KR20230014337A - Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method - Google Patents

Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method Download PDF

Info

Publication number
KR20230014337A
KR20230014337A KR1020210095574A KR20210095574A KR20230014337A KR 20230014337 A KR20230014337 A KR 20230014337A KR 1020210095574 A KR1020210095574 A KR 1020210095574A KR 20210095574 A KR20210095574 A KR 20210095574A KR 20230014337 A KR20230014337 A KR 20230014337A
Authority
KR
South Korea
Prior art keywords
tomato
slsrfr1
gene
leu
ser
Prior art date
Application number
KR1020210095574A
Other languages
Korean (ko)
Inventor
김상희
손건희
김재연
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to KR1020210095574A priority Critical patent/KR20230014337A/en
Priority to PCT/KR2022/008352 priority patent/WO2023003177A1/en
Publication of KR20230014337A publication Critical patent/KR20230014337A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1245Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/825Solanum lycopersicum [tomato]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a method for producing a tomato plant with controlled disease resistance using gene editing, and the tomato plant prepared by the method. More specifically, the present invention relates to a tomato plant with controlled resistance to biotrophic and/or object-parasitic pathogens, by correcting tomato-derived plant immune regulator SRFR1 (suppressor of rps4-RLD1) gene using a CRISPR/Cas system.

Description

유전자 교정을 이용한 병 저항성이 조절된 토마토 식물체의 제조방법 및 상기 제조방법에 의해 제조된 토마토 식물체{Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method}Method for producing tomato plants having controlled disease-resistance using gene editing and tomato plants produced by the method

본 발명은 유전자 교정을 이용한 병 저항성이 조절된 토마토 식물체의 제조방법 및 상기 제조방법에 의해 제조된 토마토 식물체에 관한 것이다.The present invention relates to a method for preparing a tomato plant with controlled disease resistance using gene editing and a tomato plant produced by the method.

애기장대 SRFR1 (SUPPRESSOR OF rps4-RLD 1) 유전자는 RPS4 (Ribosomal protein S4) 유전자에 과오 돌연변이(missense mutation)를 가지고 있는 야생형 RLD 애기장대를 이용한 억제제 스크리닝(suppressor screening)을 통해서 발견되었다. 애기장대에서 SRFR1의 돌연변이는 이펙터인 avrRPS4 또는 hopA1을 발현하는 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 대해, 각각 상응되는 R 유전자인 RPS4RPS6가 돌연변이되었을 때 저항성을 증가시켰다. 열성 형질의 srfr1 돌연변이체는 야생형 RLD처럼 Pto DC3000에 유사한 감수성을 보이므로 SRFR1은 ETI에서 음성조절자로 확인되었다. SRFR1은 면역조절자인 EDS1 (Enhanced disease susceptibility 1)과 TNL 종류의 저항성 단백질인 RPS4, RPS6, SNC1 (suppressor of npr1-1, constitutive 1)과 같은 단백질과 복합체를 형성하는 어댑터 단백질로써 기능을 한다. SRFR1은 전사억제조절자로 알려져 있는 사카로미세스 세레비지애(Saccharomyces cerevisiae) Ssn6 단백질과 염기서열이 유사한 TPR (tetratricopeptide repeat) 도메인을 가지고 있다. 그리고 애기장대 srfr1 돌연변이체에서 면역관련유전자의 발현이 증가되는 것이 확인되었다. 게다가, SRFR1 단백질은 면역 샤페론인 SGT1b (Suppressor of G2 allele of SKP1 homolog B)와 TCP 패밀리 전자사조절인자들과 상호작용한다. 이러한 결과들은 SRFR1 단백질이 ETI 관련 전사면역반응을 음성으로 조절하는 어댑터 단백질로써의 역할을 뒷받침한다.The Arabidopsis SRFR1 ( SUPPRESSOR OF rps4-RLD 1 ) gene was discovered through suppressor screening using wild-type RLD Arabidopsis thaliana, which has a missense mutation in the RPS4 ( Ribosomal protein S4 ) gene. The mutation of SRFR1 in Arabidopsis thaliana Pseudomonas syringae pv . For tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000), resistance was increased when the corresponding R genes, RPS4 and RPS6 , were mutated, respectively. Since the recessive srfr1 mutant showed similar susceptibility to Pto DC3000 as wild-type RLD, SRFR1 was identified as a negative regulator in ETI. SRFR1 functions as an adapter protein that forms a complex with proteins such as the immune regulator EDS1 (Enhanced disease susceptibility 1) and the TNL-type resistance proteins RPS4, RPS6, and SNC1 (suppressor of npr1-1, constitutive 1). SRFR1 has a TPR (tetratricopeptide repeat) domain similar in nucleotide sequence to Saccharomyces cerevisiae Ssn6 protein, known as a transcriptional repressor regulator. In addition, it was confirmed that the expression of immune-related genes was increased in the Arabidopsis srfr1 mutant. In addition, SRFR1 protein interacts with immune chaperone SGT1b (Suppressor of G2 allele of SKP1 homolog B) and TCP family transcription factors. These results support the role of the SRFR1 protein as an adapter protein that negatively regulates the ETI-related transcriptional immune response.

우수한 형질의 식물체를 개발하기 위해 EMS (ethyl methane sulfonate) 또는 감마선 처리 등을 이용하여 자연적 돌연변이를 유도하거나 우수한 양친을 교배하는 전통적 육종방법이 주로 이용되어져 왔으나, 이 방법의 경우 원하는 목표 형질만 바꾸는데 어려움이 있어,최근에는 목표 형질만 대입하기 위해 TALENs, ZFNs, CRISPR/Cas9 등을 이용한 신육종 방법이 적용되고 있다. 그러나 TALENs 또는 ZFNs의 경우 인공적인 뉴클레아제 설계 및 제작에 많은 시간과 비용이 소요되고,다수의 유전자를 편집하기 어려운 단점을 가진다. 그러나 CRISPR/Cas9 시스템은 매우 높은 표적 특이성을 가지고 있고 메틸화된 DNA도 표적으로 인지할 수 있기 때문에 매우 다양한 유전자에 적용할 수 있으며 멘델의 유전법칙에 따라 자손에게 전달되어 형질의 세대고정이 가능하다는 장점이 있다. 또한, Cas9 단백질과 sgRNA (single guide RNA)만을 필요로 하기 때문에 위의 두 방법에 비해 적은 비용으로 목표 형질의 도입이 가능하다는 장점이 있어 최근 동물 및 식물 등에서 널리 적용되어지고 있는 신육종 기술이다.In order to develop plants with excellent traits, traditional breeding methods, such as inducing natural mutations using EMS (ethyl methane sulfonate) or gamma ray treatment, or crossing superior parents, have been mainly used, but in this case, it is difficult to change only the desired target traits. In recent years, new breeding methods using TALENs, ZFNs, CRISPR/Cas9, etc. have been applied to substitute only target traits. However, in the case of TALENs or ZFNs, it takes a lot of time and money to design and manufacture artificial nucleases, and it is difficult to edit multiple genes. However, the CRISPR/Cas9 system has a very high target specificity and can recognize methylated DNA as a target, so it can be applied to a wide variety of genes, and it is passed on to offspring according to Mendel's genetic law, enabling generational fixation of traits. there is In addition, since it requires only Cas9 protein and sgRNA (single guide RNA), it has the advantage of being able to introduce target traits at a lower cost than the above two methods, and is a new breeding technology that has recently been widely applied in animals and plants.

한편, 한국등록특허 제2264215호에는 '유전자 교정을 이용한 아스코르브산 함량이 증가된 토마토 식물체의 제조방법 및 상기 제조방법에 의해 제조된 토마토 식물체'가 개시되어 있고, 한국공개특허 제2019-0043841호에는 '식물체에서 CRISPR/Cas9 시스템을 이용하여 LeMADS-RIN 유전자 편집에 의해 에틸렌 생산을 감소시키는 방법'이 개시되어 있으나, 본 발명의 유전자 교정을 이용한 병 저항성이 조절된 토마토 식물체의 제조방법 및 상기 제조방법에 의해 제조된 토마토 식물체에 대해서는 기재된 바가 없다.On the other hand, Korean Patent Registration No. 2264215 discloses 'a method for producing tomato plants with increased ascorbic acid content using gene editing and tomato plants produced by the method', and Korean Patent Publication No. 2019-0043841 discloses 'Method for reducing ethylene production by LeMADS-RIN gene editing using CRISPR/Cas9 system in plants' is disclosed, but method for producing tomato plants with controlled disease resistance using gene editing of the present invention and the above method There is nothing described about tomato plants prepared by.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 토마토 SRFR1 게노믹 DNA의 두 영역을 표적으로 하는 sgRNA와 CRISPR/Cas9을 이용하여 토마토 SRFR1 돌연변이체(slsrfr1)를 제조하였고, 상기 돌연변이체에서 살리실산 신호전달에 관여하는 병원체 관련(pathogen-related, PR) 유전자의 발현이 증가하는 것을 확인하였으며, 상기 돌연변이체가 비교정 토마토 식물체에 비해 Pto DC3000에 대한 저항성이 증진되었음을 확인하였다. 하지만 사물기생성(necrotrophic) 곰팡이인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대한 저항성은 비교정 토마토 식물체에 비해 감소되었음을 확인할 수 있었다. 이를 통해, SRFR1이 토마토 식물체에서 기생영양(biotrophic) 병원균과 사물기생성 병원균에 대한 저항성을 조절하는 데 관여함을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present inventors prepared a tomato SRFR1 mutant ( slsrfr1 ) using sgRNA and CRISPR / Cas9 targeting two regions of tomato SRFR1 genomic DNA, and the mutant It was confirmed that the expression of a pathogen-related (PR) gene involved in salicylic acid signaling was increased, and it was confirmed that the mutant had increased resistance to Pto DC3000 compared to unmodified tomato plants. However, the necrotrophic fungus Fusarium oxysporum f. sp. It was confirmed that resistance to Lycopersici ( Fusarium oxysporum f. sp. lycopersici ) was reduced compared to unmodified tomato plants. Through this, by confirming that SRFR1 is involved in regulating resistance to parasitic trophic (biotrophic) pathogens and parasitic pathogens in tomato plants, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터; 또는 SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein);를 유효성분으로 함유하는, 토마토 식물체의 병 저항성을 조절하기 위한 유전체 교정용 조성물을 제공한다.In order to solve the above problems, the present invention is tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) DNA encoding a guide RNA specific to the target sequence of the gene and an endonuclease recombinant vectors containing nucleic acid sequences encoding proteins; Or a complex of guide RNA and endonuclease protein specific for the target sequence of the SlSRFR1 gene (ribonucleoprotein); to provide a genome editing composition for regulating disease resistance of tomato plants, containing as an active ingredient.

또한, 본 발명은 (a) 토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질을 토마토 식물세포에 도입하여 유전체를 교정하는 단계; 및 (b) 상기 유전체가 교정된 토마토 식물세포로부터 토마토 식물체를 재분화하는 단계;를 포함하는, 병 저항성이 조절된 유전체 교정 토마토 식물체의 제조방법을 제공한다.In addition, the present invention (a) tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) Guide RNA and endonuclease protein specific to the target sequence of the gene are introduced into tomato plant cells to correct the genome ; and (b) regenerating tomato plants from the genome-corrected tomato plant cells.

또한, 본 발명은 상기 방법에 의해 제조된 병 저항성이 조절된 유전체 교정 토마토 식물체 및 이의 유전체가 교정된 종자를 제공한다.In addition, the present invention provides a genome-corrected tomato plant with controlled disease resistance prepared by the above method and a genome-corrected seed thereof.

본 발명에서 제시한 SlSRFR1 유전자 편집을 통한 돌연변이 유도는 병 저항성이 조절된 토마토 식물체를 개발하는데 유용하게 이용할 수 있다. 또한, 본 발명에 따른 방법은 자연적 변이와 구별할 수 없는 변이를 유도하므로, 안전성과 환경 유해성 여부를 평가하기 위해 막대한 비용과 시간이 소모되는 GMO(Genetically Modified Organism) 작물과 달리 비용과 시간을 절약할 수 있을 것으로 기대된다.Mutation induction through SlSRFR1 gene editing presented in the present invention can be usefully used to develop tomato plants with controlled disease resistance. In addition, since the method according to the present invention induces mutations that are indistinguishable from natural mutations, cost and time are saved, unlike GMO (Genetically Modified Organism) crops, which require enormous costs and time to evaluate safety and environmental hazards. Expect to be able to do it.

도 1a는 토마토 SRFR1의 게놈 구조 및 gRNA 표적 위치(Target 1, 2)를 보여주고, 도 1b는 gRNA의 표적 서열이고, 도 1c는 pSlSRFR-GE 컨스트럭트의 T-DNA 모식도이며, 도 1d는 SlSRFR1 sgRNA1-sgRNA2-유도 G1 돌연변이체의 CAPS 분석 결과로, 하얀색 화살표는 동형접합 돌연변이체를 나타낸다.
도 2는 토마토 G0 식물체에서 표적 부위를 분석한 결과이다. 수직 점선은 각 sgRNA에 대해 SpCas9에 의한 절단 부위를 나타낸다.
도 3은 토마토 G1 식물체에서 표적 부위의 유전체 교정 양상을 분석한 결과이다.
도 4는 토마토 SRFR1 돌연변이체(slsrfr1)의 생장모습이며(a), 상기 돌연변이체에서 식물방어기작에 관여하는 유전자의 발현 정도를 qRT-PCR을 통해서 확인한 결과(b)이다. *; P<0.01.
도 5는 G1 세대 slsrfr1 식물체의 기생영양(biotrophic) 병원균인 슈도모나스 시린개 pv. 토마토 DC3000 (Pseudomonas syringae pv. tomato DC3000)에 대한 반응을 보여주는 것으로, (a)는 접종 5일 후의 잎에서 나타난 병증을 보여주는 사진이고, (b)는 균수를 측정한 결과이다. *; P<0.01.
도 6은 G1 세대 slsrfr1 식물체의 사물기생 병원균인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대한 반응을 보여주는 것으로, (a)는 접종 3일 후의 잎 사진이고, (b)는 트립판 블루 염색 이미지이며, (c)는 병변 부위의 직경을 측정한 결과이다. *; P<0.01.
Figure 1a shows the genomic structure and gRNA target location (Target 1, 2) of tomato SRFR1 , Figure 1b is the target sequence of gRNA, Figure 1c is a T-DNA schematic diagram of the pSlSRFR-GE construct, Figure 1d is As a result of CAPS analysis of SlSRFR1 sgRNA1- and sgRNA2 -induced G1 mutants, white arrows indicate homozygous mutants.
Figure 2 is the result of analyzing the target site in the tomato G0 plant. Vertical dotted lines indicate the cleavage site by SpCas9 for each sgRNA.
3 is a result of analyzing the genome editing pattern of the target site in tomato G1 plants.
4 is a growth pattern of a tomato SRFR1 mutant ( slsrfr1 ) (a), and a result of confirming the expression level of genes involved in plant defense mechanisms in the mutant through qRT-PCR (b). *; P<0.01 .
Figure 5 is a parasitic trophic (biotrophic) pathogen of the G1 generation slsrfr1 plants Pseudomonas syringae pv. To show the response to tomato DC3000 ( Pseudomonas syringae pv. tomato DC3000), (a) is a photograph showing the disease on the leaves 5 days after inoculation, and (b) is the result of measuring the number of bacteria. *; P<0.01 .
6 is a parasitic pathogen of the G1 generation slsrfr1 plant, Fusarium oxysporum f. sp. It shows the reaction to Lycopersici ( Fusarium oxysporum f. sp. lycopersici ), (a) is a leaf picture 3 days after inoculation, (b) is a trypan blue staining image, (c) is the diameter of the lesion area is the result of measuring *; P<0.01 .

본 발명의 목적을 달성하기 위하여, 본 발명은 토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터; 또는 SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein);를 유효성분으로 함유하는, 토마토 식물체의 병 저항성을 조절하기 위한 유전체 교정용 조성물을 제공한다.In order to achieve the object of the present invention, the present invention is tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) DNA encoding a guide RNA specific to the target sequence of the gene and an endonuclease ( endonuclease) recombinant vectors containing nucleic acid sequences encoding proteins; Or a complex of guide RNA and endonuclease protein specific for the target sequence of the SlSRFR1 gene (ribonucleoprotein); to provide a genome editing composition for regulating disease resistance of tomato plants, containing as an active ingredient.

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 식물병은 기생영양(biotrophic) 병원균에 의한 식물병 또는 사물기생성(necrotrophic) 병원균에 의한 식물병일 수 있고, 상기 기생영양(biotrophic) 병원균은 바람직하게는 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)일 수 있으며, 상기 사물기생성(necrotrophic) 병원균은 바람직하게는 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)일 수 있으나, 이에 제한되지 않는다.In the genome editing composition according to the present invention, the plant disease may be a plant disease caused by a biotrophic pathogen or a plant disease caused by a necrotrophic pathogen, and the biotrophic pathogen is preferably The Pseudomonas cold dog pv. Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000), and the necrotrophic pathogen is preferably Fusarium oxysporum f. sp. It may be Lycopersici ( Fusarium oxysporum f. sp. lycopersici ), but is not limited thereto.

본 명세서에서 용어 "유전체/유전자 교정(genome/gene editing)"은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cas9 (CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, '유전자 교정'은 '유전자 편집'과 혼용되어 사용될 수 있다.As used herein, the term "genome/gene editing" refers to a technology capable of introducing target-directed mutations into genomic sequences of animal and plant cells, including human cells, and includes one or more nucleic acid molecules by cutting DNA. Knock-out or knock-in of a specific gene by deletion, insertion, substitution, etc., or non-coding that does not produce a protein Coding refers to a technology that can introduce mutations into DNA sequences. For the purposes of the present invention, the genome editing may be to introduce mutations into plants using an endonuclease, such as Cas9 (CRISPR associated protein 9) protein and guide RNA. In addition, 'gene editing' may be used interchangeably with 'gene editing'.

또한, 용어 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에 있는 일부 DNA를 의미하며, 그 유전자의 종류에 제한되지 않으며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있다.In addition, the term "target gene" refers to some DNA in the genome of a plant to be corrected through the present invention, and is not limited to the type of gene, and may include both a coding region and a non-coding region. A person skilled in the art can select the target gene according to the desired mutation for the genome editing plant to be produced, depending on the purpose.

본 발명의 일 구현 예에 따른 조성물에 있어서, 상기 토마토 유래 SlSRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1) 유전자는 서열번호 3의 아미노산 서열로 이루어진 SlSRFR1 단백질을 암호화하는 것으로, 바람직하게는 SlSRFR1의 게놈 DNA는 서열번호 1로 표시되는 염기서열일 수 있고, SlSRFR1의 cDNA는 서열번호 2로 표시되는 염기서열일 수 있다.In the composition according to one embodiment of the present invention, the tomato-derived SlSRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1 ) gene encodes the SlSRFR1 protein consisting of the amino acid sequence of SEQ ID NO: 3, preferably the genomic DNA of SlSRFR1 is It may be the nucleotide sequence represented by SEQ ID NO: 1, and the cDNA of SlSRFR1 may be the nucleotide sequence represented by SEQ ID NO: 2.

또한, 용어 "가이드 RNA(guide RNA)"는 짧은 단일 가닥의 RNA로, 표적 유전자를 암호화하는 염기서열 중 표적 DNA에 특이적인 RNA를 의미하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA (dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 엔도뉴클레아제(특히, RNA-가이드 뉴클레아제)와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태를 말하나, 엔도뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라 제조하여 사용할 수 있다.In addition, the term "guide RNA" refers to a short single-stranded RNA, which is specific for a target DNA among base sequences encoding a target gene, and binds to the target DNA base sequence in whole or in part complementarily. It means ribonucleic acid that serves to guide the endonuclease protein to the target DNA base sequence. The guide RNA is a dual RNA comprising two RNAs, that is, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as components; or a single chain comprising a first region comprising a sequence complementary in whole or in part to a base sequence in a target gene and a second region comprising a sequence interacting with an endonuclease (particularly, an RNA-guided nuclease). Guide RNA (single guide RNA, sgRNA) form, but if the endonuclease can be active in the target sequence, it can be included in the scope of the present invention without limitation, and the type of endonuclease used together or endo It can be prepared and used according to known techniques in the art in consideration of the microorganism derived from the nuclease.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.In addition, the guide RNA may be a guide RNA transcribed from a plasmid template, transcribed in vitro (eg, oligonucleotide duplex), or synthesized guide RNA, but is not limited thereto.

