KR20230007252A - A composition which relieves endo plasmic reticulum stress - Google Patents

A composition which relieves endo plasmic reticulum stress Download PDF

Info

Publication number
KR20230007252A
KR20230007252A KR1020220165785A KR20220165785A KR20230007252A KR 20230007252 A KR20230007252 A KR 20230007252A KR 1020220165785 A KR1020220165785 A KR 1020220165785A KR 20220165785 A KR20220165785 A KR 20220165785A KR 20230007252 A KR20230007252 A KR 20230007252A
Authority
KR
South Korea
Prior art keywords
endoplasmic reticulum
strain
karc
yeast
reticulum stress
Prior art date
Application number
KR1020220165785A
Other languages
Korean (ko)
Inventor
권흥택
Original Assignee
주식회사 피코엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피코엔텍 filed Critical 주식회사 피코엔텍
Priority to KR1020220165785A priority Critical patent/KR20230007252A/en
Publication of KR20230007252A publication Critical patent/KR20230007252A/en
Priority to KR1020230152965A priority patent/KR20240087538A/en
Priority to PCT/KR2023/019179 priority patent/WO2024117697A1/en
Priority to US18/519,482 priority patent/US20240180985A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/062Ascomycota
    • A61K36/064Saccharomycetales, e.g. baker's yeast
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/14Yeasts or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a composition for inhibiting or preventing various disease phenomena caused by the occurrence of endoplasmic reticulum stress by relieving endoplasmic reticulum stress, and relates to a composition derived from mutant yeast that inhibits or prevents fatty liver or steatohepatitis. More specifically, the present invention relates to a food or pharmaceutical composition derived from mutant yeast, which suppresses or prevents fatty liver or steatohepatitis by alleviating endoplasmic reticulum stress.

Description

소포체 스트레스를 완화시키는 조성물{A composition which relieves endo plasmic reticulum stress}Composition which relieves endoplasmic reticulum stress {A composition which relieves endo plasmic reticulum stress}

본 발명은 소포체 스트레스를 완화시킴으로써 소포체 스트레스(endoplasmic reticulum stress, ER Stress) 발생으로 인하여 야기되는 다양한 질병 현상을 억제, 예방하는 조성물에 관한 것으로서, 지방간 또는 지방간염을 억제 또는 예방하는, 돌연변이 효모로부터 유래되는 조성물에 관한 것이다. The present invention relates to a composition for inhibiting or preventing various disease phenomena caused by the occurrence of endoplasmic reticulum stress (ER Stress) by alleviating endoplasmic reticulum stress, which inhibits or prevents fatty liver or steatohepatitis, derived from mutant yeast It is about the composition to be.

보다 상세하게는, 본 발명은 소포체 스트레스(ER Stress)를 완화하여 간 염증(inflammation), 알코올성 지방간(alcoholic fatty liver disease, AFLD), 비알코올성 지방간(none-alcoholic fatty liver disease, NAFLD)을 억제 또는 예방하는, 돌연변이 효모로부터 유래되는 식품 또는 약제조성물에 관한 것이다. More specifically, the present invention alleviates ER stress to inhibit liver inflammation, alcoholic fatty liver disease (AFLD), or none-alcoholic fatty liver disease (NAFLD) It relates to a food or pharmaceutical composition derived from mutant yeast that prevents.

좀 더 구체적으로는, 본 발명은 알데히드탈수소효소(aldehyde dehydeogenase, ALDH), 조효소(NAD, NADP), 글루타치온(glutathione) 등을 함유하여 소포체 스트레스 발생으로 인하여 야기되는 지방간 현상과 간염을 억제하는, 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물의 용해물(lysate)을 함유하는, 지방간 억제 식품조성물 또는 예방 및 치료제 조성물에 대한 것이다. More specifically, the present invention contains aldehyde dehydrogenase (ALDH), coenzymes (NAD, NADP), glutathione, etc. to suppress fatty liver and hepatitis caused by endoplasmic reticulum stress, saccharide It relates to a fatty liver inhibitory food composition or preventive and therapeutic composition containing a lysate of any one or mixtures thereof selected from the group consisting of KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, and KCTC14985BP in Roma Ices Celebijie. .

지방간 현상을 일으키는 원인은 음주와 비만 등이며, 지방간 현상은 혈중 지질의 농도가 높은 고지혈증이나 당뇨병 등 대사성질환 환자에게 나타나기도 하고, 산화스트레스에 의해서 생긴 독성 알데히드 등의 독소 증가 및 소포체 스트레스를 야기하는 약물이나 부신피질 호르몬제나 여성 호르몬제 등의 약물이 원인이 될 수도 있다. Fatty liver is caused by drinking and obesity, and fatty liver occurs in patients with metabolic diseases such as hyperlipidemia or diabetes with high blood lipid concentrations, and increases in toxins such as toxic aldehydes caused by oxidative stress and causes endoplasmic reticulum stress. Medications such as drugs or corticosteroids or female hormones may be the cause.

알코올을 섭취하게 되면 간의 소포체 스트레스(ER Stress)의 증가로 인해 지방 합성이 증진되기 때문에, 간 조직에 지방이 축적되어 지방간 현상이 발생되면서 정상적인 에너지 대사가 이루어지지 않게 된다. When alcohol is ingested, fat synthesis is enhanced due to an increase in ER stress in the liver, so fat is accumulated in the liver tissue, resulting in fatty liver, preventing normal energy metabolism.

음주를 제외한 요인으로 발생하는 비알코올성 지방간 증상이 발생하기도 한다. 지방간에 대한 다양한 약리작용을 가진 약물이 개발되고 있지만, 현재까지 지방간 치료에 있어 효과가 명백하게 밝혀진 약물이 없다.Non-alcoholic fatty liver symptoms caused by factors other than drinking may also occur. Although drugs with various pharmacological effects on fatty liver are being developed, there is no drug whose effect has been clearly identified in the treatment of fatty liver to date.

지방간염은 인슐린 저항성 및 비만 등으로 인해 간 조직 내에 지질이 축적되어 간세포가 괴사되는 염증 징후가 동반된 경우를 말한다. 지방간염은 일부에서 만성 간염, 간 경변으로 발전하기도 한다. 비알코올성 지방간염은 지방 대사의 이상을 초래하는 대사증후군에 동반된다.Steatohepatitis refers to a case in which lipids are accumulated in liver tissue due to insulin resistance and obesity, which is accompanied by inflammatory signs of hepatocyte necrosis. Steatohepatitis may develop into chronic hepatitis and liver cirrhosis in some cases. Non-alcoholic steatohepatitis accompanies metabolic syndrome that causes abnormal fat metabolism.

소포체(endoplasmic reticulum, ER)는 진핵세포(eukaryotic cell)의 세포질에 존재하는 막 구조체로서 핵막과 연결되어 있다. 소포체 내부 공간은 세포 부피의 10% 및 전체 세포막의 50% 이상을 차지하며, 단백질을 합성하는 다수의 리보솜이 표면에 붙어있어서 거친 형태를 나타내는 조면소포체(rough endoplasmic reticulum, rER)와 리포솜(ribosome)이 붙어있지 않아서 표면이 매끄러운 활면소포체(smooth endoplasmic reticulum, sER)의 2가지 종류로, 형태에 따라 분류된다.The endoplasmic reticulum (ER) is a membrane structure present in the cytoplasm of eukaryotic cells and is connected to the nuclear membrane. The inner space of the endoplasmic reticulum occupies 10% of the cell volume and more than 50% of the total cell membrane, and many ribosomes that synthesize proteins are attached to the surface, resulting in rough endoplasmic reticulum (rER) and liposomes There are two types of smooth endoplasmic reticulum (sER), which are not attached and have a smooth surface, and are classified according to their shape.

활면소포체(sER)는 막 지질과 스테로이드 호르몬이 합성되고 해독작용이 일어나는 곳으로서, 지질, 인지질, 스테로이드를 합성하는 곳이다. 활면소포체에서는 포도당-6-인산을 탈인산화시켜 포도당으로 분리 배출하기도 하며, 알코올을 비롯한 유기물질을 산화시켜 해독시키는 역할도 담당한다. The smooth endoplasmic reticulum (sER) is where membrane lipids and steroid hormones are synthesized and where detoxification takes place, where lipids, phospholipids, and steroids are synthesized. In the smooth endoplasmic reticulum, glucose-6-phosphate is dephosphorylated to be separated and discharged into glucose, and it is also responsible for oxidizing and detoxifying organic substances including alcohol.

활면소포체는 리보솜이 결합하지 않은 소포체로서, 대부분 세포에 존재하지만 주로 지방을 합성하는 세포에 많이 존재한다. 해독과정은 주로 간세포에서 일어나는데, 약이나 식품에 있는 반응성 알데히드와 같은 잠재적 독성 물질들을 몸 밖으로 빨리 배출시키기 위하여 생체내 탈수소효소를 이용하여 내인성 알데히드를 탈수소화 시키는 산화(oxidation)반응이 진행된다. 활면소포체는 주로 간, 근육세포, 스테로이드를 만드는 세포에 잘 발달되어 있다. The smooth endoplasmic reticulum is an endoplasmic reticulum to which ribosomes are not bound, and is present in most cells, but is mainly present in cells synthesizing fat. The detoxification process mainly occurs in hepatocytes. In order to rapidly expel potentially toxic substances such as reactive aldehydes in medicines or foods out of the body, an oxidation reaction is performed to dehydrogenate endogenous aldehydes using dehydrogenases in vivo. Smooth endoplasmic reticulum is well developed mainly in liver, muscle cells, and steroid-making cells.

조면소포체(rER) 막에는, 리보솜(ribosome)이 소포체 표면에 붙어 있어 단백질 합성 과정에서 메신저알앤에이(mRNA) 번역을 담당하고, 막으로 둘러싸인 소포체강(lumen)에서는 단백질 2차 구조를 만드는 폴딩(folding) 과정 및 단백질 숙성과 변형을 일으키는 과정이 진행된다. 조면소포체에는, 단백질 숙성과 변형이 가능하게 하는 샤페론(chaperone) 단백질과 효소들이 분포한다.In the rough endoplasmic reticulum (rER) membrane, ribosomes are attached to the surface of the endoplasmic reticulum and are in charge of mRNA translation during protein synthesis, and folding to create secondary structures in the lumen surrounded by membranes. ) process and processes that cause protein maturation and transformation. In the rough endoplasmic reticulum, chaperone proteins and enzymes that enable protein maturation and transformation are distributed.

리보솜에 의해 합성되는 단백질 중, N 말단에 소포체 신호 펩타이드(ER signal peptide)를 가지는 단백질이 소포체로 이동해 들어온다. 이때 지용성이 있는 막 단백질의 경우는 소포체 막에 머물고, 수용성 단백질은 소포체 내강으로 들어오게 된다. Among proteins synthesized by ribosomes, proteins having an ER signal peptide at the N-terminus migrate into the endoplasmic reticulum. At this time, lipid-soluble membrane proteins stay in the endoplasmic reticulum membrane, and water-soluble proteins enter the endoplasmic reticulum lumen.

리보솜에 의해 합성된 단백질들 중, 단백질 고유의 2차 구조로 변형되지 못하고 남아있는 미접힘 단백질(unfolded protein, UP) 상태 또는 비정상적으로 접힌 단백질(misfolded protein, MP) 등이 제거되지 않고 소포체 내에 축적되는 경우에는, 소포체 항상성이 훼손되어 소포체 스트레스(ER Stress)를 야기한다. Among proteins synthesized by ribosomes, unfolded proteins (UP) or abnormally folded proteins (MP), which have not been transformed into their own secondary structure, are not removed and accumulate in the endoplasmic reticulum In this case, endoplasmic reticulum homeostasis is disrupted, resulting in ER stress.

이렇게 소포체 스트레스의 원인인 미접힘 단백질 및 비정상 단백질을 복원 또는 분해하여 제거하는 대응 현상을, 미접힘 단백질 반응(unfolded protein response, UPR)이라 한다. A response phenomenon in which unfolded proteins and abnormal proteins, which are the cause of endoplasmic reticulum stress, are restored or degraded and removed, is called an unfolded protein response (UPR).

세포는 미접힘 단백질 반응을 활성화시킴으로서 소포체 스트레스에 완화 또는 항상성이 유지되도록 대응하며, 이러한 미접힘 단백질 대응의 활성화와 관련된 단백질로서 Grp78, Ire-1α, ATF6, PERK 등이 알려져 있다.Cells respond to endoplasmic reticulum stress by activating the unfolded protein response so that endoplasmic reticulum stress is alleviated or homeostasis is maintained, and Grp78, Ire-1α, ATF6, PERK and the like are known as proteins related to the activation of the unfolded protein response.

미접힘 단백질 반응을 통한 소포체 스트레스 완화에도 불구하고 항상성 유지가 원활하지 못할 경우, 세포는 세포사멸(apoptosis)경로에 진입한다. 소포체 스트레스(ER Stress) 증가 또는 소포체 항상성 파괴에 따른 세포사멸이 감염병(viral infectious disease), 비만(obesity)과 당뇨병(diabetes mellitus) 등 대사성질환, 치매 등을 포함한 퇴행성뇌신경질환(neurodegeneration), 지방간과 간경변 및 암(cancer) 등의 발병을 유도하는 주요한 질병 원인 중의 하나로 알려지고 있다.When homeostasis is not maintained smoothly despite the relief of endoplasmic reticulum stress through the unfolded protein response, cells enter the apoptosis pathway. Cell death due to increased ER stress or disruption of endoplasmic reticulum homeostasis can lead to viral infectious diseases, metabolic diseases such as obesity and diabetes, neurodegeneration including dementia, and fatty liver disease. It is known as one of the major causes of diseases that induce the development of liver cirrhosis and cancer.

미토콘드리아의 에너지 생성 및 대사 과정 중 발생한 활성산소(ROS, reactive oxygen species)는, 지질과산화(lipid peroxidation, LPO) 반응을 통해 노네날(nonenal, HNE), 말론디알데히드(MDA), 아세트알데히드(acetaldehyde, Ach) 등의 알데히드성 독성 물질의 세포내 축적을 야기한다.Reactive oxygen species (ROS) generated during the energy production and metabolism of mitochondria are produced through the lipid peroxidation (LPO) reaction to generate nonenal (HNE), malondialdehyde (MDA), and acetaldehyde (acetaldehyde). , Ach) and other aldehyde-like toxic substances cause intracellular accumulation.

이들 물질들의 2차 대사 과정을 통해, 말론디알데히드-아세트알데히드 결합물(malondialdehyde-acetaldehyde adduct, MAA), 말론디알데히드-라이신 결합물(malondialdehyde-lysine adducts, M-lys) 생성 등 연쇄 반응을 통해 다양한 변형 단백질을 생체 내에 축적시켜서, 그 결과 산화스트레스(oxidative stress)를 증가시킨다. Through the secondary metabolism of these substances, chain reactions such as malondialdehyde-acetaldehyde adduct (MAA) and malondialdehyde-lysine adducts (M-lys) are produced. Accumulation of various modified proteins in vivo results in increased oxidative stress.

산화스트레스 증가는 미토콘드리아의 에너지 대사과정에 영향을 미쳐 세포내 메칠글라이옥살(methylglyoxal, MG), 최종 당화물(advanced glycation end products, AGEs) 등의 알데히드성 물질을 증가시켜, 세포의 에너지 대사 교란을 더욱 악화시킨다. Increased oxidative stress affects the energy metabolism process of mitochondria and increases aldehyde substances such as methylglyoxal (MG) and advanced glycation end products (AGEs) in cells, disrupting cellular energy metabolism further aggravates

이와 같이 활성산소 및 산화스트레스 증가에 의한 지질과산화(LPO)반응의 결과물인 HNE, MDA 등의 반응성 알데히드, 당대사(glycolysis) 중간체인 글리셀알데히드-3-포스페이트(Glyceraldehyde-3-phosphate, GA3P) 등의 알데히드 물질이 과생산되어 세포내에 축적되면 세포독성(cytotoxicity) 작용이 발생된다. As such, reactive aldehydes such as HNE and MDA, which are the result of lipid peroxidation (LPO) reaction caused by increased active oxygen and oxidative stress, and glyceraldehyde-3-phosphate (GA3P), which is an intermediate in glycolysis, When aldehyde substances such as aldehydes are overproduced and accumulated in cells, cytotoxicity occurs.

활성산소나 반응성 알데히드 축적은 글루타치온(glutathione) 등 세포내 항산화 방어 시스템을 약화시켜, 에너지 대사 교란 및 미접힘 단백질의 축적을 통해 최종적으로 소포체 스트레스(ER Stress)의 상승을 유발하는 상호작용을 한다. Accumulation of reactive oxygen species or reactive aldehydes weakens intracellular antioxidant defense systems such as glutathione, leading to an interaction that ultimately causes an increase in ER stress through disturbance of energy metabolism and accumulation of unfolded proteins.

간세포의 소포체에 스트레스가 발생하면, 활면소포체가 활성화되어 간에 지방이 축적되면서 지방간이 형성되고 지방간염으로 발전된다. 그러나 소포체 스트레스를 억제하여 간 내 지방 축적을 저해하고, 급성 간 손상을 억제하여 지방간염을 예방하는 약물의 개발이 요청되고 있다.When stress occurs in the endoplasmic reticulum of hepatocytes, smooth endoplasmic reticulum is activated and fat accumulates in the liver, forming fatty liver and developing steatohepatitis. However, there is a demand for the development of drugs that inhibit endoplasmic reticulum stress to inhibit fat accumulation in the liver and prevent steatohepatitis by inhibiting acute liver damage.

미합중국 특허공개 제US-2021-0254023호(USSN 17/176,365), 2021년 8월 19일 공개United States Patent Publication No. US-2021-0254023 (USSN 17/176,365), published Aug. 19, 2021

Lin et al. “Endoplasmic reticulum Stress in Disease Pathogenesis”, Annu Rev Pathol. (2008);3:399-425Lin et al. “Endoplasmic reticulum Stress in Disease Pathogenesis”, Annu Rev Pathol. (2008);3:399-425 Sicari et al. “A guide to assesing endoplasmic reticulum homeostasis and stress in mammalian systems”, The FEBS Journal 287. (2020);27-42.Sicari et al. “A guide to assesing endoplasmic reticulum homeostasis and stress in mammalian systems”, The FEBS Journal 287. (2020);27-42. Ozcan and Tabas et al. “Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders”, Annu Rev Med. (2012);63:317-328.Ozcan and Tabas et al. “Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders”, Annu Rev Med. (2012);63:317-328. Malhi et al. “Endoplasmic reticulum stress in liver disease”, Jounal of hepatology (2011);vol 54:795-809.Malhi et al. “Endoplasmic reticulum stress in liver disease”, Journal of hepatology (2011);vol 54:795-809. Bhattaral et al. “The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling”, Experimental & Molecular Medicine (2021);53:151-167.Bhattaral et al. “The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling”, Experimental & Molecular Medicine (2021);53:151-167. Maamoun et al. “Crosstalk Between Oxidative Stress and Endoplasmic reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase(HO)-1”, Frontiers in Physiology Vol 10,(2019);Article 70.Maamoun et al. “Crosstalk Between Oxidative Stress and Endoplasmic reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1”, Frontiers in Physiology Vol 10,(2019);Article 70 . Liao et al. “aldehyde dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction”, Mol Med. (2012);18:785-793.Liao et al. “aldehyde dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction”, Mol Med. (2012);18:785-793. Ramana et al., “Lipid Peroxidation: Production, Metaboism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal”, Oxidative Medicine and Cellular Longevity Vol 2014; Article ID 360438:31.Ramana et al., “Lipid Peroxidation: Production, Metaboism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal”, Oxidative Medicine and Cellular Longevity Vol 2014; Article ID 360438:31. Console et al., “The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury”, Front. Physiol. (2020);11:794.Console et al., “The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury”, Front. Physiol. (2020);11:794.

이러한 많은 선행 연구들에도 불구하고, 현재까지 간 세포의 소포체에 가해지는 스트레스를 억제하여 지방간이나 지방간염을 억제 또는 치료하는 식품 조성물이나 약제 조성물은 아직 개발되지 아니하고 있다. Despite these many prior studies, a food composition or pharmaceutical composition for suppressing or treating fatty liver or steatohepatitis by suppressing stress applied to the endoplasmic reticulum of liver cells has not yet been developed.

따라서 본 발명의 기본적인 목적은, 소포체 스트레스를 유발하는 내인성 알데히드를 신속하게 분해하는 알데히드탈수소효소(aldehyde dehydrogenase, ALDH)를 함유함으로써, 소포체 스트레스 발생 요인을 미리 제거하여 소포체 스트레스 발생을 차단하는, 돌연변이 효모 유래 조성물을 제공하는 것이다.Therefore, a basic object of the present invention is to contain aldehyde dehydrogenase (ALDH), which rapidly decomposes endogenous aldehydes that cause endoplasmic reticulum stress, thereby removing endoplasmic reticulum stress factors in advance to block the occurrence of endoplasmic reticulum stress, mutant yeast. It is to provide a derived composition.

본 발명의 또 다른 목적은, 본 발명은 소포체 스트레스 발생 가능성을 낮추어, 지방간 또는 지방간염의 발생을 억제 또는 예방하는, 돌연변이 효모를 함유하는 식품 조성물 또는 약제조성물을 제공하는 것이다. Another object of the present invention is to provide a food composition or pharmaceutical composition containing mutant yeast, which reduces the possibility of endoplasmic reticulum stress and inhibits or prevents the occurrence of fatty liver or steatohepatitis.

