to any one of claims 1 to 5,
In step (3), in the ethanol-water mixed solution containing the copper salt and the lithium salt, the copper salt concentration is 10-45 wt%, preferably 15-30 wt%, based on the total weight of the mixed solution. ; The lithium salt concentration is 10-40wt%, preferably 20-30wt%; Ethanol concentration is 2-8wt%, preferably 3-6wt%;
Preferably, the copper salt is one or more of copper nitrate, copper chloride or copper acetate;
Preferably, the lithium salt is one or more of lithium nitrate or lithium chloride. Method for producing a copper-based hydrogenation catalyst.
제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
단계 (3)에서, 상기 함침 노화 과정에서, 온도는 20-60℃고, 바람직하게 30-50℃며; 시간은 2-8h이고, 바람직하게 3-6h이며;
상기 건조의 온도는 90-150℃고, 바람직하게 100-130℃며; 시간은 2-8h이고, 바람직하게 3-6h이며;
상기 배소의 온도는 300-600℃고, 바람직하게 400-500℃며; 시간은 2-8h이고, 바람직하게 3-6h인 구리계 수소화 촉매의 제조방법.
According to any one of claims 1 to 6,
In step (3), in the process of immersion aging, the temperature is 20-60°C, preferably 30-50°C; the time is 2-8h, preferably 3-6h;
The drying temperature is 90-150°C, preferably 100-130°C; the time is 2-8h, preferably 3-6h;
The roasting temperature is 300-600°C, preferably 400-500°C; Method for producing a copper-based hydrogenation catalyst in which the time is 2-8 h, preferably 3-6 h.
촉매의 총 중량을 기준으로, 상기 촉매는 산화구리 3-10wt%, 산화리튬 0.3-3wt%, 나머지가 활성탄인 것으로 조성된, 제 1 항 내지 제 7 항 중 어느 한 항에 따른 구리계 수소화 촉매의 제조방법에 의해 제조된, 구리계 수소화 촉매.Based on the total weight of the catalyst, the catalyst is a copper-based hydrogenation catalyst according to any one of claims 1 to 7, comprising 3-10wt% of copper oxide, 0.3-3wt% of lithium oxide, and the balance being activated carbon. A copper-based hydrogenation catalyst prepared by the production method of. 제 8 항에 있어서,
촉매의 총 중량을 기준으로, 상기 촉매 중 산화구리는 5-8wt%이고;
바람직하게, 촉매의 총 중량을 기준으로, 상기 총매 중 산화리튬은 0.5-2wt%인 구리계 수소화 촉매.
According to claim 8,
Based on the total weight of the catalyst, copper oxide in the catalyst is 5-8wt%;
Preferably, based on the total weight of the catalyst, lithium oxide in the total mass is 0.5-2wt%.
α-페네틸 알코올을 제조하기 위한 아세토페논 액상 수소화에서의 제 1 항 내지 제 7 항 중 어느 한 항에 따른 구리계 수소화 촉매의 제조방법에 의해 제조된 구리계 수소화 촉매, 혹은 제 8 항 또는 제 9 항에 따른 구리계 수소화 촉매의 응용.A copper-based hydrogenation catalyst prepared by the method for preparing a copper-based hydrogenation catalyst according to any one of claims 1 to 7 in liquid phase hydrogenation of acetophenone for producing α-phenethyl alcohol, or claim 8 or 8 Application of the copper-based hydrogenation catalyst according to claim 9. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 구리계 수소화 촉매의 제조방법에 의해 제조된 구리계 수소화 촉매, 혹은 제 8 항 또는 제 9 항에 따른 구리계 수소화 촉매의 작용 조건에서, 아세토페논 수소화 반응에 의해 α-페네틸 알코올을 제조하여 얻고;
상기 수소화 반응 조건은: 반응 압력이 2-5MPa(게이지 압력)이고, 반응 온도가 60-100℃며, H2/HPA 몰비가 2-20:1이고, 촉매의 사용량이 0.2-0.6gHPA·gcat-1·h-1인 아세토페논 수소화를 통해 α-페네틸 알코올을 제조하는 방법.
Under the operating conditions of the copper-based hydrogenation catalyst prepared by the method for preparing a copper-based hydrogenation catalyst according to any one of claims 1 to 7, or the copper-based hydrogenation catalyst according to claim 8 or 9, acetophenone obtained by producing α-phenethyl alcohol by hydrogenation;
The hydrogenation reaction conditions are: the reaction pressure is 2-5 MPa (gauge pressure), the reaction temperature is 60-100 °C, the H 2 /HPA molar ratio is 2-20:1, and the amount of catalyst used is 0.2-0.6 gHPA·gcat A method for producing α-phenethyl alcohol through hydrogenation of acetophenone with −1 ·h −1 .
제 11 항에 있어서,
반응 압력은 2.5-4MPa(게이지 압력)이고;
바람직하게, 반응 온도는 70-90℃며;
바람직하게, H2/HPA 몰비는 5-15:1이고;
바람직하게, 촉매의 사용량은 0.3-0.5gHPA·gcat-1·h-1이며;
바람직하게, 상기 수소화 원료는 용매를 더 포함하고, 상기 용매는 에틸벤젠이고, 용매에서 아세토페논의 농도는 10-15wt%인 아세토페논 수소화를 통해 α-페네틸 알코올을 제조하는 방법.
According to claim 11,
The reaction pressure is 2.5-4 MPa (gauge pressure);
Preferably, the reaction temperature is 70-90°C;
Preferably, the H 2 /HPA molar ratio is 5-15:1;
Preferably, the amount of catalyst used is 0.3-0.5 gHPA·gcat -1 ·h -1 ;
Preferably, the hydrogenation raw material further comprises a solvent, the solvent is ethylbenzene, and the concentration of acetophenone in the solvent is 10-15wt%. A method for producing α-phenethyl alcohol through hydrogenation of acetophenone.
KR1020237001519A 2020-07-13 2021-03-11 Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications KR20230024393A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010666841.1 2020-07-13
CN202010666841.1A CN113926458B (en) 2020-07-13 2020-07-13 Preparation method of copper hydrogenation catalyst, catalyst prepared by preparation method and application of catalyst
PCT/CN2021/080300 WO2022012061A1 (en) 2020-07-13 2021-03-11 Preparation method for copper-based hydrogenation catalyst, catalyst prepared therefrom, and use thereof