본 발명의 일 구현 예에 따른 조성물에 있어서, 상기 SlSRFR1 유전자의 표적 염기서열은 서열번호 4 또는 서열번호 5의 염기서열로 이루어진 것일 수 있으며, 보다 바람직하게는 서열번호 4의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the composition according to an embodiment of the present invention, the target nucleotide sequence of the SlSRFR1 gene may be the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5, more preferably the nucleotide sequence of SEQ ID NO: 4 However, it is not limited thereto.

또한, 본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 RNA-가이드 뉴클레아제인 Cas9 또는 Cpf1 등일 수 있으며, 더욱 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the genome editing composition according to the present invention, the endonuclease protein is Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) or a functional analogue thereof It may be one or more selected from the group consisting of, preferably an RNA-guided nuclease such as Cas9 or Cpf1, more preferably a Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(S. thermophilus) 또는 스트렙토코커스 아우레우스(S. aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다. 상기 Cas9 유전자 정보는 공지된 서열을 그대로 사용할 수도 있고, 형질도입되는 대상(유기체)의 코돈에 최적화된 서열을 사용할 수 있으나, 이에 제한되지 않는다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes , a Cas9 protein derived from Campylobacter jejuni , a Cas9 protein derived from Streptococcus thermophilus ( S. thermophilus ) or Streptococcus aureus ( S. aureus ) derived Cas9 protein, Neisseria meningitidis ( Neisseria meningitidis ) derived Cas9 protein, Pasteurella multocida ( Pasteurella multocida ) derived Cas9 protein, Francisella novicida ( Francisella novicida ) derived Cas9 protein, etc. It may be one or more selected from the group consisting of, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from known databases such as GenBank of National Center for Biotechnology Information (NCBI). For the Cas9 gene information, a known sequence may be used as it is or a sequence optimized for the codon of a target (organism) to be transduced may be used, but is not limited thereto.

Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM (Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.The Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double stranded DNA breaks. In order for the Cas9 protein to accurately bind to the target sequence and cut the DNA strand, a short sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must be present next to the target sequence, and the Cas9 protein has a PAM sequence (NGG) It is cut by estimating between the 3rd and 4th base pairs from .

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질은 리보핵산-단백질(ribonucleoprotein) 복합체를 형성하여 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동할 수 있다.In the composition for genome editing according to the present invention, the guide RNA and the endonuclease protein form a ribonucleoprotein complex to operate as RNA-Guided Engineered Nuclease (RGEN).

본 발명에 따른 유전체 교정용 조성물에 있어서, 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ(non-homologous end joining) 기작에 의한 유전자 교정 방법이다.In the composition for genome editing according to the present invention, the CRISPR/Cas9 system used introduces a double helix break at a specific position of a specific gene to be corrected to insert-deletion (insertion-deletion) caused by incomplete repair induced in the DNA repair process. , InDel) It is a gene editing method by NHEJ (non-homologous end joining) mechanism that induces mutations.

본 발명은 또한,The present invention also

(a) 토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 토마토 식물세포에 도입하여 유전체를 교정하는 단계; 및(a) Tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) Guide RNA specific to the target sequence of the gene and endonuclease protein are introduced into tomato plant cells to correct the genome doing; and

(b) 상기 유전체가 교정된 토마토 식물세포로부터 토마토 식물체를 재분화하는 단계;를 포함하는, 병 저항성이 조절된 유전체 교정 토마토 식물체의 제조방법을 제공한다.(b) regenerating tomato plants from the genome-corrected tomato plant cells; providing a method for producing a genome-corrected tomato plant with controlled disease resistance.

본 발명에 따른 제조방법에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 토마토 식물세포에 도입하는 것은, SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터; 또는 SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein);를 이용하는 것일 수 있으나, 이에 제한되지 않는다.In the production method according to the present invention, introducing the guide RNA and endonuclease protein of step (a) into tomato plant cells is DNA encoding the guide RNA specific to the target sequence of the SlSRFR1 gene and endonuclease protein. a recombinant vector comprising a nucleic acid sequence encoding a nuclease protein; Or a complex of a guide RNA specific to the target sequence of the SlSRFR1 gene and an endonuclease protein (ribonucleoprotein); may be used, but is not limited thereto.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 SlSRFR1 유전자의 표적 염기서열은 서열번호 4 또는 서열번호 5의 염기서열로 이루어진 것일 수 있으며, 보다 바람직하게는 서열번호 4의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the production method according to an embodiment of the present invention, the target nucleotide sequence of the SlSRFR1 gene may be composed of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5, more preferably the nucleotide sequence of SEQ ID NO: 4 It may, but is not limited thereto.

상기 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다.Introduction of a recombinant vector containing DNA encoding a guide RNA specific to the target sequence and a nucleic acid sequence encoding an endonuclease protein into plant cells refers to a transformation method. Transformation of plant species is now common for plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used to introduce the recombinant vectors according to the invention into suitable progenitor cells.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 재조합 벡터가 식물 세포에 형질전환되면, DNA 결합 및 절단 활성이 있는 엔도뉴클레아제 단백질과 상기 엔도뉴클레아제 단백질에 결합되며 표적 서열로 엔도뉴클레아제 단백질을 이끄는 sgRNA가 함께 발현되게 된다.In the production method according to one embodiment of the present invention, when the recombinant vector is transformed into a plant cell, it binds to an endonuclease protein having DNA binding and cutting activity and the endonuclease protein, and converts the endoplasmic recombinant vector into a target sequence. The sgRNA leading to the nuclease protein is also expressed.

또한, 본 발명에 따른 제조방법에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질의 복합체를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 박테리아에 의한 감염 등으로부터 적당하게 선택될 수 있다.In addition, in the production method according to the present invention, the method of transducing the complex of the guide RNA and the endonuclease protein into plant cells is the calcium / polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; microinjection method of (Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), particle bombardment method (DNA or RNA-coated) of various plant elements (Klein et al., 1987, Nature 327: 70), infection by bacteria in Agrobacterium tumefaciens mediated gene transfer (incompleteness), and the like.

본 명세서에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a protein encoded by a heterologous peptide or a heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the cell's native form, either in sense or antisense form. A recombinant cell may also express a gene found in the cell in its natural state, but the gene has been reintroduced into the cell by artificial means as a modified one.

또한, 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.Also, the term "vector" is used to refer to DNA fragment(s) or nucleic acid molecules that are delivered into cells. Vectors replicate DNA and can reproduce independently in host cells. The term “delivery vehicle” is often used interchangeably with “vector”. The term "expression vector" refers to a recombinant DNA molecule comprising a coding sequence of interest and appropriate nucleic acid sequences necessary to express the operably linked coding sequence in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

본 발명에 따른 제조방법에 있어서, 상기 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질이 도입되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. In the manufacturing method according to the present invention, the "plant cell" into which the target sequence-specific guide RNA and endonuclease protein are introduced can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissue, including, but not limited to, roots, stems, leaves, pollen, microspores, ovules, seeds, and various types of cells used in culture, i.e., single cells, Includes protoplast, shoot and callus tissues. Plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

본 발명의 제조방법에 있어서, 유전체가 교정된 식물세포로부터 유전체가 교정된 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 유전체가 교정된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In the production method of the present invention, any method known in the art may be used as a method for regenerating genome-corrected plants from genome-corrected plant cells. The genome-corrected plant cell must regenerate into a whole plant. Techniques for regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vols. 1-5, 1983-1989 Momillan, N.Y.).

본 발명은 또한, 상기 방법에 의해 제조된 병 저항성이 조절된 유전체 교정 토마토 식물체 및 이의 유전체가 교정된 종자를 제공한다.The present invention also provides a genome-corrected tomato plant with controlled disease resistance prepared by the above method and a genome-corrected seed thereof.

본 발명에 따른 병 저항성이 조절된 유전체 교정 토마토 식물체는 SlSRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1) 유전자를 CRISPR/Cas9 시스템을 이용하여 교정한 것으로, 토마토 유래 SlSRFR1 유전자가 녹-아웃되어, 유전체를 교정하지 않은 토마토 식물체에 비해 병 저항성이 조절된 형질을 가지는 유전체 교정 토마토 식물체이다. 상기 유전체 교정 토마토 식물체는 야생형에 비해 기생영양(biotrophic) 병원균에 의한 식물병에 대한 저항성이 증가되고, 사물기생성(necrotrophic) 병원균에 의한 식물병에 대한 저항성이 감소된 것을 특징으로 한다.The genome-corrected tomato plant with disease resistance control according to the present invention is one in which the SlSRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1 ) gene is corrected using the CRISPR/Cas9 system, and the tomato-derived SlSRFR1 gene is knocked out and the genome is corrected It is a genome-edited tomato plant with disease resistance regulated compared to untreated tomato plants. The genome corrected tomato plant is characterized by increased resistance to plant diseases caused by biotrophic pathogens and reduced resistance to plant diseases caused by necrotrophic pathogens compared to the wild type.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. 토마토 형질 전환을 위한 벡터 구축1. Vector construction for tomato transformation

CRIPSR-P v2.0 프로그램 (http://crispr.hzau.edu.cn/CRISPR2/)을 이용하여 SlSRFR1의 N-말단 부위에서 SpCas9-gRNA 복합체의 타켓부위를 조사하였다. 그리고 유전체 교정을 일으킬 수 있는 수치인 on-score, gRNA의 2차 구조, 타켓 부위의 GC 뉴클레오티드 함량 및 off-target 서열을 고려하여 두 개의 gRNA를 선정하였다. 두 개의 gRNA는 애기장대 U6 프로모터 (originated from Addgene #46968), scafford RNA와 poly T를 프라이머 이합체화반응(dimerization) 방법을 통해 서로 연결하였고, 상기 gRNA 전체는 Golden Gate 클로닝 시스템을 통해서 레벨1 플라스미드인 pICH47751 및 pICH47761에 각각 클로닝 하였다. 만들어진 각 gRNA 모듈은 식물 선별마커 (Addgene #51144), SpCas9 (Addgene #49771), 링커 (Addgene #48019)와 함께 Golden Gate 클로닝 시스템을 통해서 pAGM4723 내부로 클로닝하여 컨스트럭트를 제조하였으며, 상기 컨스트럭트를 pSlSRFR1-GE로 명명하였다.The target site of the SpCas9-gRNA complex was investigated at the N-terminal region of SlSRFR1 using the CRIPSR -P v2.0 program (http://crispr.hzau.edu.cn/CRISPR2/). In addition, two gRNAs were selected considering the on-score, which is a numerical value that can cause genome editing, the secondary structure of gRNA, the GC nucleotide content of the target site, and the off-target sequence. The two gRNAs were linked with the Arabidopsis U6 promoter (originated from Addgene #46968), scafford RNA and poly T through primer dimerization, and the entire gRNA was Level 1 plasmid through the Golden Gate cloning system. cloned into pICH47751 and pICH47761, respectively. Each gRNA module created was cloned into pAGM4723 using the Golden Gate cloning system along with a plant selectable marker (Addgene #51144), SpCas9 (Addgene #49771), and a linker (Addgene #48019) to prepare a construct. The site was named pSlSRFR1-GE.

2. 아그로박테리움을 이용한 토마토 형질전환 및 CRISPR/Cas9으로 유전체 교정이 일어난 식물체 선별2. Plant transformation using Agrobacterium and genome editing using CRISPR/Cas9

토마토 형질전환 및 식물체 선별은 이전 연구를 참고하여 수행하였다 (Plant Cell Rep. 2021 Jun;40(6):999-1011). 토마토 품종 M82 (Solanum lycopersicum cv. M82)를 25℃, 16시간 명/8시간 암조건에서 1/2 MSO 배지(2.2g MS salts + B5, 20g sucrose, 0.5g MES (pH=5.7), 7.5g agar for 1L)에 7일동안 키운 후 칼을 이용하여 자엽(cotyledon) 외식편들을 만들어 PREMC 배지(2.2g MS salts + B5, 30g maltose, 0.1g Ascorbic acid, 1.952g MES, 0.2mg IAA (pH=5.5), 7.5g agar for 1L; 상기 혼합물을 멸균한 후, 1.0mg Zeatin trans-isomer, 1㎖ Putrescine(1mM), acetosyringone(AS) 100μM 첨가) 위에 올려 25℃ 암조건에서 하루동안 보관한다. pSlSRFR1-GE 플라스미드는 전기천공법을 통해 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens) GV3101 (MP90)으로 형질전환시켰다. 28℃에서 18시간동안 배양한 pSlSRF1-GE를 보유한 아그로박테리움 3㎖을 30㎖의 LB 배지(50mg·L-1 kanamycin 및 10mg·L-1 gentamicin 포함)로 옮겨 OD600 값이 0.8~1 정도될 때까지 배양하였다. 아그로박테리움을 3,000rpm으로 15분동안 원심분리하고 펠렛은 200μM 아세토시린곤(acetosyringone, #D134406, Sigma, USA)을 함유한 30㎖의 ABM-MS [1.106g K2HPO4, 0.565g KH2PO4, 0.748g NH4NO3, 0.0745g KCl, 0.154g MgSO4, 0.0075g CaCl2, 0.0015g FeSO4, 20g glucose, 1.952g MES, 1.1g MS salts + B5, 2.5g sucrose (pH 5.5) for 1L]에 현탁시켰다. 현탁액을 한시간동안 28℃에서 배양하고 토마토 자엽(cotyledon) 외식편을 아그로박테리움과 20분동안 공동배양하여 토마토를 형질전환시켰다. 토마토 자엽 외식편을 200 μM 아세토시린곤을 함유하고 있는 ABM-MS에 옮겨 25℃ 암조건에서 2일동안 배양하였다. 외식편에 붙은 아그로박테리움은 500mg·L-1 티멘틴(timentin) 용액에 2분간 저어서 세척하였다. 외식편에 남아있는 물은 와트만(Whatman) 페이퍼를 이용하여 완전히 없애주고, 선별배지[SEL4-70; 4.4g MS salts + B5, 30g maltose, 0.05mg IAA, 0.976g MES, 0.5mg zeatin ribose trans-isomer, 70mg kanamycin, 300mg timentin, 1mM putrescine (pH 5.7), 8g agar for 1L]에 올려놓고 캘러스를 유도하며 완전한 줄기가 나오기까지 2주마다 캘러스를 새 선별배지(SEL4-70)에 옮겨주었다. 줄기가 나온 외식편은 뿌리유도배지[RIM; 2.2g MS salts + B5, 20g sucrose, 0.1mg NAA, 0.3mg IBA, 300mg Timentin (pH 5.7), 8g agar for 1L]에 옮기고 뿌리가 유도될 때까지 배양하였다. 건강한 식물체는 25℃, 16시간 명/8시간 암조건에서 키운다.Tomato transformation and plant selection were performed with reference to previous studies (Plant Cell Rep. 2021 Jun; 40(6):999-1011). Tomato cultivar M82 ( Solanum lycopersicum cv. M82) was mixed with 1/2 MSO medium (2.2 g MS salts + B5, 20 g sucrose, 0.5 g MES (pH=5.7), 7.5 g) at 25°C for 16 hours light/8 hours dark. agar for 1L) for 7 days, then use a knife to make cotyledon explants and prepare PREMC medium (2.2g MS salts + B5, 30g maltose, 0.1g Ascorbic acid, 1.952g MES, 0.2mg IAA (pH = 5.5), 7.5g agar for 1L; After sterilizing the above mixture, add 1.0mg Zeatin trans-isomer, 1㎖ Putrescine (1mM), and acetosyringone (AS) 100μM) and store for one day at 25℃ under dark conditions. The pSlSRFR1-GE plasmid was transformed into Agrobacterium tumefaciens GV3101 (MP90) by electroporation. 3 ml of Agrobacterium having pSlSRF1-GE cultured at 28 ° C for 18 hours was transferred to 30 ml of LB medium (including 50 mg L -1 kanamycin and 10 mg L -1 gentamicin), and the OD 600 value was about 0.8 to 1 cultured until The Agrobacterium was centrifuged at 3,000 rpm for 15 minutes and the pellet was washed in 30 ml of ABM-MS [1.106 g K 2 HPO 4 , 0.565 g KH 2 ] containing 200 μM acetosyringone (#D134406, Sigma, USA). PO 4 , 0.748 g NH 4 NO 3 , 0.0745 g KCl, 0.154 g MgSO 4 , 0.0075 g CaCl 2 , 0.0015 g FeSO 4 , 20 g glucose, 1.952 g MES, 1.1 g MS salts + B5, 2.5 g sucrose (pH 5.5) for 1L]. Tomatoes were transformed by incubating the suspension for one hour at 28° C. and co-incubating tomato cotyledon explants with Agrobacterium for 20 minutes. Tomato cotyledon explants were transferred to ABM-MS containing 200 μM acetosyringone and cultured for 2 days at 25° C. in the dark. Agrobacterium attached to the explants was washed by stirring in 500 mg·L -1 titentin solution for 2 minutes. The water remaining on the explants was completely removed using Whatman paper, and the selective medium [SEL4-70; 4.4g MS salts + B5, 30g maltose, 0.05mg IAA, 0.976g MES, 0.5mg zeatin ribose trans-isomer, 70mg kanamycin, 300mg timentin, 1mM putrescine (pH 5.7), 8g agar for 1L] to induce callus Callus was transferred to a new selection medium (SEL4-70) every 2 weeks until complete stems appeared. The explants from which the stems emerged are rooted induction medium [RIM; 2.2g MS salts + B5, 20g sucrose, 0.1mg NAA, 0.3mg IBA, 300mg Timentin (pH 5.7), 8g agar for 1L] and cultured until roots were induced. Healthy plants are grown at 25℃, 16 hours light/8 hours dark conditions.

3. 토마토에서 게노믹 DNA 분리 3. Isolation of Genomic DNA from Tomatoes

게노믹(genomic) DNA 분리는 Pater 등(Plant Biotechnol. J. (2009) 7:821-835)을 참고하여 수행하였다. 콜크보러(cork borer) 5호를 이용하여 G0와 G1세대 토마토 식물체에서 두 장의 잎 조각을 튜브에 넣고 액체질소에 얼려 구슬을 이용하여 mixer mill (#MM301, Retsch, Germany)에서 1분동안 분쇄하였다. 상기 분말에 300㎕의 2X CTAB extraction buffer (0.1M Tris, 2% CTAB, 1.4M NaCl, and 20mM EDTA)를 넣고 65℃에서 20분간 반응시켰다. 튜브에 300㎕ 클로로포름을 추가로 넣어주고 강하게 섞어준 다음 14,000rpm으로 5분간 원심분리하였다. 상등액 200㎕를 취하여 새 튜브로 옮기고 200㎕의 이소프로판올을 상등액에 넣어 섞고 상온에서 2분간 반응시켰다. 그 후, 14,000rpm으로 5분간 원심분리한 후 1㎖의 70% 에탄올을 이용하여 펠렛을 씻어주었다. 14,000rpm으로 1분간 원심분리하여 DNA 펠렛을 회수하고, 상기 펠렛을 상온에서 10분간 건조시키고 50㎕의 삼차증류수를 넣어 녹였다. 이 중 2㎕의 게노믹 DNA를 이용하여 25㎕ 부피의 PCR 반응에 사용하였다.Genomic DNA isolation was performed with reference to Pater et al. (Plant Biotechnol. J. (2009) 7:821-835). Using a cork borer No. 5, two leaf pieces from G0 and G1 generation tomato plants were put into a tube, frozen in liquid nitrogen, and ground using beads in a mixer mill (#MM301, Retsch, Germany) for 1 minute. . 300 μl of 2X CTAB extraction buffer (0.1M Tris, 2% CTAB, 1.4M NaCl, and 20mM EDTA) was added to the powder and reacted at 65° C. for 20 minutes. 300 μl of chloroform was additionally added to the tube, mixed vigorously, and centrifuged at 14,000 rpm for 5 minutes. 200 μl of the supernatant was transferred to a new tube, and 200 μl of isopropanol was added to the supernatant, mixed, and allowed to react at room temperature for 2 minutes. After centrifugation at 14,000 rpm for 5 minutes, the pellet was washed with 1 ml of 70% ethanol. DNA pellets were collected by centrifugation at 14,000 rpm for 1 minute, dried at room temperature for 10 minutes, and dissolved in 50 μl of distilled water. Of these, 2 μl of genomic DNA was used in a 25 μl PCR reaction.