본 발명의 또 다른 목적은, 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는, 지방간 억제 식품조성물 그리고 지방간 예방 또는 치료제 조성물을 제공하는 것이다. Another object of the present invention is to Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP containing any one or mixtures thereof selected from the group consisting of, fatty liver inhibitory food composition and fatty liver prevention or To provide a therapeutic composition.

이상과 같은 본 발명의 목적들은, 소포체 스트레스를 유발하는 내인성 알데히드를 신속하게 분해하는 알데히드탈수소효소(ALDH)를 함유함으로써, 소포체 스트레스 발생 요인을 미리 제거하여 소포체 스트레스 발생을 차단하는, 돌연변이 효모 유래 조성물을 제공함으로써 달성된다.The objects of the present invention as described above are a mutant yeast-derived composition that blocks the occurrence of endoplasmic reticulum stress by removing the endoplasmic reticulum stress in advance by containing aldehyde dehydrogenase (ALDH) that rapidly decomposes endogenous aldehydes that cause endoplasmic reticulum stress. is achieved by providing

또한, 이상과 같은 본 발명의 목적들은, 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물의 분말이나 용해물(이하, KARC라고 약칭함)을 제공함으로써 달성된다.In addition, the objects of the present invention as described above are Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP Powder or melt of any one or a mixture thereof (hereinafter referred to as KARC) Abbreviated) is achieved by providing.

본 발명은, 간세포의 소포체 스트레스로 인하여 지방간 증상이 발생된 (사람 또는 동물)에 본 발명의 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 미생물에서 선택되는 어느 하나 또는 이들의 혼합물의 건조 분말이나 용해물인 KARC를 투여 한 이후, 24시간, 48시간 경과 후에 간의 지방 축적 및 간의 염증반응의 완화 현상이 나타났다. The present invention is any one selected from microorganisms consisting of KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP in Saccharomyces cerevisiae of the present invention, in which fatty liver symptoms have occurred (human or animal) due to endoplasmic reticulum stress of hepatocytes Or, after administration of KARC, which is a dry powder or a lysate of a mixture thereof, the accumulation of fat in the liver and the inflammatory response of the liver were alleviated after 24 hours and 48 hours.

본 발명의 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물의 건조 분말이나 용해물을 투여한 간에서 소포체 스트레스가 감소하였고, 지방간의 축적이 감소하였으며, 간의 염증 반응 인자들의 발현이 감소하는 현상을 확인하였다. Saccharomyces cerevisiae of the present invention was administered with KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP dry powder or lysate of any one selected from the group consisting of, or mixtures thereof. It was confirmed that the accumulation of was reduced, and the expression of inflammatory response factors in the liver was reduced.

도 1, 2는 일반 마우스 모델에 2mg/kg 투니카마이신(Tunicamycin, Tm)을 투여하여 간조직에 소포체 스트레스를 유도한 다음 본 발명의 조성물을 투여하고 24시간과 48시간 간격으로 마우스 간 조직에서 나타나는 지방간의 효능을 검증하기 위해 분석한 도식이다(n=5).
도 1은 투니카마이신과 KARC 10unit/kg, 20unit/kg의 투여가 끝난 후 24시간과 48시간 마우스의 간의 형태를 관찰하였다. 투니카마이신에 의해 지방간이 유도되어 간의 기름기 때문에 색이 옅어지지만, KARC 투여군의 간은 다시 붉은색으로 회복되었다.
도 2는 헤마톡실린-에오신 염색(Hmatoxylin-Eosin, H&E staining)을 통해 간 조직 내 지방의 형태를 분석하였다. 투니카마이신으로 간세포 내 지방이 확대되었다가 KARC 투여군에서 간세포 내 지방이 감소하였다.
도 3, 4는 일반 마우스 모델에 투니카마이신과 KARC를 투여하고 24시간과 48시간 간격으로 간 조직 내에 지질 함량의 변화를 분석한 도식이다(n=5).
도 3은 투니카마이신에 의해 증가된 간 조직 내 중성지방(Triglyceride, TG)의 함량이 KARC 투여군 모두에서 유의하게 감소하였음을 보여준다.
도 4는 투니카마이신에 의해 증가된 간 조직 내 총콜레스테롤(Total cholesterol, T-chol)의 함량이 KARC 투여군에서 농도 의존적으로 감소하였음을 나타낸다.
도 5, 6, 7, 8, 9는 일반 마우스 모델에 2mg/kg 투니카마이신과 KARC 10unit/kg, 20unit/kg를 투여하여 24시간과 48시간이 지난 후 간 조직에서 mRNA를 분리하여 정량 실시간 역전사 중합효소 연쇄반응(Reverse Transcription quantitative real-time PCR, RT-qPCR)을 통해 소포체 스트레스에 관련된 유전자의 발현을 분석한 도식이다(*p<0.05, **p<0.01)(n=5).
도 5의 소포체 스트레스 마커인 Chop는 C/EBP 상동 단백질(C/EBP homologous protein)을 나타내며, 세포 내 소포체 스트레스로 인한 BCL-2 감소, BIM 증가 등 세포사멸 유도에 관여하는 단백질 발현양 조절을 통해 소포체 스트레스를 해소하며, KARC에 의한 Chop mRNA 발현량 감소는 소포체내 세포 사멸 촉진을 통해 비정상적인 단백질 제거에 의한 소포체 스트레스가 감소되었음을 보여주고 있다.
도 6의 Grp78은 글루코스 조절 단백질 78(glucose-regulated protein 78)를 나타내며, 대표적인 샤페론(chaperone) 단백질 중 하나로 소포체 항상성을 유지 및 조절 하는 기능을 한다.
KARC 투여에 의한 Grp78의 mRNA 발현량 감소는, ATF6, IRE1 등을 조절하여 미접힘 단백질(unfolded protein) 축적을 감소시키고, 그 결과 소포체 스트레스가 완화되었음을 의미한다.
도 7의 Ire-1α는 이노시톨 분해효소 1a(inositol-requiring enzyme 1 alpha)를 나타내며, 대표적인 미접힘 단백질 반응(UPR, unfolded protein response) 지표 물질이다. Ire-1α는 비정상적으로 생성 및 축적된 미접힘 단백질을 샤페론 단백질의 분비 등을 통해 정상적인 구조로 재형성되도록 유도하거나, 소포체에 들어오게 될 단백질들을 mRNA 단계에서 제거(RIDD, regulated IRE-1 dependent decay)한다.
또한 Ire-1α는 JNK, NF-κB 단백질 등을 활성화시켜 자가 포식작용(Autophage) 증가 또는 세포사멸(Apoptosis) 유도 등의 방식으로 미접힘 단백질을 분해하여 전체적으로 소포체 스트레스를 완화하고 항상성을 조절한다.
KARC 투여에 의한 Ire-1α의 mRNA 발현량 감소는 세포 독소로 작용하는 미접힘 단백질의 감소 및 소포체 스트레스가 완화되었음을 의미한다.
도 8의 Gadd34는 성장억제 및 DNA 손상유도 단백질(growth arrest and DNA damage inducible 34)을 나타낸다. Gadd34는 전사인자인 ATF4와 연계하여 eLF2α 탈 인산화를 유도하는 단백질로, eLF2α 탈 인산화가 일어나며 세포사멸이 촉진됨으로, Gadd34는 eLF2α 탈인산화 결핍에 의한 세포사멸을 촉진 시키거나 또는 비정상 단백질의 번역을 촉진하여 비접힘 단백질(unfolded protein)를 제거하는 작용을 한다.
도 9는 Atf4를 나타낸다. Atf4는 전사 활성화 인자 4(activating transcriptional factor 4)를 의미하며, Atf4 발현량 감소는 소포체 스트레스가 완화되었음을 보여주고 있다.
따라서, 도 8, 9의 KARC 투여에 의한 Atf4 또는 Gadd34의 mRNA 발현량 감소 현상은 결과적으로 소포체 스트레스 감소 및 사멸되는 세포의 수가 감소 되었음을 보여주고 있다.
도 10, 11, 12, 13은 일반 마우스 모델에 2mg/kg 투니카마이신을 처리한 후 KARC 10unit/kg, 20unit/kg를 투여하여 24시간과 48시간이 지난 후, 간 조직에서 mRNA를 분리하여 RT-qPCR을 통해 염증성 유전자의 발현을 분석한 도식이다(* p <0.05, ** p <0.01) (n = 5).
도 10의 F4/80는 대식세포(Macrophage)의 고유 마커로, 식균작용을 하는 대식세포(Macrophage)에 존재하여 염증 유전자를 발현시키는 작용을 하며, KARC 투여에 의한 F4/80의 mRNA 발현량 감소는 세포내 염증이 감소되었음을 의미한다.
도 11의 Mcp1은 단핵구 화학 유인 단백질 1(monocyte chemoattracted protein-1)을 나타낸다. 이는 일종의 케모카인(chemokine)으로서, 다양한 세포군에서 발현되며, T세포(T-Cell), 모노사이트(moncyte) 등이 염증 주변으로 모여들고 손쉽게 이동할 수 있도록 작용하는 염증 연계 물질이다.
KARC 투여에 의한 Mcp-1의 mRNA 발현량 감소는 염증 및 염증 반응의 감소를 의미한다.
도 12의 Tnf-α는 종양괴사인자-α(tumor necrosis factor-α)를 나타내며, 염증 증가 및 염증 반응에 의해 나타나는 사이토카인의 일종으로 대식작용 증가와 함께 증식되는 현상을 보여주고 있다. 따라서, KARC 투여에 의한 Tnf-α의 mRNA 발현량 감소는 염증 물질 감소 또는 염증 반응이 약화 되었음을 의미한다.
도 13 Il-6는 인터루킨-6 (interLeukin-6)를 나타내며, 염증성 유전자를 발현하여 염증을 유발하는 것으로 알려져 있다. KARC 투여에 의한 Il-6 의 mRNA 발현량 감소는 염증이 감소되었음을 의미한다.
도 14, 15, 16, 17은 일반 마우스 모델에 2mg/kg 투니카마이신을 처리한 후 KARC 10unit/kg, 20unit/kg를 투여하여 24시간과 48시간이 지난 후 간 조직에서 mRNA를 분리하여 RT-qPCR을 통해 지방산 산화와 관련된 유전자의 발현을 분석한 도식이다(*p<0.05, **p<0.01) (n = 5).
도 14의 Ppar-α는 퍼옥시좀 증식체 활성화 수용체 알파(peroxisome proliferator-activated receptor alpha)를 나타내며, 근육과 간에서 지방산의 산화(β-Oxidation) 개선을 통해 지방 대사(Lipid metabolism)의 항상성 유지에 관여한다.
KARC 투여에 의한 Ppar-α의 mRNA 발현량 증가 현상은 지방대사를 개선하여 저밀도 중성지방을 낮추고 고밀도 지단백 콜레스테롤(HDL-Cholesterol, high density lipoprotein cholesterol)을 높여 간의 지질대사 조절 기능이 회복되었음을 보여주고 있다.
도 15의 Pgc-1α는 피파 감마 조효소 보조활성인자 1 알파(peroxisome proliferator-activated receptor gamma coactivator 1-alpha)를 나타내며, 세포내 미토콘드라 생성(mitochondrial biogenesis) 및 간에서 당생성(Gluconeogenesis)에 관여하는 단백질로, KARC에 의한 Pgc-1α mRNA 발현량 증가는 간에서 에너지 생성량 및 에너지 대사량이 증가되었음을 보여주고 있다.
도 16의 Cpt-1α는 카르니틴 팔미토일트랜스퍼라제 1 알파(carnitine palmitoyltransferase 1 alpha)를 나타내며, 미토콘드리아 지질막에 위치하며, 지방산의 산화(β-oxidation)에 관여된 필수 단백질이며 지방산 사슬내 아실기(Acyl)를 아실카르니틴(acylcarnitine)으로 변환시켜 긴사슬 지방산(long chain fatty acid)이 미토콘드리아의 막을 통과할 수 있도록 유도하는 단백질이다.
KARC 투여에 의한 Cpt-1α의 mRNA 발현량 증가 현상은, 간에서 지방산의 산화(β-oxidation)를 통한 에너지 생성 및 대사가 개선되었음을 보여주고 있다.
도 17의 Fgf21은 Fibroblast growth factor 21을 나타내며, 간, 췌장 및 지방 조직에서 과량으로 합성되는 섬유아세포 성장 인자이다. Fgf21은 Ppar-γ (peroxisome proliferator-activated receptor gamma) 및 Ppar-α(eroxisome proliferator-activated receptor alpha)에 의해 발현량이 조절되며 스트레스가 상승할 때, 스트레스에 적응 또는 방어하기 위해 활성화된다.
따라서, KARC 투여에 의한 Fgf21의 mRNA 발현량 감소는 간세포의 스트레스 상태가 감소되었음을 보여준다.
도 18은 일반 마우스 모델에 2mg/kg 투니카마이신을 처리한 후 KARC 10unit/kg, 20unit/kg를 투여하여 24시간과 48시간이 지난 후 간 조직에서 분리한 단백질을 western blot 기법을 통해 소포체 스트레스, 지질대사 및 지방산 산화와 관련된 단백질의 발현 측정한 도식이다. CHOP, IRE1α, p-eIF2α, eIF2α, FAS, ACC1, Scd-1, PPARα, CPT1 단백질의 발현량을 측정하였다(n=5).
도 18에서 소포체 스트레스 마커인 CHOP과 IRE1α는 [도 5, 7] 유전자 발현 결과와 같이 투니카마이신에 의해 증가되었다가, KARC 20unit/kg를 투여한 그룹에서 단백질 발현이 줄어들어 소포체 스트레스가 감소되었음을 보여주고 있다.
도 18의 p-eIF2α는 진핵생물의 시작 인자-2α의 인산화(phosphorylation of eukaryotic initiation factor-2α)를 나타내며, eIF2α는 단백질 인산화 효소(Kinase)인 PERK, PKR, GCN2, HRI 4종의 단백질 중 하나 이상이 인산화되었을 때 활성화되는 유전자로서, 단백질의 합성을 조절하며 기억 능력에도 영향을 주는 것으로 알려져 있다.
p-eIF2α는 세포가 열, 자외선, 외부감염 등에 의해 소포체내 미접힘단백질(UP, unfolded protein) 또는 비정상적으로 접힌 단백질(MP, misfolded protein) 등의 축적에 의한 소포체 스트레스를 받을 때 인산화효소가 활성화된다.
이러한 eIF2 단백질의 과발현은 단백질 총량을 감소시켜 세포내 소포체 스트레스를 감소를 유도한다. 따라서, KARC 투여에 위한 eIF2의 감소는 소포체 스트레스가 감소되었음을 보여주고 있다.
도 18의 FAS는 지방산 합성 효소(fatty acid synthase)를 나타내며, 세포 성장에 필요한 에너지이며 세포의 신호전달에 필요한 지질 생합성(de novo lipogenesis)에 관여하는 필수 효소시스템이다.
도 18은 소포체 스트레스에 의해 감소된 FAS 단백질은 지방산 산화에 의한 에너지 대사가 감소되었음을 의미하며, KARC에 의해 FAS 단백질 증가는 지방산의 산화에 의한 에너지 대사가 회복되었음을 나타낸다.
도 18의 ACC1은 아세틸-CoA 카르복실라제 1(ACC1, acetyl-CoA Carboxylase 1)를 나타내며, 지방산의 형성이나 지방의 연소에 관련된 말로닐 조효소 A(malonyl-coenzyme A)라는 대사물질을 생산하는 효소로 탄수화물과 지방의 에너지 대사량을 조절하는 AMPK (AMP-activated protein kinase)에 의해 발현이 조절된다.
소포체 스트레스로 인해 감소된 ACC1의 단백질 발현은 KARC 투여에 의해 회복되었고, 간에서 지방의 산화를 통한 에너지로의 전환 능력이 개선되었음을 보여준다.
도 18의 Scd-1은 스테아로일-CoA 불포화 효소-1(Scd-1, stearoyl-CoA desaturase-1)를 나타내며, 주로 간의 소포체 등에 존재하는 효소인 Scd-1은 스테아르산 등의 포화지방산 CoA를 올레산 등 세포 지질막의 주요 구성 성분 중 하나인 불포화지방산으로 변환시키는 효소로 AMPK(AMP-activated protein kinase)에 발현이 조절된다.
소포체 스트레스로 인해 감소된 Scd-1 단백질 발현은 KARC에 의해 회복되었고, 지질 대사 조절이 개선됨과 간세포가 회복되었음을 보여 준다.
도 18에서 지방산 산화 마커인 PPARα와 CTP1은 [도 14, 16]에서 설명한 것과 같이 투니카마이신에 의해 단백질 발현이 감소되었다가 KARC에 의해 단백질 발현이 증가되어 간의 지방산의 산화를 통한 에너지 생성 및 대사가 개선되었음을 보여준다.
도 18에서 GAPDH는 ‘글리세르알데히드-3-인산 수소 이탈 효소(GAPDH, glyceraldehyde-3-phosphate dehydrogenase)’를 나타내며, 세포내에서 안정적으로 발현되고 발현양이 세포 조건에 따라 잘 변하지 않기 때문에 하우스키핑 유전자(house keeping gene)로 사용된다. 단백질 정량의 기준마커로 사용하였고, 동일한 단백질량을 사용한 것을 보여주고 있다.
도 19는 KwonP-1 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 20은 KwonP-2 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 21은 KwonP-3 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 22는 PicoYP 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 23은 PicoYP-01 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 24는 PicoYP-02 균주를 경구 투여하였을 때 효소 활성의 변화다.
도 25은 KwonP-1 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성이다.
도 26은 KwonP-2 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성이다.
도 27은 KwonP-3 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성이다.
도 28는 PicoYP 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성
도 29는 PicoYP-01 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성이다.
도 30은 PicoYP-02 균주를 5L 발효조에 배양하였을 때 성장곡선 및 효소 활성이다.
도 31은 KARC에 의한 인체내 아세트알데히드 분해를 보여주는 그래프이다.
도 32는 KARC에 의한 인체내 말론디알데히드 분해를 보여주는 그래프이다.
도 33은 KARC에 의한 인체내 말론디알데히드 안정화를 보여주는 그래프이다.
1 and 2 show that 2mg/kg tunicamycin (Tm) was administered to a general mouse model to induce endoplasmic reticulum stress in liver tissue, and then the composition of the present invention was administered and in mouse liver tissue at 24 and 48 hour intervals. This is a diagram analyzed to verify the efficacy of fatty liver (n = 5).
1 shows the morphology of the liver of mice 24 hours and 48 hours after administration of tunicamycin and KARC 10unit/kg, 20unit/kg. Fatty liver was induced by tunicamycin and the color of the liver became pale due to the fat of the liver, but the liver of the KARC-administered group recovered to a reddish color.
Figure 2 analyzed the morphology of fat in the liver tissue through hematoxylin-eosin staining (Hmatoxylin-Eosin, H&E staining). Fat in hepatocytes was enlarged with tunicamycin, but fat in hepatocytes was reduced in the KARC-administered group.
3 and 4 are schematic diagrams of the change in lipid content in liver tissue at 24 and 48 hour intervals after administration of tunicamycin and KARC to a normal mouse model (n = 5).
Figure 3 shows that the content of triglyceride (TG) in liver tissue increased by tunicamycin was significantly decreased in all KARC-administered groups.
Figure 4 shows that the content of total cholesterol (T-chol) in liver tissue increased by tunicamycin decreased in a concentration-dependent manner in the KARC-administered group.
5, 6, 7, 8, and 9 are quantitative real-time by isolating mRNA from liver tissue after 24 hours and 48 hours by administering 2mg/kg tunicamycin, 10unit/kg, and 20unit/kg of KARC to a general mouse model. It is a diagram analyzing the expression of genes related to endoplasmic reticulum stress through reverse transcription quantitative real-time PCR (RT-qPCR) (*p<0.05, **p<0.01) (n=5).
Chop , an endoplasmic reticulum stress marker in FIG. 5, represents a C/EBP homologous protein, and regulates the expression of proteins involved in inducing apoptosis, such as BCL-2 reduction and BIM increase due to intracellular endoplasmic reticulum stress. It relieves endoplasmic reticulum stress, and the decrease in Chop mRNA expression by KARC shows that endoplasmic reticulum stress due to abnormal protein removal is reduced through promotion of cell death in the endoplasmic reticulum.
Grp78 in FIG. 6 represents glucose-regulated protein 78, and as one of the representative chaperone proteins, functions to maintain and regulate endoplasmic reticulum homeostasis.
The decrease in the mRNA expression level of Grp78 by KARC administration means that ATF6, IRE1, etc. are regulated to reduce the accumulation of unfolded protein, and as a result, endoplasmic reticulum stress is alleviated.
Ire-1α in FIG. 7 represents inositol-requiring enzyme 1 alpha (inositol-requiring enzyme 1 alpha) and is a representative unfolded protein response (UPR) indicator. Ire-1α induces abnormally generated and accumulated unfolded proteins to be reformed into normal structures through the secretion of chaperone proteins, or removes proteins that will enter the endoplasmic reticulum at the mRNA level (RIDD, regulated IRE-1 dependent decay )do.
In addition, Ire-1α activates JNK and NF-κB proteins to degrade unfolded proteins by increasing autophagy or inducing apoptosis, alleviating endoplasmic reticulum stress and regulating homeostasis.
The decrease in the mRNA expression level of Ire-1α by KARC administration means that the unfolded protein acting as a cytotoxin was reduced and the endoplasmic reticulum stress was alleviated.
Gadd34 in FIG. 8 represents a growth arrest and DNA damage inducible protein (34). Gadd34 is a protein that induces eLF2α dephosphorylation in conjunction with ATF4, a transcription factor. As eLF2α dephosphorylation occurs and apoptosis is promoted, Gadd34 promotes apoptosis due to eLF2α dephosphorylation deficiency or promotes the translation of abnormal proteins It acts to remove the unfolded protein.
9 shows Atf4 . Atf4 means transcriptional activating factor 4 (activating transcriptional factor 4), and the decrease in Atf4 expression level indicates that endoplasmic reticulum stress is alleviated.
Accordingly, the decrease in mRNA expression level of Atf4 or Gadd34 by KARC administration in FIGS. 8 and 9 shows that endoplasmic reticulum stress and the number of apoptotic cells were reduced as a result.
10, 11, 12, and 13 are treated with 2mg/kg tunicamycin in a general mouse model and then administered with 10unit/kg and 20unit/kg of KARC, 24 and 48 hours later, isolating mRNA from liver tissue It is a schematic diagram of analyzing the expression of inflammatory genes through RT-qPCR (* p <0.05, ** p <0.01) (n = 5).
F4/80 in FIG. 10 is a unique marker of macrophages, and exists in macrophages that perform phagocytosis to express inflammatory genes. Reduction of F4/80 mRNA expression by KARC administration means that intracellular inflammation was reduced.
Mcp1 in FIG. 11 represents monocyte chemoattracted protein-1. This is a kind of chemokine, which is expressed in various cell groups, and is an inflammation-linked substance that acts so that T-cells, monocytes, etc. gather around inflammation and move easily.
The decrease in the mRNA expression level of Mcp-1 by KARC administration means a decrease in inflammation and inflammatory response.
Tnf-α in FIG. 12 represents tumor necrosis factor-α, and is a kind of cytokine caused by increased inflammation and inflammatory response, and shows a phenomenon of proliferation with increased phagocytosis. Therefore, the decrease in the mRNA expression level of Tnf-α by KARC administration means that inflammatory substances are reduced or the inflammatory response is attenuated .
13 Il-6 represents interleukin-6, which is known to induce inflammation by expressing inflammatory genes. A reduction in the mRNA expression level of Il-6 by KARC administration meant that inflammation was reduced.
14, 15, 16, and 17 show that a general mouse model was treated with 2mg/kg tunicamycin, and then 10unit/kg and 20unit/kg of KARC were administered, and 24 and 48 hours later, mRNA was isolated from liver tissue and RT. -This is a diagram of analyzing the expression of genes related to fatty acid oxidation through qPCR (*p<0.05, **p<0.01) (n = 5).
Ppar-α in FIG. 14 represents peroxisome proliferator-activated receptor alpha, and maintains homeostasis of lipid metabolism by improving β-Oxidation of fatty acids in muscle and liver. get involved in
The increase in the mRNA expression level of Ppar-α by KARC administration improves fat metabolism, lowers low-density triglyceride, and increases HDL-Cholesterol (high density lipoprotein cholesterol), showing that the lipid metabolism control function of the liver is restored. .
15, Pgc-1α represents peroxisome proliferator-activated receptor gamma coactivator 1-alpha, and is involved in mitochondrial biogenesis and gluconeogenesis in the liver. As a protein, the increase in Pgc-1α mRNA expression level by KARC shows that the amount of energy production and energy metabolism in the liver is increased.
Cpt-1α in FIG. 16 represents carnitine palmitoyltransferase 1 alpha, is located in the mitochondrial lipid membrane, is an essential protein involved in β-oxidation, and has an acyl group in the fatty acid chain. ) into acylcarnitine, which induces long-chain fatty acids to pass through the mitochondrial membrane.
The increase in the mRNA expression level of Cpt-1α by KARC administration shows that energy generation and metabolism through β-oxidation in the liver are improved.
Fgf21 in FIG. 17 represents Fibroblast growth factor 21, which is a fibroblast growth factor synthesized in excess in liver, pancreas and adipose tissue. The expression level of Fgf21 is regulated by peroxisome proliferator-activated receptor gamma (Ppar-γ) and eroxisome proliferator-activated receptor alpha (Ppar-α), and when stress rises, it is activated to adapt to or defend against stress.
Therefore, the decrease in the mRNA expression level of Fgf21 by KARC administration shows that the stress state of hepatocytes is reduced.
18 is a general mouse model treated with 2mg/kg tunicamycin, followed by administration of 10unit/kg and 20unit/kg of KARC, and after 24 and 48 hours, protein isolated from liver tissue was analyzed through western blot to determine endoplasmic reticulum stress. , It is a schematic of measuring the expression of proteins related to lipid metabolism and fatty acid oxidation. The expression levels of CHOP, IRE1α, p-eIF2α, eIF2α, FAS, ACC1, Scd-1, PPARα, and CPT1 proteins were measured (n=5).
In FIG. 18, the endoplasmic reticulum stress markers CHOP and IRE1α were increased by tunicamycin as shown in the gene expression results of [Figs. 5 and 7], but in the group administered with 20 units/kg of KARC, protein expression decreased, showing that endoplasmic reticulum stress was reduced are giving
18, p-eIF2α represents phosphorylation of eukaryotic initiation factor-2α, and eIF2α is one of four protein kinases, PERK, PKR, GCN2, and HRI. As a gene that is activated when abnormalities are phosphorylated, it is known to regulate protein synthesis and affect memory ability.
p-eIF2α activates kinase when cells are subjected to endoplasmic reticulum stress by accumulation of unfolded protein (UP) or misfolded protein (MP) in the endoplasmic reticulum caused by heat, ultraviolet rays, external infection, etc. do.
Overexpression of the eIF2 protein induces a decrease in intracellular endoplasmic reticulum stress by reducing the total amount of the protein. Thus, reduction of eIF2 for KARC administration showed that endoplasmic reticulum stress was reduced.
FAS in FIG. 18 represents fatty acid synthase, which is an energy required for cell growth and an essential enzyme system involved in de novo lipogenesis necessary for cell signal transmission.
18 shows that FAS protein decreased by endoplasmic reticulum stress decreased energy metabolism by fatty acid oxidation, and increased FAS protein by KARC indicates that energy metabolism by fatty acid oxidation was restored.
ACC1 in Figure 18 represents acetyl-CoA carboxylase 1 (ACC1, acetyl-CoA Carboxylase 1), an enzyme that produces a metabolite called malonyl-coenzyme A related to the formation of fatty acids or fat burning Expression is regulated by AMPK (AMP-activated protein kinase), which regulates energy metabolism of carbohydrates and fats.
The protein expression of ACC1, which was decreased due to endoplasmic reticulum stress, was restored by KARC administration, showing that the liver's ability to convert fat into energy through oxidation was improved.
Scd-1 in FIG. 18 represents stearoyl-CoA desaturase-1 (Scd-1, stearoyl-CoA desaturase-1), and Scd-1, an enzyme mainly present in liver endoplasmic reticulum, is a saturated fatty acid CoA such as stearic acid. It is an enzyme that converts oleic acid into unsaturated fatty acids, which are one of the main constituents of cell lipid membranes, and its expression is regulated by AMPK (AMP-activated protein kinase).
Scd-1 protein expression decreased due to endoplasmic reticulum stress was restored by KARC, indicating improved lipid metabolism regulation and recovery of hepatocytes.
In FIG. 18, the protein expression of PPARα and CTP1, which are fatty acid oxidation markers, was decreased by tunicamycin as described in [Figs. 14 and 16], but increased by KARC, resulting in energy generation and metabolism through oxidation of fatty acids in the liver. shows improvement.
In Figure 18, GAPDH represents 'glyceraldehyde-3-phosphate dehydrogenase (GAPDH, glyceraldehyde-3-phosphate dehydrogenase)', and since it is stably expressed in cells and the expression level does not change well depending on cell conditions, housekeeping It is used as a house keeping gene. It was used as a reference marker for protein quantification, and it shows that the same amount of protein was used.
19 shows changes in enzyme activity when KwonP-1 strain was orally administered.
20 is a change in enzyme activity when the KwonP-2 strain is orally administered.
21 shows changes in enzyme activity when the KwonP-3 strain was orally administered.
22 is a change in enzyme activity when the PicoYP strain is orally administered.
23 shows changes in enzyme activity when the PicoYP-01 strain was orally administered.
24 is a change in enzyme activity when the PicoYP-02 strain was orally administered.
25 is a growth curve and enzyme activity when the KwonP-1 strain was cultured in a 5L fermentor.
Figure 26 is a growth curve and enzyme activity when the KwonP-2 strain was cultured in a 5L fermentor.
27 is a growth curve and enzyme activity when the KwonP-3 strain was cultured in a 5L fermentor.
28 is a growth curve and enzyme activity when the PicoYP strain is cultured in a 5L fermentor
29 is a growth curve and enzyme activity when the PicoYP-01 strain was cultured in a 5L fermenter.
30 is a growth curve and enzyme activity when the PicoYP-02 strain was cultured in a 5L fermenter.
31 is a graph showing the degradation of acetaldehyde in the human body by KARC.
32 is a graph showing the degradation of malondialdehyde in the body by KARC.
33 is a graph showing the stabilization of malondialdehyde in humans by KARC.