Publications (1)

Publication Number Publication Date
KR20230024393A true KR20230024393A (en) 2023-02-20

Family

ID=79273488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237001519A KR20230024393A (en) 2020-07-13 2021-03-11 Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications

Country Status (4)

Country Link
JP (1) JP2023533579A (en)
KR (1) KR20230024393A (en)
CN (1) CN113926458B (en)
WO (1) WO2022012061A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524715B (en) * 2022-02-11 2023-10-13 河北工业大学 Directional hydrogenation method for carbonyl compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631524B (en) * 2003-12-25 2010-04-28 中国科学院大连化学物理研究所 Catalyst for o-fluoro nitrobenzene hydrogenation and its preparation and application
JP6196837B2 (en) * 2012-09-10 2017-09-13 日揮触媒化成株式会社 Nickel-based catalyst, nickel-based reduction catalyst, and production method thereof
CN107952440B (en) * 2016-10-14 2020-07-07 中国石油化工股份有限公司 Copper catalyst for selective hydrogenation of phenylacetylene in carbon eight fraction
CN109092310B (en) * 2017-06-20 2023-03-10 高化学株式会社 Copper-based catalyst, preparation method thereof and method for preparing etherification-grade ethylene glycol by using copper-based catalyst
CN110743544B (en) * 2019-11-07 2023-02-24 西安凯立新材料股份有限公司 Palladium-carbon catalyst for preparing alpha-phenylethyl alcohol by selective hydrogenation of acetophenone and preparation method and application thereof

Also Published As

Publication number Publication date
WO2022012061A1 (en) 2022-01-20
JP2023533579A (en) 2023-08-03
CN113926458A (en) 2022-01-14
CN113926458B (en) 2023-05-30

Similar Documents

Publication Publication Date Title
CN101502802B (en) Preparation method of catalyst for continuous production of succinic anhydride from hydrogenation of maleic anhydride
CN101767016B (en) Aromatic aldehyde selective hydrogenation catalyst for refining terephthalic acid
WO2024078051A1 (en) Biomass skeleton carbon-metal composite micro-nano structure catalytic material, and preparation method and use
KR20230024393A (en) Manufacturing method of copper-based hydrogenation catalyst, catalyst produced thereby and applications
CN112237946B (en) Terephthalic acid hydrofining reaction and catalyst thereof
CN110551893B (en) Diluent and its preparing process
CN112023910B (en) Preparation method and application of straight-chain double-bond hydrogenation catalyst
CN112844398B (en) Catalyst for hydrogenation of carbon four-superimposed product and preparation method thereof
CN110871075A (en) Iron-cobalt-potassium-loaded zirconium dioxide catalyst, preparation method and application thereof
CN102671659B (en) Catalyst for catalyzing benzene to synthesize cyclohexene and preparation method thereof
CN114425387B (en) Boron-nitrogen co-doped titanium dioxide palladium-supported catalyst and preparation method and application thereof
CN114054023B (en) Preparation method and application of alloy monoatomic catalyst
Zhuang et al. Liquid phase hydrogenation of phenol to cyclohexenone over a Pd–La–B amorphous catalyst
CN108499559A (en) A kind of catalyst for preparing isobutene through dehydrogenation of iso-butane, preparation method and application
CN111604085A (en) Metal catalyst containing palladium-bismuth element, preparation method and application
CN113070060B (en) Catalyst for preparing isopropylbenzene by hydrogenolysis of alpha-dimethyl benzyl alcohol and preparation method and application thereof
CN113070077B (en) Composite carrier single-atom catalyst for hydrogenation of organic hydrogen storage medium and preparation method thereof
CN113713805B (en) Preparation method and application of Pt-based catalyst
CN114621060B (en) Method for preparing hydroquinone by p-benzoquinone hydrogenation
CN115400750B (en) Catalyst for preparing saturated ketone by hydrogenating multi-double bond unsaturated ketone, and preparation method and application thereof
CN116139879B (en) IrNi/SiO of silicon dioxide supported iridium nickel catalyst 2 And high-selectivity catalytic hydrogenation method and application thereof in benzonitrile, crotonaldehyde and benzalacetone
CN113292395B (en) Carbon-loaded Ni-based catalyst, preparation thereof and preparation of 1, 4-cyclohexanediol by hydrogenation of hydroquinone under catalysis of fixed bed
CN101402045B (en) Catalyst for synthesis of propionic acid with ethyl alcohol carbonylation method
CN110845301B (en) Production method of 1, 2-pentanediol
CN110813297B (en) Synthesis method of sugar alcohol