4. 시퀀싱을 통한 유전체교정 분석4. Analysis of genome editing through sequencing

G0이나 G1 세대 토마토에서 SlSRFR1 타켓부위를 PCR을 통해서 증폭시키고 시퀀싱을 수행하였다. 상기 결과를 ICE (Inference of CRISPR Edits, https://ice.synthego.com/#/) 분석을 통해서 G0이나 G1 세대 토마토에서 Indel 돌연변이가 얼마나 일어났는지 확인하였다. G1 세대 토마토에서 좀 더 명확한 결과를 확인하기 위해서는 Miseq 시퀀싱을 수행하여 Cas-Analyzer 프로그램 (http://www.rgenome.net/)으로 분석하였다. SlSRFR1-F1/SlSRFR1-R2 프라이머 세트를 이용하여 945bp 크기의 PCR 단편을 증폭하고 유전자 특이적 염기서열과 어댑터(adaptor) 프라이머 일부 서열을 공유하는 프라이머(MiSeq-1-F2/MiSeq-1-R2 and MiSeq-2-F2/MiSeq-2-R2)를 이용하여 2차 PCR 을 통해 155bp 와 150bp 크기의 DNA 단편을 증폭하였다. MiSeq sequencing service (MiniSeqTM System, Illumina, USA)에서 제공하는 dual Index adapter (D501~D508과 D701~D712의 조합) 프라이머를 이용하여 3차 PCR 단편을 증폭하여 Miseq 시퀀싱을 통해 Indel 돌연변이 정도를 분석하였다. The SlSRFR1 target region was amplified by PCR in G0 or G1 generation tomatoes and sequencing was performed. The above results were confirmed by ICE (Inference of CRISPR Edits, https://ice.synthego.com/#/) analysis to see how many Indel mutations occurred in G0 or G1 generation tomatoes. To confirm more clear results in the G1 generation tomatoes, Miseq sequencing was performed and analyzed with the Cas-Analyzer program (http://www.rgenome.net/). A 945 bp PCR fragment was amplified using the SlSRFR1-F1/SlSRFR1-R2 primer set, and primers (MiSeq-1-F2/MiSeq-1-R2 and MiSeq-1-R2 and MiSeq-2-F2/MiSeq-2-R2) were used to amplify DNA fragments of 155bp and 150bp in size through secondary PCR. The tertiary PCR fragment was amplified using dual index adapter (a combination of D501-D508 and D701-D712) primers provided by the MiSeq sequencing service (MiniSeqTM System, Illumina, USA), and the degree of indel mutation was analyzed by Miseq sequencing.

5. Cleaved Amplified Polymorphic Sequence (CAPS) 연구5. Cleaved Amplified Polymorphic Sequence (CAPS) Research

G1 세대 유전자변형 토마토에서 동형(homozygous) 식물체를 찾기 위해서 유전자의 다형성(polymorphism)을 이용한 CAPS 분석을 수행하였다. SlSRFR1-sgRNA1과 SlSRFR1-sgRNA2에서 일어난 돌연변이 양상을 구별하기 위해서 SlSRFR1-F1/SlSRFR1-Bcc-R2와 SlSRFR1-F1/SlSRFR1-R2를 이용하여 DNA 단편을 증폭하였다. 이 DNA에 BccI과 BcgI을 각각 처리하고 37℃에서 3-4시간 반응시켰다. 이후 상기 혼합물을 아가로스 겔에 로딩하여 전기영동을 수행하고 G1 세대의 유전형(genotype)을 선별하였다.In order to find homozygous plants in G1 generation transgenic tomatoes, CAPS analysis using polymorphism of genes was performed. In order to discriminate between the mutation patterns in SlSRFR1-sgRNA1 and SlSRFR1-sgRNA2, DNA fragments were amplified using SlSRFR1-F1/SlSRFR1-Bcc-R2 and SlSRFR1-F1/SlSRFR1-R2. The DNA was treated with Bcc I and Bcg I, respectively, and reacted at 37°C for 3-4 hours. Thereafter, the mixture was loaded on an agarose gel, electrophoresis was performed, and the genotype of the G1 generation was selected.

6. 박테리아와 곰팡이 병원균에 의한 발병 분석6. Analysis of outbreaks caused by bacterial and fungal pathogens

슈도모나스 시린개 pv. 토마토 DC3000 (Pseudomonas syringae pv. tomato DC3000, 이하 Pto DC3000)에 의한 발병 분석은 이전의 연구를 따라 수행하였다(Scalschi, L. et al., PLoS One 2014, 9:e106429). 슈도모나스 배지에서 자란 pVSP61 공벡터(empty vector)가 들어있는 Pto DC3000을 2x108 CFU/㎖로 희석하고 6주된 토마토 식물의 세 번째 또는 네 번째 잎에 상기 희석액을 30초동안 처리한 후 높은 습도를 유지하기 위해서 플라스틱백으로 감싸서 5일동안 유지하였다. 슈도모나스균이 처리된 식물에서 콜크보더 5호를 이용하여 두 장의 잎 조각을 10 mM 염화마그네슘 용액에 넣어 분쇄한 후 단계희석하여 슈도모나스 배지에 도말한 뒤 30℃에서 배양시키며 자라난 박테리아 수를 관찰하였다.Pseudomonas cold dog pv. Pathogenesis analysis by tomato DC3000 ( Pseudomonas syringae pv. tomato DC3000, hereinafter Pto DC3000) was performed according to a previous study (Scalschi, L. et al ., PLoS One 2014, 9:e106429). Pto DC3000 containing the pVSP61 empty vector grown in Pseudomonas medium was diluted to 2x10 8 CFU/ml, and the third or fourth leaf of a 6-week-old tomato plant was treated with the diluted solution for 30 seconds and maintained at high humidity. To do this, it was wrapped in a plastic bag and maintained for 5 days. In Pseudomonas-treated plants, two leaf pieces were put into 10 mM magnesium chloride solution using cork border No. 5 and pulverized, diluted in stages, spread on Pseudomonas medium, and then cultured at 30 ° C. The number of bacteria grown was observed. .

푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici, 이하 FOL)에 의한 발병 분석은 이전의 연구(Kostov, K. et al., Biotechnol. Biotechnol. Equip. 2009, 23:1121-1125.)를 따라 수행하였다. 30℃ 암조건의 potato dextrose (#254920, BD Difco, USA)에서 FOL을 배양한 후, 25℃ 16시간 명/8시간 암조건에서 5일동안 키워 실험에 사용하였다. 콜크보더 1호를 사용하여 배지에서 자란 곰팡이를 플러그를 만들어 6주된 토마토 잎 위에 얹고, 25℃, 16시간 명/8시간 암조건에서 3-8일동안 두었다.Fusarium oxysporum f. sp. Pathogenesis analysis by Fusarium oxysporum f. sp. lycopersici (hereinafter referred to as FOL) was performed according to a previous study (Kostov, K. et al ., Biotechnol. Biotechnol. Equip. 2009, 23: 1121-1125.) did After culturing FOL in potato dextrose (#254920, BD Difco, USA) in the dark at 30 ° C, it was grown for 5 days at 25 ° C for 16 hours light / 8 hours in the dark and used for the experiment. Using Corkborder No. 1, a fungus grown in the medium was made into a plug and placed on 6-week-old tomato leaves, and left at 25 ° C. for 3-8 days under 16-hour light / 8-hour dark conditions.

7. Trypan Blue 염색7. Trypan Blue Staining

곰팡이가 감염된 토마토 잎 조각을 트립판 블루(trypan blue) 용액 (1:1:1=85%(w/v) lactic acid:phenol (pH 8.0):glycerol(≥ 99%), 10mg/㎖ trypan blue)에 1시간동안 담가두었다. 염색된 잎을 99% 에탄올에 하루 담궈 색소를 제거하였다. 형광현미경을 이용하여 곰팡이 균사의 발달정도를 시각화하였다.Tomato leaf slices infected with fungi were treated with trypan blue solution (1:1:1=85% (w/v) lactic acid:phenol (pH 8.0):glycerol (≥ 99%), 10mg/ml trypan blue ) for 1 hour. The dyed leaves were soaked in 99% ethanol for one day to remove the pigment. The degree of development of fungal hyphae was visualized using a fluorescence microscope.

8. RNA 분리와 cDNA 합성8. RNA Isolation and cDNA Synthesis

G1 세대 slsrfr1 돌연변이체에서 콜크보더 5호를 이용하여 잎 조각 3장을 뚫어 2㎖의 튜브에 넣고 액체질소에 얼린다음 mixer mill을 이용하여 분쇄하였다. RiboEx (#301-001, GeneAll, Korea) 프로토콜을 따라 50㎕ 총 RNA를 분리하고 TURBO DNA-free kit (#AM1907, Invitrogen, USA)를 사용하여 총 RNA로부터 섞여있는 genomic DNA를 제거하였다. SuperiorScrippt Ⅲ cDNA synthesis kit (#EZ405S, Enzynomics, SouthKorea)를 이용하여 cDNA를 합성한 다음 그 중에서 1㎕를 qRT-PCR 반응에 사용하였다.In the G1 generation slsrfr1 mutant, three leaf pieces were pierced using a cork border No. 5, placed in a 2 ml tube, frozen in liquid nitrogen, and ground using a mixer mill. 50 μl total RNA was isolated according to the RiboEx (#301-001, GeneAll, Korea) protocol, and mixed genomic DNA was removed from the total RNA using the TURBO DNA-free kit (#AM1907, Invitrogen, USA). cDNA was synthesized using the SuperiorScrippt Ⅲ cDNA synthesis kit (#EZ405S, Enzynomics, South Korea), and 1 μl of it was used for the qRT-PCR reaction.

9. qRT-PCR을 통하여 유전자 발현 분석9. Analysis of gene expression through qRT-PCR

확인하고자 하는 유전자의 프라이머와 QuantiNova SYBR® Green PCR Kit (#208054, Qiagen, Germantown, USA)를 이용하여 CFX384 system (BioRad, Hercules, USA) 기계에서 95℃ 2분, 40 cycle (95℃ 5초, 60℃ 15초) 조건으로 DNA를 증폭하였다. SlACTSlGAPH를 이용하여 상대적인 유전자 발현정도를 분석하였다.95 2 minutes, 40 cycles (95℃ 5 seconds, 60° C. for 15 seconds) to amplify DNA. The relative gene expression levels were analyzed using SlACT and SlGAPH .

Figure pat00001
Figure pat00001

10. 단백질 면역 블랏 분석10. Protein immunoblot analysis

콜크보더 5호를 이용하여 토마토 잎 조각 2개를 튜브에 넣고 50㎕의 8M 우레아(urea)를 튜브에 넣어 막자를 이용하여 분쇄하였다. 12,000rpm으로 10분간 두 번 원심분리하여 상층액을 12%의 폴리아크릴아미드 겔에 로딩하였다. 단백질 면역 블랏 분석은 α-PR1 antibody (1:10,000 dilution, #AS10 687, Agrisera, SWEDEN) 또는 α-Actin antibody (1:10,000 dilution, #AS13 2640, Agrisera)를 이용하여 수행하였으며, Clarity Western ECL Substrate (#1705061, Bio-Rad, USA)와 SuperSignal™ West Femto Maximum Sensitivity Substrate (#34094, Thermo Scientific, USA)을 이용하여 시각화하였다.Two tomato leaf pieces were put into a tube using a cork border No. 5, and 50 μl of 8M urea was put into the tube and crushed using a pestle. After centrifugation twice for 10 minutes at 12,000 rpm, the supernatant was loaded onto a 12% polyacrylamide gel. Protein immunoblot analysis was performed using α-PR1 antibody (1:10,000 dilution, #AS10 687, Agrisera, SWEDEN) or α-Actin antibody (1:10,000 dilution, #AS13 2640, Agrisera), and Clarity Western ECL Substrate (#1705061, Bio-Rad, USA) and SuperSignal™ West Femto Maximum Sensitivity Substrate (#34094, Thermo Scientific, USA).

실시예 1. 표적 선발 및 Example 1. Target selection and SlSRFR1SlSRFR1 교정을 위한 벡터 구축 Vector construction for calibration

SRFR1는 애기장대에서 단일 카피 유전자로, 애기장대 SRFR1는 주로 단백질-단백질 상호작용에 관여하는 11개의 TPR (tetratricopeptide repeat) 도메인으로 구성되어 있다. 토마토 프로테옴에 주석을 달기위해 블라스트(Blast) 알고리즘을 사용하였고, 애기장대 SRFR1와 65%의 유사성을 가지는 Solyc02g09280 (SlSRFR1)을 확인하였다. 애기장대 SRFR1과 서열 정렬을 통해 SlSRFR1이 1,055개의 아미노산으로 이루어진 단백질을 암호화하며, 두 개의 TPR 도메인이 N-말단에 위치하고, 9개의 TPR 도메인이 중앙에 위치함을 알 수 있었다. SRFR1 is a single-copy gene in Arabidopsis thaliana, and Arabidopsis SRFR1 is mainly composed of 11 TPR (tetratricopeptide repeat) domains involved in protein-protein interactions. The Blast algorithm was used to annotate the tomato proteome, and Solyc02g09280 (SlSRFR1) with 65% similarity to Arabidopsis SRFR1 was identified. Through sequence alignment with Arabidopsis SRFR1, it was found that SlSRFR1 encodes a protein consisting of 1,055 amino acids, with two TPR domains located at the N-terminus and nine TPR domains located at the center.

본 발명자는 SlSRFR1의 기능을 분석하기 위해, CRISPR/Cas 시스템을 이용하여 돌연변이체를 제조하였다. 표준 조건에 기반하여 sgRNA를 디자인하였고, SlSRFR1의 ORF (open reading frame)의 5' 말단쪽 위치를 교정을 위한 자리로 선정하였다(표 2).To analyze the function of SlSRFR1 , the present inventors prepared mutants using the CRISPR/Cas system. sgRNA was designed based on standard conditions, and the 5' end of the open reading frame (ORF) of SlSRFR1 was selected as a site for correction (Table 2).

SlSRFR1 교정을 위한 gRNA 표적 위치 gRNA target site for SlSRFR1 correction NameName gRNAgRNAs Target position
on genome
Target position
on genome
Number of off-targets
(<4 MMs)
Number of off-targets
(<4MMs)
sgRNA1
(Target 1)
sgRNA1
(Target 1)
GTAACTTTCGACGCCATCGC
(서열번호 4)
GTAACTTTCGACGCCATCGC
(SEQ ID NO: 4)
5' UTR and CDS5'UTR and CDS 1One
sgRNA2
(Target 2)
sgRNA2
(Target 2)
ATTGACTATAGCAAAACGCT
(서열번호 5)
ATTGACTATAGCAAAACGCT
(SEQ ID NO: 5)
CDSCDS 33

실시예 2. CRISPR/Cas9에 의해 생성된 Example 2. Generated by CRISPR/Cas9 SlSRFR1SlSRFR1 대립유전자 분석 Allele analysis

G0 세대에서, 37개 식물체가 형질전환된 자엽으로부터 재분화되었다. 생성된 식물체로부터 분리한 게노믹 DNA를 통해 잠재적인 게놈 교정 이벤트를 입증하였다. 표적 DNA 부위를 유전자 특이적 프라이머를 통해 증폭하고 아가로스 겔에 로딩하여 비교한 결과, 비교정 식물체 M82와 증폭산물의 크기가 유사하게 확인되어 표적 영역에서 큰 결실은 일어나지 않았음을 알 수 있었다. 또한, 증폭된 부위를 ICE (Inference of CRISPR Edits) 프로그램을 사용하여 분석한 결과, 14개의 G0 식물체에서 InDel 변이가 확인되어, CRISPR/Cas9 매개 교정 효율은 37.84%임을 알 수 있었다(도 2). 특히, 서열번호 4의 sgRNA (Target 1) 표적 부위가 서열번호 5의 sgRNA (Target 2) 표적 부위에 비해 InDel 돌연변이가 많이 발생하였음을 알 수 있었다.In the G0 generation, 37 plants regenerated from the transformed cotyledons. Potential genome editing events were demonstrated through genomic DNA isolated from the resulting plants. As a result of amplification of the target DNA region using gene-specific primers and loading on an agarose gel, the size of the amplification product was similar to that of the uncorrected plant M82, indicating that no large deletion occurred in the target region. In addition, as a result of analyzing the amplified region using the Inference of CRISPR Edits (ICE) program, InDel mutations were identified in 14 G0 plants, indicating that the CRISPR/Cas9-mediated editing efficiency was 37.84% (FIG. 2). In particular, it was found that the target site of sgRNA (Target 1) of SEQ ID NO: 4 had a higher number of InDel mutations than the target site of sgRNA (Target 2) of SEQ ID NO: 5.

모든 InDel 변이는 절단 위치에서 발생하였다. SRFR1-sgRNA1 표적 자리에서는 1 bp 삽입(G0-5, G0-6, G0-7, G0-8, 및 G0-9) 및 3 bp 결실(G0-10 및 G0-11)이 주로 관찰되었으며, 다섯 개의 독립적인 이벤트(G0-5 to 9)에서 유사한 교정 패턴을 나타냈다. ICE-기반 decomposition 분석에서 나타난 혼재된 피크는 G0 세대에서 이형접합의(heterozygous) slsrfr1 돌연변이체의 존재를 확인시켜 주었다. 그래서, 3개의 G0 계통(G0-1, G0-2, G0-3)을 동형접합의 식물체를 획득하기 위해 다음 세대(G1)로 진전시켜 분석하였다. G1 세대 식물체로부터 분리한 DNA를 사용하여 PCR 반응을 수행하고, CAPS 분석을 진행하여 동형접합의 G1 식물체를 확인하였다(도 1d).All InDel mutations occurred at the cleavage site. At the SRFR1-sgRNA1 target site, 1 bp insertions (G0-5, G0-6, G0-7, G0-8, and G0-9) and 3 bp deletions (G0-10 and G0-11) were mainly observed. Two independent events (G0-5 to 9) showed similar correction patterns. Mixed peaks in the ICE-based decomposition analysis confirmed the presence of a heterozygous slsrfr1 mutant in the G0 generation. Therefore, three G0 lines (G0-1, G0-2, and G0-3) were analyzed by advancing to the next generation (G1) to obtain homozygous plants. A PCR reaction was performed using the DNA isolated from the G1 generation plants, and CAPS analysis was performed to confirm homozygous G1 plants (FIG. 1d).

또한, CAPS 분석을 통해 동형접으로 확인된 G1 식물체 모두를 대상으로 Deep sequencing 또는 Sanger sequencing 분석을 수행하였다. 그 결과, 2종의 monoallelic 동형접합체 (11 bp 결실 in TPR domain, slsrfr1-1; 및 1 bp 삽입 in TPR domain, slsrfr1-3), 1종의 multiallelic 동형접합체 (1, 4, 및 4 bp 결실, slsrfr1-2), 1종의 biallelic 동형접합체 (22 bp 결실 및 4 bp 결실 removing the start codon, slsrfr1-4)을 포함하는 4 유형의 대립유전자를 가진 G1 식물체가 생산되었음을 알 수 있었다(도 3). TPR 도메인의 1 bp 또는 11 bp 결실은 조기 종결코돈을 생성하였다. 또한, slsrfr1-2slsrfr1-4의 돌연변이는 개시 코돈에서 확인되었다. 또한, 정제된 PCR 앰플리콘의 Sanger sequencing 분석을 통해 모든 대상에서 off-target site가 확인되지 않았음을 알 수 있었다.In addition, deep sequencing or Sanger sequencing analysis was performed on all G1 plants identified as homozygous through CAPS analysis. As a result, two types of monoallelic homozygotes (11 bp deletion in TPR domain, slsrfr1-1 ; and 1 bp insertion in TPR domain, slsrfr1-3 ), one type of multiallelic homozygous type (1, 4, and 4 bp deletion, slsrfr1-2 ) and one type of biallelic homozygous (22 bp deletion and 4 bp deletion, removing the start codon, slsrfr1-4 ) were found to produce G1 plants with 4 types of alleles (Fig. 3). . A 1 bp or 11 bp deletion of the TPR domain resulted in a premature stop codon. In addition, mutations in slsrfr1-2 and slsrfr1-4 were identified in the initiation codon. In addition, Sanger sequencing analysis of the purified PCR amplicons revealed that off-target sites were not identified in all subjects.

