KR20230006383A - Cheap UHPC with Improved Properties - Google Patents

Cheap UHPC with Improved Properties Download PDF

Info

Publication number
KR20230006383A
KR20230006383A KR1020220047786A KR20220047786A KR20230006383A KR 20230006383 A KR20230006383 A KR 20230006383A KR 1020220047786 A KR1020220047786 A KR 1020220047786A KR 20220047786 A KR20220047786 A KR 20220047786A KR 20230006383 A KR20230006383 A KR 20230006383A
Authority
KR
South Korea
Prior art keywords
cement
particle size
weight
fly ash
parts
Prior art date
Application number
KR1020220047786A
Other languages
Korean (ko)
Other versions
KR102575164B1 (en
Inventor
정동근
Original Assignee
정동근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정동근 filed Critical 정동근
Priority to KR1020220047786A priority Critical patent/KR102575164B1/en
Publication of KR20230006383A publication Critical patent/KR20230006383A/en
Application granted granted Critical
Publication of KR102575164B1 publication Critical patent/KR102575164B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/243Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to ultra-high-performance concrete (UHPC) comprising: 100 parts by weight of cement; 30 parts by weight of an admixture; 110 parts by weight of silica; 39 parts by weight of silica fine powder; 2 parts by weight of a mixing agent; and 25 parts by weight of water, wherein the admixture includes fly ash (FA), and a particle size of the FA is 3-20 μm. The present invention can effectively replace cement by controlling particle properties of the cement, the FA, and the silica, provide economical concrete accordingly, and manufacture eco-friendly concrete. In addition, the present invention may provide the UHPC which can have homogeneous and improved strength through particle packing.

Description

향상된 물성의 경제적 UHPC{Cheap UHPC with Improved Properties}Economical UHPC with improved properties {Cheap UHPC with Improved Properties}

본 발명은 UHPC(Ultra High Performance Concrete)에 대한 발명으로, 구체적으로, FA 및 BFS의 혼화재 중 일 이상을 포함하면서도, 향상된 물성을 가진 UHPC(Ultra High Performance Concrete)에 관한 발명이다.The present invention is an invention for UHPC (Ultra High Performance Concrete), and specifically, it relates to UHPC (Ultra High Performance Concrete) having improved physical properties while containing at least one of FA and BFS admixtures.

콘크리트는 오랜 기간에 걸쳐 인류의 생활과 사회의 기반을 구축해온 건설 재료로서, 인류와 사회가 발전하는데 있어서 매우 중요한 역할을 한 재료이다. 이러한 중요성으로 인해, 과거부터 현재에 이르기까지 콘크리트에 대해 끊임없이 많은 수요가 창출되고 있다. 점점 급속화 되는 사회의 발전은 더 높은 효율성을 갖춘 구조물을 필요로 하고 있으며, 이와 같은 추세에 따라 구조물의 대형화, 초고층화 및 장수명화가 추구되고 있다. 이러한 요구를 만족시키기 위해, 더욱 우수한 성능을 갖춘 콘크리트를 개발하여 적용하기 위한 연구가 이루어지고 있으며, 이와 같은 과정 속에서 새롭게 각광받고 있는 콘크리트가 바로 UHPC(Ultra High Performance Concrete)이다. UHPC(Ultra High Performance Concrete)는 일반 콘크리트에 비해 재료적 특성이 크게 향상된 콘크리트로, 압축강도 150MPa 이상, 인장강도 15MPa 이상의 초고강도이면서, 높은 인장강도, 연성, 인성을 보유하고 있고, 우수한 내구성까지 복합적으로 갖추고 있는 콘크리트이다. UHPC(Ultra High Performance Concrete)는 물-결합 재비를 대폭 낮추고 굵은 골재를 사용하지 않은 상태에서 시멘트, 혼화재, 모래, 고성능 감수제로 시멘트 매트릭스의 균질성 및 유동성을 확보하여 강섬유를 혼입하여 초고강도인 동시에 인성을 대폭 인성을 대폭 향상시킨 시멘트 복합체로 구성되어 있다. 한편, UHPC(Ultra High Performance Concrete)에서 초고강도를 얻기 위해 혼화재가 사용되는데, 그 중 FA(Fly Ash)는 시멘트와 함께 사용될 때 수화반응 또는 포졸란 반응 메커니즘에 모두 참여하여 콘크리트의 경화 특성에 기여한다. Concrete is a construction material that has built the foundation of human life and society over a long period of time, and it is a material that has played a very important role in the development of mankind and society. Because of this importance, a constant demand for concrete has been created from the past to the present. The rapidly accelerating development of society requires structures with higher efficiency, and in accordance with this trend, large-size, high-rise and long-life structures are being pursued. In order to satisfy these demands, research is being conducted to develop and apply concrete with better performance, and in this process, the newly spotlighted concrete is UHPC (Ultra High Performance Concrete). UHPC (Ultra High Performance Concrete) is a concrete with greatly improved material properties compared to general concrete. It has compressive strength of over 150MPa and tensile strength of over 15MPa, as well as high tensile strength, ductility, toughness, and excellent durability. It is a concrete equipped with UHPC (Ultra High Performance Concrete) significantly lowers the water-binding material ratio and secures the homogeneity and fluidity of the cement matrix with cement, admixture, sand, and high-performance water reducing agent without using coarse aggregate, and by incorporating steel fibers, it has ultra-high strength and toughness at the same time. It is composed of a cement composite with significantly improved toughness. On the other hand, admixtures are used to obtain ultra-high strength in UHPC (Ultra High Performance Concrete). Among them, FA (Fly Ash) contributes to the hardening characteristics of concrete by participating in both the hydration reaction or pozzolanic reaction mechanism when used with cement. .

FA(Fly Ash)는 콘크리트 제조 시 사용량을 증가시키는 것은 장점뿐 아니라, 단점도 존재한다. 콘크리트의 압축강도를 늦게 발현시켜 초기 재령에서의 낮은 강도로 인하여 건설 속도의 지연을 초래할 수 있으며, 콘크리트의 내구성 탄산화 저항성과 관련하여 취약한 특성이 있다. 따라서, FA(Fly Ash)는 콘크리트 혼화재(Mineral admixture)로 사용될 시 최적의 사용량을 고려하여야 하며, 경화된 콘크리트의 내구성능에 영향을 미치지 않으면서 기술적, 환경적, 경제적 이점을 극대화할 필요성이 있다. FA (Fly Ash) increases the amount of use in concrete manufacturing, which has advantages as well as disadvantages. The low strength at the early age can cause a delay in the construction speed due to the late expression of the compressive strength of concrete, and there are weak characteristics related to the durability and carbonation resistance of concrete. Therefore, when FA (Fly Ash) is used as a concrete admixture, the optimum usage amount should be considered, and there is a need to maximize technical, environmental, and economic benefits without affecting the durability of hardened concrete. .