이하, 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP 건조 분말 또는 용해물(lysate)의 제조 방법을 구체적으로 기술한다. Hereinafter, a method for preparing Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP dry powder or lysate will be described in detail.

그러나 이러한 실시예들은 본 발명의 목적을 달성하는 조성물들의 예시를 위한 것이며, 본 발명의 권리범위가 이하의 실시예 기재된 조성물만으로 한정되는 것은 아니다.However, these examples are for illustration of compositions achieving the object of the present invention, and the scope of the present invention is not limited to only the compositions described in the following examples.

[실시예 1][Example 1]

돌연변이를 진행할 야생 효모 모균주(parent strain) 선별Selection of wild yeast parent strain to undergo mutation

본 발명에서는 한국의 전통주인 국산 막걸리를 0.9% NaCl 용액에 혼합하여 200rpm으로 1시간 동안 교반함으로써 효모 모(母)균(parent strain)를 확보하였으며, 상층액을 YPD(yeast extract peptone dextrose broth) 배지로 희석하여 10-6 희석 액을 제조하였다. In the present invention, a yeast parent strain was obtained by mixing domestic makgeolli, a traditional Korean liquor, with a 0.9% NaCl solution and stirring at 200 rpm for 1 hour, and the supernatant was YPD (yeast extract peptone dextrose broth) medium Diluted with 10 -6 to prepare a dilution solution.

희석 액은 YPD 고체 배지에 120μl 분주하여 30℃, 호기성 조건에서 1주일간 배양하였으며, 콜로니의 형태학적 특징, YM 배지에서의 배양, 현미경 관찰을 통해 사카로마이세스 세레비지에를 분리하였다. 120 μl of the diluted solution was dispensed into YPD solid medium and cultured at 30 ° C. for 1 week under aerobic conditions, and Saccharomyces cerevisiae was isolated through morphological characteristics of colonies, culture in YM medium, and microscopic observation.

분리한 사카로마이세스 세레비지에 효모 균에서 알데히드탈수소효소와 글루타치온 함량을 측정하였으며, 해당 결과에서 알데히드탈수소효소와 글루타치온 생산량이 많은 점을 기준으로 돌연변이를 진행시킬 모균주(parent strain)를 선별하였다.Aldehyde dehydrogenase and glutathione contents were measured in the isolated Saccharomyces cerevisiae yeast, and the parent strain to proceed with the mutation was selected based on the high production of aldehyde dehydrogenase and glutathione in the results. .

1-1: 알데히드탈수소효소 측정 1-1: Measurement of aldehyde dehydrogenase

발명자들은 아세트알데히드에 일정량의 비율로 Dinitrophenylhydrazine (DNPH)를 첨가하여 일정 농도에서 반응시키면 아세트알데히드-하이드라존 (Ach-DNPH)를 화합물이 형성되고, 이는 HPLC용 C18 칼럼에 이동상 Acetonitrile와 water를 용매로 전개하여 360 nm에서 검출되어 정량할 수 있다는 참고문헌(Guan et al., 2012)에 따라, 알데히드탈수소효소(ALDH)의 반응에 의하여 감소된 알데히드의 양을 분석하였다. The inventors added a certain amount of Dinitrophenylhydrazine (DNPH) to acetaldehyde and reacted at a certain concentration to form a compound of acetaldehyde-hydrazone (Ach-DNPH), which was formed by using the mobile phase Acetonitrile and water as a solvent in a C18 column for HPLC. According to the reference (Guan et al. , 2012) that it can be detected and quantified at 360 nm by development, the amount of aldehyde reduced by the reaction of aldehyde dehydrogenase (ALDH) was analyzed.

구체적인 알데히드탈수소효소 활성 측정은, 효소 반응액으로는 50 mM Potassium phosphate buffer (pH 8.0), 1 mM의 아세트알데히드, 측정 미생물 lysate 10 μL에 효소의 Cofactor 1 mM NADP+를 각각 첨가한 후 30℃에서 반응 후 여기에 10 mM DNPH 50 μl를 첨가한 후 22 ℃에서 1 시간동안 아세트알데히드-하이드라존 (Ach-DNPH) 라벨링을 진행하였다. For specific aldehyde dehydrogenase activity measurement, 50 mM Potassium phosphate buffer (pH 8.0), 1 mM acetaldehyde, and 1 mM NADP+ enzyme cofactor were added to 10 μL of the measured microorganism lysate as the enzyme reaction solution, and then reacted at 30 ° C. After adding 50 μl of 10 mM DNPH thereto, acetaldehyde-hydrazone (Ach-DNPH) labeling was performed at 22° C. for 1 hour.

라벨링은 3 M Sodium acetate(pH 9)를 첨가함으로써 반응을 종료시키고 2배 부피의 Acetonitrile을 첨가함으로써 아세트알데히드-DNPH 화합물이 녹아있는 층을 분리한 후 HPLC에 주입하여 분석하였다. For labeling, the reaction was terminated by adding 3 M sodium acetate (pH 9), and the layer in which the acetaldehyde-DNPH compound was dissolved was separated by adding a double volume of Acetonitrile, and then injected into HPLC for analysis.

라벨링된 알데히드의 농도는 Aldehyde-DNPH (Sigma-Aldrich)의 물질표준곡선을 이용하여 분석하였으며, HPLC 분석 조건은 C18 컬럼을 사용하여 용매(Acetonitrile, water)를 1 ㎖/min 유속으로 흘려 자외선 검출기 360㎚ 파장에서 얻어 분석하였다. 이때 알데히드탈수소효소의 1 unit은 분당 감소된 아세트알데히드-DNPH의 농도 1mM을 1unit로 하였으며, 알데히드탈수소효소의 활성은 단백질 mg 당 unit로 나타내었다.The concentration of the labeled aldehyde was analyzed using the material standard curve of Aldehyde-DNPH (Sigma-Aldrich), and the HPLC analysis condition was a solvent (Acetonitrile, water) flowed at a flow rate of 1 ml / min using a C18 column and an ultraviolet detector 360 were obtained and analyzed at nm wavelengths. At this time, 1 unit of aldehyde dehydrogenase was set to 1 mM of reduced acetaldehyde-DNPH concentration per minute, and the activity of aldehyde dehydrogenase was expressed as a unit per mg protein.

1-2: 글루타치온 측정 방법1-2: Method for measuring glutathione

글루타치온의 농도 분석을 위해 배양된 사카로마이세스 세레비지에 현탁액 1mL을 원심분리하여 침전된 균체를 얻고, 침전된 균체에 1 mL의 물을 첨가하여 2시간 동안 85℃에서 1,000 rpm으로 교반하여 추출하였다. 추출한 후, 원심분리기를 이용하여 균체를 제거하고 상등액을 0.22㎛ 필터로 여과하여 회수하였다. To analyze the concentration of glutathione, 1 mL of the suspension was centrifuged in cultured Saccharomyces cerevisiae to obtain precipitated cells, and 1 mL of water was added to the precipitated cells, followed by stirring at 85 ° C and 1,000 rpm for 2 hours for extraction. did After extraction, cells were removed using a centrifugal separator, and the supernatant was collected by filtering with a 0.22 μm filter.

HPLC(Shimazu LC-20AD) 분석을 통해, 상기 회수한 여과액에 포함되어 있는 글루타치온의 농도를 측정하였다. 한편, 글루타치온 농도는 글루타치온의 표준곡선을 이용하여 분석하였으며, HPLC 분석 조건은 C18 컬럼을 사용하여 분석하였다. 이동상 용매(2.02 g/L Sodium 1-heptanesulfonate monohydrate, 6.8 g/L Potassium dihydrogen phosphate, pH 3.0, 메탄올 혼합)를 1 ㎖/min 유속으로 흘려 자외선 검출기 210nm 파장에서 검출된 글루타치온의 농도를 측정하였다.Through HPLC (Shimazu LC-20AD) analysis, the concentration of glutathione contained in the recovered filtrate was measured. On the other hand, glutathione concentration was analyzed using a glutathione standard curve, and HPLC analysis conditions were analyzed using a C18 column. A mobile phase solvent (2.02 g/L Sodium 1-heptanesulfonate monohydrate, 6.8 g/L Potassium dihydrogen phosphate, pH 3.0, methanol mixture) was flowed at a flow rate of 1 ml/min, and the concentration of glutathione detected at a wavelength of 210 nm with a UV detector was measured.

한국산 막걸리에서 얻어진 총 200종의 서로 다른 효모 균주를 대상으로 알데히드탈수소효소와 글루타치온 함량을 분석한 결과, 표1과 같이 10종의 효모 균들이 높은 알데히드탈수소효소 혹은 글루타치온 생성 능력을 나타내었다. As a result of analyzing the aldehyde dehydrogenase and glutathione contents of a total of 200 different yeast strains obtained from Korean makgeolli, 10 yeast strains showed high aldehyde dehydrogenase or glutathione production ability as shown in Table 1.

알데히드탈수소효소 함량이 0.10 Unit/protein(mg)으로 2번째로 높으며, 글루타치온이 0.42%로 가장 높은 Yeast #97을 야생형(wild-type)으로 최종 모균주(parent strain)를 선정하여 본 발명의 돌연변이 과정을 수행하였다.Yeast #97, which has the second highest aldehyde dehydrogenase content at 0.10 Unit/protein (mg) and has the highest glutathione at 0.42%, was selected as the wild-type final parent strain, and the mutants of the present invention process was performed.

균주명strain name ALDH2 활성
(Unit/mg-protein)
ALDH2 activity
(Unit/mg-protein)
글루타치온 함량(%)Glutathione content (%) ScreeningScreening
Yeast #6Yeast #6 0.060.06 0.380.38 Yeast #18Yeast #18 0.110.11 0.140.14 Yeast #22Yeast #22 0.080.08 0.380.38 Yeast #41Yeast #41 0.140.14 0.220.22 Yeast #97Yeast #97 0.100.10 0.420.42 선정된 모균주(Wild-Type)Selected parent strain (Wild-Type) Yeast #109Yeast #109 0.100.10 0.360.36 Yeast #112Yeast #112 0.090.09 0.400.40 Yeast #126Yeast #126 0.100.10 0.280.28 Yeast #168Yeast #168 0.110.11 0.380.38 Yeast #197Yeast #197 0.080.08 0.410.41

[실시예 2][Example 2]

본 발명의 돌연변이 과정에 사용된 모 균주의 동정Identification of the parental strain used in the mutation process of the present invention

본 발명의 돌연변이 과정을 수행하기에 앞서서, 야생형 모균주(Yeast #97, Wild-Type Yeast)의 정확한 균종을 확인하기 위해 동정을 수행하였다. 순수한 콜로니를 고체 배지 전체에 도말하여 DNA 추출에 필요한 충분한 균을 확보하였으며, HiGeneTM Genomic DNA prep kit(BIOFACT Co., Ltd., Daejeon, Korea)를 제조사의 지시에 따라 수행하여 DNA를 추출하였다. Prior to performing the mutation process of the present invention, identification was performed to confirm the exact strain of the wild-type parent strain (Yeast #97, Wild-Type Yeast). Pure colonies were smeared on the entire solid medium to secure enough bacteria for DNA extraction, and DNA was extracted using the HiGene™ Genomic DNA prep kit (BIOFACT Co., Ltd., Daejeon, Korea) according to the manufacturer's instructions.

ITS region rRNA 유전자를 증폭하기 위해 ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') 및 ITS4 (5'-TCCTCCGCTTATTGATTGC-3')을 primer로 이용하여 PCR(Polymerase chain reaction)을 수행하여 염기서열 분석을 수행하였다. To amplify the ITS region rRNA gene, polymerase chain reaction (PCR) was performed using ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATTGC-3') as primers, and sequencing was performed.

Bioedit 프로그램(http://www.mbio.ncsu.edu/BioEdit/Bioedit.html)을 통해 DNA 염기서열을 분리하고, ITS4를 이용하여 증폭한 DNA 염기서열은 reverse complete process를 통해 상보적인 염기서열을 얻었다. The DNA sequence is separated through the Bioedit program (http://www.mbio.ncsu.edu/BioEdit/Bioedit.html), and the DNA sequence amplified using ITS4 is complementary to the reverse complete process. got it

Clustal X 프로그램(http://www.clustal.org/clustal2)을 통해 염기서열의 일치 여부를 확인하였으며, 일치하는 서열을 분리하여 국립생물공학정보센터(NCBI)의 BLAST(Basic Local Alignment Search Tool)를 이용하여 균을 동정하였다.[서열번호5]. 동정 결과, 분리된 효모(Yeast W.T.)는 사카로마이세스 세레비지에와 100% 일치함을 확인하였다.The matching of the nucleotide sequences was confirmed through the Clustal X program (http://www.clustal.org/clustal2), and the matching sequences were separated and BLAST (Basic Local Alignment Search Tool) of the National Center for Biotechnology Information (NCBI) was used. The bacteria were identified using [SEQ ID NO: 5]. As a result of the identification, it was confirmed that the isolated yeast (Yeast W.T.) was 100% identical to Saccharomyces cerevisiae.