실시예 3. Example 3. slsrfr1slsrfr1 돌연변이 식물체의 형태 및 방어 마커 유전자 발현 분석 Analysis of morphology and defense marker gene expression of mutant plants

slsrfr1 G1 세대 식물체는 야생형 M82 식물체와 비교하여 약한 성장 감소가 확인되었으나, 심각한 왜화는 나타나지 않았다(도 4a). 또한, 야생형 M82 식물체와 비교하여 식물방어기작에 관여하는 유전자인 SlPR1 (Solyc09g007010.1), SlPR2 (Solyc01g008620.2), SlPR5(Solyc08g080640), TomloxD (Solyc03g122340.2) 유전자의 발현 수준이 증가되어 있음을 확인할 수 있었고(도 4b), 이 결과는 CRISPR/Cas9 매개 SlSRFR1의 돌연변이는 살리실산 의존 방어 유전자의 발현 수준을 상향 조절하고 자스몬산 신호 마커 유전자(TomloxD)의 발현도 유도함을 의미하였다.In the slsrfr1 G1 generation plants, a slight decrease in growth was confirmed compared to the wild-type M82 plants, but no severe dwarfing was observed (FIG. 4a). In addition, the expression levels of SlPR1 (Solyc09g007010.1), SlPR2 (Solyc01g008620.2), SlPR5 (Solyc08g080640), and TomloxD (Solyc03g122340.2) genes involved in plant defense mechanisms were increased compared to wild-type M82 plants. was confirmed (FIG. 4b), and this result meant that CRISPR/ Cas9 -mediated mutation of SlSRFR1 upregulated the expression level of salicylic acid-dependent defense genes and also induced the expression of jasmonic acid signaling marker gene ( TomloxD ).

실시예 4. Example 4. slsrfr1slsrfr1 돌연변이 식물체의 병 저항성 분석 Disease resistance analysis of mutant plants

애기장대 srfr1 돌연변이체는 식물방어기작에 관여하는 유전자들이 항시적으로 상향 조절되었으나 병독성의 Pto DC3000에 대한 증진된 저항성이 없는 것으로 보고되었으나(Kim, S.H. et al., Plant Signal Behav. 2009, 4;149-150), 6주령의 slsrfr1 G1 세대 식물체는 야생형 M82 식물체에 비해 Pto DC3000에 대한 저항성이 증진되었음을 알 수 있었다(도 5). 반면, 사물기생 병원균인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대해서는 애기장대에서와 같이 slsrfr1 G1 세대 식물체가 야생형 M82 식물체에 비해 감수성이 더욱 증가되었음을 확인할 수 있었다(도 6).Although Arabidopsis srfr1 mutant genes involved in plant defense mechanisms were constitutively up-regulated, it was reported that there was no enhanced resistance to the virulence Pto DC3000 (Kim, SH et al., Plant Signal Behav. 2009, 4; 149-150) and 6-week-old slsrfr1 G1 generation plants showed enhanced resistance to Pto DC3000 compared to wild-type M82 plants (FIG. 5). On the other hand, the parasitic pathogen Fusarium oxysporum f. sp. Lycopersi Seed ( Fusarium oxysporum f. sp. lycopersici ) As in Arabidopsis, it was confirmed that the slsrfr1 G1 generation plants were more susceptible than wild-type M82 plants (FIG. 6).