본 발명은 종래의 문제점을 해소하고자 발명한 것으로 다음과 같은 목적을 가진다.The present invention was invented to solve the conventional problems and has the following objects.

본 발명의 하나의 실시예에 따르면, 향상된 물성을 가질 수 있는 FA(Fly Ash)를 포함하는 UHPC(Ultra High Performance Concrete)를 제공하는 것을 목적으로 한다.According to one embodiment of the present invention, an object of the present invention is to provide UHPC (Ultra High Performance Concrete) containing FA (Fly Ash) capable of having improved physical properties.

본 발명의 일 실시예에 따르면, 친환경적이고 경제적인 UHPC(Ultra High Performance Concrete)를 제공하는 것을 목적으로 한다.According to one embodiment of the present invention, an object of the present invention is to provide eco-friendly and economical UHPC (Ultra High Performance Concrete).

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.A detailed description of this is as follows. Meanwhile, each description and embodiment disclosed in the present invention may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be seen that the scope of the present invention is limited by the specific descriptions described below.

상기 목적을 달성하기 위한 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부; 및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm인 UHPC(Ultra High Performance Concrete)를 제공한다.One embodiment of the present invention for achieving the above object, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; admixture 2 parts by weight; and 25 parts by weight of water, the admixture includes FA (Fly Ash), and the FA (Fly Ash) has a particle size of 3 to 20 μm, providing Ultra High Performance Concrete (UHPC).

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부;및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 FA(Fly Ash)의 입도 분포는

Figure pat00001
값이 5~6μm이고, 상기 FA(Fly Ash)의 입도 분포는 하기 수학식 1로 표시되는 입도분포폭이 0.01~1.2인 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; 2 parts by weight of the admixture; and 25 parts by weight of water, the admixture includes FA (Fly Ash), the particle size of the FA (Fly Ash) is 3 to 20 μm, and the FA (Fly Ash) The particle size distribution is
Figure pat00001
The value is 5 to 6 μm, and the particle size distribution of the FA (Fly Ash) provides UHPC (Ultra High Performance Concrete) with a particle size distribution width of 0.01 to 1.2 represented by Equation 1 below.

[수학식 1][Equation 1]

입도분포폭 = (D90-D10)/D50 Particle size distribution width = (D 90 -D 10 )/D 50

식 중에서, D10, D50 및 D90은 각각 FA(Flying Ash)의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.In the formula, D 10 , D 50 , and D 90 denote particle diameters of portions where the cumulative amount of the particle size distribution is 10%, 50%, and 90%, respectively, with the total weight of FA (Flying Ash) as 100%.

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부;및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 FA(Fly Ash)의 비표면적은 0.06~0.09

Figure pat00002
인 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; 2 parts by weight of the admixture; and 25 parts by weight of water, the admixture includes FA (Fly Ash), the particle size of the FA (Fly Ash) is 3 to 20 μm, and the FA (Fly Ash) The specific surface area is 0.06~0.09
Figure pat00002
UHPC (Ultra High Performance Concrete) is provided.

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부;및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 시멘트는 하기 수학식 2로 표시되는 CSF(Cement Spacing Factor)가 1.06~1.26인 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; 2 parts by weight of an admixture; and 25 parts by weight of water, the admixture includes FA (Fly Ash), the particle size of the FA (Fly Ash) is 3 to 20 μm, and the cement is expressed by Equation 2 below Provides UHPC (Ultra High Performance Concrete) with CSF (Cement Spacing Factor) represented by 1.06 to 1.26.

[수학식 2][Equation 2]

Figure pat00003
Figure pat00003

상기 수학식 2 중에서, CSF는 cement spacing factor이고,

Figure pat00004
는 안정적인 입자 구조에서 시멘트가 차지하는 부분 부피,
Figure pat00005
는 다른 입자가 있을때 시멘트가 차지할 수 있는 최대 부분 부피,
Figure pat00006
는 단위 부피에서 혼합물의 모든 입자의 부분 부피,
Figure pat00007
는 혼합물의 계산된 패킹 밀도이다.In Equation 2 above, CSF is a cement spacing factor,
Figure pat00004
is the partial volume occupied by cement in a stable grain structure,
Figure pat00005
is the maximum partial volume that cement can occupy in the presence of other particles,
Figure pat00006
is the partial volume of all particles of the mixture in unit volume,
Figure pat00007
is the calculated packing density of the mixture.

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부; 및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 시멘트는 상기 수학식 2로 표시되는 CSF(Cement Spacing Factor)가 1.06~1.26이고, 상기 FA(Fly Ash)의 PSD(Particle Size Distribution)은 하기 수학식 3에 부합하고,하기 수학식 3의 q 값은 0.3~0.4인 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; admixture 2 parts by weight; and 25 parts by weight of water, the admixture includes FA (Fly Ash), the FA (Fly Ash) has a particle size of 3 to 20 μm, and the cement is CSF represented by Equation 2 ( Cement Spacing Factor) is 1.06 to 1.26, the Particle Size Distribution (PSD) of the FA (Fly Ash) conforms to Equation 3 below, and the q value of Equation 3 below is UHPC (Ultra High Performance Concrete) having a value of 0.3 to 0.4. ) is provided.

[수학식 3][Equation 3]

P(D)=

Figure pat00008
P(D)=
Figure pat00008

상기 수학식 3 중에서, P(D)는 체의 직경보다 작은 FA(Fly Ash)의 총 백분율이고, D는 체의 직경,

Figure pat00009
은 FA(Fly Ash) 중 가장 작은 입자의 지름,
Figure pat00010
는 FA(Fly Ash) 중 가장 큰 입자의 지름, q는 분포 계수이다.In Equation 3, P(D) is the total percentage of fly ash (FA) smaller than the sieve diameter, D is the sieve diameter,
Figure pat00009
is the diameter of the smallest particle among FA (Fly Ash),
Figure pat00010
is the diameter of the largest particle among FA (Fly Ash), and q is the distribution coefficient.