[실시예 3][Example 3]

알데히드탈수소효소 생산 능력이 우수한 돌연변이 후보 균주의 선별Selection of mutant candidate strains with excellent aldehyde dehydrogenase production ability

야생형(wild-type) 사카로마이세스 세레비지에 모균주(parent strain)의 돌연변이 유도 과정은, 미합중국 특허출원 제17/176,365호(미합중국 2021년 8월19일자 공개공보US-202 1-0254023-Al)에 기재된 방법에 따라 진행하였다. The process of inducing mutation of the parent strain of wild-type Saccharomyces cerevisiae is described in US Patent Application No. 17/176,365 (US Publication No. US-202 1-0254023-Aug. 19, 2021). Al) was carried out according to the method described.

본 발명의 돌연변이 유도 방법은 1) 알데히드탈수소효소와 글루타치온을 모두 생산하는 야생 효모 균주를 에틸메탄설포네이트(EMS) 또는 니트로소구아니딘(NGD)으로 처리하여 돌연변이 효모를 유도하는 제1단계, 2) 상기 제1단계에서 얻어진 돌연변이 효모 균주들로부터, 메틸글리옥살 적응력이 우수한 돌연변이 효모 균주를 선택하는 제2단계, 3) 상기 제2단계에서 선택된 메틸글리옥살 적응력을 나타내는 돌연변이 효모 균주들중에서 라이신에도 적응력을 나타내는 돌연변이 효모를 선택하는 제3단계를 거쳐서, 30종의 돌연변이 균주를 확보하였으며, 이들의 성장곡선, ALDH 및 ADH 효소 활성, 조효소 함량, 글루타치온 함량을 기준으로 균주를 선별하여 균주 별로 계대 배양을 진행하였다.In the mutagenesis method of the present invention, 1) the first step of inducing mutant yeast by treating a wild yeast strain producing both aldehyde dehydrogenase and glutathione with ethyl methanesulfonate (EMS) or nitrosoguanidine (NGD), 2) A second step of selecting a mutant yeast strain having excellent methylglyoxal adaptability from the mutant yeast strains obtained in the first step, 3) Adaptability to lysine among mutant yeast strains showing methylglyoxal adaptability selected in the second step Through the third step of selecting mutant yeasts showing , 30 mutant strains were secured, and strains were selected based on their growth curves, ALDH and ADH enzyme activities, coenzyme content, and glutathione content, and subculture for each strain proceeded.

3-1: 성장곡선(Growth characterisitics)3-1: Growth characterisitics

사카로마이세스 세레비지에는 크랩트리 효과(Crabtree effect) positive인 대표적인 미생물로서, 호기조건에서 성장과 동시에 에탄올을 생성한다. 높은 수율로 균을 성장시키기 위해서는 배양중인 효모가 에탄올에 대한 저항성이 높을 것이 필요하다. Saccharomyces cerevisiae is a representative microorganism that is positive for the Crabtree effect, and produces ethanol at the same time as it grows under aerobic conditions. In order to grow bacteria with a high yield, it is necessary that the yeast in culture has high resistance to ethanol.

돌연변이 균주는 0, 5, 7, 10%의 각기 다른 농도의 에탄올을 함유한 YPD 배지 99ml에 OD660nm 값이 1이 되도록 균체 농도를 조정한 사카로마이세스 세레비지에 배양액 1ml를 접종하여, 30℃, 200rpm의 조건에서 배양하였다. 성장곡선은 48시간 동안 3시간 간격으로 측정하였으며, 유도기(lag phase)의 시간, 대수 증식기(exponential phase)의 비 증식속도(specific growth rate, OD660nm/hr), 최종 성장 정도(OD660nm)를 기준으로 평가하였다.The mutant strain was inoculated with 1 ml of the culture medium to Saccharomyces cerevisiae, the cell concentration of which was adjusted so that the OD 660 nm value was 1, in 99 ml of YPD medium containing 0, 5, 7, and 10% of different concentrations of ethanol. It was cultured under conditions of ℃ and 200 rpm. The growth curve was measured at 3-hour intervals for 48 hours, and the time of the lag phase, the specific growth rate (OD 660nm / hr) of the exponential phase, and the final growth degree (OD 660nm ) were measured. Evaluated based on

에탄올 농도가 증가함에 따라 유도기의 시간은 증가하였으며, 최종 성장 정도와 비 증식속도는 감소하였다. 최종 성장 정도를 비교하였을 때, 9종의 돌연변이 균주가 고농도 에탄올(10%)에서 저 농도 에탄올(5%) 대비 약 50%의 성장이 유지됨을 보였다. 해당 균주들은 고농도 에탄올에서 다른 균주에 비해 짧은 유도기, 높은 비 증식속도를 보였다. As the ethanol concentration increased, the time of the induction phase increased, and the final growth rate and specific growth rate decreased. When comparing the final growth degree, the 9 mutant strains showed that about 50% growth was maintained in high concentration ethanol (10%) compared to low concentration ethanol (5%). These strains showed a shorter induction period and higher specific growth rate than other strains in high concentration ethanol.

## 5% ethanol5% ethanol 7% ethanol7% ethanol 10% ethanol10% ethanol 선별Selection hrhr OD660nm/hrOD 660nm /hr OD660nm OD 660 nm hrhr OD660nm/hrOD 660nm /hr OD660nm OD 660nm hrhr OD660nm/hrOD 660nm /hr OD660nm OD 660nm 1One 99 0.64770.6477 22.222.2 1515 0.52100.5210 16.516.5 2424 0.19680.1968 4.814.81 22 1212 0.36750.3675 12.3412.34 2424 0.18350.1835 4.114.11 3636 0.01400.0140 0.2120.212 33 99 0.42850.4285 15.815.8 1515 0.28880.2888 9.129.12 2424 0.08800.0880 2.162.16 44 1515 0.96830.9683 25.325.3 1515 0.88150.8815 25.325.3 1515 0.40850.4085 12.412.4 K-1K-1 55 1212 0.73680.7368 14.1214.12 1515 0.73370.7337 12.2312.23 2121 0.22050.2205 5.685.68 66 1212 0.96830.9683 99 1515 0.88150.8815 5.445.44 3333 0.62690.6269 0.4480.448 77 2424 0.96640.9664 22.322.3 2727 0.84670.8467 16.816.8 3030 0.26730.2673 5.175.17 88 66 0.72680.7268 2323 99 0.62220.6222 21.521.5 1515 0.37780.3778 12.1112.11 K-2K-2 99 66 0.84330.8433 22.1222.12 99 0.74840.7484 25.3425.34 1515 0.30050.3005 9.419.41 1010 33 0.48800.4880 14.514.5 1818 0.20130.2013 6.126.12 2424 0.08080.0808 2.142.14 1111 33 0.27660.2766 11.1511.15 99 0.22230.2223 8.228.22 2424 0.09880.0988 2.412.41 1212 66 0.71490.7149 21.6821.68 99 0.59690.5969 20.5220.52 1717 0.33170.3317 11.411.4 K-3K-3 1313 99 0.61060.6106 22.422.4 1212 0.49060.4906 16.416.4 1515 0.18130.1813 5.685.68 1414 1212 0.61360.6136 20.620.6 2424 0.30600.3060 6.856.85 3636 0.02780.0278 0.410.41 1515 1212 0.47590.4759 15.4515.45 1818 0.17510.1751 5.415.41 3333 0.07070.0707 0.8960.896 1616 99 0.85330.8533 23.823.8 1515 0.80650.8065 20.920.9 2121 0.49530.4953 12.112.1 K-4K-4 1717 2121 0.60160.6016 14.8514.85 2424 0.39550.3955 8.458.45 2424 0.05470.0547 1.261.26 1818 1212 0.77660.7766 19.2519.25 1818 0.44370.4437 12.412.4 2424 0.12190.1219 2.852.85 1919 33 0.50500.5050 14.7514.75 99 0.44630.4463 14.614.6 2121 0.25210.2521 6.236.23 2020 2727 0.06660.0666 1.411.41 3636 0.02780.0278 0.360.36 -- -- -- 2121 33 0.60440.6044 22.1422.14 99 0.60510.6051 20.6420.64 1212 0.32470.3247 11.111.1 K-5K-5 2222 2424 0.57980.5798 13.413.4 2727 0.50800.5080 10.110.1 3030 0.16040.1604 3.13.1 2323 1515 0.64550.6455 16.916.9 1515 0.58770.5877 16.916.9 1515 0.20030.2003 6.36.3 2424 33 0.72690.7269 20.420.4 66 0.63750.6375 18.618.6 1212 0.35220.3522 10.510.5 K-6K-6 2525 99 0.48580.4858 16.716.7 1515 0.39080.3908 12.412.4 2424 0.14760.1476 3.63.6 2626 66 0.65590.6559 17.217.2 99 0.58210.5821 19.719.7 1515 0.31770.3177 9.69.6 K-7K-7 2727 99 0.28570.2857 10.510.5 1515 0.19250.1925 6.16.1 2424 0.05870.0587 1.41.4 2828 1212 0.63150.6315 12.112.1 1515 0.62890.6289 10.510.5 2121 0.18900.1890 4.94.9 2929 66 0.54510.5451 17.317.3 99 0.46670.4667 16.116.1 1515 0.28340.2834 9.19.1 K-8K-8 3030 99 0.78260.7826 21.821.8 99 0.66140.6614 19.919.9 2121 0.32670.3267 10.610.6 K-9K-9

3-2: 알코올탈수소효소와 알데히드탈수소효소 활성 측정3-2: Measurement of alcohol dehydrogenase and aldehyde dehydrogenase activity

알코올탈수소효소(ADH)의 활성은 990μl reaction mixture[50mM potassium phosphate buffer(pH 8.0), 2mM NAD+, 1% ethanol]에 10μl의 효모 용해물(lysate)를 첨가하여 측정하였다. 알데히드탈수소효소(ALDH)의 활성은 990μl reaction mixture[50mM potassium phosphate buffer(pH 8.0), 3mM NADP+, 1.5mM acetaldehyde]에 10μl의 본 발명의 효모 용해물(lysate)를 첨가하여 측정하였다. 효소 반응은 30℃에서 5분간 진행하며, 340nm에서 흡광도를 측정하여 생성된 NAD(P)H의 농도를 측정하였다.The activity of alcohol dehydrogenase (ADH) was measured by adding 10 μl of yeast lysate to 990 μl reaction mixture [50 mM potassium phosphate buffer (pH 8.0), 2 mM NAD + , 1% ethanol]. The activity of aldehyde dehydrogenase (ALDH) was measured by adding 10 μl of the yeast lysate of the present invention to 990 μl reaction mixture [50 mM potassium phosphate buffer (pH 8.0), 3 mM NADP + , 1.5 mM acetaldehyde]. The enzymatic reaction proceeded at 30° C. for 5 minutes, and the concentration of NAD(P)H produced was measured by measuring the absorbance at 340 nm.

선별된 돌연변이 균주 9종(K-1 내지 K-9)을 대상으로 효소 활성을 측정한 결과, ADH 효소 활성은 최저 382.69 unit/g, 최고 975.29 unit/g으로, 대조용 기준 효모로서 분양받은 Type-strain (Saccharomyces cerevisiae KCTC 7296) 대비 각각 5.1 내지 13.1배 증가하였다. 알데히드탈수소효소(ALDH)의 활성은 최저 15.23 unit/g, 최고 72.16 unit/g으로 역시, 대조용 기준 효모 Type-strain 대비 각각 5.3 내지 24.9배 증가하였다. As a result of measuring the enzyme activity of 9 selected mutant strains (K-1 to K-9), the ADH enzyme activity was the lowest of 382.69 unit/g and the highest of 975.29 unit/g. -Strain ( Saccharomyces cerevisiae KCTC 7296) increased by 5.1 to 13.1 times, respectively. The activity of aldehyde dehydrogenase (ALDH) was as low as 15.23 unit/g and as high as 72.16 unit/g, which increased by 5.3 to 24.9 times, respectively, compared to the control yeast type-strain.

대조용 기준 효모 Type-strain(KCTC7296) 대비 효소 활성의 증가를 비교하였을 때, ADH와 ALDH 효소 활성 증가율이 비슷한 6종의 돌연변이 균주(K-1, 4, 6, 7, 8, 9)와 달리, 본 발명의 새로운 3종의 균주(K-2, 3, 5)는 ALDH 효소 활성 증가율이 각각 18.3, 23.2, 24.9배로 ADH 효소 활성 증가율인 9.7, 11.6, 13.1배에 비해 약 2배로, 매우 높은 증가율을 보였다.When comparing the increase in enzyme activity compared to the control standard yeast type-strain (KCTC7296), unlike six mutant strains (K-1, 4, 6, 7, 8, 9) with similar ADH and ALDH enzyme activity increase rates, , The three new strains (K-2, 3, and 5) of the present invention showed an increase in ALDH enzyme activity of 18.3, 23.2, and 24.9 times, respectively, about twice as much as the ADH enzyme activity increase rate of 9.7, 11.6, and 13.1 times, which is very high. showed an increase.

본 발명자는 알데히드탈수소효소(ALDH) 활성 증가에 특화된 본 발명의 새로운 3종의 돌연변이 균주(K-2, K-3, K-5)를, 각각 PicoYP, PicoYP-01, PicoYP-02로 명명하였으며, 이들을 한국생명공학연구원의 생물자원센터(Korean Collection for Type Cultures)에 기탁하여, KCTC14983BP, KCTC14984BP, KCTC14985BP의 기탁번호를 부여받았다.The present inventors named three new mutant strains (K-2, K-3, K-5) of the present invention, which are specialized for increasing aldehyde dehydrogenase (ALDH) activity, as PicoYP, PicoYP-01, and PicoYP-02, respectively. , and deposited them in the Korean Collection for Type Cultures of the Korea Research Institute of Bioscience and Biotechnology, and were assigned accession numbers KCTC14983BP, KCTC14984BP, and KCTC14985BP.

3-3: 돌연변이 효모 9종의 조효소(NAD, NADP) 생성 능력 비교3-3: Comparison of coenzyme (NAD, NADP) production abilities of 9 mutant yeasts

NADH/NAD quantification kit(MAK037, Sigma-Aldrich) 및 NADPH/NADP quantification kit(MAK038, Sigma-Aldrich)를 이용하여, 돌연변이 효모 9종의 용해물(lysate) 내에 존재하는 NADtotal 및 NADPtotal을 측정하였다. NAD(P) cycling buffer와 NAD(P) cycling enzyme mix를 이용하여 시료 내 NAD(P)+를 NAD(P)H로 전환한 후, NAD(P) developer를 이용하여 발색 반응을 유도하였다. 발색 정도는 450nm에서 흡광도의 형태로 측정하였고, 표준 곡선을 통해 농도로 환산하여 농도를 계산하였다.Using the NADH/NAD quantification kit (MAK037, Sigma-Aldrich) and the NADPH/NADP quantification kit (MAK038, Sigma-Aldrich), NAD total and NADP total present in lysates of 9 mutant yeasts were measured. . After converting NAD(P) + in the sample to NAD(P)H using NAD(P) cycling buffer and NAD(P) cycling enzyme mix, a color reaction was induced using NAD(P) developer. The degree of color development was measured in the form of absorbance at 450 nm, and the concentration was calculated by converting to concentration through a standard curve.

돌연변이 균주 9종(K-1 내지 K-9)을 대상으로 측정한 결과, NADtotal은 최저 126μmole/g, 최고 195μmole/g으로 Type-strain 대비 각각 7.3, 10.8배 증가하였다. NADPtotal은 최저 2.4μmole/g, 최고 5.8μmole/g으로 대조용 기준 균주인 Type-strain(KCTC7296) 대비 각각 11.4, 27.6배 증가하였다.As a result of measurement for 9 mutant strains (K-1 to K-9), NAD total was 7.3 and 10.8 times higher than Type-strain, respectively, with a minimum of 126 μmole / g and a maximum of 195 μmole / g. NADP total was a minimum of 2.4 μmole / g and a maximum of 5.8 μmole / g, which increased by 11.4 and 27.6 times, respectively, compared to the control strain, Type-strain (KCTC7296).

대조용 기준 균주 Type-strain(KCTC7296) 대비 조효소 함량의 증가를 비교하였을 때, NADPtotal 함량 증가율이 NADtotal 함량 증가율의 2배에 미치지 못하는 기존의 6종의 돌연변이 균주(K-1, 4, 6, 7, 8, 9)와 달리, 본 발명의 신규한 3종의 돌연변이 균주(K-2: KCTC14983BP, K-3:KCTC14984BP, K-5:KCTC14985BP)는 NADPtotal의 증가율이 각각 25.7, 22.9, 27.6배로 각각 10.8, 9.9, 11.3배인 NADtotal의 증가율의 2배 이상으로, 매우 높은 증가율을 보였다.When comparing the increase in coenzyme content compared to the control reference strain Type-strain (KCTC7296), the increase rate of total NADP content was less than twice the increase rate of total NAD content. , 7, 8, 9), the three new mutant strains of the present invention (K-2: KCTC14983BP, K-3: KCTC14984BP, K-5: KCTC14985BP) showed an increase in NADP total of 25.7, 22.9, It was 27.6 times, showing a very high increase rate, more than twice the increase rate of NAD total , which were 10.8, 9.9, and 11.3 times, respectively.

3-4: 돌연변이 효모 9종의 글루타치온 생산력 비교3-4: Comparison of glutathione productivity of 9 mutant yeasts

본 발명의 돌연변이 균주 용해물의 글루타치온 함량의 측정은 실시예 1-2와 동일한 방법으로 진행하였다. 9종의 돌연변이 균주의 글루타치온 함량을 측정한 결과, 최저 0.85%, 최고 1.05%로서 대조용 기준 균주 Type strain(KCTC7296) 대비 각각 2.7, 3.3배 증가하였다. Measurement of the glutathione content of the lysate of the mutant strain of the present invention was performed in the same manner as in Example 1-2. As a result of measuring the glutathione content of 9 mutant strains, the lowest was 0.85% and the highest was 1.05%, which increased by 2.7 and 3.3 times, respectively, compared to the control strain type strain (KCTC7296).

본 발명의 돌연변이 균주(K-2, 3, 5) 3종은, 다른 6종(K-1, 4, 6, 7, 8, 9)의 균주에 비해 알데히드탈수소효소(ALDH) 활성 증가율과 조효소의 함량 증가율이 높게 나타났다.The three mutant strains (K-2, 3, and 5) of the present invention have an increased rate of aldehyde dehydrogenase (ALDH) activity and coenzyme The content increase rate of was high.

[실시예 4][Example 4]

돌연변이 균주 7종간 탄소원 이용정도 측정(API test)비교Comparison of carbon source utilization measurement (API test) among 7 mutant strains

본 발명자의 한국특허 출원(제10-2020-0019858호)하였던 “ALDH와 글루타치온 동시 생산을 위한 돌연변이 균주 3종”K-1(KCTC13925BP), K-4(KCTC14122BP), K-9(14123BP)과 대조용 기준 효모 균주(KCTC7296) 그리고 본 발명의 ALDH 생산 능력 극대화를 위한, 신규 돌연변이 효모 균주 3종 K-2(KCTC14983BP), K-3(KCTC14984BP), K-5(KCTC14985BP)들이 성장에 이용하는 탄소원을 측정하였다. “Three mutant strains for simultaneous production of ALDH and glutathione” K-1 (KCTC13925BP), K-4 (KCTC14122BP), K-9 (14123BP) and The control standard yeast strain (KCTC7296) and the carbon source used for growth of the three new mutant yeast strains K-2 (KCTC14983BP), K-3 (KCTC14984BP), and K-5 (KCTC14985BP) to maximize the ALDH production capacity of the present invention was measured.

각 균주의 당 이용 특성 및 신규성을 확인하기 위해, API 50 CHL키트(API systems, BioMreux, SA, France) 제조사의 지침에 각 균주들이 성장에 이용하는 각종 탄소원을 분석하였다. In order to confirm the sugar utilization characteristics and novelty of each strain, various carbon sources used for growth of each strain were analyzed according to the manufacturer's instructions of the API 50 CHL kit (API systems, BioMreux, SA, France).

8ml YPD 배지를 15ml conical tube에 분주하고, 대조용 균주(KCTC7296)와, 본 발명자가 기탁하였던 종래의 균주 3종(KCTC13925BP, KCTC14122BP, KCTC14123BP 그리고 본 발명의 돌연변이 신규 균주 3종(KCTC14983BP, KCTC14984BP, KCTC14985BP)을 접종하였다. 8ml YPD medium was dispensed into a 15ml conical tube, a control strain (KCTC7296), three conventional strains deposited by the present inventors (KCTC13925BP, KCTC14122BP, KCTC14123BP, and three mutant new strains of the present invention (KCTC14983BP, KCTC14984BP, KCTC14985BP) ) was inoculated.

30℃, 200rpm의 조건에서 24시간 배양하여 대수증식기의 균주를 확보하였고, 배지 조성의 영향을 제거하기 위해 원심분리기를 이용하여 균주를 생리식염수로 3회 세척하였다. API 50 CHL medium을 이용하여 2McFarland suspension의 균액을 제조하고, strip의 튜브에 채웠다. 30℃에서 24시간 배양한 후 결과를 해석하였다.The strains in the logarithmic growth phase were secured by culturing at 30 ° C. and 200 rpm for 24 hours, and the strains were washed three times with physiological saline using a centrifuge to remove the influence of the medium composition. An inoculum of 2 McFarland suspension was prepared using API 50 CHL medium and filled into a tube of a strip. The results were analyzed after incubation at 30°C for 24 hours.