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method <130> PN21203 <160> 29 <170> KoPatentIn 3.0 <210> 1 <211> 16345 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 1 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tggtccgtta cgtttttcac tgttccatct ttttccctgt ttgtatatag gtttttggac 180 atttatgaat gaactgatta atttttctga atttaaaatg tgttcaattc tttttcagca 240 accgagcgtt ttgctatagt caattggagc ttcacaagca tgttattaag gattgtgata 300 aggcacttca gctcgatcct aagcttcttc aagcttatat attcaaaggt tcttttcatt 360 ttctccttgc atttccagct aactgttttt accgtgtata agaaatgcga aagagaattt 420 agaagttttc aattgcattt ggaatgtcaa ttttgaatgt ggatgtgttg tggtcaggca 480 tcctaatccc tataggcctg tgaagtcatc tgggatactc taaatttaca attttagggt 540 tcttgttcaa atttaggtga ttggctataa ttgagtaaat ttttctggtt ttggacaaac 600 atgaaccatt ggtaatttcg aggagtagga tgaagctctt gtaaagctag tgaactgttg 660 cacctctcgg ttgatgtcct acaatttacg actattgtca agtatgcgcc aaaataaggg 720 ttagctttaa atgaattgtg tatgtgagaa gccattttaa gcttgataaa ggtcatattg 780 gacttgcttt ctgtatccta tagtggtctt atattatatt tttgaaatga cttttaactt 840 taaaataaac tatgtttggt tggggtataa agggaaggga tggaaaataa aggagggcat 900 aagatggttg aattctatgc tcgcggggta cagtagaggg tttgaccata ttgtgtctat 960 tgttaagtac cttttctcta aaaggctatt tccacggcat gaacgtgtga cctccttgta 1020 tcattgcaac aactccgatc agataaaaag atcaaataca tttttgtctc ttgtgtgtaa 1080 catagccctt gaaataatga tataagaatt tgaattaaca atattcttgt gtggatactg 1140 tggattttcc ctagatgtgg ttatagttta tgctgcagaa atttcaatat tcttaaagct 1200 ttacaaactg gatttttgag tttgaagcat tatgtaacaa agttacttga tacttgttgc 1260 ttaggacgtg cattatctgc tcttggtaag aaagaggaag ctcttctagt ttgggagcaa 1320 gggtatgaac atgcagttca tcagtccgca gacttaaagc aactgttaga gcttgaagag 1380 ctgctcaaaa ttgcaaagca gaacaccgca gttggcagca acaatcattc ggtgcagtca 1440 tctggccctg agtccaacac tggacctcct ctttctacca aatctggtga aacttgtgat 1500 attagtaagg cctcagatag ggaacttaaa acatgcagca gtgggatgtt ggaaagctct 1560 gagaaatcaa agaatagctc tgttttacaa aattcctcaa gtaataattc caaaaagcat 1620 aagaagattg agtctgaatc aaaggaattg catgagagac aagcaaataa aaccaacaac 1680 aattgcaaaa aattgggtta tccatctctg gtttgcagtg agttaagtga tatatctgaa 1740 gacagtagga aatcatctgc agtaactagt gaatcaagtg aacagtcaga accaaatgag 1800 ttgcaggaaa ttctcagtca gttgaataat aaatgtgatg ttcgcgttga attgagtgat 1860 gaaggcaaga gaaacaaaaa attttgtgtt accagggtca acaaaaccaa gtccattaac 1920 gttgatttcc gattatcaag gggaatagca caggtacact gcctatcctg tgatattaca 1980 atgaagacag gaagaattag tccatctatt gatatttcct gttagtgcgg ttgatcatta 2040 atatgctatt cttctttatt gaaatacaaa taacaataca tttgtaactt caaatatatg 2100 ccaaagatca acttcatgtc tcaatttgtg agattatttt ctctcaaatt aagtagagaa 2160 atgaattttt tcttgatata tctgctaggt actgggatac catgctcatg catagcagga 2220 aaggccttct actgcagtct tcatgtcttt tctgttcact ttgcttattt cagttgtaat 2280 ttggtgatta cactccactt ttaattttgt gaacttaact ggaagattct gcatatgttc 2340 aaagcttggg tcaactaagc tctattatta gaattcattt tcttcagtta ctagatttgt 2400 atctctaact cttatgtgtt aaatttatgg agttagtatc atttttgcag tgtgcttgac 2460 tgcatgtttt gctttgttta aacttaagat gtcaaaatag gtttgtgatt gccagtcatt 2520 ctttctctct ctagtctcac atatccgcac tatagtgaca ttaaaacaaa aaagaagaag 2580 agaatttagc ttgattattt cttcaatcta gtagggtgta ttttctttcc tacgccccct 2640 aagctgcggt ggacagaggt attcggtatt tgcaccgata ggaggattta gatacccact 2700 agactacttg agatgcctgt aggttggtcc tgacaccatt gttattcaaa agaatgatgg 2760 taaattgaca atctagctct gtgtgcatat tttttcgtca aacacaagat gtgaaacaat 2820 aagtagtgct gcttgatgtg gttgagatca tggatattct gcttgcaatt gatctgacta 2880 tcacgtctcg ttgcttactt cttcaagaga ttagattatc atgatttaaa atgttgtgtt 2940 tctaaattgg atcatttatc tggggaactt cttgcccatt ttacattaga atatccaaaa 3000 cttgtatgtg tatgctgtcg taatgcagta gtagttgtct ccaaaatccc ttgatgtagg 3060 taggatgcag attatgacat ttcacaagga gcctggagag actggttaat cactctaaca 3120 accaattaga tgatgtgtca tgcaattgtg aaatacttga gtttgccagc aattcttcta 3180 tattgatcca gaccttctag agatatccat ccaaaactag tcttgacact tggatccata 3240 gaggtatcaa taagtttgca atctagtata ccttgtttct tccaatatat caggtggata 3300 cttcccttag gccttatgat attggacgtg caaacttgat ggttaggatg tattttatgt 3360 ttctacaagt gcctagtctt aaaatgactg gtgttgtata ataccttgaa gcctataagg 3420 ttgtaaggaa acagagtaaa acagatcaaa ctatgcttaa tgagactgct taagaccata 3480 aattatcggc cttgtcgaaa cgctacttta aactcttctt agttgatgtc taactgatga 3540 ctgatgaagg aactagtgga gcgtggtcgc catagaaatg gaaagaccag cacatgcaat 3600 tttagttgct aagagagagt atcaaccatt gccatatatc tgaatgtatt tgttgacaat 3660 tgattgagct ttgagacaat tataaccatc ttgattataa atactcaatg aaatccaact 3720 gtagttttat tcctgtggag gatctatctc tgaagtgcca ctgttttttg ttgtcaggca 3780 tctccttaga tatgcatgca attggtttta ccagtctaag atattgaatt tgtgcataat 3840 ttgtaatgca agcatgatat aaatgtgaaa aacaatgtga aacacctact ggattagttg 3900 gtagacgatt tgctcaaagc tgtcttcagt agaaccaaag aagagaagaa aattgttgga 3960 gaactgtcat aggggaagta agtttgtatc acaaaaaaac aaggatgaga atcgtgaaaa 4020 atgtttagtt tgctattccc tcaaggtaat gaagtttaaa tagtgtttac atatgatata 4080 atataggaag attgaatttc ccggattaat atttgttggt agcggaaagg gggatgcgag 4140 tctgagatgg ttcggatatg taaagaggag atgcacatat gttccagtga agaggtgtga 4200 gcgagtttgt ctatggtgga tctgaggaga ggtaggtgta ggttgaagaa gtattgtgta 4260 gaaatgatta gttgaacatt gtctcgctgt catttaggag gggcatgatg atagtttgga 4320 acaaattact tgttggctgt cctttctttt ccatattagt attattgtta ttactcttct 4380 attatattat tctccgattt ttattagtac atattttttc ctttgcttta attatcgtag 4440 tattgtttgt tgttgttact gttcttttct ccattatttc cgacatgaat tcttcacaac 4500 tgtatctcct tttcaaacct gctttgaatg ctttacttga gccgagggtc tatcggaaac 4560 aaccactcta ccctcacaag gcaggcacca cccttcccaa acctacttgt gggattacac 4620 cggatatgtt attgttatgt gatattccct gatctcctat acatatttcc ttatctaagt 4680 ccttaattac aaaatattct taacaagatc aatcatctct gagataataa atacaattcg 4740 aaatattaag gttaatccaa atatttttat cttgcaacaa tagtttcctt ttttttcttt 4800 tttcttaaac aagaaatatt tttaactttg taagttgagc agcaacgcca tttttagtga 4860 aaattgtgct taagtatgtt ggatggaaac tagcaaagcg aacacatgac ttacccgaaa 4920 gccaagttgc tcggactcta tactttcagt gtcgcacccg tgttgacacg ccatgggtgt 4980 gggattcgta cccggtatgg tcaaccagtt ttggatactc tgaacaaatt cgagggagaa 5040 attctggaca ggttcaatga tttttgtaat caaaacaaaa ctaatgtgat ttgaagaaaa 5100 tggaatgcct tgtatatata aatttcattt gtcaccccct ttccttttat ctccttccaa 5160 gattctcctc ttgatcaaat attttctcct caacttttcc gcataatatc tcataatttt 5220 aggttttata actctattag tagatatttt gaattatctt tcggcgaatc cccacatccg 5280 tttccataca tggatcttta tctctgaatc ttaaaattta tatcatagag gatccgacct 5340 ctagatccgc acctgcattg ggcacctgta cccgagtctg agcaacttaa cccgaaagaa 5400 gtttcaaaag agattgcacc cattcggtga tttagtggat gtaattaacc aggacttgag 5460 ttaaactatt tctttctatt cccatgtctt gactagcgat attcagttcc ttttcgtaag 5520 tatatatttg taggtaatta tattttttcc tcgatcttcc agttacgaca ctatttaatc 5580 atgtattcat cgtatttaat tgagaaatat ggtcaacgag gaatcatcta gccggctctg 5640 acttgcttgg ttttgaggcg tagtaatagt tgttattact cgtcatcctg tacaaacata 5700 gaagcgtaaa acaatatttt tggtgatttc aggttaatga aggaaaatat agtaatgctg 5760 tatccatctt tgaccaggtt agcattagcc ttaccactct tcgatatttt actagttttg 5820 tttgctagat gtgccttgtg ctttattttg ccctttttca tgtttgaatg gattaaacgg 5880 aggacttgtg tgtggcatgc tgaacttact tacggagctt cttctcttct atctataata 5940 acacagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 6000 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggt ttgcattgat 6060 ttggccattt aagtaccaat tgaggtaata cttcaacccc tgttgtaaat atttaccacc 6120 tgcctttcag gccatacaat caaatccatc tgctggagag gcctggaaac gcagagggca 6180 agcccgtgct gctttaggtg aatctgttga ggtataaaat tcgtatttgt ctatttattg 6240 agctatcttt tggcttttgt cttcagggta ttcttttctg ctatatttat tttttttcaa 6300 agtcaacttt caatgatctc ttctgtggat gtgatgtgca gtgtaaatga tgtggaatta 6360 ctgaatttta tcacttgtgc tatcagattt tgaaaccaaa tttttcgtta atagcaatca 6420 gactccagtt agaccactag ggatattatc aagaggcact tggttatttt ccttcagatt 6480 gtggtagctt acagagttaa tgatggaaga tgaaatgtct ttggatgttc taactaaggc 6540 ttgagctata tcacaactta tgagcatctt cccgtgaaag ttaaattcta aaatggaatc 6600 aggagcataa cattattcag ctgcatcctt ttgatcatgg gagtttcttg gtagtctaag 6660 tctaaaacat aattttaaca ttctgatgag ttagttttag ttttgttttg ctccgattat 6720 cccatggaga gtgatattag ttacatttaa acgcttttta cttcctaaaa atgttggttt 6780 cacagtaaaa gtagtatgat tgatatttgt gacttggtat atctaaacaa aatgatttta 6840 caccaggcaa ttacagactt gaccaaagcg ttggaatttg agccagactc tgccgatata 6900 ttacatgaaa gaggtgacga gactgaactc ttccatttac tatgaacaat tggatttatg 6960 ctgttaaagt agatagacat aaatagcaaa acatacattt tatgacagat agcttttgtg 7020 catgtaattt gaaactaagg ttcactttca tctttacaac actgagatta tttattgagg 7080 cccataggtg gtttcatctt gtaactattt tgcaataaat gacctctagc ggaatattcc 7140 ataatttctt gagatttcag aaaagatcat ttgattggac aaagtttgtt caatctaacc 7200 tgggagtcac taactctcct taattagtgc aggaattgtc aattttaagt ttaaagattt 7260 caaaggtgct gttgaagacc tctctacatg tgtaaagtcc gataaggata ataaatctgc 7320 gtatacatat ttggtgagtc tatgaccttg agtctaccaa ttgttgtaga atgagctaag 7380 aatgtttatc cgcaaaagtt tgagaaattt tttgttggaa aaatactgat ataatgctgg 7440 tcgaaaaaaa tttggaaaat tatcagggtt tggcgttata ctctctagga gaatatagga 7500 aggctgagga ggcacataag aaagcaatcc aaattgaaag gaatttcctc gaggcttggg 7560 ctcatctagc acaggtatct ctgaatatat ggtgaatact cttaatgcta tttttcctgc 7620 caagtgggat cccaatactt ctattggtag tgctgatgat atagagtttc ttgatgatga 7680 agttgccttt tgacttcgag aattttctta taccaagttc ttgtttttgt ttgtctcttt 7740 tttcaccggt atctggaact caaggttgag gtaaatatat acttctgcat gcaagttaag 7800 aaattcaaga ataaggattt aaatggcaag tagacattct attgcttaac cagtgatgaa 7860 gagcctaact ctctgttatc agatattgtg tgagcgttca tcttctgggg tgcaatgcac 7920 atgtattgta atagcttttg ccttgttgca ttttcagata aggtctcctg attagctggt 7980 agatgttatt aatttacatc atcaaattgg atgtttatgg aatatctatt gccataagtt 8040 taaaattcct aagactcagg agctgctcta acctagttct tgattggttg agtttcttca 8100 cttatattaa atgtggcaaa acaatgagat ctctttgaag atattttttt aatgatgtat 8160 ttgattattg aagaatcttt atctttggtg cagttttatc aagacctagc aaactcagag 8220 aaggccttgg aatgccttca tcagattttg caaatagatg ggaggtgatt actgaggatc 8280 tcaatattta catctttttc accgataaat atctaatctc gagtatttga atggtgaagt 8340 ataaaaccta tcctcaaata ggaatataac tgataatcca tcctctatct accctttttc 8400 gttggaaggt acgcgaaagc atatcacctg cgcgggctgc tacttcatgg aatgggagag 8460 cataggtaca tatttctgaa aaattttgct gtcctgagtc tcccctttct ctcttttttg 8520 tcaaattttc tatgtataat cctcttttaa cgaaaaatgt agcaggcctt aactgcctat 8580 atatgctgtt acaggaatgc tataaaagat ttatcaatgg ggttggctat tgatagcgca 8640 aacattgaat gcttgtatct acgagcttct tgctatcatg ctattggatt atataaagaa 8700 gcagtatggg cattttcaaa ctcgtctctt gtgacttttg agtattctta aatattttaa 8760 ggtggttgtc tccaatttca gattattgat tctgaattta tgctgtaggt gaaggactat 8820 gatgctgctt tagatcttga attagattct atggaaaagt ttgtgcttca atgcttggcg 8880 ttctatcagg taaataagta tatgccagat ttccgtccat cgagctggtt caatgttatg 8940 cctctactaa gtattgtttt cttttgtgtt gcactatttt ctttttgctt tctaagtttt 9000 ggcattttct aactgttagc ttttaccttg ctggaatggt tctcgattct caagtggaca 9060 actcatactt caaattttag atttgtcatt tcgggttgtt agccatttta gtagttgcaa 9120 ttttacattt acttaagtta gtagtcaaaa atttagcaat tttacatttt cccacaaatt 9180 gtccaaacat tggctaaatt tctgaccatc tttttgttcc gttaagccac tgttggacag 9240 tttgggtcga agtggccgat ggttaacaaa gccaagcttg gcttggttta agcttgatta 9300 tgattgcgtt taggtgtccc gcatattcaa acctagcaca aatgtcccta ccaaaagctc 9360 gagttgacag atgctagctt gtgagcccag ttaagttggc agtgttcttt tcacttaacc 9420 attacacatc cggtaaaata agattttgct acccggatca tttaatagtc ctatggaaac 9480 tcttttcatt ctagttgtgt gctcctcctc cttcctcatt cttgtgaaca gccttctgct 9540 tcctgcctgt gacaatacag gtgcagccat tatcatgaga caccaattga tctctctatc 9600 tctgttattt tttgtccaat ttctatttca gtttgaatag cttatgtttt gcttttcaat 9660 atttttccct tgcagaaaga aattgcatta tacactgcat caaagatgaa cagcgaattt 9720 tcttggtttg atattgatgg agatatcgat ccccttttca aggtaatgtc taaaaagaga 9780 atatattgct tggttatttt ttgatacact cattaaaaac aacacggaat attctggtag 9840 cctctgtacc gcctctttct gagagaattg ggaaaaggaa tgaagtttga agttatagca 9900 aaaagtacta tctggtggga attacgcaga actttgaagg ttagcagaga atttggagaa 9960 tgaatgaagt ttaaagaaat aaggcctcac tgattcaatt tgaattcgat tataagctta 10020 cctgaagaat ttgaccgtga aatcactaca actctgtcaa agtaattgga cattttacca 10080 tatcttttaa catgctcata ctctattatg tagagttatc ccttttaggc ttcaaaacct 10140 tctttagagc ccccatcatt tccttaaccc ccactaaatg gttggaaagt gatctcttct 10200 caaccaatag tctcataaga ttgctacaac agtttcattg ctcaattact ttatcatgag 10260 tagagtggca atggatacaa ggactatcta gaaacgtaaa ggttgctttc actgagttgc 10320 tgctgcagac attgcttgca ctttaagtat gtgctttatt tggtgcatat gttccttcat 10380 agttagttgt caatgttctt ttgctgatcc atgtcgaatg ggtgtgcgga gtctggaaaa 10440 tactaaacgt tctgaaaaag tcacaggtac ccatatggat aggacaaagt tactggttcc 10500 agttaggtag ataatcaatg aaggtacaac atgcatatac cagtgatagt tttctggaat 10560 gatgtgtagt ctccagttca taaacctaac agtgctttaa tcacttttat gcacctggag 10620 ggtccagggt gataccttta caaagtgaac tgtcatggga aaacctttga tttcaaatga 10680 tggtttcttg acagatatgt gggatcattt cattaatttt aggggctaat aatcagtttt 10740 tgtaaatctc ggatctaaag tggtagatac ctctatgaag tgaactgtca tctgaaaagt 10800 gcttttgttg gcagtgaatt tcttatctca aagttattat ttccattgac ttcgtgttct 10860 tatacttcgt tctcaattcc tacttttttt tcccttctgt tctcaggagt attggtgcaa 10920 aaggctgcac ccaaaaaatg tttgcgaaaa ggtctacagg caacctcctt taaaagaatc 10980 tttgaaaaag gggaagcaaa gaaagcaaga atttactttc accaagcaaa aaactgccct 11040 tctacaggct gcagattcta tcggtagaaa tatccagtat cattgtccag gtttcttgca 11100 taataggcgc caggtaattc taaaaagagt taaatattaa gttaactttg ttctttctaa 11160 aaaaacccag agctccacat tttccttgag aaacctgata gtgatttcct gttgctttat 11220 tagatgcctt tttatgcttt gctttcacat ttcctctaat atagacaatg agaatattga 11280 aggaaaagaa tatgaaaatg ttaccagaac cttttgtttg cattagttgc cttgtaattg 11340 agggatttga actgatatgc cgattataag agaaagttct tgtacaagaa tgttaccttt 11400 attttcacac tcaacgtttc ctctccagct ttcgctgtac acactccttg ttttccatca 11460 atagttagtt actttccatg aaatataaaa attaaggaat tcatctcaaa ttaggttatc 11520 ggaaaaaaaa gaagagaatc catctgtcaa cagaagattt tcactatttg tggactagtg 11580 ttctatcttc tcttagcaca gaaagtgaga tttggatctt aaagacaata acaacaaacc 11640 cagcgaaatc tcactacatg ggctctgggg atcttaagga ctgtttagca ttttatattc 11700 cacaattatg aatgataact ttctacacac actgttaaat aagattgagg tgactgccaa 11760 gtgccaaggc tacatttcta gtgaaaatgt ctaaaatgaa tagcatgcaa ctaataataa 11820 tacttataga tgtgaataat gatgttagac taagaatgcc aagttttgat ggtcatctag 11880 tgcaaaaagg gttggcgtct ttagttttgt ggagacactt ataggaagca gttgtctttc 11940 gcccttcagc ctctaattct gtaatatgta tgttgtggag caatttccga tgttaactgt 12000 gatgctcttt gtagttattt cgttgagtta gtttgtgcaa tggttgtaaa cagtagtatt 12060 agatttgtgc ctttctaact tgtgttgctt tttcatgatc aaaatttctc ttttcttatc 12120 tagtgaagag gatctattgt tcgtagtgta tctcttagac cttatcatga cattcttttc 12180 tttttgcaat ttaaagatga tataatatct ttattacaga tagtggattc ataaattatt 12240 gttatgtact aatatgctgc tctttagcta caaacatgct tgccacaatg tttttattct 12300 ttcacccaaa tctgagaatt attttgcaat tatcagcacc gcatggcagg attagctgct 12360 attgagatag cacaaaaagt ctcaaaagct tggcgtgcct tacaagctga atggagaaac 12420 tcaactaaag gcacagggaa gtctgggaag agactcagga gaagggaaaa actaaattct 12480 attagtttaa acagaggtgg agctggttgt agcactagca gttcctccga cacatctact 12540 tcatacagtt tgattgatga taggtcaact ggacgttcca tgatgtcatg gaaccacttg 12600 tattcattgg ctgtcaaatg gagacaaata tctgaaccat gtgatccagt ggtgtggatt 12660 aacaagctaa ggtactccac ctgctattaa tttactgaag tttagttagt tattaaagtt 12720 cattgaaatc atacttggtc tcagcattct aacaaatatc tactacattt tgctaaagtc 12780 attccgattt gaattgagta cacaatgata tttttttctt ttatttttga taaagagctc 12840 ttatttctta atatcaacaa tgatattctc ttagtacata aagataataa gaatcactat 12900 cttcaccaca agcatgaaaa aaaccctcct tcaatttgct taacttgctc cgtttgatcc 12960 tttagttcta tggagttatt tcccagcttc tgtgttggtg tacttcactc tcatttggag 13020 cactcacgaa aagaaggatt ctagcatgta tgacttttga agtttgggtg aagatcttgg 13080 aggactaaag acctatttca ctttggctcg tctaagaaac taagactaaa atcattaatt 13140 cgtatttacg ccgggataac tagatatacc acactactta ccacgtcgac gagattctag 13200 tgtatgaagt gagcccccta aaaagtcgta gagaaattca agaaaaaaca cctgtcatgc 13260 gaatcaaata tccatacact tacccaatta tctaagcagt gagagcatta tgcgcaagtc 13320 taaacacatt agtaataatt tgataaaagg agaacaataa atccaactaa atccataatc 13380 gtatcattaa ttccacgatc accaaatacc ctctgcccaa aatacgaccg tgaagcatct 13440 aatagagtta atgagttcag ctatcaggca tggaaatccc aagaaagaag atatatgcta 13500 taaaatagat agagctgaaa caacggcctc cactaaaggt ctttagcttt actataatga 13560 agataatgat tctaatgtgc cgctttggct ttactttttg atgagaattc ttgttttttt 13620 gcatagtgag gaatttaata ctggttttgg gtctcacacc cctcttgttc tcggtcaagc 13680 caaagttgtt cgctaccatc ccaattttca gaggtaagag ctttaccttt ctgataagcg 13740 caaatgtatt tttttactat tatttttttg tgtaacatgg atactgcaaa tgatactgat 13800 gctatgattg accttttgag ctcattacag gatgtgtaaa ttgatgctac ccttgtaaat 13860 aactttacaa cagcttgctg ctggccatga ataaaaattc ctttttaaca gtcaaaaggc 13920 ataacctttc ttatttgtat tagctctttc tcaaggctct tattgtctgt caatgttcag 13980 aaccttgact gttgccaagg ctgttatcaa ggagaataaa tcagtgtgca acaaggaaga 14040 caagataatt gatctttctg aacaacagaa gttgcaagaa gtgagtttgt ttgcttatga 14100 cctaaattca tcttttgcac tgttttgcct ttttcacagt gtatagtttt tggttgttga 14160 taattatttt tctggttcat gtcaaaatac ctactttata gcatttccca tgacaataaa 14220 agcgtcaaat tgagaaatct ttattaggct gattttatat tggtcacatt tcttccttag 14280 atgttaactg atggctctct gaaatcaaac taggtgtcca cttgctagga ttaatacttc 14340 agtgccatac cttttttttt ctggtggtaa tcaacacctg aactgtactt tgcagataat 14400 ggctgcagaa tccagctcag atctttacag agttgttggt caagactttt ggttggccac 14460 ctggtgtaac agtacggcac ttgaagggta attttttata tttagtcctc tttatactgt 14520 ataacagtat gttactcttg aatattatct ctcatcgggg tcttttttct aattttccct 14580 cctttcttat tgcctgatca ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat 14640 gtagaacacc atttaacctt attggaattc aaccttttgt gtgtgtggaa aggagggtga 14700 cttgagtaaa atatcactta aactagatct gatttttctt attcctgtca acttttgttg 14760 ttccttccag gggtgagatt ggttacgact ttgcaattag aacaccttgc acacctgcta 14820 gatgggatga ctttgatgtg gagatgacat cagcctggga ggtatcctct tgatttatta 14880 ctagaaagcc attttctact ccatgacata gtttttggat atttgaaagc aatattacat 14940 caatgtaaaa cagtaacaca aaaattcttt agtggtcgtt ttgtaggctg tattaggtag 15000 aataatgcta gtactaaatt ttagtacaat gtttggtttt aaatctcacc tatgtactac 15060 taataccagt attacttata caccctattt aatacgattc ttatgcatag taaaccatgg 15120 cattaactat atcagtacca ttcctatact cataatcata caccctattc agtagtactc 15180 ttgataattc aatgcatgtc agattgctag ttttagtaca acaaaccaaa caatcaataa 15240 gaaatgatgt cagcataaaa attccctgta ctagtcttca aaccaaacag ccccttatag 15300 tacagttttt catggtttat tcatcttgtg cctgctcgga gatgatcagt taagtcttat 15360 aataagccta tattagtcag cttgggagtc tgttcatcag actattctct cacttttaaa 15420 aagagatttt gctaagcact gaaacaagca gaagtaatga accttttcct gtctgaacat 15480 agaagtaagc attatgcctg agatgatctg ggtttttgtt cggtatgatc tttctgaaat 15540 gatttggcat atatttctta cttgaacctg tttgtagacc tactattttg tttctaactg 15600 aagctttatc tatacccatt aatttcctat tgttgcttgc ttctgtttgt gtagctccct 15660 ttttttccct cctttcttct ttttatttgt tcttgagaca cacatatatt ttctgtttgg 15720 tacttaaata atagtgttct aattaagtta actaactagt gcccgaaagt tggcccggac 15780 accacggtca tcacacacac aaaaaaaaga gttaactaag ttgagactta aatgatagtg 15840 ttctagttag accaagttga acacaaaact gttatgcagg ctctttgtgc tgcgtactgt 15900 ggtgataatt atgggtcaac agattttgat gtgcttgaaa atgtgagaga tgcaatctta 15960 aggatgacat attactggta agatatatta acttctattt ggttgatcac aagggaagcg 16020 tatggttctc tttaatttgt ctgataattt ttgcaggtat aatttcatgc cgctttccag 16080 aggaactgct gttgttgggt tcatagtttt gcttggatta ctgctcgctg ctaatatgga 16140 gttcacagga agcattccaa aaggtctgca ggtggattgg gaagccatcc tggagtttga 16200 ctcgagttcc tttgtagatt ctgtaaagaa atggttgtac ccatctctca aagtcagcac 16260 atcgtggaaa agctacccag atgtcacgtc aacatttgag acgactggat cagttgttgc 16320 tgctctgagc acctattcag actaa 16345 <210> 2 <211> 3168 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 2 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tgcaaccgag cgttttgcta tagtcaattg gagcttcaca agcatgttat taaggattgt 180 gataaggcac ttcagctcga tcctaagctt cttcaagctt atatattcaa aggacgtgca 240 ttatctgctc ttggtaagaa agaggaagct cttctagttt gggagcaagg gtatgaacat 300 gcagttcatc agtccgcaga cttaaagcaa ctgttagagc ttgaagagct gctcaaaatt 360 gcaaagcaga acaccgcagt tggcagcaac aatcattcgg tgcagtcatc tggccctgag 420 tccaacactg gacctcctct ttctaccaaa tctggtgaaa cttgtgatat tagtaaggcc 480 tcagataggg aacttaaaac atgcagcagt gggatgttgg aaagctctga gaaatcaaag 540 aatagctctg ttttacaaaa ttcctcaagt aataattcca aaaagcataa gaagattgag 600 tctgaatcaa aggaattgca tgagagacaa gcaaataaaa ccaacaacaa ttgcaaaaaa 660 ttgggttatc catctctggt ttgcagtgag ttaagtgata tatctgaaga cagtaggaaa 720 tcatctgcag taactagtga atcaagtgaa cagtcagaac caaatgagtt gcaggaaatt 780 ctcagtcagt tgaataataa atgtgatgtt cgcgttgaat tgagtgatga aggcaagaga 840 aacaaaaaat tttgtgttac cagggtcaac aaaaccaagt ccattaacgt tgatttccga 900 ttatcaaggg gaatagcaca ggttaatgaa ggaaaatata gtaatgctgt atccatcttt 960 gaccagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 1020 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggc catacaatca 1080 aatccatctg ctggagaggc ctggaaacgc agagggcaag cccgtgctgc tttaggtgaa 1140 tctgttgagg caattacaga cttgaccaaa gcgttggaat ttgagccaga ctctgccgat 1200 atattacatg aaagaggaat tgtcaatttt aagtttaaag atttcaaagg tgctgttgaa 1260 gacctctcta catgtgtaaa gtccgataag gataataaat ctgcgtatac atatttgggt 1320 ttggcgttat actctctagg agaatatagg aaggctgagg aggcacataa gaaagcaatc 1380 caaattgaaa ggaatttcct cgaggcttgg gctcatctag cacagtttta tcaagaccta 1440 gcaaactcag agaaggcctt ggaatgcctt catcagattt tgcaaataga tgggaggtac 1500 gcgaaagcat atcacctgcg cgggctgcta cttcatggaa tgggagagca taggaatgct 1560 ataaaagatt tatcaatggg gttggctatt gatagcgcaa acattgaatg cttgtatcta 1620 cgagcttctt gctatcatgc tattggatta tataaagaag cagtgaagga ctatgatgct 1680 gctttagatc ttgaattaga ttctatggaa aagtttgtgc ttcaatgctt ggcgttctat 1740 cagaaagaaa ttgcattata cactgcatca aagatgaaca gcgaattttc ttggtttgat 1800 attgatggag atatcgatcc ccttttcaag gagtattggt gcaaaaggct gcacccaaaa 1860 aatgtttgcg aaaaggtcta caggcaacct cctttaaaag aatctttgaa aaaggggaag 1920 caaagaaagc aagaatttac tttcaccaag caaaaaactg cccttctaca ggctgcagat 1980 tctatcggta gaaatatcca gtatcattgt ccaggtttct tgcataatag gcgccagcac 2040 cgcatggcag gattagctgc tattgagata gcacaaaaag tctcaaaagc ttggcgtgcc 2100 ttacaagctg aatggagaaa ctcaactaaa ggcacaggga agtctgggaa gagactcagg 2160 agaagggaaa aactaaattc tattagttta aacagaggtg gagctggttg tagcactagc 2220 agttcctccg acacatctac ttcatacagt ttgattgatg ataggtcaac tggacgttcc 2280 atgatgtcat ggaaccactt gtattcattg gctgtcaaat ggagacaaat atctgaacca 2340 tgtgatccag tggtgtggat taacaagcta agtgaggaat ttaatactgg ttttgggtct 2400 cacacccctc ttgttctcgg tcaagccaaa gttgttcgct accatcccaa ttttcagaga 2460 accttgactg ttgccaaggc tgttatcaag gagaataaat cagtgtgcaa caaggaagac 2520 aagataattg atctttctga acaacagaag ttgcaagaaa taatggctgc agaatccagc 2580 tcagatcttt acagagttgt tggtcaagac ttttggttgg ccacctggtg taacagtacg 2640 gcacttgaag ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat gggtgagatt 2700 ggttacgact ttgcaattag aacaccttgc acacctgcta gatgggatga ctttgatgtg 2760 gagatgacat cagcctggga ggctctttgt gctgcgtact gtggtgataa ttatgggtca 2820 acagattttg atgtgcttga aaatgtgaga gatgcaatct taaggatgac atattactgg 2880 tataatttca tgccgctttc cagaggaact gctgttgttg ggttcatagt tttgcttgga 2940 ttactgctcg ctgctaatat ggagttcaca ggaagcattc caaaaggtct gcaggtggat 3000 tgggaagcca tcctggagtt tgactcgagt tcctttgtag attctgtaaa gaaatggttg 3060 tacccatctc tcaaagtcag cacatcgtgg aaaagctacc cagatgtcac gtcaacattt 3120 gagacgactg gatcagttgt tgctgctctg agcacctatt cagactaa 3168 <210> 3 <211> 1055 <212> PRT <213> Unknown <220> <223> Solanum lycopersicum <400> 3 Met Ala Ser Lys Val Thr Asp Arg Ile Glu Leu Ala Lys Leu Cys Ser 1 5 10 15 Ser Lys Glu Trp Ser Lys Ala Ile Arg Ile Leu Asp Ser Leu Leu Ala 20 25 30 Gln Thr Cys Val Ile Gln Asp Ile Cys Asn Arg Ala Phe Cys Tyr Ser 35 40 45 Gln Leu Glu Leu His Lys His Val Ile Lys Asp Cys Asp Lys Ala Leu 50 55 60 Gln Leu Asp Pro Lys Leu Leu Gln Ala Tyr Ile Phe Lys Gly Arg Ala 65 70 75 80 Leu Ser Ala Leu Gly Lys Lys Glu Glu Ala Leu Leu Val Trp Glu Gln 85 90 95 Gly Tyr Glu His Ala Val His Gln Ser Ala Asp Leu Lys Gln Leu Leu 100 105 110 Glu Leu Glu Glu Leu Leu Lys Ile Ala Lys Gln Asn Thr Ala Val Gly 115 120 125 Ser Asn Asn His Ser Val Gln Ser Ser Gly Pro Glu Ser Asn Thr Gly 130 135 140 Pro Pro Leu Ser Thr Lys Ser Gly Glu Thr Cys Asp Ile Ser Lys Ala 145 150 155 160 Ser Asp Arg Glu Leu Lys Thr Cys Ser Ser Gly Met Leu Glu Ser Ser 165 170 175 Glu Lys Ser Lys Asn Ser Ser Val Leu Gln Asn Ser Ser Ser Asn Asn 180 185 190 Ser Lys Lys His Lys Lys Ile Glu Ser Glu Ser Lys Glu Leu His Glu 195 200 205 Arg Gln Ala Asn Lys Thr Asn Asn Asn Cys Lys Lys Leu Gly Tyr Pro 210 215 220 Ser Leu Val Cys Ser Glu Leu Ser Asp Ile Ser Glu Asp Ser Arg Lys 225 230 235 240 Ser Ser Ala Val Thr Ser Glu Ser Ser Glu Gln Ser Glu Pro Asn Glu 245 250 255 Leu Gln Glu Ile Leu Ser Gln Leu Asn Asn Lys Cys Asp Val Arg Val 260 265 270 Glu Leu Ser Asp Glu Gly Lys Arg Asn Lys Lys Phe Cys Val Thr Arg 275 280 285 Val Asn Lys Thr Lys Ser Ile Asn Val Asp Phe Arg Leu Ser Arg Gly 290 295 300 Ile Ala Gln Val Asn Glu Gly Lys Tyr Ser Asn Ala Val Ser Ile Phe 305 310 315 320 Asp Gln Ile Leu Glu Gln Asp Pro Thr Tyr Pro Glu Ala Leu Ile Gly 325 330 335 Arg Gly Thr Ala Leu Ala Phe Gln Arg Glu Leu Asp Ala Ala Ile Ser 340 345 350 Asp Phe Thr Lys Ala Ile Gln Ser Asn Pro Ser Ala Gly Glu Ala Trp 355 360 365 Lys Arg Arg Gly Gln Ala Arg Ala Ala Leu Gly Glu Ser Val Glu Ala 370 375 380 Ile Thr Asp Leu Thr Lys Ala Leu Glu Phe Glu Pro Asp Ser Ala Asp 385 390 395 400 Ile Leu His Glu Arg Gly Ile Val Asn Phe Lys Phe Lys Asp Phe Lys 405 410 415 Gly Ala Val Glu Asp Leu Ser Thr Cys Val Lys Ser Asp Lys Asp Asn 420 425 430 Lys Ser Ala Tyr Thr Tyr Leu Gly Leu Ala Leu Tyr Ser Leu Gly Glu 435 440 445 Tyr Arg Lys Ala Glu Glu Ala His Lys Lys Ala Ile Gln Ile Glu Arg 450 455 460 Asn Phe Leu Glu Ala Trp Ala His Leu Ala Gln Phe Tyr Gln Asp Leu 465 470 475 480 Ala Asn Ser Glu Lys Ala Leu Glu Cys Leu His Gln Ile Leu Gln Ile 485 490 495 Asp Gly Arg Tyr Ala Lys Ala Tyr His Leu Arg Gly Leu Leu Leu His 500 505 510 Gly Met Gly Glu His Arg Asn Ala Ile Lys Asp Leu Ser Met Gly Leu 515 520 525 Ala Ile Asp Ser Ala Asn Ile Glu Cys Leu Tyr Leu Arg Ala Ser Cys 530 535 540 Tyr His Ala Ile Gly Leu Tyr Lys Glu Ala Val Lys Asp Tyr Asp Ala 545 550 555 560 Ala Leu Asp Leu Glu Leu Asp Ser Met Glu Lys Phe Val Leu Gln Cys 565 570 575 Leu Ala Phe Tyr Gln Lys Glu Ile Ala Leu Tyr Thr Ala Ser Lys Met 580 585 590 Asn Ser Glu Phe Ser Trp Phe Asp Ile Asp Gly Asp Ile Asp Pro Leu 595 600 605 Phe Lys Glu Tyr Trp Cys Lys Arg Leu His Pro Lys Asn Val Cys Glu 610 615 620 Lys Val Tyr Arg Gln Pro Pro Leu Lys Glu Ser Leu Lys Lys Gly Lys 625 630 635 640 Gln Arg Lys Gln Glu Phe Thr Phe Thr Lys Gln Lys Thr Ala Leu Leu 645 650 655 Gln Ala Ala Asp Ser Ile Gly Arg Asn Ile Gln Tyr His Cys Pro Gly 660 665 670 Phe Leu His Asn Arg Arg Gln His Arg Met Ala Gly Leu Ala Ala Ile 675 680 685 Glu Ile Ala Gln Lys Val Ser Lys Ala Trp Arg Ala Leu Gln Ala Glu 690 695 700 Trp Arg Asn Ser Thr Lys Gly Thr Gly Lys Ser Gly Lys Arg Leu Arg 705 710 715 720 Arg Arg Glu Lys Leu Asn Ser Ile Ser Leu Asn Arg Gly Gly Ala Gly 725 730 735 Cys Ser Thr Ser Ser Ser Ser Asp Thr Ser Thr Ser Tyr Ser Leu Ile 740 745 750 Asp Asp Arg Ser Thr Gly Arg Ser Met Met Ser Trp Asn His Leu Tyr 755 760 765 Ser Leu Ala Val Lys Trp Arg Gln Ile Ser Glu Pro Cys Asp Pro Val 770 775 780 Val Trp Ile Asn Lys Leu Ser Glu Glu Phe Asn Thr Gly Phe Gly Ser 785 790 795 800 His Thr Pro Leu Val Leu Gly Gln Ala Lys Val Val Arg Tyr His Pro 805 810 815 Asn Phe Gln Arg Thr Leu Thr Val Ala Lys Ala Val Ile Lys Glu Asn 820 825 830 Lys Ser Val Cys Asn Lys Glu Asp Lys Ile Ile Asp Leu Ser Glu Gln 835 840 845 Gln Lys Leu Gln Glu Ile Met Ala Ala Glu Ser Ser Ser Asp Leu Tyr 850 855 860 Arg Val Val Gly Gln Asp Phe Trp Leu Ala Thr Trp Cys Asn Ser Thr 865 870 875 880 Ala Leu Glu Gly Lys Arg Leu Glu Gly Thr Arg Ile Thr Val Val Lys 885 890 895 Met Gly Glu Ile Gly Tyr Asp Phe Ala Ile Arg Thr Pro Cys Thr Pro 900 905 910 Ala Arg Trp Asp Asp Phe Asp Val Glu Met Thr Ser Ala Trp Glu Ala 915 920 925 Leu Cys Ala Ala Tyr Cys Gly Asp Asn Tyr Gly Ser Thr Asp Phe Asp 930 935 940 Val Leu Glu Asn Val Arg Asp Ala Ile Leu Arg Met Thr Tyr Tyr Trp 945 950 955 960 Tyr Asn Phe Met Pro Leu Ser Arg Gly Thr Ala Val Val Gly Phe Ile 965 970 975 Val Leu Leu Gly Leu Leu Leu Ala Ala Asn Met Glu Phe Thr Gly Ser 980 985 990 Ile Pro Lys Gly Leu Gln Val Asp Trp Glu Ala Ile Leu Glu Phe Asp 995 1000 1005 Ser Ser Ser Phe Val Asp Ser Val Lys Lys Trp Leu Tyr Pro Ser Leu 1010 1015 1020 Lys Val Ser Thr Ser Trp Lys Ser Tyr Pro Asp Val Thr Ser Thr Phe 1025 1030 1035 1040 Glu Thr Thr Gly Ser Val Val Ala Ala Leu Ser Thr Tyr Ser Asp 1045 1050 1055 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA1 <400> 4 gtaactttcg acgccatcgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA2 <400> 5 attgactata gcaaaacgct 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cggtcaataa aacacgtgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gagcttcatc ctactcctcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaacagtga aaaacgtaac 20 <210> 9 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acactctttc cctacacgac gctcttccga tctaatcgca tcaattgagc tgc 53 <210> 10 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gtgactggag ttcagacgtg tgctcttccg atctatgacg caagtttgag caag 54 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 acactctttc cctacacgac gctcttccga tctttggaca tttatgaatg aactgattaa 60 60 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtgactggag ttcagacgtg tgctcttccg atcttaggat cgagctgaag tgcc 54 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cagtcggtct caggagtgat caaaagtccc acatcgatca ggtgatatat agcagcttag 60 ttta 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gagtcggtct cacaatcgct atgtcgactc tatcattata taaactaagc tgctatatat 60 cacc 64 <210> 15 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cagtcggtct caattggtaa ctttcgacgc catcgcgttt tagagctaga aatagcaagt 60 taaaataagg ctagtccgtt atcaac 86 <210> 16 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 cagtcggtct caagcgaaaa aaagcaccga ctcggtgcca ctttttcaag ttgataacgg 60 actagcctta tttt 74 <210> 17 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 cagtcggtct caattggatt gactatagca aaacgctgtt ttagagctag aaatagcaag 60 ttaaaataag gctagtccgt tatcaac 87 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gccatatttc actcttgtga g 21 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tagtctggcc tctcggaca 19 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tccaggtaga gacagtggta aa 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ctggtttctt tggtgttcct gc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcaacaactg tccatacacc 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agactccacc acaatcacc 19 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gacaagcaat agcaggagtg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 taagtgtgcc aacatcagac 20 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaaatagcat aagatggcag acg 23 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 atacccacca tcacaccagt at 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ctgctctctc agtagccaac ac 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 cttcctccaa tagcagaggt tt 22 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method <130> PN21203 <160> 29 <170> KoPatentIn 3.0 <210 > 1 <211> 16345 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 1 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tggtccgtta cgtttttcac tgttccatct ttttccctgt ttgtatatag gtttttggac 180 atttatgaat gaactgatta atttttctga atttaaaatg tgttcaattc tttttcagca 240 accgagcgtt ttgctatagt caattggagc ttcacaagca tgttattaag gattgtgata 300 aggcacttca gctcgatcct aagcttcttc aagcttatat attcaaaggt tcttttcatt 360 ttctccttgc atttccagct aactgttttt accgtgtata agaaatgcga aagagaattt 420 agaagttttc aattgcattt ggaatgtcaa ttttgaatgt ggatgtgttg tggtcaggca 480 tcctaatccc tataggcctg tgaagtcatc tgggatactc taaatttaca attttagggt 540 tcttgttcaa atttaggtga t tggctataa ttgagtaaat ttttctggtt ttggacaaac 600 atgaaccatt ggtaatttcg aggagtagga tgaagctctt gtaaagctag tgaactgttg 660 cacctctcgg ttgatgtcct acaatttacg actattgtca agtatgcgcc aaaataaggg 720 ttagctttaa atgaattgtg tatgtgagaa gccattttaa gcttgataaa ggtcatattg 780 gacttgcttt ctgtatccta tagtggtctt atattatatt tttgaaatga cttttaactt 840 taaaataaac tatgtttggt tggggtataa agggaaggga tggaaaataa aggagggcat 900 aagatggttg aattctatgc tcgcggggta cagtagaggg tttgaccata ttgtgtctat 960 tgttaagtac cttttctcta aaaggctatt tccacggcat gaacgtgtga cctccttgta 1020 tcattgcaac aactccgatc agataaaaag atcaaataca tttttgtctc ttgtgtgtaa 1080 catagccctt gaaataatga tataagaatt tgaattaaca atattcttgt gtggatactg 1140 tggattttcc ctagatgtgg ttatagttta tgctgcagaa atttcaatat tcttaaagct 1200 ttacaaactg gatttttgag tttgaagcat tatgtaacaa agttacttga tacttgttgc 1260 ttaggacgtg cattatctgc tcttggtaag aaagaggaag ctcttctagt ttgggagcaa 1320 gggtatgaac atgcagttca tcagtccgca gacttaaagc aactgttaga gcttgaagag 1380 ctgctcaaaa ttgcaaagca gaacaccgca gtt ggcagca acaatcattc ggtgcagtca 1440 tctggccctg agtccaacac tggacctcct ctttctacca aatctggtga aacttgtgat 1500 attagtaagg cctcagatag ggaacttaaa acatgcagca gtgggatgtt ggaaagctct 1560 gagaaatcaa agaatagctc tgttttacaa aattcctcaa gtaataattc caaaaagcat 1620 aagaagattg agtctgaatc aaaggaattg catgagagac aagcaaataa aaccaacaac 1680 aattgcaaaa aattgggtta tccatctctg gtttgcagtg agttaagtga tatatctgaa 1740 gacagtagga aatcatctgc agtaactagt gaatcaagtg aacagtcaga accaaatgag 1800 ttgcaggaaa ttctcagtca gttgaataat aaatgtgatg ttcgcgttga attgagtgat 1860 gaaggcaaga gaaacaaaaa attttgtgtt accagggtca acaaaaccaa gtccattaac 1920 gttgatttcc gattatcaag gggaatagca caggtacact gcctatcctg tgatattaca 1980 atgaagacag gaagaattag tccatctatt gatatttcct gttagtgcgg ttgatcatta 2040 atatgctatt cttctttatt gaaatacaaa taacaataca tttgtaactt caaatatatg 2100 ccaaagatca acttcatgtc tcaatttgtg agattatttt ctctcaaatt aagtagagaa 2160 atgaattttt tcttgatata tctgctaggt actgggatac catgctcatg catagcagga 2220 aaggccttct actgcagtct tcatgtcttt tctgttcac t ttgcttattt cagttgtaat 2280 ttggtgatta cactccactt ttaattttgt gaacttaact ggaagattct gcatatgttc 2340 aaagcttggg tcaactaagc tctattatta gaattcattt tcttcagtta ctagatttgt 2400 atctctaact cttatgtgtt aaatttatgg agttagtatc atttttgcag tgtgcttgac 2460 tgcatgtttt gctttgttta aacttaagat gtcaaaatag gtttgtgatt gccagtcatt 2520 ctttctctct ctagtctcac atatccgcac tatagtgaca ttaaaacaaa aaagaagaag 2580 agaatttagc ttgattattt cttcaatcta gtagggtgta ttttctttcc tacgccccct 2640 aagctgcggt ggacagaggt attcggtatt tgcaccgata ggaggattta gatacccact 2700 agactacttg agatgcctgt aggttggtcc tgacaccatt gttattcaaa agaatgatgg 2760 taaattgaca atctagctct gtgtgcatat tttttcgtca aacacaagat gtgaaacaat 2820 aagtagtgct gcttgatgtg gttgagatca tggatattct gcttgcaatt gatctgacta 2880 tcacgtctcg ttgcttactt cttcaagaga ttagattatc atgatttaaa atgttgtgtt 2940 tctaaattgg atcatttatc tggggaactt cttgcccatt ttacattaga atatccaaaa 3000 cttgtatgtg tatgctgtcg taatgcagta gtagttgtct ccaaaatccc ttgatgtagg 3060 taggatgcag attatgacat ttcacaagga gcctggagag actg gttaat cactctaaca 3120 accaattaga tgatgtgtca tgcaattgtg aaatacttga gtttgccagc aattcttcta 3180 tattgatcca gaccttctag agatatccat ccaaaactag tcttgacact tggatccata 3240 gaggtatcaa taagtttgca atctagtata ccttgtttct tccaatatat caggtggata 3300 cttcccttag gccttatgat attggacgtg caaacttgat ggttaggatg tattttatgt 3360 ttctacaagt gcctagtctt aaaatgactg gtgttgtata ataccttgaa gcctataagg 3420 ttgtaaggaa acagagtaaa acagatcaaa ctatgcttaa tgagactgct taagaccata 3480 aattatcggc cttgtcgaaa cgctacttta aactcttctt agttgatgtc taactgatga 3540 ctgatgaagg aactagtgga gcgtggtcgc catagaaatg gaaagaccag cacatgcaat 3600 tttagttgct aagagagagt atcaaccatt gccatatatc tgaatgtatt tgttgacaat 3660 tgattgagct ttgagacaat tataaccatc ttgattataa atactcaatg aaatccaact 3720 gtagttttat tcctgtggag gatctatctc tgaagtgcca ctgttttttg ttgtcaggca 3780 tctccttaga tatgcatgca attggtttta ccagtctaag atattgaatt tgtgcataat 3840 ttgtaatgca agcatgatat aaatgtgaaa aacaatgtga aacacctact ggattagttg 3900 gtagacgatt tgctcaaagc tgtcttcagt agaaccaaag aagagaagaa aattgttgga 3960 gaactgtcat aggggaagta agtttgtatc acaaaaaaac aaggatgaga atcgtgaaaa 4020 atgtttagtt tgctattccc tcaaggtaat gaagtttaaa tagtgtttac atatgatata 4080 atataggaag attgaatttc ccggattaat atttgttggt agcggaaagg gggatgcgag 4140 tctgagatgg ttcggatatg taaagaggag atgcacatat gttccagtga agaggtgtga 4200 gcgagtttgt ctatggtgga tctgaggaga ggtaggtgta ggttgaagaa gtattgtgta 4260 gaaatgatta gttgaacatt gtctcgctgt catttaggag gggcatgatg atagtttgga 4320 acaaattact tgttggctgt cctttctttt ccatattagt attattgtta ttactcttct 4380 attatattat tctccgattt ttattagtac atattttttc ctttgcttta attatcgtag 4440 tattgtttgt tgttgttact gttcttttct ccattatttc cgacatgaat tcttcacaac 4500 tgtatctcct tttcaaacct gctttgaatg ctttacttga gccgagggtc tatcggaaac 4560 aaccactcta ccctcacaag gcaggcacca cccttcccaa acctacttgt gggattacac 4620 cggatatgtt attgttatgt gatattccct gatctcctat acatatttcc ttatctaagt 4680 ccttaattac aaaatattct taacaagatc aatcatctct gagataataa atacaattcg 4740 aaatattaag gttaatccaa atatttttat cttgcaacaa tagtttcctt ttttt tcttt 4800 tttcttaaac aagaaatatt tttaactttg taagttgagc agcaacgcca tttttagtga 4860 aaattgtgct taagtatgtt ggatggaaac tagcaaagcg aacacatgac ttacccgaaa 4920 gccaagttgc tcggactcta tactttcagt gtcgcacccg tgttgacacg ccatgggtgt 4980 gggattcgta cccggtatgg tcaaccagtt ttggatactc tgaacaaatt cgagggagaa 5040 attctggaca ggttcaatga tttttgtaat caaaacaaaa ctaatgtgat ttgaagaaaa 5100 tggaatgcct tgtatatata aatttcattt gtcaccccct ttccttttat ctccttccaa 5160 gattctcctc ttgatcaaat attttctcct caacttttcc gcataatatc tcataatttt 5220 aggttttata actctattag tagatatttt gaattatctt tcggcgaatc cccacatccg 5280 tttccataca tggatcttta tctctgaatc ttaaaattta tatcatagag gatccgacct 5340 ctagatccgc acctgcattg ggcacctgta cccgagtctg agcaacttaa cccgaaagaa 5400 gtttcaaaag agattgcacc cattcggtga tttagtggat gtaattaacc aggacttgag 5460 ttaaactatt tctttctatt cccatgtctt gactagcgat attcagttcc ttttcgtaag 5520 tatatatttg taggtaatta tattttttcc tcgatcttcc agttacgaca ctatttaatc 5580 atgtattcat cgtatttaat tgagaaatat ggtcaacgag gaatcatcta gccggctctg 5640 acttgcttgg ttttgaggcg tagtaatagt tgttattact cgtcatcctg tacaaacata 5700 gaagcgtaaa acaatatttt tggtgatttc aggttaatga aggaaaatat agtaatgctg 5760 tatccatctt tgaccaggtt agcattagcc ttaccactct tcgatatttt actagttttg 5820 tttgctagat gtgccttgtg ctttattttg ccctttttca tgtttgaatg gattaaacgg 5880 aggacttgtg tgtggcatgc tgaacttact tacggagctt cttctcttct atctataata 5940 acacagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 6000 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggt ttgcattgat 6060 ttggccattt aagtaccaat tgaggtaata cttcaacccc tgttgtaaat atttaccacc 6120 tgcctttcag gccatacaat caaatccatc tgctggagag gcctggaaac gcagagggca 6180 agcccgtgct gctttaggtg aatctgttga ggtataaaat tcgtatttgt ctatttattg 6240 agctatcttt tggcttttgt cttcagggta ttcttttctg ctatatttat tttttttcaa 6300 agtcaacttt caatgatctc ttctgtggat gtgatgtgca gtgtaaatga tgtggaatta 6360 ctgaatttta tcacttgtgc tatcagattt tgaaaccaaa tttttcgtta atagcaatca 6420 gactccagtt agaccactag ggatattatc aagaggcact tggttatttt ccttcagatt 6480 g tggtagctt acagagttaa tgatggaaga tgaaatgtct ttggatgttc taactaaggc 6540 ttgagctata tcacaactta tgagcatctt cccgtgaaag ttaaattcta aaatggaatc 6600 aggagcataa cattattcag ctgcatcctt ttgatcatgg gagtttcttg gtagtctaag 6660 tctaaaacat aattttaaca ttctgatgag ttagttttag ttttgttttg ctccgattat 6720 cccatggaga gtgatattag ttacatttaa acgcttttta cttcctaaaa atgttggttt 6780 cacagtaaaa gtagtatgat tgatatttgt gacttggtat atctaaacaa aatgatttta 6840 caccaggcaa ttacagactt gaccaaagcg ttggaatttg agccagactc tgccgatata 6900 ttacatgaaa gaggtgacga gactgaactc ttccatttac tatgaacaat tggatttatg 6960 ctgttaaagt agatagacat aaatagcaaa acatacattt tatgacagat agcttttgtg 7020 catgtaattt gaaactaagg ttcactttca tctttacaac actgagatta tttattgagg 7080 cccataggtg gtttcatctt gtaactattt tgcaataaat gacctctagc ggaatattcc 7140 ataatttctt gagatttcag aaaagatcat ttgattggac aaagtttgtt caatctaacc 7200 tgggagtcac taactctcct taattagtgc aggaattgtc aattttaagt ttaaagattt 7260 caaaggtgct gttgaagacc tctctacatg tgtaaagtcc gataaggata ataaatctgc 7320 gtataca tat ttggtgagtc tatgaccttg agtctaccaa ttgttgtaga atgagctaag 7380 aatgtttatc cgcaaaagtt tgagaaattt tttgttggaa aaatactgat ataatgctgg 7440 tcgaaaaaaa tttggaaaat tatcagggtt tggcgttata ctctctagga gaatatagga 7500 aggctgagga ggcacataag aaagcaatcc aaattgaaag gaatttcctc gaggcttggg 7560 ctcatctagc acaggtatct ctgaatatat ggtgaatact cttaatgcta tttttcctgc 7620 caagtgggat cccaatactt ctattggtag tgctgatgat atagagtttc ttgatgatga 7680 agttgccttt tgacttcgag aattttctta taccaagttc ttgtttttgt ttgtctcttt 7740 tttcaccggt atctggaact caaggttgag gtaaatatat acttctgcat gcaagttaag 7800 aaattcaaga ataaggattt aaatggcaag tagacattct attgcttaac cagtgatgaa 7860 gagcctaact ctctgttatc agatattgtg tgagcgttca tcttctgggg tgcaatgcac 7920 atgtattgta atagcttttg ccttgttgca ttttcagata aggtctcctg attagctggt 7980 agatgttatt aatttacatc atcaaattgg atgtttatgg aatatctatt gccataagtt 8040 taaaattcct aagactcagg agctgctcta acctagttct tgattggttg agtttcttca 8100 cttatattaa atgtggcaaa acaatgagat ctctttgaag atattttttt aatgatgtat 8160 ttgattattg aa gaatcttt atctttggtg cagttttatc aagacctagc aaactcagag 8220 aaggccttgg aatgccttca tcagattttg caaatagatg ggaggtgatt actgaggatc 8280 tcaatattta catctttttc accgataaat atctaatctc gagtatttga atggtgaagt 8340 ataaaaccta tcctcaaata ggaatataac tgataatcca tcctctatct accctttttc 8400 gttggaaggt acgcgaaagc atatcacctg cgcgggctgc tacttcatgg aatgggagag 8460 cataggtaca tatttctgaa aaattttgct gtcctgagtc tcccctttct ctcttttttg 8520 tcaaattttc tatgtataat cctcttttaa cgaaaaatgt agcaggcctt aactgcctat 8580 atatgctgtt acaggaatgc tataaaagat ttatcaatgg ggttggctat tgatagcgca 8640 aacattgaat gcttgtatct acgagcttct tgctatcatg ctattggatt atataaagaa 8700 gcagtatggg cattttcaaa ctcgtctctt gtgacttttg agtattctta aatattttaa 8760 ggtggttgtc tccaatttca gattattgat tctgaattta tgctgtaggt gaaggactat 8820 gatgctgctt tagatcttga attagattct atggaaaagt ttgtgcttca atgcttggcg 8880 ttctatcagg taaataagta tatgccagat ttccgtccat cgagctggtt caatgttatg 8940 cctctactaa gtattgtttt cttttgtgtt gcactatttt ctttttgctt tctaagtttt 9000 ggcattttct aactgtta gc ttttaccttg ctggaatggt tctcgattct caagtggaca 9060 actcatactt caaattttag atttgtcatt tcgggttgtt agccatttta gtagttgcaa 9120 ttttacattt acttaagtta gtagtcaaaa atttagcaat tttacatttt cccacaaatt 9180 gtccaaacat tggctaaatt tctgaccatc tttttgttcc gttaagccac tgttggacag 9240 tttgggtcga agtggccgat ggttaacaaa gccaagcttg gcttggttta agcttgatta 9300 tgattgcgtt taggtgtccc gcatattcaa acctagcaca aatgtcccta ccaaaagctc 9360 gagttgacag atgctagctt gtgagcccag ttaagttggc agtgttcttt tcacttaacc 9420 attacacatc cggtaaaata agattttgct acccggatca tttaatagtc ctatggaaac 9480 tcttttcatt ctagttgtgt gctcctcctc cttcctcatt cttgtgaaca gccttctgct 9540 tcctgcctgt gacaatacag gtgcagccat tatcatgaga caccaattga tctctctatc 9600 tctgttattt tttgtccaat ttctatttca gtttgaatag cttatgtttt gcttttcaat 9660 atttttccct tgcagaaaga aattgcatta tacactgcat caaagatgaa cagcgaattt 9720 tcttggtttg atattgatgg agatatcgat ccccttttca aggtaatgtc taaaaagaga 9780 atatattgct tggttatttt ttgatacact cattaaaaac aacacggaat attctggtag 9840 cctctgtacc gcctctttct gag agaattg ggaaaaggaa tgaagtttga agttatagca 9900 aaaagtacta tctggtggga attacgcaga actttgaagg ttagcagaga atttggagaa 9960 tgaatgaagt ttaaagaaat aaggcctcac tgattcaatt tgaattcgat tataagctta 10020 cctgaagaat ttgaccgtga aatcactaca actctgtcaa agtaattgga cattttacca 10080 tatcttttaa catgctcata ctctattatg tagagttatc ccttttaggc ttcaaaacct 10140 tctttagagc ccccatcatt tccttaaccc ccactaaatg gttggaaagt gatctcttct 10200 caaccaatag tctcataaga ttgctacaac agtttcattg ctcaattact ttatcatgag 10260 tagagtggca atggatacaa ggactatcta gaaacgtaaa ggttgctttc actgagttgc 10320 tgctgcagac attgcttgca ctttaagtat gtgctttatt tggtgcatat gttccttcat 10380 agttagttgt caatgttctt ttgctgatcc atgtcgaatg ggtgtgcgga gtctggaaaa 10440 tactaaacgt tctgaaaaag tcacaggtac ccatatggat aggacaaagt tactggttcc 10500 agttaggtag ataatcaatg aaggtacaac atgcatatac cagtgatagt tttctggaat 10560 gatgtgtagt ctccagttca taaacctaac agtgctttaa tcacttttat gcacctggag 10620 ggtccagggt gataccttta caaagtgaac tgtcatggga aaacctttga tttcaaatga 10680 tggtttcttg acagatat gt gggatcattt cattaatttt aggggctaat aatcagtttt 10740 tgtaaatctc ggatctaaag tggtagatac ctctatgaag tgaactgtca tctgaaaagt 10800 gcttttgttg gcagtgaatt tcttatctca aagttattat ttccattgac ttcgtgttct 10860 tatacttcgt tctcaattcc tacttttttt tcccttctgt tctcaggagt attggtgcaa 10920 aaggctgcac ccaaaaaatg tttgcgaaaa ggtctacagg caacctcctt taaaagaatc 10980 tttgaaaaag gggaagcaaa gaaagcaaga atttactttc accaagcaaa aaactgccct 11040 tctacaggct gcagattcta tcggtagaaa tatccagtat cattgtccag gtttcttgca 11100 taataggcgc caggtaattc taaaaagagt taaatattaa gttaactttg ttctttctaa 11160 aaaaacccag agctccacat tttccttgag aaacctgata gtgatttcct gttgctttat 11220 tagatgcctt tttatgcttt gctttcacat ttcctctaat atagacaatg agaatattga 11280 aggaaaagaa tatgaaaatg ttaccagaac cttttgtttg cattagttgc cttgtaattg 11340 agggatttga actgatatgc cgattataag agaaagttct tgtacaagaa tgttaccttt 11400 attttcacac tcaacgtttc ctctccagct ttcgctgtac acactccttg ttttccatca 11460 atagttagtt actttccatg aaatataaaa attaaggaat tcatctcaaa ttaggttatc 11520 ggaaaaaaaa gaagagaatc catctgtcaa cagaagattt tcactatttg tggactagtg 11580 ttctatcttc tcttagcaca gaaagtgaga tttggatctt aaagacaata acaacaaacc 11640 cagcgaaatc tcactacatg ggctctgggg atcttaagga ctgtttagca ttttatattc 11700 cacaattatg aatgataact ttctacacac actgttaaat aagattgagg tgactgccaa 11760 gtgccaaggc tacatttcta gtgaaaatgt ctaaaatgaa tagcatgcaa ctaataataa 11820 tacttataga tgtgaataat gatgttagac taagaatgcc aagttttgat ggtcatctag 11880 tgcaaaaagg gttggcgtct ttagttttgt ggagacactt ataggaagca gttgtctttc 11940 gcccttcagc ctctaattct gtaatatgta tgttgtggag caatttccga tgttaactgt 12000 gatgctcttt gtagttattt cgttgagtta gtttgtgcaa tggttgtaaa cagtagtatt 12060 agatttgtgc ctttctaact tgtgttgctt tttcatgatc aaaatttctc ttttcttatc 12120 tagtgaagag gatctattgt tcgtagtgta tctcttagac cttatcatga cattcttttc 12180 tttttgcaat ttaaagatga tataatatct ttattacaga tagtggattc ataaattatt 12240 gttatgtact aatatgctgc tctttagcta caaacatgct tgccacaatg tttttattct 12300 ttcacccaaa tctgagaatt attttgcaat tatcagcacc gcatggcagg attagctgct 12360 att gagatag cacaaaaagt ctcaaaagct tggcgtgcct tacaagctga atggagaaac 12420 tcaactaaag gcacagggaa gtctgggaag agactcagga gaagggaaaa actaaattct 12480 attagtttaa acagaggtgg agctggttgt agcactagca gttcctccga cacatctact 12540 tcatacagtt tgattgatga taggtcaact ggacgttcca tgatgtcatg gaaccacttg 12600 tattcattgg ctgtcaaatg gagacaaata tctgaaccat gtgatccagt ggtgtggatt 12660 aacaagctaa ggtactccac ctgctattaa tttactgaag tttagttagt tattaaagtt 12720 cattgaaatc atacttggtc tcagcattct aacaaatatc tactacattt tgctaaagtc 12780 attccgattt gaattgagta cacaatgata tttttttctt ttatttttga taaagagctc 12840 ttatttctta atatcaacaa tgatattctc ttagtacata aagataataa gaatcactat 12900 cttcaccaca agcatgaaaa aaaccctcct tcaatttgct taacttgctc cgtttgatcc 12960 tttagttcta tggagttatt tcccagcttc tgtgttggtg tacttcactc tcatttggag 13020 cactcacgaa aagaaggatt ctagcatgta tgacttttga agtttgggtg aagatcttgg 13080 aggactaaag acctatttca ctttggctcg tctaagaaac taagactaaa atcattaatt 13140 cgtatttacg ccgggataac tagatatacc acactactta ccacgtcgac gagattctag 1 3200 tgtatgaagt gagcccccta aaaagtcgta gagaaattca agaaaaaaca cctgtcatgc 13260 gaatcaaata tccatacact tacccaatta tctaagcagt gagagcatta tgcgcaagtc 13320 taaacacatt agtaataatt tgataaaagg agaacaataa atccaactaa atccataatc 13380 gtatcattaa ttccacgatc accaaatacc ctctgcccaa aatacgaccg tgaagcatct 13440 aatagagtta atgagttcag ctatcaggca tggaaatccc aagaaagaag atatatgcta 13500 taaaatagat agagctgaaa caacggcctc cactaaaggt ctttagcttt actataatga 13560 agataatgat tctaatgtgc cgctttggct ttactttttg atgagaattc ttgttttttt 13620 gcatagtgag gaatttaata ctggttttgg gtctcacacc cctcttgttc tcggtcaagc 13680 caaagttgtt cgctaccatc ccaattttca gaggtaagag ctttaccttt ctgataagcg 13740 caaatgtatt tttttactat tatttttttg tgtaacatgg atactgcaaa tgatactgat 13800 gctatgattg accttttgag ctcattacag gatgtgtaaa ttgatgctac ccttgtaaat 13860 aactttacaa cagcttgctg ctggccatga ataaaaattc ctttttaaca gtcaaaaggc 13920 ataacctttc ttatttgtat tagctctttc tcaaggctct tattgtctgt caatgttcag 13980 aaccttgact gttgccaagg ctgttatcaa ggagaataaa tcagtgtgca acaaggaaga 14040 caagataatt gatctttctg aacaacagaa gttgcaagaa gtgagtttgt ttgcttatga 14100 cctaaattca tcttttgcac tgttttgcct ttttcacagt gtatagtttt tggttgttga 14160 taattatttt tctggttcat gtcaaaatac ctactttata gcatttccca tgacaataaa 14220 agcgtcaaat tgagaaatct ttattaggct gattttatat tggtcacatt tcttcctta g 14280 atgttaactg atggctctct gaaatcaaac taggtgtcca cttgctagga ttaatacttc 14340 agtgccatac cttttttttt ctggtggtaa tcaacacctg aactgtactt tgcagataat 14400 ggctgcagaa tccagctcag atctttacag agttgttggt caagactttt ggttggccac 14460 ctggtgtaac agtacggcac ttgaagggta attttttata tttagtcctc tttatactgt 14520 ataacagtat gttactcttg aatattatct ctcatcgggg tcttttttct aattttccct 14580 cctttcttat tgcctgatca ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat 14640 gtagaacacc atttaacctt attggaattc aaccttttgt gtgtgtggaa aggagggtga 14700 cttgagtaaa atatcactta aactagatct gatttttctt attcctgtca acttttgttg 14760 ttccttccag gggtgagatt ggttacgact ttgcaattag aacaccttgc acacctgcta 14820 gatgggatga ctttgatgtg gagatgacat cagcctggga ggtatcctct tgatttatta 14880 ctagaaagcc attttctact ccatgacata gtttttggat atttgaaagc aatattacat 14940 caatgtaaaa cagtaacaca aaaattcttt agtggtcgtt ttgtaggctg tattaggtag 15000 aataatgcta gtactaaatt ttagtacaat gtttggtttt aaatctcacc tatgtactac 15060 taataccagt attacttata caccctattt aatacgattc ttatgcatag t aaaccatgg 15120 cattaactat atcagtacca ttcctatact cataatcata caccctattc agtagtactc 15180 ttgataattc aatgcatgtc agattgctag ttttagtaca acaaaccaaa caatcaataa 15240 gaaatgatgt cagcataaaa attccctgta ctagtcttca aaccaaacag ccccttatag 15300 tacagttttt catggtttat tcatcttgtg cctgctcgga gatgatcagt taagtcttat 15360 aataagccta tattagtcag cttgggagtc tgttcatcag actattctct cacttttaaa 15420 aagagatttt gctaagcact gaaacaagca gaagtaatga accttttcct gtctgaacat 15480 agaagtaagc attatgcctg agatgatctg ggtttttgtt cggtatgatc tttctgaaat 15540 gatttggcat atatttctta cttgaacctg tttgtagacc tactattttg tttctaactg 15600 aagctttatc tatacccatt aatttcctat tgttgcttgc ttctgtttgt gtagctccct 15660 ttttttccct cctttcttct ttttatttgt tcttgagaca cacatatatt ttctgtttgg 15720 tacttaaata atagtgttct aattaagtta actaactagt gcccgaaagt tggcccggac 15780 accacggtca tcacacacac aaaaaaaaga gttaactaag ttgagactta aatgatagtg 15840 ttctagttag accaagttga acacaaaact gttatgcagg ctctttgtgc tgcgtactgt 15900 ggtgataatt atgggtcaac agattttgat gtgcttgaaa atgt gagaga tgcaatctta 15960 aggatgacat attactggta agatatatta acttctattt ggttgatcac aagggaagcg 16020 tatggttctc tttaatttgt ctgataattt ttgcaggtat aatttcatgc cgctttccag 16080 aggaactgct gttgttgggt tcatagtttt gcttggatta ctgctcgctg ctaatatgga 16140 gttcacagga agcattccaa aaggtctgca ggtggattgg gaagccatcc tggagtttga 16200 ctcgagttcc tttgtagatt ctgtaaagaa atggttgtac ccatctctca aagtcagcac 16260 atcgtggaaa agctacccag atgtcacgtc aacatttgag acgactggat cagttgttgc 16320 tgctctgagc acctattcag actaa 16345 < 210> 2 <211> 3168 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 2 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tgcaaccgag cgttttgcta tagtcaattg gagcttcaca agcatgttat taaggattgt 180 gataaggcac ttcagctcga tcctaagctt cttcaagctt atatattcaa aggacgtgca 240 ttatctgctc ttggtaagaa agaggaagct cttctagttt gggagcaagg gtatgaacat 300 gcagttcatc agtccgcaga cttaaagcaa ctgttagagc ttgaagagct gctcaaaatt 360 gcaaagc aga acaccgcagt tggcagcaac aatcattcgg tgcagtcatc tggccctgag 420 tccaacactg gacctcctct ttctaccaaa tctggtgaaa cttgtgatat tagtaaggcc 480 tcagataggg aacttaaaac atgcagcagt gggatgttgg aaagctctga gaaatcaaag 540 aatagctctg ttttacaaaa ttcctcaagt aataattcca aaaagcataa gaagattgag 600 tctgaatcaa aggaattgca tgagagacaa gcaaataaaa ccaacaacaa ttgcaaaaaa 660 ttgggttatc catctctggt ttgcagtgag ttaagtgata tatctgaaga cagtaggaaa 720 tcatctgcag taactagtga atcaagtgaa cagtcagaac caaatgagtt gcaggaaatt 780 ctcagtcagt tgaataataa atgtgatgtt cgcgttgaat tgagtgatga aggcaagaga 840 aacaaaaaat tttgtgttac cagggtcaac aaaaccaagt ccattaacgt tgatttccga 900 ttatcaaggg gaatagcaca ggttaatgaa ggaaaatata gtaatgctgt atccatcttt 960 gaccagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 1020 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggc catacaatca 1080 aatccatctg ctggagaggc ctggaaacgc agagggcaag cccgtgctgc tttaggtgaa 1140 tctgttgagg caattacaga cttgaccaaa gcgttggaat ttgagccaga ctctgccgat 1200 atattacatg aaagaggaat t gtcaatttt aagtttaaag atttcaaagg tgctgttgaa 1260 gacctctcta catgtgtaaa gtccgataag gataataaat ctgcgtatac atatttgggt 1320 ttggcgttat actctctagg agaatatagg aaggctgagg aggcacataa gaaagcaatc 1380 caaattgaaa ggaatttcct cgaggcttgg gctcatctag cacagtttta tcaagaccta 1440 gcaaactcag agaaggcctt ggaatgcctt catcagattt tgcaaataga tgggaggtac 1500 gcgaaagcat atcacctgcg cgggctgcta cttcatggaa tgggagagca taggaatgct 1560 ataaaagatt tatcaatggg gttggctatt gatagcgcaa acattgaatg cttgtatcta 1620 cgagcttctt gctatcatgc tattggatta tataaagaag cagtgaagga ctatgatgct 1680 gctttagatc ttgaattaga ttctatggaa aagtttgtgc ttcaatgctt ggcgttctat 1740 cagaaagaaa ttgcattata cactgcatca aagatgaaca gcgaattttc ttggtttgat 1800 attgatggag atatcgatcc ccttttcaag gagtattggt gcaaaaggct gcacccaaaa 1860 aatgtttgcg aaaaggtcta caggcaacct cctttaaaag aatctttgaa aaaggggaag 1920 caaagaaagc aagaatttac tttcaccaag caaaaaactg cccttctaca ggctgcagat 1980 tctatcggta gaaatatcca gtatcattgt ccaggtttct tgcataatag gcgccagcac 2040 cgcatggcag gattagctgc tattgag ata gcacaaaaag tctcaaaagc ttggcgtgcc 2100 ttacaagctg aatggagaaa ctcaactaaa ggcacaggga agtctgggaa gagactcagg 2160 agaagggaaa aactaaattc tattagttta aacagaggtg gagctggttg tagcactagc 2220 agttcctccg acacatctac ttcatacagt ttgattgatg ataggtcaac tggacgttcc 2280 atgatgtcat ggaaccactt gtattcattg gctgtcaaat ggagacaaat atctgaacca 2340 tgtgatccag tggtgtggat taacaagcta agtgaggaat ttaatactgg ttttgggtct 2400 cacacccctc ttgttctcgg tcaagccaaa gttgttcgct accatcccaa ttttcagaga 2460 accttgactg ttgccaaggc tgttatcaag gagaataaat cagtgtgcaa caaggaagac 2520 aagataattg atctttctga acaacagaag ttgcaagaaa taatggctgc agaatccagc 2580 tcagatcttt acagagttgt tggtcaagac ttttggttgg ccacctggtg taacagtacg 2640 gcacttgaag ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat gggtgagatt 2700 ggttacgact ttgcaattag aacaccttgc acacctgcta gatgggatga ctttgatgtg 2760 gagatgacat cagcctggga ggctctttgt gctgcgtact gtggtgataa ttatgggtca 2820 acagattttg atgtgcttga aaatgtgaga gatgcaatct taaggatgac atattactgg 2880 tataatttca tgccgctttc cagaggaact gc tgttgttg ggttcatagt tttgcttgga 2940 ttactgctcg ctgctaatat ggagttcaca ggaagcattc caaaaggtct gcaggtggat 3000 tgggaagcca tcctggagtt tgactcgagt tcctttgtag attctgtaaa gaaatggttg 3060 tacccatctc tcaaagtcag cacatcgtgg aaaagctacc cagatgtcac gtcaacattt 3120 gagacgactg gatcagttgt tgctgctctg agcacctatt cagactaa 3168 <210> 3 <211> 1055 <212> PRT <213> Unknown <220> <223> Solanum lycopersicum <400> 3 Met Ala Ser Lys Val Thr Asp Arg Ile Glu Leu Ala Lys Leu Cys Ser 1 5 10 15 Ser Lys Glu Trp Ser Lys Ala Ile Arg Ile Leu Asp Ser Leu Leu Ala 20 25 30 Gln Thr Cys Val Ile Gln Asp Ile Cys Asn Arg Ala Phe Cys Tyr Ser 35 40 45 Gln Leu Glu Leu His Lys His Val Ile Lys Asp Cys Asp Lys Ala Leu 50 55 60 Gln Leu Asp Pro Lys Leu Leu Gln Ala Tyr Ile Phe Lys Gly Arg Ala 65 70 75 80 Leu Ser Ala Leu Gly Lys Lys Glu Glu Ala Leu Leu Val Trp Glu Gln 85 90 95 Gly Tyr Glu His Ala Val His Gln Ser Ala Asp Leu Lys Gln Leu Leu 100 105 110 Glu Leu Glu Glu Leu Leu Lys Ile Ala Lys Gln A sn Thr Ala Val Gly 115 120 125 Ser Asn Asn His Ser Val Gln Ser Ser Gly Pro Glu Ser Asn Thr Gly 130 135 140 Pro Pro Leu Ser Thr Lys Ser Gly Glu Thr Cys Asp Ile Ser Lys Ala 145 150 155 160 Ser Asp Arg Glu Leu Lys Thr Cys Ser Ser Ser Gly Met Leu Glu Ser Ser 165 170 175 Glu Lys Ser Lys Asn Ser Ser Val Leu Gln Asn Ser Ser Ser Asn Asn 180 185 190 Ser Lys Lys His Lys Lys Ile Glu Ser Glu Ser Lys Glu Leu His Glu 195 200 205 Arg Gln Ala Asn Lys Thr Asn Asn Asn Cys Lys Lys Leu Gly Tyr Pro 210 215 220 Ser Leu Val Cys Ser Glu Leu Ser Asp Ile Ser Glu Asp Ser Arg Lys 225 230 235 240 Ser Ser Ala Val Thr Ser Glu Ser Ser Glu Gln Ser Glu Pro Asn Glu 245 250 255 Leu Gln Glu Ile Leu Ser Gln Leu A sn Asn Lys Cys Asp Val Arg Val 260 265 270 Glu Leu Ser Asp Glu Gly Lys Arg Asn Lys Lys Phe Cys Val Thr Arg 275 280 285 Val Asn Lys Thr Lys Ser Ile Asn Val Asp Phe Arg Leu Ser Arg Gly 290 295 300 Ile Ala Gln Val Asn Glu Gly Lys Tyr Ser Asn Ala Val Ser Ile Phe 305 310 315 320 Asp Gln Ile Leu Glu Gln Asp Pro Thr Tyr Pro Glu Ala Leu Ile Gly 325 330 335 Arg Gly Thr Ala Leu Ala Phe Gln Arg Glu Leu Asp Ala Ala Ile Ser 340 345 350 Asp Phe Thr Lys Ala Ile Gln Ser Asn Pro Ser Ala Gly Glu Ala Trp 355 360 365 Lys Arg Arg Gly Gln Ala Arg Ala Ala Leu Gly Glu Ser Val Glu Ala 370 375 380 Ile Thr Asp Leu Thr Lys Ala Leu Glu Phe Glu Pro Asp Ser Ala Asp 385 390 395 400 Ile Leu His Glu Arg G ly Ile Val Asn Phe Lys Phe Lys Asp Phe Lys 405 410 415 Gly Ala Val Glu Asp Leu Ser Thr Cys Val Lys Ser Asp Lys Asp Asn 420 425 430 Lys Ser Ala Tyr Thr Tyr Leu Gly Leu Ala Leu Tyr Ser Leu Gly Glu 435 440 445 Tyr Arg Lys Ala Glu Glu Ala His Lys Lys Ala Ile Gln Ile Glu Arg 450 455 460 Asn Phe Leu Glu Ala Trp Ala His Leu Ala Gln Phe Tyr Gln Asp Leu 465 470 475 480 Ala Asn Ser Glu Lys Ala Leu Glu Cys Leu His Gln Ile Leu Gln Ile 485 490 495 Asp Gly Arg Tyr Ala Lys Ala Tyr His Leu Arg Gly Leu Leu Leu His 500 505 510 Gly Met Gly Glu His Arg Asn Ala Ile Lys Asp Leu Ser Met Gly Leu 515 520 525 Ala Ile Asp Ser Ala Asn Ile Glu Cys Leu Tyr Leu Arg Ala Ser Cys 530 535 540 Tyr His Ala Ile Gly Leu Tyr L ys Glu Ala Val Lys Asp Tyr Asp Ala 545 550 555 560 Ala Leu Asp Leu Glu Leu Asp Ser Met Glu Lys Phe Val Leu Gln Cys 565 570 575 Leu Ala Phe Tyr Gln Lys Glu Ile Ala Leu Tyr Thr Ala Ser Lys Met 580 585 590 Asn Ser Glu Phe Ser Trp Phe Asp Ile Asp Gly Asp Ile Asp Pro Leu 595 600 605 Phe Lys Glu Tyr Trp Cys Lys Arg Leu His Pro Lys Asn Val Cys Glu 610 615 620 Lys Val Tyr Arg Gln Pro Pro Leu Lys Glu Ser Leu Lys Lys Gly Lys 625 630 635 640 Gln Arg Lys Gln Glu Phe Thr Phe Thr Lys Gln Lys Thr Ala Leu Leu 645 650 655 Gln Ala Ala Asp Ser Ile Gly Arg Asn Ile Gln Tyr His Cys Pro Gly 660 665 670 Phe Leu His Asn Arg Arg Gln His Arg Met Ala Gly Leu Ala Ala Ile 675 680 685 Glu Ile Ala Gln L ys Val Ser Lys Ala Trp Arg Ala Leu Gln Ala Glu 690 695 700 Trp Arg Asn Ser Thr Lys Gly Thr Gly Lys Ser Gly Lys Arg Leu Arg 705 710 715 720 Arg Arg Glu Lys Leu Asn Ser Ile Ser Leu Asn Arg Gly Gly Ala Gly 725 730 735 Cys Ser Thr Ser Ser Ser Ser Asp Thr Ser Thr Ser Tyr Ser Leu Ile 740 745 750 Asp Asp Arg Ser Thr Gly Arg Ser Met Met Ser Trp Asn His Leu Tyr 755 760 765 Ser Leu Ala Val Lys Trp Arg Gln Ile Ser Glu Pro Cys Asp Pro Val 770 775 780 Val Trp Ile Asn Lys Leu Ser Glu Glu Phe Asn Thr Gly Phe Gly Ser 785 790 795 800 His Thr Pro Leu Val Leu Gly Gln Ala Lys Val Val Arg Tyr His Pro 805 810 815 Asn Phe Gln Arg Thr Leu Thr Val Ala Lys Ala Val Ile Lys Glu Asn 820 825 830 Lys S er Val Cys Asn Lys Glu Asp Lys Ile Ile Asp Leu Ser Glu Gln 835 840 845 Gln Lys Leu Gln Glu Ile Met Ala Ala Glu Ser Ser Ser Asp Leu Tyr 850 855 860 Arg Val Val Gly Gln Asp Phe Trp Leu Ala Thr Trp Cys Asn Ser Thr 865 870 875 880 Ala Leu Glu Gly Lys Arg Leu Glu Gly Thr Arg Ile Thr Val Val Lys 885 890 895 Met Gly Glu Ile Gly Tyr Asp Phe Ala Ile Arg Thr Pro Cys Thr Pro 900 905 910 Ala Arg Trp Asp Asp Phe Asp Val Glu Met Thr Ser Ala Trp Glu Ala 915 920 925 Leu Cys Ala Ala Tyr Cys Gly Asp Asn Tyr Gly Ser Thr Asp Phe Asp 930 935 940 Val Leu Glu Asn Val Arg Asp Ala Ile Leu Arg Met Thr Tyr Tyr Trp 945 950 955 960 Tyr Asn Phe Met Pro Leu Ser Arg Gly Thr Ala Val Val Gly Phe Ile 965 970 975 Val Leu Leu Gly Leu Leu Leu Ala Ala Asn Met Glu Phe Thr Gly Ser 980 985 990 Ile Pro Lys Gly Leu Gln Val Asp Trp Glu Ala Ile Leu Glu Phe Asp 995 1000 1005 Ser Ser Ser Phe Val Asp Ser Val Lys Lys Trp Leu Tyr Pro Ser Leu 1010 1015 1020 Lys Val Ser Thr Ser Trp Lys Ser Tyr Pro Asp Val Thr Ser Thr Phe 1025 1030 1035 1040 Glu Thr Thr Gly Ser Val Val Ala Ala Leu Ser Thr Tyr Ser Asp 1045 1050 1055 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA1 <400> 4 gtaactttcg acgccatcgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA2 <400> 5 attgactata gcaaaacgct 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cggtcaataa aacacgtgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gagcttcatc ctactcctcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaacagtga aaaacgtaac 20 <210> 9 <211> 53 <212> DNA <213> Artificial Se quence <220> <223> primer <400> 9 acactctttc cctacacgac gctcttccga tctaatcgca tcaattgagc tgc 53 <210> 10 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gtgactggag ttcagacgtg tgctcttccg atctatgacg 1 61 caagttgag 1 61 caagttgag <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 acactctttc cctacacgac gctcttccga tctttggaca tttatgaatg aactgattaa 60 60 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 12 gtgactggag ttcagacgtg tgctcttccg atcttaggat cgagctgaag tgcc 54 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cagtcggtct caggagtgat caaaagtccc acatcgatca ggtgatatat agcagcttag 60 ttta 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gagtcggtct cacaatcgct atgtcgactc tatcattata taaactaagc tgctatatat 60 cacc 64 <210> 15 <211> 86 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 15 cagtcggtct caattggtaa ctttcgacgc catcgcgttt tagagctaga aatagcaagt 60 taaaataagg ctagtccgtt atc aac 86 <210> 16 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 cagtcggtct caagcgaaaa aaagcaccga ctcggtgcca ctttttcaag ttgataacgg 60 actagcctta tttt 74 <210> 2 17 <210> 2 7 211> > DNA <213> Artificial Sequence <220> <223> primer <400> 17 cagtcggtct caattggatt gactatagca aaacgctgtt ttagagctag aaatagcaag 60 ttaaaataag gctagtccgt tatcaac 87 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gccatatt21 g act2cttgtc <2ct1ga0> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tagtctggcc tctcggaca 19 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 20 tccaggtaga gacagtggta aa 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ctggtttctt tggtgttcct gc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcaacaactg tccatacacc 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agactccacc acaatcacc 19 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gacaagcaat agcaggagtg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 taagtgtgcc aacatcagac 20 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaaatagcat aagatggcag acg 23 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 atacccacca tcacaccagt at 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ctgctctctc agtagccaac ac 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer<400> 29 cttcctccaa tagcagaggt tt 22