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부; 및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 규사의 평균 입자 크기는 5~10μm이고, 상기 규사의 하기 수학식 4로 표시되는 입도분포폭은 0.05~1.0인 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; admixture 2 parts by weight; and 25 parts by weight of water, the admixture includes fly ash (FA), the particle size of the fly ash (FA) is 3 to 20 μm, and the average particle size of the silica sand is 5 to 10 μm, The silica sand has a particle size distribution width represented by Equation 4 below and provides UHPC (Ultra High Performance Concrete) of 0.05 to 1.0.

[수학식 4][Equation 4]

입도분포폭 = (D90-D10)/D50 Particle size distribution width = (D 90 -D 10 )/D 50

상기 수학식 4 중에서, D10, D50 및 D90은 각각 규사의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.In Equation 4, D 10 , D 50 , and D 90 denote particle diameters of portions where the cumulative amount of the particle size distribution is 10%, 50%, and 90%, respectively, with the total weight of silica sand as 100%.

또한, 본 발명의 하나의 실시예는, 시멘트 100 중량부; 혼화재 30 중량부; 규사 110 중량부; 규사 미분 39 중량부; 혼화제 2 중량부; 및 물(water) 25 중량부를 포함하고, 상기 혼화재는 FA(Fly Ash)을 포함하고, 상기 FA(Fly Ash)의 입자 크기는 3~20μm이고, 상기 UHPC(Ultra High Performance Concrete) 표면 및 내부조직에 공극(Pore)을 포함하고, 상기 공극(Pore)은 0.003μm 이하의 지름을 가지는 UHPC(Ultra High Performance Concrete)를 제공한다.In addition, one embodiment of the present invention, 100 parts by weight of cement; Admixture 30 parts by weight; 110 parts by weight of silica sand; 39 parts by weight of fine silica sand; admixture 2 parts by weight; and 25 parts by weight of water, the admixture includes FA (Fly Ash), the FA (Fly Ash) has a particle size of 3 to 20 μm, and the UHPC (Ultra High Performance Concrete) surface and internal structure A pore is included in the pore, and the pore provides UHPC (Ultra High Performance Concrete) having a diameter of 0.003 μm or less.

본 발명의 UHPC(Ultra High Performance Concrete)에 따르면, 효과적으로 시멘트를 치환하여 경제적이고 친환경적인 콘크리트를 제조할 수 있으며, 균질하고 향상된 강도를 가지는 효과가 있다.According to the UHPC (Ultra High Performance Concrete) of the present invention, it is possible to manufacture economical and eco-friendly concrete by effectively substituting cement, and has an effect of having a homogeneous and improved strength.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.

본 발명의 UHPC(Ultra High Performance Concrete)에 따르면, 시멘트, 혼화재(Mineral Admixture), 규사, 규사 미분, 혼화제(Chemical Admixture) 및 물(water)을 포함할 수 있다.According to the UHPC (Ultra High Performance Concrete) of the present invention, cement, mineral admixture, silica sand, silica sand powder, chemical admixture, and water may be included.

상기 시멘트는 100 중량부일 수 있다. 상기 시멘트는 포틀랜드 시멘트, 설포알루미네이트 시멘트 및 철 알루미네이트 시멘트 중 하나 이상을 포함할 수 있다. 바람직하게는, 경제적 측면을 고려하여 포틀랜트 시멘트를 사용할 수 있다.The cement may be 100 parts by weight. The cement may include one or more of Portland cement, sulfoaluminate cement and iron aluminate cement. Preferably, Portland cement may be used in consideration of economic aspects.

상기 혼화재(Mineral Admixture)는 콘크리트의 성질 개량을 위해 쓰이는 혼화 재료로, 시멘트에 추가하거나 치환하여 사용한다. 상기 혼화재(Mineral Admixture)는 30 중량부일 수 있다. 상기 혼화재(Mineral Admixture)는 SF(Silica Fume), FA(Fly Ash) 및 BSF(Blast Furnace Slag) 중 하나 이상을 포함할 수 있다. SF(Silica Fume)과 달리, FA(Fly Ash) 및 BSF(Blast Furnace Slag)를 사용하는 경우, 경제적인 고강도 콘크리트를 만들 수 있다.The mineral admixture is an admixture used to improve the properties of concrete, and is added to or substituted for cement. The admixture may be 30 parts by weight. The mineral admixture may include one or more of silica fume (SF), fly ash (FA), and blast furnace slag (BSF). Unlike SF (Silica Fume), if FA (Fly Ash) and BSF (Blast Furnace Slag) are used, economical high-strength concrete can be made.

상기 FA(Fly Ash)의 입도 분포는

Figure pat00011
값이 5~6μm일 수 있으며, 하기 수학식 1로 표시되는 입도분포폭이 0.01~1.2일 수 있다. The particle size distribution of the FA (Fly Ash)
Figure pat00011
The value may be 5 to 6 μm, and the particle size distribution width represented by Equation 1 below may be 0.01 to 1.2.

[수학식 1][Equation 1]

입도분포폭 = (D90-D10)/D50 Particle size distribution width = (D 90 -D 10 )/D 50

(수학식 1 중에서, D10, D50 및 D90은 각각 FA(Flying Ash)의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.)(In Equation 1, D 10 , D 50 and D 90 mean the particle diameters of the portions where the cumulative amount of the particle size distribution is 10%, 50% and 90%, respectively, with the total weight of FA (Flying Ash) as 100% do.)

UHPC(Ultra High Performance Concrete)에 혼합되는 FA(Fly Ash)의 입자 크기를 최적화를 하고 균질도가 보장된 입자를 사용하므로, 시멘트와의 혼합이 균일하게 일어날 수 있으며, 수화 반응 및 포졸란 반응 정도를 향상시킬 수 있다. By optimizing the particle size of FA (Fly Ash) mixed with UHPC (Ultra High Performance Concrete) and using particles with guaranteed homogeneity, mixing with cement can occur uniformly, and the degree of hydration and pozzolanic reactions can be improved. can improve

상기 FA(Fly Ash)의 비표면적은 0.06~0.09

Figure pat00012
일 수 있다. 높은 비표면적을 가진 FA(Fly Ash)를 사용함으로써 콘크리트를 만드는 양생과정에서 수화반응과 포졸란 반응의 반응 면적을 넓혀 빠른 시간 안에 목표하는 물성을 보유한 UHPC(Ultra High Performance Concrete)를 만들 수 있다.The specific surface area of the FA (Fly Ash) is 0.06 to 0.09
Figure pat00012
can be By using FA (Fly Ash) with a high specific surface area, it is possible to create UHPC (Ultra High Performance Concrete) with target physical properties in a short time by expanding the reaction area of hydration and pozzolanic reactions during the curing process of making concrete.