API test에 이용되는 API 50 CHL medium은 기본적으로 보라색을 나타내지만, 세균의 에너지 대사에 의해 산이 생성되면 파란색, 초록색을 거쳐 노란색으로 변하였다. 이를 토대로 탄소원의 사용 여부를 판단하여 균의 성장 정도를 +의 개수로 표시하여 기록하였다(보라색: 성장 X, 파란색: +, 초록색: ++, 노란색: +++). API 50 CHL medium used for the API test basically shows a purple color, but when acid is produced by the energy metabolism of bacteria, it changes to yellow through blue and green. Based on this, it was judged whether or not the carbon source was used, and the degree of growth of the fungus was recorded as the number of + (purple: growth X, blue: +, green: ++, yellow: +++).

실험에 이용된 7종의 균주들의 19종의 탄소 원(L-arabinose, ribose, D-xylose, D-galactose, D-glucose, D-fructose, D-mannose, mannitol, N-acetyl-glucosamine, arbutin, salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, raffinose, gentiobiose)의 이용 정도를 측정하였다. 19 carbon sources (L-arabinose, ribose, D-xylose, D-galactose, D-glucose, D-fructose, D-mannose, mannitol, N-acetyl-glucosamine, arbutin) of 7 strains used in the experiment , salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, raffinose, and gentiobiose) were measured.

rhamnose는 3종의 균주(KwonP-1, PicoYP-01, PicoYP-02)가 이용하였으며, sorbitol은 4종의 균주(KwonP-2, KwonP-3, PicoYP-01, PicoYP-02)가 이용하였으며, α-methyl-D-mannoside는 4종의 균주(T.S., KwonP-1, KwonP-2, PicoYP-02)가 이용하였으며, amygdalin은 6종의 균주(KwonP-1, KwonP-2, KwonP-3, PicoYP, PicoYP-01, PicoYP-02)가 이용하였으며, D-turanose는 4종의 균주(T.S., KwonP-1, KwonP-3, PicoYP-02)가 이용하였으며, D-tagatose는 3종의 균주(T.S., KwonP-3, PicoYP-02)가 이용하였으며, gluconate는 대조용 기준 균주 Type-strain 만이 탄소원으로 이용하였다. Rhamnose was used by 3 strains (KwonP-1, PicoYP-01, PicoYP-02), and sorbitol was used by 4 strains (KwonP-2, KwonP-3, PicoYP-01, PicoYP-02). α-methyl-D-mannoside was used by 4 strains (T.S., KwonP-1, KwonP-2, PicoYP-02), and amygdalin was used by 6 strains (KwonP-1, KwonP-2, KwonP-3, PicoYP, PicoYP-01, PicoYP-02) were used, D-turanose was used by 4 strains (T.S., KwonP-1, KwonP-3, PicoYP-02), and D-tagatose was used by 3 strains ( T.S., KwonP-3, PicoYP-02) were used, and gluconate was used as a carbon source only for the control strain Type-strain.

그런데, 알코올성 탄소원에 해당하는 mannitol과 sorbitol에서는 효모 균들의 성장에 특히 유의한 차이를 발생시켰다(표 3). 본 발명의 신규한 3종의 돌연변이 효모 균주들3종(PicoYP:KCTC14983BP, PicoYP-01:KCTC14984BP, PicoYP-02:KCTC14985BP의 API test 결과, 대조용 기준 균주 Type strain(KCTC7296)및 본 발명자가 과거에 기탁하였던 글루타치온과 ALDH의 동시 생산을 위한 또 다른 돌연변이 효모 균주(KCTC13925BP, KCTC14122BP, KCTC14123BP)들과는 달리, 아래의 표3에 나타낸 바와 같이, 성장에 이용하는 당 종류가 다르고, 3종의 신규한 돌연변이 균주 간에도 성장에 주로 이용하는 당의 종류에 차이가 있었다.However, mannitol and sorbitol, which are alcoholic carbon sources, produced a particularly significant difference in the growth of yeast (Table 3). API test results of three novel mutant yeast strains of the present invention (PicoYP:KCTC14983BP, PicoYP-01:KCTC14984BP, PicoYP-02:KCTC14985BP, control reference strain Type strain (KCTC7296) and the present inventors in the past Unlike other mutant yeast strains (KCTC13925BP, KCTC14122BP, KCTC14123BP) for simultaneous production of glutathione and ALDH deposited, as shown in Table 3 below, the type of sugar used for growth is different, and even among the three new mutant strains There was a difference in the type of sugar mainly used for growth.

  대조용 기준 균주reference strain for control KwonP-1KwonP-1 KwonP-2KwonP-2 KwonP-3KwonP-3 Pico
YP
Pico
YP
Pico
YP-01
Pico
YP-01
Pico
YP-02
Pico
YP-02
L-ArabinoseL-Arabinose ++++ ++++++ ++++ ++++++ ++++ ++++ ++++++ RiboseRibose ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ D-XyloseD-Xylose ++ ++++ ++ ++ ++++ ++++ ++ D-GalactoseD-Galactose ++ ++++++ ++++ ++++ ++++++ ++++ ++++ D-GlucoseD-Glucose ++++ ++++++ ++++++ ++++ ++++++ ++++ ++++ D-FructoseD-Fructose ++++ ++++++ ++++ ++++ ++++++ ++++ ++++ D-MannoseD-Mannose ++++ ++++++ ++++++ ++++ ++++++ ++++ ++++ RhamnoseRhamnose   ++ ++++ ++++ MannitolMannitol ++ ++ ++ ++ ++++ ++++++ ++++++ SorbitolSorbitol   ++ ++ ++++++ ++++++ α-Methyl-D-Mannosideα-Methyl-D-Mannoside ++++++ ++ ++   ++++++ N-Acetyl-GlucosamineN-Acetyl-Glucosamine ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ AmygdalinAmygdalin   ++ ++ ++ ++++ ++++ ++++ ArbutinArbutin ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ SalicinSalicin ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ CellobioseCellobiose ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ MaltoseMaltose ++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ LactoseLactose ++++ ++++ ++++ ++++ ++++ ++++ ++++ MelibioseMelibiose ++++ ++ ++++++ ++++++ ++++ ++++ ++++++ SucroseSucrose ++++ ++++++ ++++ ++++ ++++++ ++++++ ++++ TrehaloseTrehalose ++++ ++ ++++ ++++ ++++ ++++ ++++ RaffinoseRaffinose ++++ ++ ++ ++++ ++++ ++++ ++++++ GentiobioseGentiobiose ++++ ++++ ++++ ++++ ++++ ++++ ++++ D-TuranoseD-Turanose ++ ++ ++     ++ D-TagatoseD-Tagatose ++++ ++     ++++ GluconateGluconate ++      

ALDH 효소 생산 능력에 최적합 균주로 선택하여 계대 배양하였던, 본 발명의 신규 돌연변이 효모 3종 KCTC14983(PicoYP), KCTC14984BP(PicoYP-01), KCTC14985BP(PicoYP-02)은, 글루타치온 생산 능력에 있어서는 본 발명자의 기존의 기탁균주KCTC13925BP(Kwon P-1), KCTC14122BP(Kwon P-2), KCTC14123BP(Kwon P-3)들과 비슷하였지만, 이들에 비하여 ADH 및 ALDH 효소 활성 증가율, 조효소 함량 증가율은 탁월하게 증가하였다.The three new mutant yeasts of the present invention, KCTC14983 (PicoYP), KCTC14984BP (PicoYP-01), and KCTC14985BP (PicoYP-02), which were selected as strains most suitable for ALDH enzyme production ability and subcultured, were the present inventors in terms of glutathione production ability. It was similar to the existing deposited strains KCTC13925BP (Kwon P-1), KCTC14122BP (Kwon P-2), and KCTC14123BP (Kwon P-3), but the rate of increase in ADH and ALDH enzyme activity and coenzyme content increased remarkably. did

StrainStrain Enzyme activity* Enzyme activity * Coenzyme concentration** Coenzyme concentration ** GSH(%)GSH (%) NameName ADHADH ALDHALDH NADtotal NAD total NADPtotal NADP total Type-strainType-strain 74.674.6 2.92.9 17.217.2 0.210.21 0.320.32 대조용균주control strain KCTC7296KCTC7296 K-1K-1 542.26542.26 23.1123.11 169.8169.8 4.14.1 1.001.00 KwonP-1KwonP-1 KCTC13925BPKCTC13925BP K-2K-2 725.11725.11 53.153.1 185185 5.45.4 0.860.86 PicoYPPicoYP KCTC14983BPKCTC14983BP K-3K-3 866.41866.41 67.467.4 171171 4.84.8 0.850.85 PicoYP-01PicoYP-01 KCTC14984BPKCTC14984BP K-4K-4 625.11625.11 31.431.4 176176 5.15.1 0.980.98 KwonP-2KwonP-2 KCTC14122BPKCTC14122BP K-5K-5 975.29975.29 72.1672.16 195195 5.85.8 0.890.89 PicoYP-02PicoYP-02 KCTC14985BPKCTC14985BP K-6K-6 458.88458.88 16.2116.21 154154 3.13.1 1.051.05 -- K-7K-7 382.69382.69 15.2315.23 126126 2.42.4 1.001.00 -- K-8K-8 422.17422.17 16.1916.19 142142 2.92.9 0.990.99 -- K-9K-9 533.54533.54 20.6820.68 167167 3.23.2 1.001.00 KwonP-3KwonP-3 KCTC14123BPKCTC14123BP

대조용기준 균주(Type-strain) 대비 증가율(배)을 계산하여 아래의 [표5]에 나타내었다.The increase rate (fold) compared to the control strain (Type-strain) was calculated and shown in [Table 5] below.

StrainStrain Enzyme activity* Enzyme activity * Coenzyme concentration** Coenzyme concentration ** GSH(%)GSH (%) NameName ADHADH ALDHALDH NADtotal NAD total NADPtotal NADP total Type-strainType-strain 1One 1One 1One 1One 1One -- KCTC7296KCTC7296 K-1K-1 7.37.3 8.08.0 9.99.9 19.519.5 3.13.1 KwonP-1KwonP-1 KCTC13925BPKCTC13925BP K-2K-2 9.79.7 18.318.3 10.810.8 25.725.7 2.72.7 PicoYPPicoYP KCTC14983BPKCTC14983BP K-3K-3 11.611.6 23.223.2 9.99.9 22.922.9 2.72.7 PicoYP-01PicoYP-01 KCTC14984BPKCTC14984BP K-4K-4 8.48.4 10.810.8 10.210.2 17.117.1 3.13.1 KwonP-2KwonP-2 KCTC14122BPKCTC14122BP K-5K-5 13.113.1 24.924.9 11.311.3 27.627.6 2.82.8 PicoYP-02PicoYP-02 KCTC14985BPKCTC14985BP K-6K-6 6.26.2 5.65.6 9.09.0 14.814.8 3.33.3 -- K-7K-7 5.15.1 5.35.3 7.37.3 11.411.4 3.13.1 -- K-8K-8 5.75.7 5.65.6 8.38.3 13.813.8 3.13.1 -- K-9K-9 7.27.2 7.17.1 9.79.7 15.215.2 3.13.1 KwonP-3KwonP-3 KCTC14123BPKCTC14123BP

[실시예 5][Example 5]

위산에서 돌연변이 균주의 알데히드탈수소효소 활성 변화Changes in aldehyde dehydrogenase activity of mutant strains in gastric acid

알데히드탈수소효소(ALDH)를 함유하는 효모 조성물이 경구를 통해 투여되어 장내(소장, 대장)로 효소 활성이 살아서 작용하기 위해서는, 낮은 pH와 펩신(Pepsin)과 같은 강력한 단백질분해효소를 분비하는 위에 의하여 효소 활성이 파괴되지 않고 안전하게 통과하여야 한다. In order for the yeast composition containing aldehyde dehydrogenase (ALDH) to be administered orally and active into the intestines (small intestine, large intestine) to live and act, low pH and strong proteolytic enzymes such as pepsin are secreted by the stomach It must pass safely without destroying the enzymatic activity.

음식물을 섭취하였을 때의 위장 내 환경을 조성하기 위해 인공 위액(Artificial gastric juice, pH 1.17)을 NaOH 용액을 이용하여 위 속 조건과 비슷한 pH 3과 pH 5 으로 맞춘 인공위액 용액을 제조하였다. 본 발명의 돌연변이 균주 효모 1g에 인공위액 용액(pH1.17, 3, 5) 7ml를 넣고 체온과 같은 36.5℃로 조정한 후 5분, 30분, 60분, 90분 동안 반응시켰다. 반응 종료 후 NaOH 용액을 이용해 pH 7로 중화하여 최종 volume 10ml의 혼합물을 제조한 후, 본 발명의 돌연변이 균주 효모의 알데히드탈수소효소(ALDH) 활성을 측정하였다. Artificial gastric juice (pH 1.17) was adjusted to pH 3 and pH 5 similar to the conditions in the stomach using NaOH solution to create an environment in the stomach when food was ingested. 7 ml of artificial gastric juice solution (pH 1.17, 3, 5) was added to 1 g of mutant strain yeast of the present invention, adjusted to 36.5 ° C., the same as body temperature, and then reacted for 5 minutes, 30 minutes, 60 minutes, and 90 minutes. After completion of the reaction, the mixture was neutralized to pH 7 using NaOH solution to prepare a mixture having a final volume of 10 ml, and then the aldehyde dehydrogenase (ALDH) activity of the mutant strain yeast of the present invention was measured.

위액(pH 1.17)과 본 발명의 돌연변이 효모를 반응시킨 결과 알데히드탈수소효소(ALDH) 활성은 반응 5분 후 대조군 대비 평균 92.88% 이상 감소하였으며, 반응시간이 길어질수록 알데히드탈수소효소(ALDH) 활성은 감소하여 반응 90분 후에는 대조군 대비 평균 98.89% 감소하였다. pH 3 및 pH 5에서는 좀 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 평균 96.66%, pH 5에서는 56.83% 감소하였다.As a result of reacting gastric juice (pH 1.17) with the mutant yeast of the present invention, the aldehyde dehydrogenase (ALDH) activity decreased by more than 92.88% on average compared to the control group after 5 minutes of reaction, and the longer the reaction time, the lower the aldehyde dehydrogenase (ALDH) activity. After 90 minutes of reaction, it decreased by 98.89% on average compared to the control group. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, it decreased by 96.66% on average compared to the control group at pH 3 and by 56.83% at pH 5.

보다 상세하게는, 위액(pH 1.17)과 KwonP-1(KCTC13925BP)을 반응시킨 결과 알데히드탈수소효소(ALDH) 활성은 반응 5분 후 대조군 대비 90.94% 감소하여, 5.57 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 대조군 대비 98.57% 감소하여 0.88 unit/g으로 측정되었다[도 19]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 96.66% 감소한 2.05 unit/g, pH 5에서는 47.76% 감소한 32.12 unit/g으로 측정되었다.More specifically, as a result of reacting gastric juice (pH 1.17) with KwonP-1 (KCTC13925BP), the aldehyde dehydrogenase (ALDH) activity decreased by 90.94% compared to the control group after 5 minutes of reaction, and was measured as 5.57 unit / g, and the reaction time The longer the reaction, the lower the enzyme activity, and after 90 minutes of reaction, it was measured as 0.88 unit / g, which was reduced by 98.57% compared to the control group [FIG. 19]. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, it was measured at 2.05 unit / g, a decrease of 96.66% compared to the control group at pH 3, and at 32.12 unit / g, decreased by 47.76% at pH 5.

위액(pH 1.17)과 KwonP-2:KCTC14122BP을 반응시킨 결과 ALDH 활성은 반응 5분 후 대조군 대비 91.18% 감소하여, 5.43 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 대조군 대비 98.81% 감소하여 0.73 unit/g으로 측정되었다[도 20]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 97.62% 감소한 1.47 unit/g, pH 5에서는 56.11% 감소한 26.99 unit/g으로 측정되었다.As a result of reacting gastric juice (pH 1.17) with KwonP-2:KCTC14122BP, ALDH activity decreased by 91.18% compared to the control group after 5 minutes of reaction, and was measured as 5.43 units/g. After that, it decreased by 98.81% compared to the control group and was measured as 0.73 unit/g [FIG. 20]. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, pH 3 was measured at 1.47 unit / g, which is a decrease of 97.62% compared to the control group, and 26.99 unit / g, which is 56.11% decrease at pH 5.

위액(pH 1.17)과 KwonP-3:KCTC14123BP을 반응시킨 결과 ALDH 활성은 반응 5분 후 대조군 대비 89.99% 감소하여, 6.16 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 대조군 대비 97.85% 감소하여 1.32 unit/g으로 측정되었다[도 21]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 92.61% 감소한 4.55 unit/g, pH 5에서는 62.31% 감소한 23.18 unit/g으로 측정되었다.As a result of reacting gastric juice (pH 1.17) with KwonP-3:KCTC14123BP, ALDH activity decreased by 89.99% compared to the control group after 5 minutes of reaction, and was measured as 6.16 units/g. After that, it decreased by 97.85% compared to the control group and was measured as 1.32 units/g [FIG. 21]. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, pH 3 was measured at 4.55 units / g, a decrease of 92.61% compared to the control group, and 23.18 unit / g, a decrease of 62.31% at pH 5.

위액(pH 1.17)과 PicoYP:KCTC14983BP을 반응시킨 결과 ALDH 활성은 반응 5분 후 대조군 대비 92.84% 감소하여, 4.40 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 대조군 대비 98.33% 감소하여 1.03 unit/g으로 측정되었다[도 22]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 96.66% 감소한 2.05 unit/g, pH 5에서는 53.97% 감소한 28.31 unit/g으로 측정되었다.As a result of reacting gastric juice (pH 1.17) with PicoYP:KCTC14983BP, ALDH activity decreased by 92.84% compared to the control group after 5 minutes of reaction, and was measured as 4.40 units/g. It was measured as 1.03 unit/g, decreasing by 98.33% compared to the control group [FIG. 22]. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, it was measured at 2.05 unit / g, which is a decrease of 96.66% compared to the control group at pH 3, and at 28.31 unit / g, which is decreased by 53.97% at pH 5.

위액(pH 1.17)과 PicoYP-01:KCTC14984BP을 반응시킨 결과 ALDH 활성은 반응 5분 후 대조군 대비 95.71% 감소하여, 2.64 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 대조군 대비 99.76% 감소하여 0.15 unit/g으로 측정되었다[도 23]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 98.21% 감소한 1.10 unit/g, pH 5에서는 58.74% 감소한 25.38 unit/g으로 측정되었다.As a result of reacting gastric juice (pH 1.17) with PicoYP-01:KCTC14984BP, ALDH activity decreased by 95.71% compared to the control group after 5 minutes of reaction, and was measured as 2.64 units/g. After that, it decreased by 99.76% compared to the control group and was measured as 0.15 unit/g [FIG. 23]. Higher enzyme activity was maintained at pH 3 and pH 5, and after 90 minutes of reaction, pH 3 was measured at 1.10 unit / g, which is a decrease of 98.21% compared to the control group, and 25.38 unit / g, which is 58.74% decrease at pH 5.

위액(pH 1.17)과 PicoYP-02:KCTC14985BP을 반응시킨 결과 ALDH 활성은 반응 5분 후 대조군 대비 96.66% 감소하여, 2.05 unit/g으로 측정되었으며, 반응시간이 길어질수록 효소 활성은 감소하여 반응 90분 후에는 효소 활성이 관찰되지 않았다[도 24]. pH 3 및 pH 5에서는 더 높은 효소 활성이 유지되었으며, 반응 90분 후 pH 3에서는 대조군 대비 98.21% 감소한 1.10 unit/g, pH 5에서는 62.08% 감소한 23.32 unit/g으로 측정되었다. As a result of reacting gastric juice (pH 1.17) with PicoYP-02:KCTC14985BP, ALDH activity decreased by 96.66% compared to the control group after 5 minutes of reaction, and was measured as 2.05 unit/g. After that, no enzyme activity was observed [FIG. 24]. At pH 3 and pH 5, higher enzyme activity was maintained, and after 90 minutes of reaction, pH 3 was measured at 1.10 unit / g, which is a decrease of 98.21% compared to the control group, and 23.32 unit / g, which is 62.08% decrease at pH 5.

극단적인 pH 1.17은 음식물이 섭취하면 분비되는 위액 원액의 pH이고, 음식물과 위에서 섞이면 pH가 3에서 5로 올라가기 때문에 pH 1.17이 될 가능성은 희박하지만, 극단적인 조건인 pH 1.17에서도 잔존 효소활성을 측정하였다. Extreme pH 1.17 is the pH of the gastric juice secreted when food is ingested, and since the pH rises from 3 to 5 when food is mixed in the stomach, it is unlikely that pH 1.17 will be reached, but the remaining enzyme activity is maintained even under extreme conditions of pH 1.17. measured.

이상과 같은 결과에서, 본 발명의 신규한 돌연변이 효모 균주(PicoYP, PicoYP-01, PicoYP-02)는 극단적인 pH 1.17에서 5분 반응했을 때는, 효소활성이 약 92-97% 심하게 파괴되지만, 잔존활성이 장내에서 충분히 작용할 수 있는 약 2-5 unit가 남았고, pH 3, 5에서는 상당량의 효소가 살아남아서 경구 투여용으로 사용할 수 있다는 결론을 얻었다.From the above results, the novel mutant yeast strains of the present invention (PicoYP, PicoYP-01, PicoYP-02) were severely destroyed by about 92-97% of enzyme activity when reacted at extreme pH of 1.17 for 5 minutes, but the remaining It was concluded that about 2-5 units of the enzyme, which can sufficiently act in the intestine, remained, and a significant amount of the enzyme survived at pH 3 and 5, so that it could be used for oral administration.

[실시예 6][Example 6]

5L 발효조 배양 시험5L fermenter culture test

YPD 액체배지(2% peptone, 1% yeast extract, 2% glucose)에 6종의 돌연변이 효모 균주를 접종하고 30℃, 200rpm에서 18시간 동안 1차 종균 배양을 진행하였다. 5L Jar 배양의 경우, YPD 액체배지 1980ml 에 종균 배양액 20ml을 접종하고, 발효조건은 종균 배양과 동일하게 하여 48시간 동안 배양하였다. 배양 중 배양액 10ml을 채취하여 균 생산은 흡광도(OD660nm) 및 효소 활성을 측정하였다.YPD liquid medium (2% peptone, 1% yeast extract, 2% glucose) was inoculated with 6 mutant yeast strains, and primary seed culture was performed at 30°C and 200 rpm for 18 hours. In the case of 5L Jar culture, 20 ml of seed culture was inoculated into 1980 ml of YPD liquid medium, and the fermentation conditions were the same as for seed culture and cultured for 48 hours. During the culture, 10 ml of the culture medium was collected, and the absorbance (OD 660 nm ) and enzyme activity were measured.

KwonP-1:KCTC13925BP의 최종 성장(OD660nm)은 134.4로, Type-strain 대비 4.35% 높았고, 비성장속도(OD660nm/hr)는 Type-strain(KCTC7296)과 유사했다. 성장곡선에서도 유사한 패턴을 보였지만 ALDH 활성은 33.6 unit/g으로 Type-strain 대비 11.96배 높게 나타났다[도 25].The final growth (OD 660nm ) of KwonP-1:KCTC13925BP was 134.4, 4.35% higher than the type-strain, and the specific growth rate (OD 660nm /hr) was similar to that of the type-strain (KCTC7296). A similar pattern was shown in the growth curve, but the ALDH activity was 33.6 units / g, which was 11.96 times higher than the type-strain [FIG. 25].

KwonP-2(KCTC14122BP)의 최종 성장(OD660nm)은 133.8로, type-strain 대비 3.88% 높았고, 비성장속도(OD660nm/hr)는 Type-strain 대비 14.8% 높았다. KwonP-2의 성장이 Type-strain(KCTC7296) 보다 일찍 종료되었으며, ALDH 활성은 31.5 unit/g으로 Type-strain 대비 11.21배 높게 나타났다[도 26].The final growth (OD 660nm ) of KwonP-2 (KCTC14122BP) was 133.8, 3.88% higher than the type-strain, and the specific growth rate (OD 660nm /hr) was 14.8% higher than the type-strain. Growth of KwonP-2 was terminated earlier than Type-strain (KCTC7296), and ALDH activity was 31.5 units/g, 11.21 times higher than Type-strain [FIG. 26].

KwonP-3(KCTC14123BP)의 최종 성장(OD660nm)은 134.1로, Type-strain 대비 4.12% 높았고, 비성장속도(OD660nm/hr)는 Type-strain 대비 6.08% 낮았다. KwonP-3의 성장이 Type-strain 보다 일찍 종료되었으며, ALDH 활성은 29.5 unit/g으로 Type-strain 대비 10.5배 높게 나타났다[도 27].The final growth (OD 660nm ) of KwonP-3 (KCTC14123BP) was 134.1, 4.12% higher than the type-strain, and the specific growth rate (OD 660nm /hr) was 6.08% lower than the type-strain. The growth of KwonP-3 was terminated earlier than the type-strain, and the ALDH activity was 29.5 units/g, 10.5 times higher than the type-strain [FIG. 27].

PicoYP(KCTC14983BP)의 최종 성장(OD660nm)은 123.8로, Type-strain 대비 3.88% 낮았고, 비성장속도(OD660nm/hr)는 Type-strain(KCTC7296) 대비 6.22% 높았다. 성장곡선은 Type-strain과 유사한 패턴을 보였지만 ALDH 활성은 44.2 unit/g으로 Type-strain 대비 15.73배 높게 나타났다[도 28].The final growth (OD 660nm ) of PicoYP (KCTC14983BP) was 123.8, 3.88% lower than the type-strain, and the specific growth rate (OD 660nm /hr) was 6.22% higher than the type-strain (KCTC7296). The growth curve showed a similar pattern to the type-strain, but the ALDH activity was 44.2 units/g, 15.73 times higher than the type-strain [FIG. 28].

PicoYP-01(KCTC14984BP)의 최종 성장(OD660nm)은 126.9로, Type-strain 대비 1.47% 낮았고, 비성장속도(OD660nm/hr)는 Type-strain(KCTC7296) 대비 2.14% 높았다. 성장곡선은 Type-strain과 유사한 패턴을 보였지만 ALDH 활성은 47.1 unit/g으로 Type-strain 대비 16.76배 높게 나타났다[도 29].The final growth (OD 660nm ) of PicoYP-01 (KCTC14984BP) was 126.9, 1.47% lower than the type-strain, and the specific growth rate (OD 660nm /hr) was 2.14% higher than the type-strain (KCTC7296). The growth curve showed a similar pattern to the type-strain, but the ALDH activity was 47.1 units/g, 16.76 times higher than the type-strain [FIG. 29].

PicoYP-02(KCTC14985BP)의 최종 성장(OD660nm)은 148.1로, Type-strain 대비 14.99% 높았고, 비성장속도(OD660nm/hr)는 Type-strain(KCTC7296) 대비 9.64% 낮았다. 성장곡선은 Type-strain보다 위에 위치하며 ALDH 활성은 52.68 unit/g으로 Type-strain 대비 18.75배 높게 나타났다[도 30].The final growth (OD 660nm ) of PicoYP-02 (KCTC14985BP) was 148.1, 14.99% higher than the type-strain, and the specific growth rate (OD 660nm /hr) was 9.64% lower than the type-strain (KCTC7296). The growth curve was located above the type-strain, and the ALDH activity was 52.68 units/g, which was 18.75 times higher than the type-strain [FIG. 30].

[실시예 7][Example 7]

본 발명의 돌연변이 균주 6종의 용해물 KARC의 제조Preparation of lysate KARC of 6 mutant strains of the present invention

본 발명의 돌연변이 효소 용해물에 포함된 효소(ALDH, ADH)의 보존을 위한 단백질 분해효소(protease)의 제거 및 억제하고, 세포벽 등의 세포 구조물(cell debris)의 제거하기 위하여, 돌연변이 효모들의 건조물 또는 용해물(lysate) 또는 이들을 자유로운 비율로 혼합하여 KARC(Kwon Aldehyde Reducing Composition) 조성물을 제조하였다. In order to remove and inhibit proteases for preservation of enzymes (ALDH, ADH) included in the mutant enzyme lysate of the present invention, and to remove cell debris such as cell walls, mutant yeasts are dried Alternatively, a lysate or a KARC (Kwon Aldehyde Reducing Composition) composition was prepared by mixing them in a free ratio.

본 발명의 돌연변이 효모와 이를 배양한 배지에는, 에탄올과 같은 효모의 대사산물, 효모가 분비하는 단백질 분해효소 등 다양한 물질이 존재하였다. 효모에 존재하는 알데히드탈수수효소 및 조효소, 글루타티온을 추출 및 보존하기 위해서는 효모 균부 외부의 물질을 충분히 제거할 필요가 있으며, 이를 위해 세척 과정을 수행하였다. 돌연변이 균주의 세척은 50ml conical tube에 40ml 씩 배양액을 분주하여 13,000rpm에서 15분간 원심분리 과정을 수행하며, 상등액을 제거하여 진행하였다. In the mutant yeast of the present invention and the medium in which it was cultured, various substances such as yeast metabolites such as ethanol and proteolytic enzymes secreted by the yeast were present. In order to extract and preserve aldehyde dehydratase, coenzyme, and glutathione present in yeast, it is necessary to sufficiently remove substances outside the yeast cell, and a washing process was performed for this purpose. Washing of the mutant strain was carried out by dispensing 40 ml of the culture solution into a 50 ml conical tube, centrifuging at 13,000 rpm for 15 minutes, and removing the supernatant.

원심분리 결과 효모 균들이 뭉쳐서 생성되는 펠렛(pellet) 내부에 잔여 배지가 남아있기 때문에 30ml 정제수를 첨가한 후, vortexing을 통해 펠렛을 충분히 풀어주며, 이전의 과정을 3회 반복하여 잔여 배지를 충분히 제거하였다.As a result of centrifugation, since residual medium remains inside the pellet, which is produced by the union of yeast, 30ml purified water is added, the pellet is sufficiently released through vortexing, and the previous process is repeated 3 times to sufficiently remove the residual medium did

효모의 에탄올 저항성은 최대 13%으로 알려져 있으며, 높은 농도의 에탄올에 노출되면 효모 균이 사멸하게 된다. 효모 균의 사멸을 유도하기 위해 세척이 이루어진 펠렛은 20% 에탄올 용액 10ml을 이용하여 충분히 풀어주며, 100rpm에서 30분간 교반하여 효모 균의 사멸 공정을 진행하였다. 반응시간이 종료되면 30ml 정제수를 첨가하여 에탄올 농도를 5%까지 낮추며, 이전의 세척 과정을 3회 반복하여 에탄올을 충분히 제거하였다. Ethanol resistance of yeast is known to be up to 13%, and yeast is killed when exposed to high concentrations of ethanol. To induce the death of yeast, the washed pellet was sufficiently released using 10 ml of 20% ethanol solution, and the yeast was killed by stirring at 100 rpm for 30 minutes. When the reaction time was over, 30 ml of purified water was added to lower the ethanol concentration to 5%, and the previous washing process was repeated three times to sufficiently remove ethanol.

효모 세포 내에 존재하는 단백질 분해효소로부터 ALDH 및 ADH를 보존하기 위해 단백질 분해효소 억제제(Pierce protease inhibitor mini tablets, EDTA-free, Thermo Scientific) 2 tablet을 녹인 1X PBS 10ml 을 첨가하여 세척이 종료된 효모 균 펠렛을 충분히 풀어주었다. To preserve ALDH and ADH from proteolytic enzymes present in yeast cells, 2 tablets of protease inhibitor (Pierce protease inhibitor mini tablets, EDTA-free, Thermo Scientific) were added to 10ml of 1X PBS, and washing was completed. The pellet was sufficiently released.

본 발명에서 제조한 돌연변이 효모 균의 용해물을 제조하고자 효모 세포벽을 부수기 위해 유리 구슬(Glass beads) 4g을 투여하여 교반하였으며, 효모 균의 파쇄 과정에서 발생하는 열에 의한 효소의 변성을 방지하기 위해 30초 vortexing, 30초 ice incubation을 6회 반복하여 수행하였다. In order to prepare the lysate of the mutant yeast prepared in the present invention, 4 g of glass beads were administered and stirred to break the yeast cell wall, and 30 Second vortexing and 30 second ice incubation were repeated 6 times.

효모 균의 세포벽 파쇄가 완료된 후에 100mM potassium phosphate buffer 10ml을 첨가하며, 3~5초의 간단한 vortexing을 통해 충분히 섞어준다. 13,000 rpm에서 15분간 원심분리하여 효모 세포벽 등의 세포 구조물과 유리 구슬을 제거하고, 상등액을 0.2μm 필터(Minisart Syringe Filter, Sartorius, Goettingen, Germany)로 여과하여, KARC 조성물을 제조하였다.After the destruction of the cell wall of the yeast is complete, add 10ml of 100mM potassium phosphate buffer and mix sufficiently by simple vortexing for 3 to 5 seconds. Cell structures such as yeast cell walls and glass beads were removed by centrifugation at 13,000 rpm for 15 minutes, and the supernatant was filtered through a 0.2 μm filter (Minisart Syringe Filter, Sartorius, Goettingen, Germany) to prepare a KARC composition.

본 발명의 돌연변이 효소 용해물(분해물)에 포함된 효소(ALDH, ADH)의 보존을 위하여 세포 내 단백질 분해효소(protease)를 제거 및 억제하고, 세포벽 등의 세포 구조물(cell debris)을 제거하여, KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP 6종의 돌연변이 효모들 중에서 선택되는 어느 하나의 용해물(lysate) 또는 이들이 자유로운 비율로 혼합된 KARC 조성물을 제조하였다(표 6).In order to preserve the enzymes (ALDH, ADH) included in the mutant enzyme lysate (lysate) of the present invention, intracellular proteases are removed and inhibited, and cell debris such as cell walls are removed, KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP A lysate selected from six mutant yeasts or a KARC composition in which they were mixed in a free ratio was prepared (Table 6).

KwonP-1로부터 제조된 KARC1의 ADH, ALDH 효소 활성은 각각 461.4 unit/g, 28.6 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 176.2 μmole/g, 5.1 μmole/g으로 나타났으며, GSH는 0.98 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC1 prepared from KwonP-1 were 461.4 unit/g and 28.6 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 176.2 μmole/g and 5.1 μmole/g, respectively, GSH was found to be 0.98 wt%.

KwonP-2로부터 제조된 KARC2의 ADH, ALDH 효소 활성은 각각 482.1 unit/g, 29.8 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 175.4 μmole/g, 5.2 μmole/g으로 나타났으며, GSH는 0.96 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC2 prepared from KwonP-2 were 482.1 unit/g and 29.8 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 175.4 μmole/g and 5.2 μmole/g, respectively, GSH was found to be 0.96 wt%.

KwonP-3로부터 제조된 KARC3의 ADH, ALDH 효소 활성은 각각 477.5 unit/g, 28.1 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 177.2 μmole/g, 5.1 μmole/g으로 나타났으며, GSH는 1.00 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC3 prepared from KwonP-3 were 477.5 unit/g and 28.1 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 177.2 μmole/g and 5.1 μmole/g, respectively, GSH was found to be 1.00 wt%.

PicoYP로부터 제조된 KARC4의 ADH, ALDH 효소 활성은 각각 586.8 unit/g, 33.8 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 184.3 μmole/g, 5.7 μmole/g으로 나타났으며, GSH는 0.84 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC4 prepared from PicoYP were 586.8 unit/g and 33.8 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 184.3 μmole/g and 5.7 μmole/g, respectively. It was found to be 0.84 wt%.

PicoYP-01로부터 제조된 KARC5의 ADH, ALDH 효소 활성은 각각 621.6 unit/g, 38.2 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 186.9 μmole/g, 5.6 μmole/g으로 나타났으며, GSH는 0.83 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC5 prepared from PicoYP-01 were 621.6 unit/g and 38.2 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 186.9 μmole/g and 5.6 μmole/g, respectively, GSH was found to be 0.83 wt%.

PicoYP-02로부터 제조된 KARC6의 ADH, ALDH 효소 활성은 각각 664.1 unit/g, 41.6 unit/g으로 나타났고, 조효소인 NADtotal 및 NADPtotal 함량은 각각 195.0 μmole/g, 5.8 μmole/g으로 나타났으며, GSH는 0.88 wt%로 나타났다.The ADH and ALDH enzyme activities of KARC6 prepared from PicoYP-02 were 664.1 unit/g and 41.6 unit/g, respectively, and the coenzyme NADtotal and NADPtotal contents were 195.0 μmole/g and 5.8 μmole/g, respectively, GSH was found to be 0.88 wt%.

KARC는 본 발명자가 기탁한 돌연변이 균주 6종의 용해물(lysate)간의 임의의 자유로운 비율의 혼합물로서, 알코올탈수소효소(alcohol dehydrogenase, ADH) 및 알데히드탈수소효소(aldehyde dehydrogenase, ALDH) 활성은 각각 547.6 unit/g, 33.1 unit/g으로 나타났고, 조효소인 NADtotal, NADPtotal의 함량은 각각 180.4 μmole/g, 5.4 μmole/g으로 나타났으며, 글루타티온(glutathione, GSH) 함량은 0.84 wt%로 나타났다. KARC is a mixture in any free ratio between the lysates of the six mutant strains deposited by the present inventors, and the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities are 547.6 units, respectively. / g, 33.1 unit / g, the contents of NAD total and NADP total , which are coenzymes, were 180.4 μmole / g and 5.4 μmole / g, respectively, and the glutathione (GSH) content was 0.84 wt%.

이 결과를 통해 KARC의 알데히드 분해 능력이 용해물(lysate) 제조 과정에서 유지됨을 확인할 수 있었으며, 높은 알데히드 탈수소 반응을 촉진하는 능력으로, 인체 내에서 생성되는 HNE, MDA, 3,4-dihydroxyphenylacetaldehyde(DOPAL) 등의 독성 알데히드를 제거하는 능력을 나타내었다.Through this result, it was confirmed that the aldehyde decomposition ability of KARC was maintained during the lysate manufacturing process, and the ability to promote high aldehyde dehydrogenation reaction, HNE, MDA, 3,4-dihydroxyphenylacetaldehyde (DOPAL ) showed the ability to remove toxic aldehydes such as

명칭designation 균주strain ADH
(Unit/g)
ADH
(Unit/g)
ALDH
(Unit/g)
ALDH
(Unit/g)
NADtotal
(μmole/g)
NADtotal
(µmole/g)
NADPtotal
(μmole/g)
NADPtotal
(µmole/g)
GSH
(wt %)
GSH
(wt %)
KARC1KARC1 KwonP-1KwonP-1 461.4461.4 28.628.6 176.2176.2 5.15.1 0.980.98 KARC2KARC2 KwonP-2KwonP-2 482.1482.1 29.829.8 175.4175.4 5.25.2 0.960.96 KARC3KARC3 KwonP-3KwonP-3 477.5477.5 28.128.1 177.2177.2 5.15.1 1.001.00 KARC4KARC4 PicoYPPicoYP 586.8586.8 33.833.8 184.3184.3 5.75.7 0.840.84 KARC5KARC5 PicoYP-01PicoYP-01 621.6621.6 38.238.2 186.9186.9 5.65.6 0.830.83 KARC6KARC6 PicoYP-02PicoYP-02 664.1664.1 41.641.6 195.0195.0 5.85.8 0.880.88 KARCKARC 전체 평균overall average 547.6547.6 33.133.1 180.4180.4 5.45.4 0.910.91

[실시예 8][Example 8]

본 발명의 돌연변이 효모가 함유하는 알데히드탈수소효소의 염기서열 분석 Base sequence analysis of aldehyde dehydrogenase contained in the mutant yeast of the present invention

본 발명의 돌연변이 효모의 알데히드탈수소효소와 돌연변이 이전의 모균주의 알데히드탈수소효소의 유전자 염기서열의 차이를 확인하기 위해, 모균주 그리고 KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP의 6종의 돌연변이 효모들의 유전자 염기서열 분석(Whole genome sequencing)을 실시하였다. 효모 균주들의 순수한 콜로니를 고체 배지 전체에 도말하여 균을 확보하여 유전자 염기서열을 분석하였다.In order to confirm the difference in the gene sequence of the aldehyde dehydrogenase of the mutant yeast of the present invention and the aldehyde dehydrogenase of the parent strain before the mutation, six mutant yeasts of the parent strain and KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, and KCTC14985BP Whole genome sequencing was performed. Pure colonies of the yeast strains were smeared on the entire solid medium to secure the bacteria, and gene sequences were analyzed.

효모 균주들이 각각 생산하는 알데히드탈수소효소(ALD, Yeast aldehyde dehydrogenases) 효소 중, ALD2(서열번호3번), ALD3(서열번호4번)는 13번 염색체(chromosome)에 연속적으로 연결되어 위치하고 있었고, 그 사이에는 689개 염기서열로 구성된 non-coding region이 존재하였다. Among the yeast aldehyde dehydrogenases (ALD) enzymes produced by yeast strains, ALD2 (SEQ ID NO: 3) and ALD3 (SEQ ID NO: 4) were located continuously linked to chromosome 13, There was a non-coding region consisting of 689 base sequences in between.

효모 균들의 ALD2, ALD3는 같은 유전체에 연속되게 존재하나, 각각의 알데히드탈수소효소를 코딩하고 있었다. ALD2와 ALD3는 각각 1,521개 염기(nucleotide)로 구성되며, 506개 아미노산(amino acid)을 코딩하고 있는 등 유사한 점이 있었지만 125개 염기서열(8.2%)에서 서로 차이를 보이는 서로 다른 별개의 알데히드탈수소효소로 확인되었다.ALD2 and ALD3 of yeast strains were continuously present in the same genome, but each encoded an aldehyde dehydrogenase. ALD2 and ALD3 are aldehyde dehydrogenases that differ from each other in 125 base sequences (8.2%), although they have similarities, such as each consisting of 1,521 nucleotides and encoding 506 amino acids. confirmed with

그런데, 본 발명자가 기탁한 6종의 돌연변이 효모 균주(KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP)들에서는, ALD2 염기서열 말단에 종결 코돈이 존재하지 아니하여, 연속적으로 단백질이 합성되며, 그 결과 ALD2의 일부분과 ALD3이 연결된 거대해진 신규한 알데히드탈수소효소를 생성하였다.[서열번호1].However, in the six mutant yeast strains deposited by the present inventors (KCTC13925BP, KCTC14122BP, KCTC14123BP, KCTC14983BP, KCTC14984BP, KCTC14985BP), there is no stop codon at the end of the ALD2 sequence, so proteins are synthesized continuously. Results [SEQ ID NO: 1].

보다 상세하게는, 기존의 대조용 효모균주(KCTC7296)의 알데히드탈수소효소(ALD2)는 3말단에 종결 코돈을 제외한 9개 아미노산 (N-VHINLSLDN-C)을 코딩하고 있는 30개의 염기서열 (5'-GTTCACATAAATCTCTCTTTGGACAACTAA-3')이 존재하였다[서열번호3번].More specifically, the aldehyde dehydrogenase (ALD2) of the existing control yeast strain (KCTC7296) has 30 base sequences (5') encoding 9 amino acids (N-VHINLSLDN-C) excluding the stop codon at the 3 end. -GTTCACATAAATCTCTCTTTGGACAACTAA-3') was present [SEQ ID NO: 3].

그러나 본 발명의 6종의 돌연변이 효모의 알데히드탈수소효소들에는 ALD2와 ALD3의 5말단 사이에는 14개 아미노산(N-RYRLYTFRKLAKRK-C)를 코딩하는 42개의 염기서열(5'-AGATATAGATTATACACATTTAGAAAATTAGCCAAAAGAAAA-3')의 특징적인 염기서열이 나타났다[서열번호2] However, in the aldehyde dehydrogenases of the six mutant yeasts of the present invention, there is a 42 base sequence (5'-AGATATAGATTATACACATTTAGAAATTAGCCAAAAGAAAA-3') encoding 14 amino acids (N-RYRLYTFRKLAKRK-C) between the 5 ends of ALD2 and ALD3. A characteristic nucleotide sequence appeared [SEQ ID NO: 2]

이와 같이, 본 발명의 돌연변이 균주 6종에서는, ALD2의 1,492번째 염기부터 non-coding region의 647번째 염기까지 소멸하였으며, 결과적으로 ALD2의 종결 코돈이 없어지게 되어 총 3,054개 염기로 이루어진 새로운 유전자가, 본 발명의 신규한 알데히드탈수소효소를 코딩하고 있었다. [서열번호1] As such, in the six mutant strains of the present invention, from the 1,492nd base of ALD2 to the 647th base of the non-coding region, the stop codon of ALD2 disappeared, resulting in a new gene consisting of a total of 3,054 bases, It encoded the novel aldehyde dehydrogenase of the present invention. [SEQ ID NO: 1]

[실시예 8][Example 8]

본 발명의 돌연변이 효모 균주 용해물(KARC)의 소포체 스트레스로 유발된 간 지방 감소 효과 확인 시험Test to confirm liver fat reduction effect induced by endoplasmic reticulum stress of mutant yeast strain lysate (KARC) of the present invention

동물에게 투니카마이신(Tunicamycin, Tm)을 투여하면 단백질의 당화 (N-glycosylation)가 저해되어 비접힘 단백질(UP)이 생성되면서 소포체 스트레스가 야기된다. 투니카마이신은 진핵세포에 있는 N-아세틸글루코사민 전이효소 (N-acetylglucosamine transferase)의 억제제로 작용하여 N-아세틸글루코사민 지질 대사물질의 형성과 합성되는 단백질의 당화 과정을 막는다. When tunicamycin (Tm) is administered to animals, N-glycosylation of proteins is inhibited, resulting in endoplasmic reticulum stress as unfolded proteins (UP) are produced. Tunicamycin acts as an inhibitor of N-acetylglucosamine transferase in eukaryotic cells, preventing the formation of N-acetylglucosamine lipid metabolites and glycosylation of synthesized proteins.

소포체에서는 리보좀에서 합성된 단백질들을 고차 구조 및 번역 후 수식 과정이 진행되어 당 단백질의 접힘과 조립 과정이 이루어진다. 투니카마이신으로 인해 당 단백질들이 제대로 만들어지지 못함으로써, 단백질의 접힘과 조립이 되지 않고 소포체 내에 쌓이게 되면 소포체 스트레스가 야기된다. 결국, 소포체 스트레스는 세포 사멸을 유발하게 된다.In the endoplasmic reticulum, the proteins synthesized in the ribosome are subjected to higher order structure and post-translational modification, and the folding and assembly of glycoproteins are performed. When glycoproteins are not properly produced due to tunicamycin, proteins are not folded and assembled and accumulated in the endoplasmic reticulum, resulting in endoplasmic reticulum stress. Eventually, endoplasmic reticulum stress induces cell death.

본 발명자들은 본 발명의 KARC 성분에 의한 소포체 스트레스 매개 급성 지방간 억제 효능을 조사하기 위하여, 소포체 스트레스가 유도된 모델 동물을 이용하여 KARC에 의한 소포체 스트레스 효과와 간 조직의 지방관련 형태를 분석하였다.In order to investigate the efficacy of the KARC component of the present invention to inhibit acute fatty liver mediated by endoplasmic reticulum stress, the present inventors analyzed the endoplasmic reticulum stress effect by KARC and the fat-related morphology of liver tissue using model animals in which endoplasmic reticulum stress was induced.

보다 구체적으로는, 소포체 스트레스 유도 모델 동물인 C57BL/6J 수컷 마우스(중앙실험동물, 한국)를, 23℃ 및 60-70% 습도에서 12시간(낮), 12시간(밤)의 명암주기 (6 a.m.- 6 p.m. light, 6 p.m.- 6 a.m. dark)로 물에 자유롭게 접근할 수 있게 하고, 특정 병원체가 없는 마우스 시설에 수용하여 시험하였다. More specifically, C57BL/6J male mice (Central Experimental Animals, Korea), which are endoplasmic reticulum stress induction model animals, were subjected to 12-hour (day) and 12-hour (night) light/dark cycles at 23°C and 60-70% humidity (6 a.m.- 6 p.m. light, 6 p.m.- 6 a.m. dark) with free access to water, and housed in a specific pathogen-free mouse facility for testing.

실험 동물의 간 샘플 크기는 알려진 분석의 가변성에 따라 추정했다. 마우스의 복강에 2 mg/kg 투니카마이신을 투여하여 소포체 스트레스를 유도한 후, 24시간과 48시간 간격으로 KARC의 효능을 검증하였다. Liver sample sizes from experimental animals were estimated according to known assay variability. After inducing endoplasmic reticulum stress by administering 2 mg/kg tunicamycin intraperitoneally to mice, the efficacy of KARC was verified at 24 and 48 hour intervals.

본 명세서에서 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP 건조 분말 또는 용해물(lysate)인 KARC에는, 글루타치온 뿐만 아니라, 알데히드탈수소 반응을 촉진하는 알데히드탈수소효소(ALDH, aldehyde dehydrogenase)와, 조효소인 NAD, NADP, 알코올분해효소(ADH, alcohol dehydrogenase)가 함유되어 있다. In the present specification, KARC, which is a dry powder or lysate of KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP in Saccharomyces cerevisiae, contains not only glutathione but also aldehyde dehydrogenase (ALDH) that promotes aldehyde dehydrogenase ), coenzymes NAD, NADP, and alcohol dehydrogenase (ADH).

마우스를 이소플루란(isoflurane)(경기도 하나 제약)으로 마취시키고 오전 9시에 희생시켰다. 간조직의 형태를 분석하기 위해 H&E staining으로 그 구조를 확인하였으며, H&E 조직 염색은 당 업계에 공지된 실험 과정을 통하여 이루어졌다. Mice were anesthetized with isoflurane (Hana Pharmaceutical, Gyeonggi-do) and sacrificed at 9 AM. In order to analyze the morphology of liver tissue, its structure was confirmed by H&E staining, and H&E tissue staining was performed through an experimental process known in the art.

간 조직 지질은 메탄올과 클로로포름을 이용한 Folch의 방법에 따라 추출하였으며, 간 조직 총콜레스테롤 수치는 총콜레스테롤 분석 키트 (AM 202-K, 아산 제약회사)를 사용하여 정량화하고 500nm에서 시료 및 표준물질의 흡광도를 측정했다. Liver tissue lipids were extracted according to Folch's method using methanol and chloroform, and liver tissue total cholesterol levels were quantified using a total cholesterol assay kit (AM 202-K, Asan Pharmaceutical Co., Ltd.), and absorbance of samples and standards at 500 nm was measured.

간 조직 중성지질 수준은, 트리글리세라이드 분석 키트 (AM 157S-K, 아산 제약회사, 한국 서울)를 사용하여 정량화하고 Infinite  200 PRO (Tecan Trading AG, Switzerland)를 사용하여 550nm에서 시료 및 표준 물질의 흡광도를 측정했다.Liver tissue triglyceride levels were quantified using a triglyceride assay kit (AM 157S-K, Asan Pharmaceutical Co., Ltd., Seoul, Korea) and absorbance of samples and standards at 550 nm using Infinite  200 PRO (Tecan Trading AG, Switzerland) was measured.

그 결과, [도 1]에서 나타나는 바와 같이, 투니카마이신에 의해 간 조직에서 지방간의 형태가 나타나는 것을 확인하였다. As a result, as shown in [Figure 1], it was confirmed that the form of fatty liver appeared in liver tissue by tunicamycin.

투니카마이신을 투여을 투여한 그룹은, 24시간 및 48시간에서도 지속적으로 지방 간 현상으로 인하여, 색이 변한 상태로 유지되어 있지만, KARC를 10unit/kg, 20unit/kg 투여하였을 때, 농도가 높을수록 간 색깔의 회복율이 좋은 것으로 나타나서 KARC가 지방간을 회복하는 데 효과가 있는 것으로 확인하였다. In the group administered with tunicamycin, the color remained unchanged at 24 and 48 hours due to fatty liver, but when KARC was administered at 10 unit/kg and 20 unit/kg, the higher the concentration, the higher the concentration. The recovery rate of liver color was found to be good, and it was confirmed that KARC was effective in recovering fatty liver.

H&E staining을 통한 조직의 형태분석에서도 [도 2]에서와 같이 간 조직 내 지방의 형태가 약물 투여 그룹에서 더 적게 나타냈다. In the morphological analysis of tissue through H&E staining, as shown in [Fig. 2], the form of fat in the liver tissue was less in the drug-administered group.

소포제 스트레스 유도 후 간 조직 내 트리글리세라이드[도 3]와 총콜레스테롤[도 4]의 함량을 측정한 결과, 소포제 스트레스가 유도된 마우스의 간에서 증가하였다가 KARC를 투여한 마우스의 간에서는 모두 유의하게 감소하였다. 이런 간조직 검사에서도 본 발명의 사카로마이세스 세레비지에 용해물인 KARC가 지방간 형성을 회복시키는 것으로 나타났다.As a result of measuring the contents of triglyceride [Fig. 3] and total cholesterol [Fig. 4] in the liver tissue after the induction of antifoam stress, they increased in the liver of the mouse to which the antifoam stress was induced, but were significantly different in the liver of the mouse administered with KARC. decreased. In this liver biopsy, it was shown that KARC, a lysate of Saccharomyces cerevisiae of the present invention, restores fatty liver formation.

[실시예 9] KARC투여에 따른 소포체 스트레스 관련 인자의 변화 [Example 9] Changes in endoplasmic reticulum stress-related factors according to KARC administration

투니카마이신은 단백질의 돌리콜 인산(dolichol phosphate) 자리에 N-아세틸글루코사민 1인산(N-acetylglucosamine 1-phosphate)의 전달을 막음으로써 단백질의 Asparagine의 NH3잔기에 당 잔기가 붙는 과정을 억제한다. Tunicamycin blocks the transfer of N-acetylglucosamine 1-phosphate to the site of dolichol phosphate in proteins, thereby inhibiting the process of attaching sugar residues to the NH 3 residues of asparagine in proteins. .

또한 당화 단백질의 합성을 억제하기 위해 세포주기의 S기로 진입하는 것을 억제하고 G1기를 늦춤으로써 DNA 합성 또한 저해한다. 본 발명에서는 일반 마우스 모델에 투니카마이신을 처리한 후, 본 발명의 돌연변이 효모 용해물 KARC 20unit/kg을 투여하여, 24시간과 48시간 간격으로 본 발명의 돌연변이 효모 조성물 KARC의 효능을 검증하였다. It also inhibits DNA synthesis by inhibiting entry into the S phase of the cell cycle and slowing down the G1 phase to inhibit the synthesis of glycosylated proteins. In the present invention, after treating a general mouse model with tunicamycin, 20 units/kg of the mutant yeast lysate KARC of the present invention was administered to verify the efficacy of the mutant yeast composition KARC of the present invention at 24 and 48 hour intervals.

본 발명자들은 투니카마이신 투여와 돌연변이 효모 조성물 KARC투여가 끝난 후 마우스의 간 조직에서 급성 지방간 관련 인자를 분석했다.The present inventors analyzed acute fatty liver-related factors in liver tissues of mice after administration of tunicamycin and administration of the mutant yeast composition KARC.

구체적으로, 급성 지방간 형성 억제 효능을 조사하기 위해 투니카마이신과 KARC 의 투여가 끝난 마우스의 간 조직에서, ER Stress, 염증성, 지질합성, 지방산 산화와 관련된 인자를 분석하였다. Specifically, factors related to ER stress, inflammation, lipid synthesis, and fatty acid oxidation were analyzed in the liver tissues of mice after administration of tunicamycin and KARC to investigate the efficacy of inhibiting acute fatty liver formation.

소포체 스트레스가 유도된 마우스의 간 조직에서 소포체 스트레스 관련 유전자의 mRNA 및 단백질인 Chop(도3A), Grp78(도3B), Ire-1α(도3C), Gadd34(도3D), Atf4(도3E), 염증성 유전자의 F4/80(도4A), Mcp1(도4B), Tnf-α(도4C), Il-6(도4D)및 지방산 산화와 관련한 유전자의 Pparα(도5A), Pgc-1α(도5B), Cpt-1α(도5C)의 발현 수준을 측정했다.mRNAs and proteins of endoplasmic reticulum stress-related genes in the liver tissue of mice in which endoplasmic reticulum stress was induced: Chop (Fig. 3A), Grp78 (Fig. 3B), Ire-1α (Fig. 3C), Gadd34 (Fig. 3D), Atf4 (Fig. 3E) , F4/80 of inflammatory genes (Fig. 4A), Mcp1 (Fig. 4B), Tnf-α (Fig. 4C), Il-6 (Fig. 4D) and Pparα of genes related to fatty acid oxidation (Fig. 5A), Pgc-1α ( Fig. 5B), and the expression level of Cpt-1α (Fig. 5C) was measured.

트리졸(TriZol) 절차 (Invitrogen)에 의해 소포체 스트레스가 유도된 마우스의 간 조직으로부터 총 RNA를 제조하고, cDNA를 iScript ™ cDNA 합성 키트 (Bio-Rad Laboratories, Hercules, CA, USA)를 사용하여 합성했다. Total RNA was prepared from liver tissue of mice in which endoplasmic reticulum stress was induced by the TriZol procedure (Invitrogen), and cDNA was synthesized using the iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA) did.

다양한 유전자의 mRNA 발현 수준을 측정하기 위하여, CFX96TM 실시간 PCR 시스템 (Bio-Rad Laboratories)으로 qPCR을 수행했다. To measure the mRNA expression levels of various genes, qPCR was performed with the CFX96TM real-time PCR system (Bio-Rad Laboratories).

mRNA 수준은 델타-델타 역치 사이클 방법을 계산하여 리보솜 단백질 L32의 발현으로 정규화 하였다. qPCR에 사용된 유전자의 프라이머 서열은 [표 5]에 나열되어 있다. 웨스턴 블랏(Westen blot) 분석은 단백질 샘플은 소포체 스트레스로 유도된 마우스의 간 조직에서 추출하여 수행했다. mRNA levels were normalized to the expression of the ribosomal protein L32 by calculating the delta-delta threshold cycle method. The primer sequences of the genes used for qPCR are listed in Table 5. Western blot analysis was performed by extracting protein samples from mouse liver tissue induced by endoplasmic reticulum stress.

프로테아제 및 포스파타아제 억제제(Thermo Scientific)가 보충된 T-PER™ (Tissue Protein Extraction Reagent; Thermo Scientific,Rockford, IL, USA)를 사용하여 간 조직 용해물(추출물 또는 분해물)을 추출했다. 단백질을 5배 샘플 버퍼 (EBA-1052, ELPIS BIOTECH, 한국 서울)로 희석하고 95℃에서 5분 동안 가열했다. 이후 단백질을 5-15% Tris-HCl SDS/PAGE 겔 전기영동으로 분리하고 니트로셀룰로오스 막(GE Healthcare, Uppsala, Sweden)으로 전이하여 옮겼다. Liver tissue lysates (extracts or lysates) were extracted using T-PER™ (Tissue Protein Extraction Reagent; Thermo Scientific, Rockford, IL, USA) supplemented with protease and phosphatase inhibitors (Thermo Scientific). The protein was diluted with 5-fold sample buffer (EBA-1052, ELPIS BIOTECH, Seoul, Korea) and heated at 95°C for 5 minutes. Then, the proteins were separated by 5-15% Tris-HCl SDS/PAGE gel electrophoresis and transferred to a nitrocellulose membrane (GE Healthcare, Uppsala, Sweden).

모든 면역 블롯(immunoblot)은 화학 발광이 강화된 HRP- 접합 2차 항체에 의해 측정(Clarity ™ Western ECL Substrate, Bio-Rad Laboratories)하였다. 그 후 단백질 밴드는 화학 발광 이미징 시스템 (Fusion Fx, Vilber Lourmat, Eberhardzell, Germany)으로 검출하였다.All immunoblots were measured by HRP-conjugated secondary antibodies with enhanced chemiluminescence (Clarity ™ Western ECL Substrate, Bio-Rad Laboratories). Then, protein bands were detected with a chemiluminescence imaging system (Fusion Fx, Vilber Lourmat, Eberhardzell, Germany).

그 결과, [도 5, 6, 7, 8, 9]에 나타나는 바와 같이, QPCR을 통해 소포체 스트레스 유도 후 약물 처리한 간 조직에서 소포체 스트레스 관련 유전자들의 발현을 분석한 결과, 돌연변이 효모 조성물 KARC 용해물을 투여한 경우 모두에서 소포체 스트레스로 증가된 관련 유전자들이 개선되었다. As a result, as shown in [Figs. 5, 6, 7, 8, 9], the expression of endoplasmic reticulum stress-related genes was analyzed in drug-treated liver tissue after inducing endoplasmic reticulum stress through QPCR, and the mutant yeast composition KARC lysate In all cases, the genes related to the endoplasmic reticulum stress were improved.

소포체 스트레스를 유도하면, 간 조직 내 염증성 유전자의 발현 역시 증가하는 것으로 알려져 있으며, 관련 마커 유전자들의 발현을 확인해 본 결과, [도 10, 11, 12, 13]에서와 같이, 모든 유전자 마커들이 KARC에 의해 발현양이 감소되었다. When endoplasmic reticulum stress is induced, it is known that the expression of inflammatory genes in liver tissue also increases, and as a result of confirming the expression of related marker genes, as shown in [Figs. expression was reduced by

지방산 산화와 관련한 유전자의 발현을 확인해 본 결과에서 [도 14, 15, 16, 17]에서와 같이 KARC를 투여한 그룹에서, 소포체 스트레스 감소에 의한 지방산 산화가 많이 개선되는 것을 알 수 있었다. As a result of confirming the expression of genes related to fatty acid oxidation, as shown in [Figs. 14, 15, 16, and 17], it was found that fatty acid oxidation by reducing endoplasmic reticulum stress was greatly improved in the group administered with KARC.

소포체 스트레스와 관련된 단백질의 발현을 분석한 결과, KARC를 투여한 모든 경우에서 CHOP, IRE1α, p-eIF2α 발현이 감소하였으며, 지질대사 및 지방산 산화와 관련된 단백질의 발현을 분석한 결과, 지질대사에 관여하는 단백질에서도 KARC 투여군 모두에서, 처리 후 소포체 스트레스가 개선되어 관련 단백질 발현이 감소한 것을 확인하였다[도 18]. As a result of analyzing the expression of proteins related to endoplasmic reticulum stress, CHOP, IRE1α, and p-eIF2α expression decreased in all cases where KARC was administered, and as a result of analyzing the expression of proteins related to lipid metabolism and fatty acid oxidation, they were involved in lipid metabolism In all of the KARC-administered groups, it was confirmed that the endoplasmic reticulum stress was improved after treatment and the expression of related proteins was reduced [FIG. 18].

[실시예 10][Example 10]

KARC 경구 투여에 의한 산화스트레스 감소 효과 시험.Oxidative stress reduction effect test by oral administration of KARC.

활성산소나 산화 스트레스는 음주시 알코올이 알코올탈수소효소(ADH)에 의해서 과잉의 아세트알데히드(Ach)가 생성되어 증가하지만, 알데히드탈수소효소(ALDH)가 작용하여 초산으로 전환시켜 체외로 배출시킨다. 알데히드탈수소효소 유전자 돌연변이로 인한 경우이거나 알코올 과잉에 의한 알데히드 과잉 상태는 지방의 과산화 반응(Peroxidation)을 유발한다. Active oxygen or oxidative stress increases when alcohol is consumed by producing excess acetaldehyde (Ach) by alcohol dehydrogenase (ADH). In the case of aldehyde dehydrogenase gene mutation or excessive aldehyde due to alcohol excess, fat peroxidation is induced.

그 결과 생성되는 아세트알데히드와 말론디알데히드는 산화스트레스를 악화시키고 미토콘드리아 에너지 대사를 방해하고, 세포에 변성 단백질 축적을 통해 소포체 스트레스를 유발시켜 세포가 사멸하게 된다.As a result, acetaldehyde and malondialdehyde exacerbate oxidative stress, interfere with mitochondrial energy metabolism, and induce endoplasmic reticulum stress through accumulation of denatured proteins in cells, resulting in cell death.

[도 31]에서 음주 후 시간에 따른 혈중 아세트알데히드의 농도를 측정한 결과 혈중 아세트알데히드의 곡선 하부 면적(Area under the curve; AUC)은 알코올 단독 섭취시 13.02 ± 1.18 mg h/dL 이었고, 10unit/kg KARC 복용시에는 9.39 ± 1.07 mg h/dL 로 알코올 단독 섭취시 대비 26.13% 통계적으로 유의하게 감소하였다.(P=0.005), As a result of measuring the concentration of acetaldehyde in blood according to time after drinking in [Figure 31], the area under the curve (AUC) of acetaldehyde in blood was 13.02 ± 1.18 mg h/dL when alcohol was consumed alone, and 10 units/ When taking kg KARC, it was 9.39 ± 1.07 mg h/dL, a statistically significant decrease of 26.13% compared to when alcohol was consumed alone (P=0.005),

20unit/kg KARC 복용시에는 5.22 ± 0.99 mg h/dL 으로 알코올 단독 섭취시 대비 통계적으로 유의하게 55.71% 감소하였다(P<0.001). 또한 10unit/kg KARC 복용군과 20unit/kg KARC 복용군을 비교했을 때도, 20unit/kg KARC 복용군이 유의하게 감소하여 (P=0.034) 용량 의존적으로 시간에 따른 혈중 아세트알데히드의 총량을 감소시키는 효과를 확인하였다. When taking 20unit/kg KARC, it was 5.22 ± 0.99 mg h/dL, a statistically significant 55.71% decrease compared to when alcohol was consumed alone (P<0.001). Also, when comparing the 10unit/kg KARC group and the 20unit/kg KARC group, the 20unit/kg KARC group significantly decreased (P=0.034), reducing the total amount of acetaldehyde in the blood over time in a dose-dependent manner. confirmed.

산화스트레스의 원인으로 알려진 아세트알데히드 혈중 농도가 KARC 복용후 감소되어, KARC 경구 복용에 의한 사람의 산화스트레스 감소 효과가 관찰되었다.The blood concentration of acetaldehyde, known as the cause of oxidative stress, was reduced after taking KARC, and the effect of reducing oxidative stress in humans was observed by oral administration of KARC.

[도 32]에서, 항암 치료(chemotherapy) 기간 중 혈중 MDA의 농도를 측정한 결과 KARC 복용 없이 치료를 진행한 군(대조군)은 0.607 ± 0.161 μM 이었고, KARC를 복용하며 치료를 진행한 군(실험군)은 0.223 ± 0.033 μM 로 대조군 대비 63.3% 통계적으로 유의하게 감소하였다(P<0.001). In [Figure 32], as a result of measuring the concentration of MDA in blood during the chemotherapy period, the group treated without taking KARC (control group) was 0.607 ± 0.161 μM, and the group treated while taking KARC (experimental group ) was 0.223 ± 0.033 μM, which was statistically significantly reduced by 63.3% compared to the control group (P<0.001).

또한, 대조군에서는 혈중 MDA 농도가 최저 0.427 μM, 최고 0.885 μM로 편차가 매우 컸지만, 실험군에서는 최저 0.158 μM, 최고 0.269 μM로 편차가 큰 폭으로 감소하여, 혈중 MDA 농도를 감소시킬 뿐 아니라 안정화시키는 효과를 확인하였다[도 33].In addition, in the control group, the deviation of the MDA concentration in the blood was very large, with a minimum of 0.427 μM and a maximum of 0.885 μM, but in the experimental group, the deviation was greatly reduced to a minimum of 0.158 μM and a maximum of 0.269 μM. The effect was confirmed [FIG. 33].

약물 복용, 스트레스, 극렬한 운동 등 다양한 원인에 의해 생체내 활성산소(ROS)의 증가는 지질과산화(LPO) 반응을 통해 노네날(HNE), 말론디알데히드(MDA), 아세트알데히드(Ach) 등의 반응성 알데히드 물질을 세포내 축적시켜 산화스트레스를 상승시킨다. The increase in active oxygen (ROS) in vivo due to various causes such as drug use, stress, and intense exercise leads to nonenal (HNE), malondialdehyde (MDA), acetaldehyde (Ach), etc. through the lipid peroxidation (LPO) reaction. Reactive aldehyde substances accumulate in cells to increase oxidative stress.

또한 이렇게 생성된 알데히드는 주변 단백질과 반응하거나 또는 이차 대사 과정을 통해 Malondialdehyde-acetaldehyde adduct(MAA), malondialdehyde lysine adducts(M-lys adducts) 등 반응성 알데히드의 안정화된 최종산물(Advanced Lipidperoxidation End Product)로 축적되어 다양한 세포에 독소로 작용하여 산화스트레스 더욱 악화시키는 상호작용을 일으킨다. In addition, aldehydes generated in this way react with surrounding proteins or accumulate as stabilized end products (Advanced Lipidperoxidation End Products) of reactive aldehydes such as malondialdehyde-acetaldehyde adduct (MAA) and malondialdehyde lysine adducts (M-lys adducts) through secondary metabolic processes. It acts as a toxin to various cells, causing interactions that further exacerbate oxidative stress.

이러한 산화스트레스 축적은 미토콘드리아 내 에너지 대사 과정을 교란시켜, 세포내에 메칠글라이옥살(MG), 글리세릴알데히드-3-포스페이트(GA3P) 등 알데히드성 당 대사 중간체를 축적시키거나, 알데히드의 연쇄반응에 의해 안정화된 최종당산화물(advanced glycation end products, AGEs)의 축적을 통해 글루타치온(glutathione) 등 세포내 항산화 방어 시스템을 약화시키며, 결과적으로 소포체 스트레스를 상승시켜 세포사멸을 증가시킨다. This accumulation of oxidative stress disturbs the energy metabolism process in the mitochondria, leading to the accumulation of aldehyde-based sugar metabolic intermediates such as methylglyoxal (MG) and glycerylaldehyde-3-phosphate (GA3P) in cells, or the chain reaction of aldehydes. Accumulation of advanced glycation end products (AGEs) stabilized by AGEs weakens the cellular antioxidant defense system, such as glutathione, and consequently increases endoplasmic reticulum stress and apoptosis.

활성산소와 산화스트레스 증가는 HNE, MDA 등 반응성 알데히드 증가, 최종당산화물(AGEs)과 최종지질산화물(Advanced Lipidperoxidation End Products, ALEs)등 변형 단백질 증가를 통해 소포체 스트레스(ER Stress)의 상승을 유발시키는 상호간의 순환 및 증폭 작용을 한다고 알려져 있다. The increase in reactive oxygen species and oxidative stress causes an increase in ER stress through an increase in reactive aldehydes such as HNE and MDA, and an increase in modified proteins such as advanced glycemic oxides (AGEs) and advanced lipid peroxidation end products (ALEs). It is known to have a mutual circulation and amplification effect.

본 발명의 돌연변이 효모 조성물인 KARC 투여에 의해 활성산소 및 산화스트레스의 측정 마커인 말론디알데히드의 조절을 통하여, 산화 스트레스 감소 및 산화스트레스 감소를 통한 소포체 스트레스의 항상성 개선 가능성을 확인하였다. The possibility of reducing oxidative stress and improving homeostasis of endoplasmic reticulum stress through the control of malondialdehyde, a marker for measuring active oxygen and oxidative stress by the administration of KARC, the mutant yeast composition of the present invention, was confirmed.

돌연변이 효모 조성물인 KARC는 혈액 중 말론디알데히드의 농도를 감소시켜 활성산소와 산화스트레스 감소 효과를 나타내었고, 사람의 혈중 아세트알데히드 농도 및 말론디알데히드 농도를 감소시킴으로써, 활성산소와 산화스트레스 감소에 의한 소포체 스트레스를 예방과 치유하는 효과를 나타내었다. KARC, a mutant yeast composition, showed an effect of reducing active oxygen and oxidative stress by reducing the concentration of malondialdehyde in blood, and by reducing the concentration of acetaldehyde and malondialdehyde in human blood, thereby reducing active oxygen and oxidative stress It showed the effect of preventing and curing endoplasmic reticulum stress.

Figure pat00001
Figure pat00001

[실시예 11] 본 발명의 KARC 조성물의 단기투여 독성 시험[Example 11] Short-term administration toxicity test of the KARC composition of the present invention

실시예 11-1. 실험 동물의 준비Example 11-1. Preparation of experimental animals

실험동물은 암컷, 수컷 ICR 마우스(7 주령)를 분양받아 7일간 순화시켰으며 순화 기간 중 일반증상을 관찰하여 건강한 동물만 시험에 사용하였다. 사료와 물은 자유 섭취시켰고 경구투여 전날 평균 체중 약 20g을 기준으로 각 군별 암,수 5수씩 총 10수가 되도록 군 분리를 진행하였다.As experimental animals, female and male ICR mice (7 weeks old) were distributed and acclimatized for 7 days. During the acclimatization period, general symptoms were observed and only healthy animals were used for the test. Feed and water were freely consumed, and group separation was carried out to make a total of 10 animals, 5 females and 5 males in each group based on an average body weight of about 20 g the day before oral administration.

실시예 11-2 시험 물질의 투여 Example 11-2 Administration of test substance

시험 물질은 본 발명의 돌연변이 효모 용해물 KARC의 함량을 기준으로 실험동물의 투여용량이 각 0, 750, 3000, 5000mg/Kg이 되도록 생리식염수에 녹여 제조하였다. Test substances were prepared by dissolving them in physiological saline so that the doses of the experimental animals were 0, 750, 3000, and 5000 mg/Kg, respectively, based on the content of the mutant yeast lysate KARC of the present invention.

투여 용량의 기준은 식약처의 Korea national Toxicology Program(KNTP) 독성 시험 매뉴얼에 따랐다. KNTP 매뉴얼에서 가이드하는 적용 최대 용량 5000mg/Kg을 본 실험의 최대 농도로 적용하였다. 각 군별로 준비된 시료를 시험동물에 대하여 각 1회 경구투여를 실시 하였으며, 정상군(G1)의 경우 생리식염수를 투여하였다. The standard for the administered dose was in accordance with the Korea national Toxicology Program (KNTP) toxicity test manual of the Ministry of Food and Drug Safety. The maximum applied dose of 5000 mg/Kg, guided by the KNTP manual, was applied as the maximum concentration in this experiment. Samples prepared for each group were administered orally once each to the test animals, and physiological saline was administered to the normal group (G1).

실시예 11-3. 관찰 및 부검 Example 11-3. observation and autopsy

모든 시험군의 동물에 대하여 입수일부터 부검일까지 매일 1회 이상 증상관찰을 실시하였으며, 경구투여 후 7일 동안 증상을 관찰하였다. 증상 관찰 종류 후, 부검을 진행하였고 부검 시 육안으로 각 장기에 대한 변화를 관찰하였다. Symptoms were observed at least once a day for animals in all test groups from the day of acquisition to the day of necropsy, and symptoms were observed for 7 days after oral administration. After symptom observation, autopsy was performed, and changes in each organ were observed with the naked eye during autopsy.

마우스를 사용하여 본 발명의 ALDH 함유 KARC 조성물의 단회 투여독성 시험을 실시한 결과, 돌연변이 효모 KARC 5000mg/kg까지의 농도에서 7일간 사망예를 관찰할 수 없었으며, 체중증가, 사료 섭취량 등의 특이점을 발견할 수 없었다. 또한 관찰 종료 후 진행한 부검 결과에서도 특이한 소견은 발견되지 아니하였다. As a result of a single dose toxicity test of the ALDH-containing KARC composition of the present invention using mice, no deaths were observed for 7 days at concentrations up to 5000 mg / kg of mutant yeast KARC, and peculiarities such as weight gain and feed intake were observed. Couldn't find it. In addition, no unusual findings were found in the autopsy performed after the observation was completed.

이상의 실시예들을 통하여 본 발명의 알데히드탈수소효소(ALDH)를 함유하는 돌연변이 효모 조성물을 사용하여 지방간, 지방간염 치료제의 제조 방법, 약리 효과, 투여방법, 질병 모델에 대한 치료적 유효량, 단기투여 급성 독성에 대한 대표적인 사례들을 각 도면과 시험 결과들을 통하여 상세하게 설명하였지만, 이들은 본 발명의 하나의 사례에 불과하다. Through the above examples, using the mutant yeast composition containing aldehyde dehydrogenase (ALDH) of the present invention, a method for preparing a therapeutic agent for fatty liver and steatohepatitis, pharmacological effect, administration method, therapeutically effective amount for disease model, short-term administration acute toxicity Representative examples for have been described in detail through each drawing and test results, but these are only one example of the present invention.

따라서 이 기술 분야에서 통상의 지식을 가진 자라면 전술한 본 발명의 실시 사례로부터 다양한 변형 및 본 발명과 균등한 또 다른 실시예를 용이하게 도출할 수 있다. Therefore, those skilled in the art can easily derive various modifications and other embodiments equivalent to the present invention from the above-described embodiments of the present invention.

그러므로 다음의 특허청구범위에 기재된 본 발명의 기술적 요지를 구현하는 변형된 형태의 알데히드탈수소효소를 함유하는 식품이나 치료제라도, 본 발명의 법률적 보호범위에 속한다.Therefore, even food or treatment containing a modified form of aldehyde dehydrogenase embodying the technical gist of the present invention described in the following claims falls within the legal protection scope of the present invention.

한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC13925BPKCTC13925BP 2019082220190822 한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14122BPKCTC14122BP 2020013020200130 한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14123BPKCTC14123BP 2020013020200130 한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14983BPKCTC14983BP 2022052720220527 한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14984BPKCTC14984BP 2022052720220527 한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14985BPKCTC14985BP 2022052720220527

Claims (5)

사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는 소포체 스트레스 완화제.
Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP An endoplasmic reticulum stress reliever containing any one selected from the group consisting of, or a mixture thereof.
사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP,KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는 지방간 억제 식품조성물.
Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP A fatty liver inhibitory food composition containing any one or a mixture thereof selected from the group consisting of.
사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는 지방간 증상 예방 또는 치료제 조성물.
Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP A composition for preventing or treating fatty liver symptoms containing any one selected from the group consisting of or a mixture thereof.
사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는 간염 예방 식품조성물.Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP Hepatitis preventive food composition containing any one or mixtures thereof selected from the group consisting of. 사카로마이세스 세레비지에 KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물을 함유하는 간염 치료제 조성물.

Saccharomyces cerevisiae KCTC13925BP, KCTC14122BP, KCTC14123BP KCTC14983BP, KCTC14984BP, KCTC14985BP Hepatitis treatment composition containing any one selected from the group consisting of, or a mixture thereof.

KR1020220165785A 2022-12-01 2022-12-01 A composition which relieves endo plasmic reticulum stress KR20230007252A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020220165785A KR20230007252A (en) 2022-12-01 2022-12-01 A composition which relieves endo plasmic reticulum stress
KR1020230152965A KR20240087538A (en) 2022-12-01 2023-11-07 Food and Pharmaceutical Composition for Treatment of Fatty Liver and Inflammation by Relieving Endoplasmic Reticulum Stress
PCT/KR2023/019179 WO2024117697A1 (en) 2022-12-01 2023-11-25 Food and pharmaceutical composition for treatment of fatty liver and inflammation by relieving endoplasmic reticulum stress
US18/519,482 US20240180985A1 (en) 2022-12-01 2023-11-27 Food and pharmaceutical composition for treatment of fatty liver and inflammation by relieving endoplasmic reticulum stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220165785A KR20230007252A (en) 2022-12-01 2022-12-01 A composition which relieves endo plasmic reticulum stress

Publications (1)

Publication Number Publication Date
KR20230007252A true KR20230007252A (en) 2023-01-12

Family

ID=84923712

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020220165785A KR20230007252A (en) 2022-12-01 2022-12-01 A composition which relieves endo plasmic reticulum stress
KR1020230152965A KR20240087538A (en) 2022-12-01 2023-11-07 Food and Pharmaceutical Composition for Treatment of Fatty Liver and Inflammation by Relieving Endoplasmic Reticulum Stress

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230152965A KR20240087538A (en) 2022-12-01 2023-11-07 Food and Pharmaceutical Composition for Treatment of Fatty Liver and Inflammation by Relieving Endoplasmic Reticulum Stress

Country Status (1)

Country Link
KR (2) KR20230007252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117697A1 (en) * 2022-12-01 2024-06-06 PICOENTECH Co., LTD. Food and pharmaceutical composition for treatment of fatty liver and inflammation by relieving endoplasmic reticulum stress

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210254023A1 (en) 2020-02-18 2021-08-19 PICOENTECH Co., LTD. Saccharomyces cerevisiae kwon p-1, 2, 3 which produce aldehyde dehydrogenase and glutathione

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210254023A1 (en) 2020-02-18 2021-08-19 PICOENTECH Co., LTD. Saccharomyces cerevisiae kwon p-1, 2, 3 which produce aldehyde dehydrogenase and glutathione

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Bhattaral et al. "The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling", Experimental & Molecular Medicine (2021);53:151-167.
Console et al., "The Link Between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury", Front. Physiol. (2020);11:794.
Liao et al. "aldehyde dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction", Mol Med. (2012);18:785-793.
Lin et al. "Endoplasmic reticulum Stress in Disease Pathogenesis", Annu Rev Pathol. (2008);3:399-425
Maamoun et al. "Crosstalk Between Oxidative Stress and Endoplasmic reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase(HO)-1", Frontiers in Physiology Vol 10,(2019);Article 70.
Malhi et al. "Endoplasmic reticulum stress in liver disease", Jounal of hepatology (2011);vol 54:795-809.
Ozcan and Tabas et al. "Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders", Annu Rev Med. (2012);63:317-328.
Ramana et al., "Lipid Peroxidation: Production, Metaboism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal", Oxidative Medicine and Cellular Longevity Vol 2014; Article ID 360438:31.
Sicari et al. "A guide to assesing endoplasmic reticulum homeostasis and stress in mammalian systems", The FEBS Journal 287. (2020);27-42.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117697A1 (en) * 2022-12-01 2024-06-06 PICOENTECH Co., LTD. Food and pharmaceutical composition for treatment of fatty liver and inflammation by relieving endoplasmic reticulum stress

Also Published As

Publication number Publication date
KR20240087538A (en) 2024-06-19

Similar Documents

Publication Publication Date Title
EP3592374B1 (en) Compositions of superoxide dismutase from bacillus amyloliquefaciens gf423 strain for providing antioxidant and anti-inflammatory activities or preventing or treating hyperlipidemia
CN111040044B (en) Cordyceps militaris intracellular polysaccharide, preparation method and application thereof in regulating intestinal flora
KR20240087538A (en) Food and Pharmaceutical Composition for Treatment of Fatty Liver and Inflammation by Relieving Endoplasmic Reticulum Stress
US20160067209A1 (en) Pterocarpan compound or pharmaceutically acceptable salt thereof and pharmaceutical composition for prevention or treatment of metabolic disease or complication thereof, or for antioxidant containing the same as an active ingredient
KR20210039961A (en) A novel anaerobic microbe isolated from human milk and method of preventing or treating metabolic disease using thereof
KR101301971B1 (en) Composition of citrus peel extract or narirutin for suppressing alcoholic liver disease and method of producing narirutin extract from citrus peel
KR20240095002A (en) Food and Pharmaceutical Composition for Detoxifying Endogenous Aldehydes
KR20130046884A (en) A composition comprising chlorella extracts for preventing or treating liver disease
Brudnak Weight-loss drugs and supplements: are there safer alternatives?
KR20230006767A (en) Novel Aldehyde Dehydrogenase Composition for Improving Memory and Cognitive Function
US20240180985A1 (en) Food and pharmaceutical composition for treatment of fatty liver and inflammation by relieving endoplasmic reticulum stress
KR20110081760A (en) Composition for inhibiting differentiation and accumulation of fat cells comprising fermented extract of purple sweet potato as an active ingredient
KR101972309B1 (en) Composition for Treating and Preventing Inflammatory Disease Comprising Culture Fluid Extract or Fraction of Endophytic Fungal Strain Isolated from the Rhizome of Reed Plant as an Active Ingredient
Fauziah et al. Inhibitory Activity of α-glucosidase by the extract and fraction of marine sponge-derived fungus Penicillium citrinum Xt6
KR101402058B1 (en) Composition comprising extract of fermented Curcuma longa by natural fermented soybean and curcuminoid derivatives isolated therefrom for treating or preventing liver disease
KR101999383B1 (en) Pharmaceutical Composition for Improving, Protecting or Treating Alcoholic Liver Disease comprising Capsosiphon fulvescens Extract as Active Ingredient
Kim et al. High concentrated probiotics improve inflammatory bowel diseases better than commercial concentration of probiotics
KR20220023361A (en) Rise Bran fermented and Extract And Manufacturing Method Thereof
KR101370679B1 (en) Method for manufacturing solid-state fermented Allium victorialis and Composition for preventing or treating anti-diabetes or anti-diabetic complication containing fermented Allium victorialis
US20240182915A1 (en) Food and pharmaceutical composition for detoxifying endogenous aldehydes
KR102556243B1 (en) A pharmaceutical composition comprising amadori rearrangement compound for preventing or treating obesity
Gao Antioxidant therapies for hypolipidemia and hyperglycemia
KR102705572B1 (en) A composition for preventing, improving or treating metabolic diseases containing red pepper leaf extract of &#39;Wongi No. 2&#39; red pepper with high AGI activity as an active ingredient
CN116570633B (en) Application of lactobacillus plantarum in relieving liver injury
KR20130096587A (en) Method for manufacturing submerged-state fermented allium victorialis and composition for preventing or treating anti-diabetes or anti-diabetic complication containing fermented allium victorialis