Claims (9)

토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터; 또는 SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein);를 유효성분으로 함유하는, 토마토 식물체의 병 저항성을 조절하기 위한 유전체 교정용 조성물.Tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) Recombinant DNA encoding a guide RNA specific to the target sequence of the gene and a nucleic acid sequence encoding an endonuclease protein vector; Or a complex of guide RNA and endonuclease protein specific for the target sequence of the SlSRFR1 gene (ribonucleoprotein); containing as an active ingredient, a genome editing composition for regulating disease resistance of tomato plants. 제1항에 있어서, 상기 SlSRFR1 유전자의 표적 염기서열은 서열번호 4 또는 서열번호 5의 염기서열로 이루어진 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the target nucleotide sequence of the SlSRFR1 gene consists of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5. (a) 토마토 유래 SRFR1 (Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 토마토 식물세포에 도입하여 유전체를 교정하는 단계; 및
(b) 상기 유전체가 교정된 토마토 식물세포로부터 토마토 식물체를 재분화하는 단계;를 포함하는, 병 저항성이 조절된 유전체 교정 토마토 식물체의 제조방법.
(a) Tomato-derived SRFR1 ( Solanum lycopersicum SUPPRESSOR OF rps4-RLD1; SlSRFR1 ) Guide RNA specific to the target sequence of the gene and endonuclease protein are introduced into tomato plant cells to correct the genome doing; and
(b) regenerating tomato plants from the genome-corrected tomato plant cells; a method for producing a genome-corrected tomato plant with controlled disease resistance.
제3항에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 토마토 식물세포에 도입하는 것은, SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터; 또는 SlSRFR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein);를 이용하는 것을 특징으로 하는 제조방법.The method of claim 3, wherein the guide RNA and endonuclease protein of step (a) are introduced into tomato plant cells, DNA encoding the guide RNA specific to the target sequence of the SlSRFR1 gene and endonuclease protein A recombinant vector comprising a nucleic acid sequence encoding a; Or a complex (ribonucleoprotein) of guide RNA and endonuclease protein specific for the target sequence of the SlSRFR1 gene; manufacturing method characterized by using. 제3항에 있어서, 상기 SlSRFR1 유전자의 표적 염기서열은 서열번호 4 또는 서열번호 5의 염기서열로 이루어진 것을 특징으로 하는 제조방법.The method according to claim 3, wherein the target nucleotide sequence of the SlSRFR1 gene consists of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5. 제3항에 있어서, 상기 병 저항성은 야생형에 비해 기생영양(biotrophic) 병원균에 의한 식물병에 대한 저항성을 증가시키거나, 사물기생성(necrotrophic) 병원균에 의한 식물병에 대한 저항성을 감소시키는 것을 특징으로 하는 제조방법.The method of claim 3, wherein the disease resistance increases resistance to plant diseases caused by biotrophic pathogens or reduces resistance to plant diseases caused by necrotrophic pathogens compared to wild type. Manufacturing method to. 제3항 내지 제6항 중 어느 한 항의 방법에 의해 제조된 병 저항성이 조절된 유전체 교정 토마토 식물체.Claims 3 to 6 of any one of the methods prepared by the disease resistance is controlled genome corrected tomato plants. 제7항에 있어서, 상기 유전체 교정 토마토 식물체는 야생형에 비해 기생영양(biotrophic) 병원균에 의한 식물병에 대한 저항성이 증가되거나, 사물기생성(necrotrophic) 병원균에 의한 식물병에 대한 저항성이 감소되는 것을 특징으로 하는 유전체 교정 토마토 식물체.The method of claim 7, wherein the genome corrected tomato plant has increased resistance to plant diseases caused by biotrophic pathogens or decreased resistance to plant diseases caused by necrotrophic pathogens compared to the wild type. Characterized genome-edited tomato plants. 제7항에 따른 토마토 식물체의 유전체가 교정된 종자.A seed whose genome is corrected in the tomato plant according to claim 7.
KR1020210095574A 2021-07-21 2021-07-21 Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method KR20230014337A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210095574A KR20230014337A (en) 2021-07-21 2021-07-21 Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method
PCT/KR2022/008352 WO2023003177A1 (en) 2021-07-21 2022-06-14 Method for producing tomato plant having controlled disease resistance by gene editing, and tomato plant produced by same production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210095574A KR20230014337A (en) 2021-07-21 2021-07-21 Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method