혼합물의 부피를 통하여 하기 수학식 2의 CSF수치를 산출할 수 있다. 시멘트의 CSF(Cement Spacing Factor)는 시멘트 입자 사이의 공간 정도를 수치로 표현한 값으로, 해당 수치가 클수록 밀한 콘크리트를 얻을 수 있다. 일반적으로, 시멘트와 섞이는 물질의 크기가 크거나 패킹이 제대로 되지 않는 경우 시멘트 입자 사이의 간격이 증가하며, CSF(Cement Spacing Factor)는 작아지고, 시멘트와 섞이는 물질의 크기가 작거나 패킹이 제대로 된 경우 시멘트 입자 사이의 간격은 좁아지며, CSF(Cement Spacing Factor)는 커진다. 상기 시멘트는 CSF(Cement Spacing Factor)가 1.06~1.26일 수 있다. The CSF value of Equation 2 below can be calculated through the volume of the mixture. CSF (Cement Spacing Factor) of cement is a numerical value expressing the degree of space between cement particles, and the higher the value, the denser the concrete can be obtained. In general, when the size of the material to be mixed with cement is large or poorly packed, the spacing between cement particles increases, the CSF (Cement Spacing Factor) decreases, and the size of the material to be mixed with cement is small or poorly packed. In this case, the spacing between cement particles becomes narrower, and the CSF (Cement Spacing Factor) increases. The cement may have a CSF (Cement Spacing Factor) of 1.06 to 1.26.

[수학식 2][Equation 2]

Figure pat00013
Figure pat00013

(수학식 2중에서, CSF는 cement spacing factor이고,

Figure pat00014
는 안정적인 입자 구조에서 시멘트가 차지하는 부분 부피,
Figure pat00015
는 다른 입자가 있을 때 시멘트가 차지할 수 있는 최대 부분 부피,
Figure pat00016
는 단위 부피에서 혼합물의 모든 입자의 부분 부피,
Figure pat00017
는 혼합물의 계산된 패킹 밀도이다.)(In Equation 2, CSF is the cement spacing factor,
Figure pat00014
is the partial volume occupied by cement in a stable grain structure,
Figure pat00015
is the maximum partial volume that cement can occupy in the presence of other particles,
Figure pat00016
is the partial volume of all particles of the mixture in unit volume,
Figure pat00017
is the calculated packing density of the mixture.)

상기와 같이 CSF(Cement Spacing Factor)가 1.06~1.26의 UHPC(Ultra High Performance Concrete)는 첨가되는 혼화재의 향상된 패킹 정도에 의할 수 있다. 구체적으로, 상기 FA(Fly Ash)의 PSD(Particle Size Distribution)은 하기 수학식 3에 부합할 수 있다.As described above, UHPC (Ultra High Performance Concrete) having a CSF (Cement Spacing Factor) of 1.06 to 1.26 may be due to the improved packing of the admixture to be added. Specifically, the particle size distribution (PSD) of the fly ash (FA) may conform to Equation 3 below.

[수학식 3][Equation 3]

P(D)=

Figure pat00018
P(D)=
Figure pat00018

(수학식 3중에서, P(D)는 체의 직경보다 작은 FA(Fly Ash)의 총 백분율이고, D는 체의 직경,

Figure pat00019
은 FA(Fly Ash) 중 가장 작은 입자의 지름,
Figure pat00020
는 FA(Fly Ash) 중 가장 큰 입자의 지름, q는 분포 계수이다.)(In Equation 3, P(D) is the total percentage of FAs (Fly Ash) smaller than the sieve diameter, D is the sieve diameter,
Figure pat00019
is the diameter of the smallest particle among FA (Fly Ash),
Figure pat00020
is the diameter of the largest particle among FA (Fly Ash), and q is the distribution coefficient.)

상기와 같은 입자 분포를 가진 FA(Fly Ash)는 입자 패킹(Particle Packing)을 최대화할 수 있다. 최대화된 FA(Fly Ash)의 입자 패킹(Particle Packing)은 시멘트 입자 간 간격을 최소화할 수 있다. 최대화된 FA(Fly Ash)의 입자 패킹(Particle Packing)을 통하여, FA(Fly Ash)는 콘크리트 제조 시 시멘트를 효과적으로 치환할 수 있으며, 이에 따라 콘크리트의 CO2 배출 량을 감소시킬 수 있다. 또한, 최대화된 FA(Fly Ash)의 입자 패킹(Particle Packing)은 콘크리트 제조 시 공극을 최소화할 수 있다. 또한, 최대화된 FA(Fly Ash)의 입자 패킹(Particle Packing)은 콘크리트 제조 시 투입되는 물의 사용량을 줄일 수 있다. 이에 따라, 보다 강도 높은 UHPC(Ultra High Performance Concrete)를 제공할 수 있다. 상기 q 값은 0.3~0.4일 수 있다.FA (Fly Ash) having the above particle distribution can maximize particle packing. Particle Packing of FA (Fly Ash) maximized can minimize the spacing between cement particles. Through particle packing of FA (Fly Ash) maximized, FA (Fly Ash) can effectively replace cement during concrete manufacturing, thereby reducing CO 2 emissions from concrete. In addition, particle packing of FA (Fly Ash) maximized can minimize air gaps during concrete manufacturing. In addition, particle packing of FA (Fly Ash) maximized can reduce the amount of water used in concrete manufacturing. Accordingly, UHPC (Ultra High Performance Concrete) with higher strength can be provided. The q value may be 0.3 to 0.4.

상기 규사는 110 중량부일 수 있다. 상기 규사는 SiO2성분 90% 이상을 포함할 수 있다. 상기 규사는 입자들의 평균 크기가 5~10μm일 수 있다. 상기 규사의 하기 수학식 4로 표시되는 입도분포폭은 0.05~1.0일 수 있다.The silica sand may be 110 parts by weight. The silica sand may contain 90% or more of the SiO 2 component. The silica sand may have an average size of 5 to 10 μm. The particle size distribution width of the silica sand represented by Equation 4 below may be 0.05 to 1.0.

[수학식 4][Equation 4]

입도분포폭 = (D90-D10)/D50 Particle size distribution width = (D 90 -D 10 )/D 50

(수학식 4 중에서, D10, D50 및 D90은 각각 규사의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.)(In Equation 4, D 10 , D 50 , and D 90 are respectively 100% of the total weight of the silica sand, and the cumulative amount of the particle size distribution is 10%, 50%, and 90%. Means the particle diameters.)

상기 규사 미분은 39 중량부일 수 있다. 상기 규사 미분은 SiO2성분 99% 이상을 포함할 수 있다. 규사 미분을 넣음으로써, 혼화재(Mineral Admixture) 내의 SiO2의 양을 보충하여, 포졸란 반응을 극대화할 수 있다.The silica sand powder may be 39 parts by weight. The silica sand powder may contain 99% or more of the SiO 2 component. By adding fine silica sand, the amount of SiO 2 in the mineral admixture is supplemented, and the pozzolanic reaction can be maximized.

상기 물(water)은 시멘트의 수화 반응 및 포졸란 반응의 반응물이다. 상기 물(water)을 W/C 비(Water-cement ratio)가 15~25%가 되도록 공급하여, 시멘트의 수화 반응 및 포졸란 반응에 필요한 양을 제공할 수 있다. 이를 통하여 콘크리트 내의 공극을 최소화할 수 있고, 이를 통해 콘크리트의 압축강도와 인장강도를 향상시킬 수 있다. 상기 물(water)은 15~25 중량부일 수 있다.The water is a reactant of cement hydration reaction and pozzolanic reaction. The water may be supplied so that the W/C ratio is 15 to 25%, thereby providing an amount necessary for cement hydration and pozzolanic reactions. Through this, it is possible to minimize voids in concrete, and through this, it is possible to improve the compressive strength and tensile strength of concrete. The water (water) may be 15 to 25 parts by weight.

혼화제(Chemical Admixture)는 콘크리트에 특정한 성능을 부여하는 데 쓰이는 첨가제이다. 상기 혼화제(Chemical Admixture)는 낮은 W/C 비(Water-cement ratio)의 물(water)을 혼합하더라도 혼합물에 충분한 유동성을 확보하여 가공성이 좋도록 할 수 있다. 상기 혼화제(Chemical Admixture)는 고성능 혼화제(High Performance Chemical Admixture)를 포함할 수 있다. Chemical admixture is an additive used to impart specific properties to concrete. The admixture (Chemical Admixture) can ensure good processability by securing sufficient fluidity to the mixture even when water of a low W / C ratio (Water-cement ratio) is mixed. The admixture (Chemical Admixture) may include a high performance admixture (High Performance Chemical Admixture).

또한, 하나의 실시예에 따르면, 제조된 UHPC(Ultra High Performance Concrete)는 표면 및 내부 조직에 공극(Pore)을 포함하고, 상기 공극(Pore)은 0.003μm 이하의 지름을 가질 수 있다. 이러한 공극(Pore)의 특성에 의하여, 제조된 UHPC(Ultra High Performance Concrete)의 강도는 향상될 수 있다.Also, according to one embodiment, the manufactured UHPC (Ultra High Performance Concrete) includes pores on the surface and internal structure, and the pores may have a diameter of 0.003 μm or less. Due to the characteristics of these pores, the strength of manufactured UHPC (Ultra High Performance Concrete) can be improved.

이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[실시예 1][Example 1]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C.

[실시예 2][Example 2]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, FA(Fly Ash)의 입도 분포는

Figure pat00021
값이 5.6μm이고, 입도분포폭은 1.0이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the particle size distribution of FA (Fly Ash)
Figure pat00021
The value is 5.6 μm, and the particle size distribution width is 1.0.

[실시예 3][Example 3]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, FA(Fly Ash)의 비표면적은 0.06

Figure pat00022
이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the specific surface area of FA (Fly Ash) is 0.06
Figure pat00022
to be.

[실시예 4][Example 4]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, 시멘트의 CSF(Cement Spacing Factor)는 1.1이고, FA(Fly Ash)의 PSD(Particle Size Distribution)은 q=0.4인 수학식 2에 부합하도록 체에 걸러 사용한다. In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the CSF (Cement Spacing Factor) of cement is 1.1 and the PSD (Particle Size Distribution) of FA (Fly Ash) is used after sieving through a sieve to conform to Equation 2 where q = 0.4.

[실시예 5][Example 5]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, 규사의 평균 입자 크기는 10μm이고, 규사의 입도분포폭은 1.0이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the average particle size of the silica sand is 10 μm, and the particle size distribution width of the silica sand is 1.0.

[비교예 1][Comparative Example 1]

배치(batch)에서 시멘트 100kg, 입자 크기가 100μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다.In a batch, 100 kg of cement, 30 kg of FA (Fly Ash) with a particle size of 100 μm, 110 kg of silica sand, and 39 kg of silica fine powder were first mixed for 3 minutes without water, and then 2 kg of chemical admixture and water were added. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C.

[비교예 2][Comparative Example 2]

배치(batch)에서 시멘트 100kg, FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, FA(Fly Ash)의 입도 분포는

Figure pat00023
값이 31.2μm이고, 입도분포폭은 1.90이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash), 110kg of silica sand, and 39kg of silica fine powder were first mixed for 3 minutes without water, and then 2kg of chemical admixture and 15kg of water were supplied to form 5 Mix for a minute. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the particle size distribution of FA (Fly Ash)
Figure pat00023
The value is 31.2 μm, and the particle size distribution width is 1.90.

[비교예 3][Comparative Example 3]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, FA(Fly Ash)의 비표면적은 0.003

Figure pat00024
이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the specific surface area of FA (Fly Ash) is 0.003
Figure pat00024
to be.

[비교예 4][Comparative Example 4]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, 시멘트의 CSF(Cement Spacing Factor)는 0.5이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, CSF (Cement Spacing Factor) of cement is 0.5.

[비교예 5][Comparative Example 5]

배치(batch)에서 시멘트 100kg, 입자 크기가 5μm FA(Fly Ash) 30kg, 규사 110kg, 규사 미분 39kg을 먼저 물(Water) 없이 3분간 혼합한 뒤, 혼화제(Chemical Admixture) 2kg와 물(Water)을 15kg 공급하여 5분간 혼합한다. 이후, 혼합물을 40MPa로 압축하여, 24시간 경화한다. 이후, 혼합물을 수중 양생 공간으로 옮겨, 200℃의 온도로 수중 양생을 한다. 이때, 규사의 평균 입자 크기는 26.6μm이고, 규사의 입도분포폭은 1.82이다.In a batch, 100kg of cement, 30kg of FA (Fly Ash) with a particle size of 5μm, 110kg of silica sand, and 39kg of fine silica sand were first mixed without water for 3 minutes, and then 2kg of chemical admixture and water were mixed. 15 kg is supplied and mixed for 5 minutes. Thereafter, the mixture is compressed at 40 MPa and cured for 24 hours. Thereafter, the mixture is moved to an underwater curing space and cured in water at a temperature of 200°C. At this time, the average particle size of the silica sand is 26.6 μm, and the particle size distribution width of the silica sand is 1.82.