Publications (1)

Publication Number Publication Date
KR20230014337A true KR20230014337A (en) 2023-01-30

Family

ID=84980332

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210095574A KR20230014337A (en) 2021-07-21 2021-07-21 Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method

Country Status (2)

Country Link
KR (1) KR20230014337A (en)
WO (1) WO2023003177A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3472325T3 (en) * 2016-06-20 2024-05-21 Keygene Nv Method for targeted DNA modification in plant cells
KR101852532B1 (en) * 2016-06-22 2018-04-27 서울대학교산학협력단 Method for increasing pest resistance in plant using SRA1 gene from Solanum lycopersicum and the plant thereof

Also Published As

Publication number Publication date
WO2023003177A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR102107735B1 (en) Method for producing whole plants from protoplasts
US9756871B2 (en) TAL-mediated transfer DNA insertion
EP2893025B1 (en) Engineered transgene integration platform (etip) for gene targeting and trait stacking
KR101303110B1 (en) Corn Event MIR604
KR102253223B1 (en) Tobacco specific nitrosamine reduction in plants
US20210348179A1 (en) Compositions and methods for regulating gene expression for targeted mutagenesis
CN107759676B (en) Plant amylose synthesis related protein Du15, and coding gene and application thereof
CN113801891B (en) Construction method and application of beet BvCENH3 gene haploid induction line
CN110066824B (en) Artificial base editing system for rice
CN110713994B (en) Plant stress tolerance associated protein TaMAPK3, and coding gene and application thereof
CN116179589B (en) SlPRMT5 gene and application of protein thereof in regulation and control of tomato fruit yield
CN112646011A (en) Protein PHD-Finger17 related to plant stress resistance and coding gene and application thereof
KR102547766B1 (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
KR102516522B1 (en) pPLAⅡη gene inducing haploid plant and uses thereof
KR20230014337A (en) Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method
WO1999010514A1 (en) Fumonosin resistance
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN102952821B (en) Plant expression vector of alfalfa malic acid channel protein gene MsALMT1, and applications thereof
CN112080513A (en) Rice artificial genome editing system with expanded editing range and application thereof
KR20230014331A (en) Plant immune regulator SRFR1 gene from tomato and uses thereof
CN112194713B (en) Protein FSE5 related to rice endosperm starch granule development and encoding gene and application thereof
CN116286742B (en) CasD protein, CRISPR/CasD gene editing system and application thereof in plant gene editing
CN113462661B (en) SIZ1 protein separated from corn, encoding gene thereof and application thereof in variety improvement
KR102579767B1 (en) Method for producing genome-edited tomato plant with increased Potyvirus resistance by eIF4E1 gene editing and genome-edited tomato plant with increased Potyvirus resistance produced by the same method
US20240167046A1 (en) Inducible mosaicism

Legal Events

Date Code Title Description
E902 Notification of reason for refusal