상기 실시예에서 제조된 UHPC(Ultra High Performance Concrete)의 물성을 하기 방법으로 측정하였고, 그 결과를 하기의 표 1에 나타냈다.The physical properties of the UHPC (Ultra High Performance Concrete) prepared in the above example were measured by the following method, and the results are shown in Table 1 below.

(1) 압축 강도 시험(1) Compressive strength test

압축강도 시험은 200ton 용량의 UTM으로 측정하였다. 측정에 사용된 시험체의 크기는 ø50×100mm로 하였으며, KSL 5105의 압축 강도 측정용 지그와 같은 원리를 가진 강철 지그를 제작하여 강도 측정 시 평활도를 최대한 유지하여 편심이 작용하는 것을 최소화하였다.Compressive strength test was measured by UTM with 200 ton capacity. The size of the specimen used for the measurement was ø50 × 100mm, and a steel jig with the same principle as the jig for measuring compressive strength of KSL 5105 was manufactured to minimize the effect of eccentricity by maintaining maximum smoothness during strength measurement.

(2) MIP(Mercury Intrusion Porosimetry)를 이용한 공극량 및 크기 분석(2) Analysis of void volume and size using MIP (Mercury Intrusion Porosimetry)

시료를 진공상태에서 200MPa의 압력범위에서 공극 분포를 측정할 수 있는 Auto Pore IV(Micromeritics)를 사용하였다. 측정범위는 모르타르의 미세조적에 형성된 겔 공극 및 모세관 공극의 변화량을 측정하기 위한 것으로, 직경 200μm 이상은 균열 및 기포 등이 포함되는 범위로서 시료별 오차가 크기 때문에 측정 범위에서 제외하였다. 시료는 각 재령 별로 압축 강도를 측정하고 남은 시험체의 중앙부 파편을 수거하여 수화 반응 정지를 위해 아세톤에 담가 수분을 제거하였다. 이틀 동안 아세톤에 담가 둔 시험체를 건조로에 넣어 아세톤을 증발시킨 후 5mm 이하의 정육면체로 절단하여 수은압입식 포로시트메타를 이용하여 가압과정과 감압 과정에서의 공극경 분포에 따른 공극량을 측정하였다. An Auto Pore IV (Micromeritics) capable of measuring pore distribution in a pressure range of 200 MPa in a vacuum state was used for the sample. The measurement range is to measure the amount of change in the gel pores and capillary pores formed in the micro-matrix of the mortar. A diameter of 200 μm or more is a range that includes cracks and bubbles, and is excluded from the measurement range because of the large error for each sample. The compressive strength of the sample was measured for each age, and the remaining central fragments of the specimen were collected and immersed in acetone to remove moisture to stop the hydration reaction. The specimen soaked in acetone for two days was put in a drying furnace to evaporate the acetone, and then cut into cubes of 5 mm or less, and the amount of voids according to the pore diameter distribution during the pressurization and decompression processes was measured using a mercury porosimetry poro sheet meter.

NumberNumber 압축 강도(MPa)Compressive strength (MPa) 평균 공극 크기(μm)Average pore size (μm) 실시예 1Example 1 178.7178.7 0.0320.032 실시예 2Example 2 207.8207.8 0.0180.018 실시예 3Example 3 197.2197.2 0.0270.027 실시예 4Example 4 222.8222.8 0.0030.003 실시예 5Example 5 201.8201.8 0.0170.017 비교예 1Comparative Example 1 97.297.2 0.8160.816 비교예 2Comparative Example 2 112.3112.3 0.5600.560 비교예 3Comparative Example 3 121.7121.7 0.5110.511 비교예 4Comparative Example 4 106.7106.7 0.4710.471 비교예 5Comparative Example 5 128.6128.6 0.5060.506

상기 표 1에 나타낸 바와 같이, 제조된 UHPC(Ultra High Performance Concrete)의 실시예 1 내지 실시예 5 및 비교예 1 내지 5를 참고하면, 입자 특성에 따라서 압축 강도 및 평균 공극 크기가 달라지는 것을 확인할 수 있다.As shown in Table 1, referring to Examples 1 to 5 and Comparative Examples 1 to 5 of the manufactured UHPC (Ultra High Performance Concrete), it can be seen that the compressive strength and average pore size vary depending on the particle characteristics. there is.

상기 표 1에 나타낸 바와 같이, 실시예 1의 압축 강도가 비교예 1 대비하여 향상된 것을 확인할 수 있다. 또한 실시예 1 공극 크기가 비교예 1의 공극 크기에 비해 작은 것을 확인할 수 있다. FA(Fly Ash)의 입자 크기를 조절하여 압축 강도가 향상된 UHPC(Ultra High Performance Concrete)를 제조할 수 있음을 알 수 있다.As shown in Table 1, it can be confirmed that the compressive strength of Example 1 is improved compared to Comparative Example 1. In addition, it can be confirmed that the pore size of Example 1 is smaller than that of Comparative Example 1. It can be seen that UHPC (Ultra High Performance Concrete) with improved compressive strength can be manufactured by adjusting the particle size of FA (Fly Ash).

상기 표 1에 나타낸 바와 같이, 실시예 2의 압축 강도가 비교예 2 대비하여 향상된 것을 확인할 수 있다. 또한 실시예 2 공극 크기가 비교예 2의 공극 크기에 비해 작은 것을 확인할 수 있다. FA(Fly Ash)의 입도 분포를 조절하여 압축 강도가 향상된 UHPC(Ultra High Performance Concrete)를 제조할 수 있음을 알 수 있다.As shown in Table 1, it can be seen that the compressive strength of Example 2 is improved compared to Comparative Example 2. In addition, it can be confirmed that the pore size of Example 2 is smaller than that of Comparative Example 2. It can be seen that UHPC (Ultra High Performance Concrete) with improved compressive strength can be manufactured by adjusting the particle size distribution of FA (Fly Ash).

상기 표 1에 나타낸 바와 같이, 실시예 3의 압축 강도가 비교예 3 대비하여 향상된 것을 확인할 수 있다. 또한 실시예 3 공극 크기가 비교예 3의 공극 크기에 비해 작은 것을 확인할 수 있다. FA(Fly Ash)의 비표면적을 조절하여 압축 강도가 향상된 UHPC(Ultra High Performance Concrete)를 제조할 수 있음을 알 수 있다.As shown in Table 1, it can be confirmed that the compressive strength of Example 3 is improved compared to Comparative Example 3. In addition, it can be seen that the pore size of Example 3 is smaller than that of Comparative Example 3. It can be seen that UHPC (Ultra High Performance Concrete) with improved compressive strength can be manufactured by adjusting the specific surface area of FA (Fly Ash).

상기 표 1에 나타낸 바와 같이, 실시예 4의 압축 강도가 비교예 4 대비하여 향상된 것을 확인할 수 있다. 또한 실시예 4 공극 크기가 비교예 4의 공극 크기에 비해 작은 것을 확인할 수 있다. FA(Fly Ash)의 PSD(Particle Size Distribution)를 조절하고 시멘트의 CSF(Cement Spacing Factor)의 값을 조절하여 압축 강도가 향상된 UHPC(Ultra High Performance Concrete)를 제조할 수 있음을 알 수 있다.As shown in Table 1, it can be confirmed that the compressive strength of Example 4 is improved compared to Comparative Example 4. In addition, it can be confirmed that the pore size of Example 4 is smaller than that of Comparative Example 4. It can be seen that UHPC (Ultra High Performance Concrete) with improved compressive strength can be manufactured by adjusting the PSD (Particle Size Distribution) of FA (Fly Ash) and CSF (Cement Spacing Factor) value of cement.

상기 표 1에 나타낸 바와 같이, 실시예 5의 압축 강도가 비교예 5 대비하여 향상된 것을 확인할 수 있다. 또한 실시예 5 공극 크기가 비교예 5의 공극 크기에 비해 작은 것을 확인할 수 있다. 규사의 입도분포를 조절하여 압축 강도가 향상된 UHPC(Ultra High Performance Concrete)를 제조할 수 있음을 알 수 있다.As shown in Table 1, it can be confirmed that the compressive strength of Example 5 is improved compared to Comparative Example 5. In addition, it can be confirmed that the pore size of Example 5 is smaller than that of Comparative Example 5. It can be seen that UHPC (Ultra High Performance Concrete) with improved compressive strength can be manufactured by adjusting the particle size distribution of silica sand.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will be able to understand that the present invention may be embodied in other specific forms without changing its technical spirit or essential features. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the claims to be described later and equivalent concepts rather than the detailed description above are included in the scope of the present invention.

**

Claims (1)

시멘트 100 중량부;
혼화재 30 중량부;
규사 110 중량부;
규사 미분 39 중량부;
혼화제 2 중량부;및
물(water) 25 중량부를 포함하고,
상기 시멘트는 포틀랜드 시멘트, 설포알루미네이트 시멘트 및 철 알루미네이트 시멘트 중 하나 이상을 포함하고,
상기 규사의 평균 입자 크기는 5~10μm이고,
상기 혼화재는 FA(Fly Ash)을 포함하고,
상기 FA(Fly Ash)의 입자 크기는 5μm이며,
상기 FA(Fly Ash)의 입도 분포는 D50 값이 5.6μm이고,
상기 FA(Fly Ash)의 입도 분포는 하기 수학식 1로 표시되는 입도분포폭이 1.0이고,
[수학식 1]
입도분포폭 = (D90-D10)/D50
(여기서, D10, D50 및 D90은 각각 FA(Flying Ash)의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.)
상기 FA(Fly Ash)의 비표면적은 0.06㎤/g이고,
상기 시멘트는 하기 수학식 2로 표시되는 CSF(Cement Spacing Factor)가 1.1이고,
[수학식 2]
Figure pat00025

(여기서, CSF는 cement spacing factor이고,
Figure pat00026
는 안정적인 입자 구조에서 시멘트가 차지하는 부분 부피,
Figure pat00027
는 다른 입자가 있을 때 시멘트가 차지할 수 있는 최대 부분 부피,
Figure pat00028
는 단위 부피에서 혼합물의 모든 입자의 부분 부피,
Figure pat00029
는 혼합물의 계산된 패킹 밀도이다.)
상기 FA(Fly Ash)의 PSD(Particle Size Distribution)은 하기 수학식 3에 부합하고,
하기 수학식 3의 분포 계수 q 값은 0.4이고,
[수학식 3]
P(D)=
Figure pat00030

(여기서, P(D)는 체의 직경보다 작은 FA(Fly Ash)의 총 백분율이고, D는 체의 직경,
Figure pat00031
은 FA(Fly Ash) 중 가장 작은 입자의 지름,
Figure pat00032
는 FA(Fly Ash) 중 가장 큰 입자의 지름, q는 분포 계수이다.)
상기 규사의 하기 수학식 4로 표시되는 입도분포폭은 1.0인,
UHPC(Ultra High Performance Concrete).
[수학식 4]
입도분포폭 = (D90-D10)/D50
(여기서, D10, D50 및 D90은 각각 규사의 전체 중량을 100%로 하여 입도 분포의 누적량이 10%, 50% 및 90%가 되는 부분의 입자 직경을 의미한다.)
100 parts by weight of cement;
Admixture 30 parts by weight;
110 parts by weight of silica sand;
39 parts by weight of fine silica sand;
admixture 2 parts by weight; and
Contains 25 parts by weight of water,
the cement includes at least one of Portland cement, sulfoaluminate cement and iron aluminate cement;
The average particle size of the silica sand is 5 to 10 μm,
The admixture includes FA (Fly Ash),
The particle size of the FA (Fly Ash) is 5 μm,
The particle size distribution of the FA (Fly Ash) has a D 50 value of 5.6 μm,
The particle size distribution of the FA (Fly Ash) has a particle size distribution width represented by Equation 1 below of 1.0,
[Equation 1]
Particle size distribution width = (D 90 -D 10 )/D 50
(Here, D 10 , D 50 and D 90 are 100% of the total weight of FA (Flying Ash), respectively, and the cumulative amount of the particle size distribution is 10%, 50%, and D 90%. It means the particle diameter of the part.)
The specific surface area of the FA (Fly Ash) is 0.06 cm 3 / g,
The cement has a cement spacing factor (CSF) of 1.1 represented by Equation 2 below,
[Equation 2]
Figure pat00025

(Where CSF is the cement spacing factor,
Figure pat00026
is the partial volume occupied by cement in a stable grain structure,
Figure pat00027
is the maximum partial volume that cement can occupy in the presence of other particles,
Figure pat00028
is the partial volume of all particles of the mixture in unit volume,
Figure pat00029
is the calculated packing density of the mixture.)
The PSD (Particle Size Distribution) of the FA (Fly Ash) conforms to Equation 3 below,
The distribution coefficient q value of Equation 3 below is 0.4,
[Equation 3]
P(D)=
Figure pat00030

(Where P(D) is the total percentage of FAs (Fly Ash) smaller than the sieve diameter, D is the sieve diameter,
Figure pat00031
is the diameter of the smallest particle of FA (Fly Ash),
Figure pat00032
is the diameter of the largest particle among FA (Fly Ash), and q is the distribution coefficient.)
The particle size distribution width of the silica sand represented by Equation 4 below is 1.0,
Ultra High Performance Concrete (UHPC).
[Equation 4]
Particle size distribution width = (D 90 -D 10 )/D 50
(Here, D 10 , D 50 and D 90 are the particle diameters of the parts where the cumulative amount of the particle size distribution is 10%, 50% and 90%, respectively, with the total weight of the silica sand as 100%.)
KR1020220047786A 2021-07-02 2022-04-18 Cheap UHPC with Improved Properties KR102575164B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220047786A KR102575164B1 (en) 2021-07-02 2022-04-18 Cheap UHPC with Improved Properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210087416A KR102389372B1 (en) 2021-07-02 2021-07-02 Cheap UHPC with Improved Properties
KR1020220047786A KR102575164B1 (en) 2021-07-02 2022-04-18 Cheap UHPC with Improved Properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210087416A Division KR102389372B1 (en) 2021-07-02 2021-07-02 Cheap UHPC with Improved Properties

Publications (2)

Publication Number Publication Date
KR20230006383A true KR20230006383A (en) 2023-01-10
KR102575164B1 KR102575164B1 (en) 2023-09-06

Family

ID=81437279

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210087416A KR102389372B1 (en) 2021-07-02 2021-07-02 Cheap UHPC with Improved Properties
KR1020220047786A KR102575164B1 (en) 2021-07-02 2022-04-18 Cheap UHPC with Improved Properties

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020210087416A KR102389372B1 (en) 2021-07-02 2021-07-02 Cheap UHPC with Improved Properties

Country Status (1)

Country Link
KR (2) KR102389372B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144058A (en) * 2015-06-08 2016-12-16 한국건설기술연구원 Ultra-high performance concrete for mixing micro basalt fiber and macro steel fiber, and manufacturing method for the same
KR20170009482A (en) * 2015-07-17 2017-01-25 전남대학교산학협력단 Fiber reinforced concrete composite materials based on alkali activating slag and concrete application produced by the same
KR20170104676A (en) * 2015-12-01 2017-09-18 서울대학교산학협력단 Manufacturing method of Ultra High Performance Concrete using UHPC premix composition with cement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144058A (en) * 2015-06-08 2016-12-16 한국건설기술연구원 Ultra-high performance concrete for mixing micro basalt fiber and macro steel fiber, and manufacturing method for the same
KR20170009482A (en) * 2015-07-17 2017-01-25 전남대학교산학협력단 Fiber reinforced concrete composite materials based on alkali activating slag and concrete application produced by the same
KR20170104676A (en) * 2015-12-01 2017-09-18 서울대학교산학협력단 Manufacturing method of Ultra High Performance Concrete using UHPC premix composition with cement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sonja A.A.M. Fennis외, "Using particle packing technology for sustainable concrete mixture design", HERON Vol. 57 (2012) No. 2. 1부.* *

Also Published As

Publication number Publication date
KR102389372B1 (en) 2022-04-21
KR102575164B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
Kan et al. Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC)
CN103159443B (en) Ultrahigh-strength concrete and preparation method thereof
CN112125603A (en) Ultra-high performance lightweight concrete with pottery sand as lightweight aggregate and preparation method thereof
CN111470823A (en) Composite cementing material system of ultra-high performance concrete and application method thereof
CN110950604A (en) SAP-based machine-made sand ultra-high-performance concrete and preparation method and application thereof
Sagar et al. An experimental and analytical study on alccofine based high strength concrete
CN112551980A (en) Low-shrinkage and low-cement-consumption ultrahigh-performance concrete
CN113336508A (en) Self-compacting concrete and construction method thereof
CN113773028A (en) Geopolymer concrete and preparation method thereof
CN113045273A (en) High-strength polyvinyl alcohol fiber reinforced cement-based composite material and preparation method and application thereof
Hussain et al. Effect of sustainable glass powder on the properties of reactive powder concrete with polypropylene fibers
Ting et al. Preparation of foamed phosphogypsum lightweight materials by incorporating cementitious additives
CN114956710A (en) High-performance fly ash sprayed concrete for mudstone tunnel and preparation method thereof
CN115340329A (en) Recycled fine aggregate-magnesium oxide base expanding agent ultrahigh-performance concrete and preparation method thereof
KR102575164B1 (en) Cheap UHPC with Improved Properties
CN113968705B (en) Multi-element gel system STC (concrete-time-dependent temperature) ultrahigh-toughness concrete material for bridge deck pavement
Hela et al. Development of ultra high performance concrete and reactive powder concrete with nanosilica
Ali et al. The Influence of Nano-Silica on Some Properties of Light Weight Self-Compacting Concrete Aggregate
Ma et al. Influence of fly ash type on mechanical properties and self-healing behavior of Engineered Cementitious Composite (ECC)
CN113480272A (en) Self-curing micro-expansive ultrahigh-performance concrete and preparation method thereof
CN111798931A (en) Machine-made gravel aggregate prestressed concrete mix proportion design method based on deformation control
CN110563371A (en) Regulator for segregation concrete and regulating method thereof
KR102376056B1 (en) A Method For Producing UHPC Through Curing In Water And UHPC Manufactured Through Curing In Water
Ma et al. Effect of limestone powder on mechanical properties and microstructure of phosphogypsum
CN116621539B (en) High-viscosity high-permeability-resistance fine stone sprayed concrete and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant