KR20230005577A - Large temperature difference chiller - Google Patents

Large temperature difference chiller Download PDF

Info

Publication number
KR20230005577A
KR20230005577A KR1020210086465A KR20210086465A KR20230005577A KR 20230005577 A KR20230005577 A KR 20230005577A KR 1020210086465 A KR1020210086465 A KR 1020210086465A KR 20210086465 A KR20210086465 A KR 20210086465A KR 20230005577 A KR20230005577 A KR 20230005577A
Authority
KR
South Korea
Prior art keywords
heat
pressure cooling
cooling unit
heat exchange
unit
Prior art date
Application number
KR1020210086465A
Other languages
Korean (ko)
Inventor
송덕용
Original Assignee
주식회사 성지공조기술
주식회사 성지테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성지공조기술, 주식회사 성지테크 filed Critical 주식회사 성지공조기술
Priority to KR1020210086465A priority Critical patent/KR20230005577A/en
Publication of KR20230005577A publication Critical patent/KR20230005577A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A large temperature difference freezer according to the present invention comprises: a low-pressure cooling unit including a first compressor and a first expansion valve; a high-temperature cooling unit including a second compressor and a second expansion valve; a first heat exchanging unit discharging a coolant with the temperature having been increased by the heat exchange between the coolant of a low temperature and a circulating medium which circulates the low-pressure cooling unit and the high-pressure cooling unit; a second heat exchange unit discharging cold water of a low temperature after the heat exchange between the cold water with the temperature having been increased at the load side and the circulating medium which circulates the high-pressure cooling unit and the low-pressure cooling unit; a coolant flow path circulating the first heat exchange unit such that the coolant may sequentially exchange heat with the low-pressure cooling unit and the high-pressure cooling unit; and a cold water flow path in which the cold water circulates the second heat exchange unit so as to sequentially exchange heat with the high-pressure cooling unit and the low-pressure cooling unit. The first and second heat exchange units comprise: a water chamber which is provided with first and second heat exchange spaces divided such that the circulating medium circulating the low-pressure cooling unit and the high-pressure cooling unit may individually penetrate therethrough; a heat pipe unit which is connected to the coolant flow path or the cold water flow path, and is formed at the first and second heat exchange spaces; and a connecting water chamber cover which allows a first heat pipe unit arranged at the first heat exchange space and a second heat pipe unit formed at the second heat exchange space to communicate with each other. Therefore, the coolant or the cold water continuously exchanges heat with the circulating medium circulating the low-pressure cooling unit and the high-pressure cooling unit, to provide improved energy efficiency, and ultimately extend the service life of the product.

Description

대온도차 냉동기{Large temperature difference chiller}Large temperature difference chiller {Large temperature difference chiller}

본 발명은 냉동기에 관한 것으로, 더욱 상세하게는 냉수와 냉각수의 입출구 온도 차이를 증대시켜 에너지 효율을 향상시키는 대온도차 냉동기에 관한 것이다.The present invention relates to a refrigerator, and more particularly, to a large temperature difference refrigerator that improves energy efficiency by increasing the temperature difference between the inlet and outlet of cold water and cooling water.

실내의 항온항습, 냉방을 위해서 냉방 시스템이 상용된다. 이때 일반적인 냉방 시스템은 실내의 온도 및 습도의 제어가 필요한 위치에 설치되며, 냉수와 실내의 공기의 열교환을 통해서 냉방을 하는 부하측과 주로 실외에 설치되어 대기를 이용하여 냉각수와 열교환하는 냉각탑과 냉각탑과 부하측 사이에 설치되어 냉각수와 냉수의 열교환을 통해서 뜨거워진 냉수를 냉각하여 부하측에 전송하며, 뜨거워진 냉각수를 냉각탑으로 송출하는 냉동기를 포함한다.A cooling system is commonly used for constant temperature and humidity and cooling of the room. At this time, the general cooling system is installed at a location where indoor temperature and humidity control is required, and the cooling tower and the cooling tower are mainly installed outdoors and exchange heat with the cooling water using the atmosphere, and the load side that cools through the heat exchange between the cold water and the indoor air. and a chiller installed between the load side to cool the cold water heated through heat exchange between the cooling water and the cold water, transmit it to the load side, and send the heated cooling water to the cooling tower.

여기서 냉각탑에서 차가워진 냉각수는 냉각수공급라을 통해서 냉동기에 공급되며, 냉동기에서 냉수와 열교환을 통해서 따뜻해진 냉각수는 냉각수회수라인을 통해서 냉각탑으로 회수된다.Here, cooling water cooled in the cooling tower is supplied to the refrigerator through a cooling water supply line, and cooling water warmed through heat exchange with cold water in the refrigerator is returned to the cooling tower through a cooling water recovery line.

또한 부하측에서 실내공기와 열교환을 통해 따뜻해진 냉수는 냉수회수라인을 통해서 냉동기로 회수되며, 냉동기에서 냉각수와 열교환을 통해 차가워진 냉수는 냉수공급라인을 통해서 부하측으로 송출된다.In addition, the cold water warmed by heat exchange with indoor air at the load side is returned to the refrigerator through the cold water recovery line, and the cold water cooled by heat exchange with the cooling water in the refrigerator is sent to the load side through the cold water supply line.

이때 대온도차 냉동기는 냉수 및 냉각수의 입출구 온도차를 증가시켜 냉수 및 냉각수의 순환량을 감소시키는 것을 목적으로 한다. 그러나 이러한 대온도차 냉동기는 냉수 및 냉각수의 온도차를 증가시키기 위하여 냉동기의 압축비가 커지면서 결국 냉동기의 성적계수가 크게 낮아지는 문제점이 있었다.At this time, the purpose of the large temperature difference chiller is to increase the temperature difference between the inlet and outlet of the cold water and the cooling water to reduce the circulation amount of the cold water and the cooling water. However, such a large temperature difference chiller has a problem in that the performance coefficient of the chiller is greatly lowered as the compression ratio of the chiller increases in order to increase the temperature difference between the chilled water and the cooling water.

이는 결과적으로는 대온도차 냉동기의 소비동력을 크게 증가시켜 에너지 효율을 저하시키고, 이를 상쇄하기 위하여 복수의 냉동기를 사용하는 경우에는 제어가 어려운 동시에 설치면적이 크게 증대되는 문제점이 있었다.As a result, power consumption of the large-temperature difference chiller is greatly increased to decrease energy efficiency, and when a plurality of chillers are used to offset this, control is difficult and the installation area is greatly increased.

본 발명의 실시 예는 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 저압냉각부와 고압냉각부를 순환하는 열교환매체와 냉각수 또는 냉수를 연속하여 열교환시키는 새로운 구조를 개시하여 보다 간소한 대온도차 냉동기를 제공하는 것을 목적으로 한다.An embodiment of the present invention has been made to solve the above problems, and discloses a new structure for continuously exchanging heat between a heat exchange medium and cooling water or cold water circulating between a low pressure cooling unit and a high pressure cooling unit, thereby providing a simpler large temperature differential refrigerator. intended to provide

본 발명의 일실시 예의 대온도차 냉동기는 제1압축기와, 제1팽창밸브를 구비하는 저압냉각부; 제2압축기와, 제2팽창밸브를 구비하는 고압냉각부; 저온의 냉각수와 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체를 열교환시켜 승온된 냉각수를 배출시키는 제1열교환부; 부하측으로부터 승온된 냉수와 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체를 열교환시켜 저온의 냉수를 배출시키는 제2열교환부; 냉각수가 상기 저압냉각부 및 상기 고압냉각부와 순차적으로 열교환되도록 상기 제1열교환부를 순환하는 냉각수유로; 및 냉수가 상기 고압냉각부 및 상기 저압냉각부와 순차적으로 열교환되도록 상기 제2열교환부를 순환하는 냉수유로;를 포함하고, 상기 제1,2열교환부는 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체가 각각 관통되도록 구획된 제1,2열교환공간이 형성된 수실과, 상기 냉각수유로 또는 상기 냉수유로와 연결되고, 상기 제1,2열교환공간에 형성된 전열관부와, 상기 제1열교환공간에 배치된 제1전열관부와 상기 제2열교환공간에 형성된 제2전열관부를 연통시키는 연결수실커버로 형성되어, 냉각수 또는 냉수가 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체와 연속하여 열교환되는 것을 특징으로 한다.A large temperature difference refrigerator according to an embodiment of the present invention includes a low pressure cooling unit having a first compressor and a first expansion valve; a high-pressure cooling unit having a second compressor and a second expansion valve; a first heat exchange unit for exchanging heat between the low-temperature cooling water and the circulating medium circulating between the low-pressure cooling unit and the high-pressure cooling unit to discharge elevated cooling water; a second heat exchange unit for discharging low-temperature cold water by exchanging heat between the cold water heated from the load side and the circulating medium circulating between the low-pressure cooling unit and the high-pressure cooling unit; a cooling water passage through which the cooling water is circulated through the first heat exchange unit to sequentially exchange heat with the low-pressure cooling unit and the high-pressure cooling unit; and a cold water passage through which cold water circulates through the second heat exchange part so that the cold water sequentially exchanges heat with the high-pressure cooling part and the low-pressure cooling part, wherein the first and second heat exchange parts circulate the low-pressure cooling part and the high-pressure cooling part. A water chamber in which first and second heat exchange spaces are partitioned so that medium passes therethrough, a heat exchanger pipe part connected to the cooling water flow path or the cold water flow path and formed in the first and second heat exchange spaces, and a water chamber disposed in the first heat exchange space It is formed as a connecting water chamber cover that communicates the first heat exchanger tube and the second heat transfer tube formed in the second heat exchange space, so that cooling water or cold water continuously exchanges heat with a circulating medium circulating the low pressure cooling unit and the high pressure cooling unit. do.

이때 제1실시 예의 대온도차 냉동기는 상기 수실이 상기 전열관부와 나란하게 구획되어 상기 제1,2열교환공간이 상기 전열관부와 나란하게 형성될 수 있으며, 상기 연결수실커버는 상기 제1전열관부와 연결되는 제1연결공간과, 상기 제2전열관부와 연결되는 제2연결공간과, 연통홀을 통해 상기 제1,2연결공간을 연통시키는 연통공간으로 형성될 수 있다.At this time, in the large temperature difference refrigerator of the first embodiment, the water chamber is partitioned parallel to the heat exchanger tube unit so that the first and second heat exchange spaces can be formed parallel to the heat transfer tube unit, and the connection water chamber cover is connected to the first heat exchanger tube unit. It may be formed as a first connection space connected, a second connection space connected to the second heat transfer tube unit, and a communication space communicating the first and second connection spaces through a communication hole.

또한 상기 제1,2열교환부는 상기 수실의 일 측에는 상기 연결수실커버가 형성되고, 타 측에는 상기 제1전열관부 사이를 연결시키거나 상기 제2전열관부 사이를 연결시키는 수실커버가 더 형성될 수 있다.In addition, the first and second heat exchange units may have the connection water chamber cover formed on one side of the water chamber, and a water chamber cover connecting the first heat exchanger tube units or connecting the second heat transfer tube units to the other side. .

이때 제2실시 예의 대온도차 냉동기는 상기 연결수실커버가 상기 수실 사이에 형성되고, 상기 제1전열관부와 상기 제1전열관부를 연통시키는 제1연통공간과, 상기 제1전열관부와 상기 제2전열관부를 연통시키는 제2연통공간과, 상기 제2전열관부와 상기 제2전열관부를 연결시키는 제3연통공간으로 형성될 수 있다.At this time, in the large temperature difference refrigerator of the second embodiment, the connecting water chamber cover is formed between the water chambers, the first communication space communicating the first heat transfer tube part and the first heat transfer tube part, and the first heat transfer tube part and the second heat transfer pipe It may be formed of a second communication space for communicating parts and a third communication space for connecting the second heat transfer pipe part and the second heat transfer pipe part.

또한 상기 제1,2열교환부는 상기 제1연결공간과 상기 제2연경공간 사이에 상기 연결수실커버가 형성될 수 있으며, 상기 수실의 양 측에는 상기 제1전열관부와 상기 제1전열관부 또는 상기 제2전열관부와 상기 제2전열관부를 연통시키는 제4연통공간과, 상기 제1전열관부 또는 상기 2전열관부와 상기 냉각수유로 또는 상기 냉수유로를 연통시키는 제5연통공간으로 형성되는 수실커버가 형성될 수 있다.In addition, the connection water chamber cover may be formed between the first connection space and the second connection space in the first and second heat exchange units, and the first heat transfer tube unit and the first heat exchanger tube unit or the first heat transfer tube unit may be formed on both sides of the water chamber. A water chamber cover formed of a fourth communication space communicating the second heat exchanger tube portion and the second heat exchanger tube portion and a fifth communication space communicating the first heat transfer pipe portion or the second heat transfer tube portion and the cooling water passage or the cold water passage is formed. can

상기 제1압축기와 상기 제2압축기는 동일한 압축비를 갖는 것이 바람직하며, 상기 저압냉각부와 상기 고압냉각부는 동일한 용량비를 갖는 것이 바람직하다.Preferably, the first compressor and the second compressor have the same compression ratio, and the low-pressure cooling unit and the high-pressure cooling unit preferably have the same capacity ratio.

이상에서 살펴 본 바와 같이 본 발명의 과제해결 수단에 의하면 다음과 같은 사항을 포함하는 다양한 효과를 기대할 수 있다. 다만, 본 발명이 하기와 같은 효과를 모두 발휘해야 성립되는 것은 아니다.As described above, according to the problem solving means of the present invention, various effects including the following can be expected. However, the present invention is not established when all of the following effects are exerted.

본 발명의 대온도차 냉동기는 서로 독립적인 냉동사이클을 갖는 저압냉각부와 고압냉각부를 구비하여 보다 낮은 냉수를 얻을 수 있어 활용도가 매우 높다.The large temperature difference refrigerator of the present invention has a low-pressure cooling unit and a high-pressure cooling unit having independent refrigerating cycles, so that lower chilled water can be obtained, and thus the utilization is very high.

또한 저압냉각부와 고압냉각부와 냉각수 및 냉수가 연속하여 열교환하도록 낮은 온도의 냉수를 제조하는 동시에 동일 냉방부하를 위해 필요로하는 냉각수와 냉수의 양을 절감시켜 운송동력을 50% 이상 절감시켜 궁극적으로는 냉동기의 성적계수 높이고, 소형화를 실현하여 설치 공간을 감소시킨다.In addition, the low-temperature chilled water is produced so that the low-pressure cooling part and the high-pressure cooling part continuously exchange heat, and at the same time, the amount of cooling water and chilled water required for the same cooling load is reduced to reduce the transportation power by more than 50%. As a result, the performance coefficient of the refrigerator is increased, and the installation space is reduced by realizing miniaturization.

또한 냉각수유로 및 냉수유로는 저압냉각부 및 고압냉각수와 순차적으로 열교환가능한 형성되어 대온도차 냉동기를 보다 간소화하여 초기 설치 시 비용을 절감시키는 동시에 유지 보수 비용 또한 현저히 절감시킨다.In addition, the cooling water flow path and the cold water flow path are formed to be able to sequentially exchange heat with the low-pressure cooling unit and the high-pressure cooling water, thereby simplifying the large temperature difference chiller, reducing initial installation costs and significantly reducing maintenance costs.

또한 연결수실커버는 냉각수 또는 냉수 순환 시 제1,2전열관부를 연통시키는 연통공간을 형성하여 냉각수의 냉수의 순환 속도를 일정하게 유지시켜 열교환 효율을 일정 이상으로 유지하도록 하여 에너지 효율성 향상 효과를 극대화한다.In addition, the connection water chamber cover forms a communication space that communicates the first and second heat transfer pipes when cooling water or cold water is circulated, thereby maintaining a constant circulation speed of cooling water and cold water to maintain heat exchange efficiency above a certain level, thereby maximizing the effect of improving energy efficiency. .

또한 제1압축기와 제2압축기를 동일한 압축비를 갖도록 형성하여 서징(surging) 발생을 최소화할 수 있어 냉동기 운행 시 진동 소음 등의 불이익을 최소화할 수 있으며, 궁극적으로는 제품의 수명 연장의 효과를 기대할 수 있다.In addition, by forming the first and second compressors to have the same compression ratio, surging can be minimized, which can minimize disadvantages such as vibration and noise during operation of the refrigerator, and ultimately, the effect of extending the life of the product can be expected. can

또한 저압냉각부와 고압냉각부를 동일한 용량비를 갖도록 형성하여 50% 이하의 부하에서는 저압냉각부 또는 고압냉각부를 부분부하 제어를 보다 용이하게 할 수 있으며, 필요 냉동부하가 작은 경우 저압냉각부 또는 고압냉각부 중 어느 하나만을 가동시켜 원하는 냉방을 제공할 수 있어 보다 친환경적인 냉동기를 제공한다.In addition, by forming the low-pressure cooling unit and the high-pressure cooling unit to have the same capacity ratio, it is possible to more easily control the partial load of the low-pressure cooling unit or the high-pressure cooling unit at a load of 50% or less. A more environmentally friendly refrigerator can be provided by operating only one of the units to provide desired cooling.

또한 통합성능계수에 따를때 50%까지 부하가 전체 부하 비율에 60%에 해당하므로, 저압냉각부와 고압냉각부 중 어느 하나가 가동 불가한 경우에도 어느 정도의 대응이 가능하여 사용자의 편의를 향상시킨다.In addition, since the load up to 50% corresponds to 60% of the total load ratio according to the integrated performance coefficient, it is possible to respond to some extent even when either the low-pressure cooling part or the high-pressure cooling part is not in operation, improving user convenience. let it

도 1은 본 발명의 제1실시 예의 대온도차 냉동기의 개략도.
도 2는 도 1의 제1,2열교환기의 일 측면을 도시한 도면.
도 3은 도 1의 제1,2열교환기의 다른 측면을 도시한 도면.
도 4는 도 3의 D 방향의 단면도.
도 5는 도 2의 E 방향의 단면도.
도 6은 도 2의 A, B, C 방향의 단면을 순차적으로 도시한 도면.
도 7은 본 발명의 제2실시 예의 대온도차 냉동기의 개략도.
도 8은 도 7의 제1,2열교환기의 단면을 도시한 도면.
도 9는 도 8의 D, E, F G 방향의 단면을 순차적으로 도시한 도면.
1 is a schematic diagram of a large temperature difference refrigerator according to a first embodiment of the present invention.
2 is a view showing one side of the first and second heat exchangers of FIG. 1;
3 is a view showing another side of the first and second heat exchangers of FIG. 1;
Figure 4 is a cross-sectional view in the direction D of Figure 3;
5 is a cross-sectional view in the direction E of FIG. 2;
6 is a view sequentially illustrating cross-sections in directions A, B, and C of FIG. 2;
7 is a schematic diagram of a large temperature difference refrigerator according to a second embodiment of the present invention.
8 is a cross-sectional view of the first and second heat exchangers of FIG. 7;
9 is a view sequentially illustrating cross sections in directions D, E, and FG of FIG. 8;

이하, 도면을 참조하여 본 발명의 구체적인 실시 예를 상세히 설명하도록 한다. 다만, 본 발명의 요지를 흩트리지 않도록 하기 위하여 공지된 기능 혹은 구성에 대한 설명은 생략한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, descriptions of well-known functions or configurations are omitted in order not to obscure the gist of the present invention.

또한 제1실시 예의 대온도차 냉동기를 먼저 설명하도록 하며, 중복 설명을 피하기 위하여 제1,2실시 예의 공동적인 부분은 제1실시 예에서 설명하도록 하고, 추후 제2실시 예에서는 생략하도록 하며, 설명의 편의를 위하여 제1,2실시 예의 공통적인 부분은 동일한 부호를 사용하여 설명하고, 차이점이 있은 부분에 대해서도 동일한 기능을 가지는 경우에는 제1실시 예의 부호의 맨 앞에 '2'를 추가하도록 한다.In addition, the large temperature difference refrigerator of the first embodiment will be described first, and in order to avoid overlapping description, the common parts of the first and second embodiments will be described in the first embodiment, and will be omitted later in the second embodiment. For convenience, the common parts of the first and second embodiments are described using the same symbols, and '2' is added at the beginning of the codes of the first embodiment when the parts with differences have the same function.

도 1은 본 발명의 제1실시 예의 대온도차 냉동기의 개략도이고, 도 2는 도 1의 제1,2열교환기의 일 측면을 도시한 도면이며, 도 3은 도 1의 제1,2열교환기의 다른 측면을 도시한 도면이고, 도 4는 도 3의 D 방향의 단면도이며, 도 5는 도 3의 E 방향의 단면도이고, 도 6은 도 2의 A, B, C 방향의 단면을 순차적으로 도시한 도면이다. 도 7은 본 발명의 제2실시 예의 대온도차 냉동기의 개략도이고, 도 8은 도 7의 제1,2열교환기의 단면을 도시한 도면이며, 도 9는 도 8의 D, E, F G 방향의 단면을 순차적으로 도시한 도면이다.1 is a schematic diagram of a large temperature differential refrigerator according to a first embodiment of the present invention, FIG. 2 is a side view of first and second heat exchangers of FIG. 1, and FIG. 3 is a view of the first and second heat exchangers of FIG. 4 is a cross-sectional view in the direction D of FIG. 3, FIG. 5 is a cross-sectional view in the direction E of FIG. 3, and FIG. 6 is a cross-sectional view in the direction A, B, and C of FIG. It is an illustrated drawing. 7 is a schematic diagram of a large temperature differential refrigerator according to a second embodiment of the present invention, FIG. 8 is a cross-sectional view of first and second heat exchangers of FIG. 7, and FIG. 9 is a view in the D, E, F and G directions of FIG. It is a drawing showing the cross section sequentially.

도 1 내지 도 9를 참조하면 본 발명의 대온도차 냉동기(10)는 제1압축기(110)와, 제1팽창밸브(120)를 구비하는 저압냉각부(L,100), 제2압축기(210)와, 제2팽창밸브(220)를 구비하는 고압냉각부(H,200), 저온의 냉각수와 상기 저압냉각부(L,100)와 상기 고압냉각부(H,200)를 순환하는 순환매체를 열교환시켜 승온된 냉각수를 배출시키는 제1열교환부(300), 부하측(30)으로부터 승온된 냉수와 상기 저압냉각부(L,100)와 상기 고압냉각부(H,200)를 순환하는 순환매체를 열교환시켜 저온의 냉각수를 배출시키는 제2열교환부(300), 냉각수가 상기 저압냉각부(L,100) 및 상기 고압냉각부(H,200)와 순차적으로 열교환되도록 상기 제1열교환부(300)를 순환하는 냉각수유로(500) 및 냉수가 상기 고압냉각부(H,200) 및 상기 저압냉각부(L,100)와 순차적으로 열교환되도록 상기 제2열교환부(300)를 순환하는 냉수유로(600)를 포함하고, 상기 제1,2열교환부(300)는 상기 저압냉각부(L,100)와 상기 고압냉각부(H,200)를 순환하는 순환매체가 각각 관통되도록 구획된 제1,2열교환공간(3111,3112)이 형성된 수실(310)와, 상기 냉각수유로(500) 또는 상기 냉수유로(600)와 연결되고, 상기 제1,2열교환공간(3111,3112)에 형성된 전열관부(320)와, 상기 제1열교환공간(3111)에 배치된 제1전열관부(321)와 상기 제2열교환공간(3112)에 형성된 제2전열관부(322)를 연통시키는 연결수실커버(330)로 형성되어, 냉각수 또는 냉수가 상기 저압냉각부(L,100)와 상기 고압냉각부(H,200)를 순환하는 순환매체와 연속하여 열교환되는 것을 특징으로 한다.1 to 9, the large temperature difference refrigerator 10 of the present invention includes a first compressor 110, a low pressure cooling unit L, 100 having a first expansion valve 120, and a second compressor 210 ), a high-pressure cooling unit (H, 200) having a second expansion valve 220, low-temperature cooling water, and a circulating medium that circulates the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200). The first heat exchange unit 300 discharges the increased temperature by exchanging heat with the cold water heated from the load side 30 and the circulating medium that circulates the low pressure cooling unit L100 and the high pressure cooling unit H200. The second heat exchange unit 300 discharges low-temperature cooling water by exchanging heat with the first heat exchange unit 300 so that the cooling water sequentially exchanges heat with the low-pressure cooling unit L100 and the high-pressure cooling unit H200. ) and the cold water passage circulating through the second heat exchange part 300 so that the cold water is sequentially heat-exchanged with the high-pressure cooling part (H, 200) and the low-pressure cooling part (L, 100) ( 600), wherein the first and second heat exchange units 300 are partitioned so that the circulating medium circulating through the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) passes through, respectively. The water chamber 310 in which the second heat exchange spaces 3111 and 3112 are formed, and the cooling water flow path 500 or the cold water flow path 600 are connected and formed in the first and second heat exchange spaces 3111 and 3112. 320) and the connection water chamber cover 330 communicating the first heat exchanger pipe part 321 disposed in the first heat exchange space 3111 and the second heat exchanger pipe part 322 formed in the second heat exchange space 3112. formed, characterized in that the cooling water or cold water is continuously heat-exchanged with the circulating medium circulating through the low-pressure cooling part (L, 100) and the high-pressure cooling part (H, 200).

대온도차 냉동기(10)는 냉수 또는 냉각수가 유출입됨에 따라 발생되는 온도차를 표준보다 크게하여 냉각탑(40)의 송풍량이나, 순환매체의 량을 감소시켜 필요한 냉방부하에 필요한 동력을 감소시킬 수 있는 냉동기이다.The large temperature difference chiller 10 is a chiller that can reduce the power required for the required cooling load by reducing the amount of air flow of the cooling tower 40 or the amount of circulating medium by making the temperature difference generated by the inflow and outflow of cold water or cooling water larger than the standard. .

구체적으로 냉동기의 경우 냉동기로 유입되는 냉수의 온도와 냉동기로부터 유출되는 냉수의 온도는 약 5 ℃ 정도 차이가 나는 것이 일반적이나, 본 발명의 대온도차 냉동기(10)는 제2열교환부(300)로 유입되는 냉수의 온도와 제2열교환부(300)로부터 유출되는 냉수의 온도가 약 10 ℃ 정도 차이가 나도록하여 필요한 냉방부하를 부하측(30)으로 제공하기 위하여 일반적인 냉동기보다 적은 양의 냉수를 필요로한다.Specifically, in the case of a refrigerator, there is a general difference between the temperature of the cold water flowing into the refrigerator and the temperature of the cold water flowing out of the refrigerator by about 5 ℃, but the large temperature difference refrigerator 10 of the present invention In order to provide the necessary cooling load to the load side 30 by making the difference between the temperature of the incoming cold water and the temperature of the cold water flowing out of the second heat exchange unit 300 by about 10 ° C, a smaller amount of cold water than a typical refrigerator is required. do.

이때 냉수의 온도 차이를 크게하기 위해서는 많은 동력을 필요로 하므로, 본 발명의 대온도차 냉동기(10)는 순환매체가 독립적으로 순환하는 저압냉각부(L,100)와 고압냉각부(H,200)를 구비하여 필요 동력을 감소시켜 에너지 효율을 증가시키는 효과를 갖는다.At this time, since a large amount of power is required to increase the temperature difference of cold water, the large temperature difference refrigerator 10 of the present invention includes a low-pressure cooling unit (L, 100) and a high-pressure cooling unit (H, 200) in which a circulating medium independently circulates. It has the effect of increasing energy efficiency by reducing the required power.

따라서 저압냉각부(L,100)는 제1압축기(110)와, 제1팽창기(120)와, 순환매체가 제1압축기(110), 제1,2 열교환부, 제1압축기(110)를 순차적으로 순환하도록 형성된 제1순환유로(130)로 형성되고, 고압냉각부(H,200)는 제2압축기(210)와, 제2팽창기(220)와, 순환매체가 제2압축기(210), 제1,2 열교환부(300), 제2압축기(210)를 순차적으로 순환하도록 형성된 제2순환유로(230)로 형성된다.Therefore, in the low-pressure cooling unit (L, 100), the first compressor 110, the first expander 120, and the circulating medium supply the first compressor 110, the first and second heat exchange units, and the first compressor 110. It is formed of a first circulation passage 130 formed to circulate sequentially, and the high-pressure cooling part H 200 includes a second compressor 210, a second expander 220, and a circulating medium in the second compressor 210. , the first and second heat exchange units 300 and the second compressor 210 are formed of a second circulation passage 230 formed to sequentially circulate.

정리 하면, 본 발명의 대온도차 냉동기(10)는 부하측(30)으로 공급되는 냉수와 부하측(30)으로부터 회수되는 냉수의 온도를 차를 증가시켜 냉수의 사용량을 감소시키고, 저압냉각부(L,100)와 고압냉각부(H,200)를 구비하여 다단 냉각을 통해 보다 적은 동력을 사용하여 냉방을 제공한다.In summary, the large temperature difference refrigerator 10 of the present invention increases the temperature difference between the cold water supplied to the load side 30 and the cold water recovered from the load side 30 to reduce the amount of cold water used, and the low pressure cooling unit (L, 100) and a high-pressure cooling unit (H, 200) are provided to provide cooling using less power through multi-stage cooling.

여기서 저압냉각부(L,100)와 고압냉각부(H,200)는 압축비가 같도록 설정되어 유로에 펌프나 송풍기를 통해 설치된 상태로 가동되면서 특정 압축비에서 진동 및 소음이 크게 증가되어 발생되는 서징(surging) 현상을 방지한다.Here, the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) are set to have the same compression ratio and operated while installed in the flow path through a pump or blower. (surging) phenomenon is prevented.

구체적으로 서징(surging) 현상은 압축기의 압축비에 따라 발생되는 영역이 달라지므로 제1압축기(110)와 제2압축기(210)의 압축비를 달리하는 경우 서징(surging)이 발생되는 영역이 달라지게 되어 그 가능성이 증가되므로 제1,2압축기(110,210)의 압축비를 동일하게 형성되는 것이 바람직하다.Specifically, since the area in which surging occurs varies according to the compression ratio of the compressor, when the compression ratios of the first compressor 110 and the second compressor 210 are different, the area in which surging occurs varies. Since the possibility is increased, it is preferable that the compression ratios of the first and second compressors 110 and 210 are the same.

또한 저압냉각부(L,100)와 고압냉각부(H,200)의 용량비를 같도록 설정되어 필요 냉방부하가 대온도차 냉동기(10)의 총 냉방부하의 50 % 이하인 경우에는 저압냉각부(L,100)와 고압냉각부(H,200) 중 어느 하나만을 가동시켜 부분부하 제어가 용이하도록 하는 것이 바람직하다.In addition, when the capacity ratio of the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) is set to be the same, and the required cooling load is 50% or less of the total cooling load of the large temperature difference refrigerator (10), the low-pressure cooling unit (L , 100) and the high-pressure cooling unit (H, 200) are preferably operated to facilitate partial load control.

저압냉각부(L,100)와 고압냉각부(H,200)의 용량비가 다른 경우에는 부분부하 제어 시 필요 냉방부하의 따라 저압냉각부(L,100)와 고압냉각부(H,200) 중 어느 하나를 가동시키는 지점을 달리하여야 하여 제어가 어렵기 때문이다.When the capacity ratios of the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) are different, in case of partial load control, depending on the cooling load required, between the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) This is because it is difficult to control because the point at which one is operated must be changed.

다시 말해 본 발명의 대온도차 냉동기(10)는 저압냉각부(L,100)와, 고압냉각부(H,200)를 구비하여 냉수가 순환매체와 연속하여 열교환하도록 형성하여 보다 낮은 온도의 냉수를 부하측(30)으로 제공하도록 하고, 이때 저압냉각부(L,100)와 고압냉각부(H,200)의 압축비 및 용량비가 동일하도록 하여 서징(surging) 현상을 최소화하고 부분부하 제어를 용이하게 하여 제품의 내구성 및 편의성을 향상시키는 효과를 갖는다.In other words, the large temperature difference chiller 10 of the present invention includes a low-pressure cooling unit L, 100 and a high-pressure cooling unit H, 200 so that cold water continuously exchanges heat with a circulating medium to produce cold water at a lower temperature. It is provided to the load side 30, and at this time, the compression ratio and capacity ratio of the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200) are the same to minimize the surging phenomenon and facilitate partial load control. It has the effect of improving the durability and convenience of the product.

제1열교환부(300)는 냉각탑(40)에서 유입되는 저온의 냉각수와 순환매체를 열교환시켜 승온된 냉각수를 배출시키는 제1열교환부(300)와, 부하측(30)에서 유입되는 승온된 냉수와 순환매체를 열교환시켜 저온의 냉수를 배출시키는 제2열교환부(300)로 형성되어 저압냉각부(L,100)와 고압냉각부(H,200)를 순환하는 순환매체와 냉각수 또는 냉수를 열교환하도록 하여 궁극적으로는 냉수를 보다 저온으로 부하측(30)으로 배출하도록 한다.The first heat exchange unit 300 includes the first heat exchange unit 300 for exchanging heat between the low-temperature cooling water introduced from the cooling tower 40 and the circulating medium to discharge the elevated cooling water, and the elevated cold water flowing in from the load side 30. It is formed of the second heat exchange unit 300 that heat-exchanges the circulating medium to discharge low-temperature cold water, so as to heat-exchange the cooling water or cold water with the circulating medium circulating between the low-pressure cooling unit L100 and the high-pressure cooling unit H200. Ultimately, the cold water is discharged to the load side 30 at a lower temperature.

여기서 제1열교환부(300)는 순환매체와 냉각수가 열교환되는 곳으로 응축기에 해당하며, 제2열교환부(300)는 순환매체와 냉수가 열교환되는 곳으로 증발기에 해당한다.Here, the first heat exchange unit 300 is a place where the circulating medium and the cooling water are heat exchanged and corresponds to a condenser, and the second heat exchange unit 300 is a place where the circulating medium and the cold water are heat exchanged and corresponds to an evaporator.

그러나, 제1,2열교환부(300)는 순환매체와 냉각수 또는 냉수가 연속적으로 열교환가능 하도록 동일한 구조를 가지므로, 중복 설명을 피하기 위하여 제1열교환부(300)를 통해 각 구조를 설명하고, 제2열교환부(300)는 차이점에 대해서만 설명하도록 한다.However, since the first and second heat exchange units 300 have the same structure so that the circulating medium and the cooling water or cold water can continuously exchange heat, each structure will be described through the first heat exchange unit 300 to avoid redundant description, The second heat exchange unit 300 will be described only for differences.

제1실시 예의 제1열교환부(300)는 순환매체와 냉각수가 열교환되는 수실(310)과, 수실(310) 내부에 설치되어 냉각수가 관통하는 전열관부(320)와, 제1,2열교환공간(3111,3112)을 연통시키는 연결수실커버(330)와, 전열관부(320)를 연결시키는 수실커버(340)와, 전열관부(320)를 형성하는 복수의 전열관을 일정 간격으로 고정시키는 튜브시트(350)로 형성된다.The first heat exchange unit 300 of the first embodiment includes a water chamber 310 in which a circulating medium and cooling water are heat-exchanged, a heat exchanger tube 320 installed inside the water chamber 310 and passing cooling water, and first and second heat exchange spaces. A tube sheet for fixing the connecting water chamber cover 330 connecting 3111 and 3112, the water chamber cover 340 connecting the heat transfer tube unit 320, and the plurality of heat transfer tubes forming the heat transfer tube unit 320 at regular intervals. (350).

수실(310)은 전열관부(320)가 연장된 방향으로 격벽(311)이 형성되어 저압냉각부(L,100)를 순환하는 순환매체와 냉각수가 열교환되는 제1열교환공간(3111)과 고압냉각부(H,200)를 순환하는 순환매체와 냉각수가 열교환되는 제2열교환공간(3112)으로 구획되고, 제1열교환공간(3111)은 제1순환유로(130)와 연결되고, 제2열교환공간(3112)은 제2순환유로(230)와 연결되어 냉각수와 각각 열교환되도록 한다.In the water chamber 310, a partition wall 311 is formed in the direction in which the heat transfer tube unit 320 extends, and the first heat exchange space 3111 in which the cooling water and the circulating medium circulating in the low-pressure cooling unit L 100 exchange heat with each other is used for high-pressure cooling. It is partitioned into a second heat exchange space 3112 in which the circulating medium and cooling water circulating in the unit H 200 exchange heat, the first heat exchange space 3111 is connected to the first circulation passage 130, and the second heat exchange space 3112 is connected to the second circulation passage 230 to exchange heat with the cooling water, respectively.

전열관부(320)는 제1열교환공간(3111)에 배치되는 제1전열관부(321)와 제2열교환공간(3112)에 배치되는 제2전열관부(322)로 형성되어 냉각수가 저압냉각부(L,100) 및 고압냉각부(H,200)와 순차적으로 열교환되도록 한다.The heat transfer tube unit 320 is formed of a first heat transfer tube unit 321 disposed in the first heat exchange space 3111 and a second heat transfer tube unit 322 disposed in the second heat exchange space 3112, so that the cooling water is a low pressure cooling unit ( L, 100) and the high-pressure cooling unit (H, 200) to sequentially exchange heat.

연결수실커버(330)는 수실(310)의 일 측에 결합되고, 제1전열관부(321)와 연결되는 제1연결공간(331)과, 제2전열관부(322)와 연결되는 제2연결공간(332)과, 연통홀(3331)을 통해 제1연결공간(331)과 제2연결공간(332)을 연통시키는 연통공간(333)과, 제1,2연결공간(331,332)를 상하방향으로 구분하는 분리벽(334)으로 형성되어, 냉각수를 제1전열관부(321)에서 제2전열관부(322)로 이동시키며 열교환되도록 한다.The connection water chamber cover 330 is coupled to one side of the water chamber 310, and the first connection space 331 connected to the first heat exchanger tube part 321 and the second connection space 331 connected to the second heat exchanger tube part 322 The communication space 333, which communicates the first connection space 331 and the second connection space 332 through the space 332 and the communication hole 3331, and the first and second connection spaces 331 and 332 in the vertical direction. It is formed of a partition wall 334 separating the cooling water from the first heat exchanger tube unit 321 to the second heat transfer tube unit 322 so that heat is exchanged.

구체적으로 제1연결공간(331)과 제2연결공간(332)는 중간에 분리벽(334)가 형성되어 상하방향으로 구분하고, 이에 따라 제1,2전열관부(321,322)를 구성하는 복수의 전열관은 구획된 제1,2연결공간(331,332)에 균일하게 분포되도록 설치된다.Specifically, the first connection space 331 and the second connection space 332 are separated in the vertical direction by the partition wall 334 formed in the middle, and accordingly, the plurality of The heat transfer pipes are installed to be uniformly distributed in the partitioned first and second connection spaces 331 and 332.

이때 연통홀(3331)은 상하방향으로 구분된 제1연결공간(331)의 상측과, 상하방향으로 구분된 제2연결공간(332)의 하측에 형성되어 연통공간(333)을 통해 제1연결공간(331)의 상측와 제2연결공간(332)의 하측이 연통되도록 한다.At this time, the communication hole 3331 is formed on the upper side of the first connection space 331 divided in the vertical direction and the lower side of the second connection space 332 divided in the vertical direction, so that the first connection is made through the communication space 333. The upper side of the space 331 and the lower side of the second connection space 332 communicate with each other.

또한 냉각수공급유로(510)는 상하방향으로 구분된 제1연결공간(331)의 하측에 연결되고, 냉각수배출유로(520)는 상하방향으로 구분된 제2연결공간(332)의 상측에 연결된다.In addition, the cooling water supply passage 510 is connected to the lower side of the first connection space 331 divided in the vertical direction, and the cooling water discharge passage 520 is connected to the upper side of the second connection space 332 divided in the vertical direction. .

이에 따라 냉각수는 냉각수공급유로(510)를 통해 제1연결공간(331)의 하측으로 유입되어 제1전열관부(321) 중 제1연결공간(331)의 하측에 설치된 전열관을 통해 수실커버(340)로 이동되고, 수실커버(340)를 통해 제1연결공간(331)의 상측에 설치된 전열관을 통해 제1연결공간(331)의 상측으로 유입되며, 제1연결공간(331)의 상측으로 유입된 냉각수는 연통홀(3331)을 통해 연통공간(333)으로 이동되고, 다시 반대편 연통홀(3331)을 통해 제2연결공간(332)의 하측으로 이동된다.Accordingly, the cooling water is introduced to the lower side of the first connection space 331 through the cooling water supply passage 510, and the water chamber cover 340 passes through the heat transfer pipe installed below the first connection space 331 among the first heat transfer pipe parts 321. ), flows into the upper side of the first connection space 331 through the water chamber cover 340 through the heat transfer pipe installed on the upper side of the first connection space 331, and flows into the upper side of the first connection space 331. The cooled water is moved to the communication space 333 through the communication hole 3331 and moves to the lower side of the second connection space 332 through the communication hole 3331 on the opposite side.

제2연결공간(332)의 하측으로 이동된 냉각수는 제2전열관부(322) 중 제2연결공간(332)의 하측에 설치된 전열관을 통해 수실커버(340)로 이동되고, 수실커버(340)를 통해 제2연결공간(332)의 상측에 설치된 전열관을 통해 제2연결공간(332)의 상측으로 유입되어 냉각수배출유로(520)로 배출된다.The coolant moved to the lower side of the second connection space 332 is moved to the water chamber cover 340 through the heat transfer pipe installed on the lower side of the second connection space 332 among the second heat transfer tubes 322, and the water chamber cover 340 The coolant flows into the upper side of the second connection space 332 through the heat transfer pipe installed on the upper side of the second connection space 332 and is discharged to the cooling water discharge passage 520.

따라서 냉각수는 저압냉각부(L,100)를 순환하는 순환매체와도 제1전열관부(321)를 통해 이중으로 열교환되고, 고압냉각부(H,200)를 순환하는 순환매체와도 제2전열관부(322)를 통해 이중으로 열교환되어 보다 향상된 열교환 효율을 제공한다.Therefore, the cooling water is double heat-exchanged with the circulating medium circulating in the low-pressure cooling unit (L, 100) through the first heat transfer tube unit 321, and also with the circulating medium circulating in the high-pressure cooling unit (H, 200) through the second heat transfer tube. Heat is exchanged twice through the unit 322 to provide more improved heat exchange efficiency.

이때 연통공간(333)은 제1전열관부(321)를 통해 이동되는 냉각수가 제2전열관부(322)로 바로 유입되지 않도록 하여 복수의 전열관의 상태가 다름에 따라 발생할 수 있는 냉각수의 압력차 및 온도차를 일차적으로 상쇄하도록 하여 보다 안정적이고 균일한 상태의 냉각수를 제공하여 보다 향상된 냉방 효율을 갖는다.At this time, the communication space 333 prevents the cooling water moving through the first heat transfer tube unit 321 from directly flowing into the second heat transfer tube unit 322, thereby reducing the pressure difference and By primarily offsetting the temperature difference, more stable and uniform cooling water is provided, resulting in improved cooling efficiency.

수실커버(340)는 수실(310)의 타 측에 결합되고, 구획되어 제1전열관부(321)를 구성하는 복수의 전열관 사이 및 제2전열관부(322)를 구성하는 복수의 전열관 사이를 연결시켜 순환하는 냉각수가 복수의 전열관으로 균일하게 분배되어 순환매체와 효율적으로 열교환되도록 한다.The water chamber cover 340 is coupled to the other side of the water chamber 310 and is partitioned to connect between the plurality of heat exchanger tubes constituting the first heat exchanger tube portion 321 and the plurality of heat exchanger tubes constituting the second heat exchanger tube portion 322. so that the circulating cooling water is evenly distributed among the plurality of heat transfer pipes to efficiently exchange heat with the circulating medium.

이때 수실(310)과 수실커버(340) 사이 및 수실(310)과 연결수실커버(330) 사이에는 제1,2전열관부(320)를 구성하는 복수의 전열관이 일정한 간격을 가지며 배치될 수 있도록 튜브시트(350)가 형성되어 제1열교환부(300)의 조립을 보다 용이하게 하며, 각 전열관에 동일한 압력으로 냉각수가 공급될 수 있어 열교환의 효율을 향상시킨다.At this time, between the water chamber 310 and the water chamber cover 340 and between the water chamber 310 and the connected water chamber cover 330, the plurality of heat exchangers constituting the first and second heat exchanger tubes 320 can be arranged at regular intervals. The tube sheet 350 is formed to facilitate assembly of the first heat exchange unit 300, and since cooling water can be supplied to each heat exchanger tube at the same pressure, heat exchange efficiency is improved.

다시 말해, 제1열교환부(300)는 냉각수가 순환하는 냉각수유로(500)와 연결되는 연결수실커버(330), 튜브시트(350), 수실(310), 튜브시트(350) 및 수실커버(340)가 순차적으로 결합되어 형성되고, 이때 튜브시트(350)에는 수실(310)을 관통하는 전열관부(320)가 형성되어 냉각수가 저압냉각부(L,100) 및 고압냉각부(H,200)와 순차적으로 열교환되도록 한다.In other words, the first heat exchange unit 300 includes a connecting water chamber cover 330 connected to the cooling water passage 500 through which cooling water circulates, a tube sheet 350, a water chamber 310, a tube sheet 350, and a water chamber cover ( 340) is formed by sequentially combining, and at this time, the tube sheet 350 is formed with a heat transfer tube portion 320 penetrating the water chamber 310, so that the cooling water is formed in the low-pressure cooling portion (L, 100) and the high-pressure cooling portion (H, 200). ) and sequential heat exchange.

구체적으로 냉각수와 순환매체의 흐름을 살펴보면, 냉각수는 냉각수공급유로(510), 제1연결공간(331)의 하측, 제1전열관부(321), 수실커버(340), 제1전열관부(321), 제1연결공간(331)의 상측, 연통공간(333), 제2연결공간(332)의 하측, 제2전열관부(322), 수실커버(340), 제2전열관부(322), 제2연결공간(332)의 상측 및 냉각수배출유로(520)를 순차적으로 이동하고, 저압냉각부(L,100)를 순환하는 순환매체는 제1순환유로(130)를 통해 제1열교환공간(3111)을 관통하고, 고압냉각부(H,200)를 순환하는 순환매체는 제2순환유로(230)를 통해 제2열교환공간(3112)을 관통하여 냉각수와 이중으로 열교환된다.Specifically, looking at the flow of the cooling water and the circulating medium, the cooling water flows through the cooling water supply passage 510, the lower side of the first connection space 331, the first heat transfer tube unit 321, the water chamber cover 340, and the first heat transfer tube unit 321. ), the upper side of the first connection space 331, the communication space 333, the lower side of the second connection space 332, the second heat transfer pipe part 322, the water chamber cover 340, the second heat transfer pipe part 322, The circulating medium sequentially moves through the upper side of the second connection space 332 and the cooling water discharge passage 520 and circulates through the low-pressure cooling unit L 100 through the first circulation passage 130 in the first heat exchange space ( 3111) and circulates in the high-pressure cooling unit (H, 200), the circulating medium passes through the second heat exchange space 3112 through the second circulation passage 230 and undergoes double heat exchange with the cooling water.

제2열교환부(300)는 제1열교환부(300)와 동일한 구조를 가지나, 부하측(30)에서 유입되는 승온된 냉수가 고압냉각부(H,200) 및 저압냉각부(L,100)와 순차적으로 열교환될 수 있도록, 냉수공급유로(610), 제1연결공간(331)의 하측, 제1전열관부(321), 수실커버(340), 제1전열관부(321), 제1연결공간(331)의 상측, 연통공간(333), 제2연결공간(332)의 하측, 제2전열관부(322), 수실커버(340), 제2전열관부(322), 제2연결공간(332)의 상측 및 냉수배출유로(620)를 순차적으로 이동된다.The second heat exchange unit 300 has the same structure as the first heat exchange unit 300, but the heated cold water introduced from the load side 30 is connected to the high-pressure cooling unit H200 and the low-pressure cooling unit L100. To enable sequential heat exchange, the cold water supply passage 610, the lower side of the first connection space 331, the first heat transfer tube unit 321, the water chamber cover 340, the first heat transfer tube unit 321, and the first connection space Upper side of 331, communication space 333, lower side of second connection space 332, second heat transfer pipe part 322, water chamber cover 340, second heat transfer pipe part 322, second connection space 332 ) and the cold water discharge passage 620 are sequentially moved.

따라서 본 발명의 대온도차 냉동기(10)는 저압냉각부(L,100)와 고압냉각부(H,200)를 구비하여 냉각수 및 냉수를 이중으로 열교환시켜 부하측(30)으로 배출되는 냉수의 온도를 보다 낮춰 냉수의 양을 감소시키고 필요 동력을 감소시켜 에너지 효율을 향상시키는 동시에 저압냉각부(L,100) 및 고압냉각부(H,200)에 동시에 연결되는 제1,2열교환부(300)를 구비하여 대온도차 냉동기(10) 설치 시 필요 구성을 최소화하고, 냉각수 및 냉수가 순환하는 거리를 감소시켜 보다 간소화된 대온도차 냉동기(10)를 제공한다.Therefore, the large temperature difference refrigerator 10 of the present invention includes a low-pressure cooling unit L, 100 and a high-pressure cooling unit H, 200 to perform double heat exchange between the cooling water and the chilled water to reduce the temperature of the cold water discharged to the load side 30. The first and second heat exchange units 300 simultaneously connected to the low pressure cooling unit (L, 100) and the high pressure cooling unit (H, 200) improve energy efficiency by reducing the amount of cold water and reducing required power. A more simplified large temperature difference refrigerator 10 is provided by minimizing the required configuration when installing the large temperature difference refrigerator 10 and reducing the distance in which cooling water and cold water circulate.

이에 따라 본 발명은 궁극적으로 대온도차 냉동기(10)의 설치 공간 및 설치 비용을 감소시키고 더 나아가 유지 보수 또한 용이하게 하여 사용자의 편의를 현저히 향상시키는 효과를 갖는다.Accordingly, the present invention ultimately reduces the installation space and installation cost of the large temperature difference refrigerator 10, and furthermore, it also has an effect of facilitating maintenance and significantly improving user convenience.

또한 제1실시 예와 같이 전열관부(320)와 나란하게 수실(310)을 구획하여 제1,2열교환공간(3111,3112)을 형성하는 경우에는 제1,2열교환부(300)의 크기를 최소화하고, 그에 필요한 유로의 길이 또한 감소시킬 수 있어 대온도차 냉동기(10)의 소형화를 실현시키는 효과를 갖는다.In addition, in the case of forming the first and second heat exchange spaces 3111 and 3112 by partitioning the water chamber 310 parallel to the heat transfer tube unit 320 as in the first embodiment, the size of the first and second heat exchange units 300 can be reduced. It has the effect of realizing the miniaturization of the large temperature difference refrigerator 10 because it can be minimized and the length of the passage required therefor can also be reduced.

냉각수유로(500)는 냉각탑(40)과 제1열교환부(300)를 냉각수가 순환할 수 있도록, 냉각수가 제1열교환부(300)로 공급되는 냉각수공급유로(510)와 제1열교환부(300)에서 냉각수가 냉각탑(40)으로 배출되는 냉각수배출유로(520)로 형성된다.The cooling water passage 500 includes a cooling water supply passage 510 through which cooling water is supplied to the first heat exchange section 300 and a first heat exchange section ( 300) is formed as a cooling water discharge passage 520 through which cooling water is discharged to the cooling tower 40.

냉수유로(600)는 부하측(30)과 제2열교환부(300)를 냉수가 순환할 수 있도록, 냉수가 제2열교환부(300)로 공급되는 냉수공급유로(610)와 제2열교환부(300)에서 냉수가 부하측(30)으로 배출되는 냉수배출유로(620)로 형성된다.The cold water passage 600 includes a cold water supply passage 610 through which cold water is supplied to the second heat exchange section 300 and a second heat exchange section ( 300) is formed as a cold water discharge passage 620 through which cold water is discharged to the load side 30.

이때 본 발명의 대온도차 냉동기(10)는 냉각수유로(500)와 제1열교환부(300)가 연결되고, 냉수유로(600)와 제2열교환부(300)가 연결됨에 따라 냉각수 또는 냉수가 저압냉각부(L,100) 및 고압냉각부(H,200)를 모두 순환하여 이중 열교환이 가능하므로 유로의 길이를 최소화하여 초기 설치 비용 및 유지 관리 비용을 감소시킨다.At this time, in the large temperature difference refrigerator 10 of the present invention, the cooling water passage 500 and the first heat exchange part 300 are connected, and the cold water passage 600 and the second heat exchange part 300 are connected, so that the cooling water or the cold water has a low pressure. Both the cooling unit (L, 100) and the high-pressure cooling unit (H, 200) are circulated to perform double heat exchange, thereby minimizing the length of the flow path to reduce initial installation and maintenance costs.

제2실시 예의 제1,2열교환부(2300) 또한 그 구조가 동일하므로, 중복 설명을 피하기 위하여 제1열교환부(2300)를 통해 각 구조를 설명하고, 제2열교환부(2300)는 차이점에 대해서만 설명하도록 한다.Since the first and second heat exchange units 2300 of the second embodiment also have the same structure, each structure will be described through the first heat exchange unit 2300 in order to avoid redundant description, and the second heat exchange unit 2300 will be different depending on the difference. Let me explain only.

제2실시 예의 제1열교환부(2300)는 순환매체와 냉각수가 열교환되는 수실(2310)과, 수실(2310) 내부에 설치되어 냉각수가 관통하는 전열관부(2320)와, 제1,2열교환공간(23111,23112)을 연통시키는 연결수실커버(2330)와, 냉각수유로(500)와 연결되는 수실커버(2340), 전열관부(2320)를 형성하는 복수의 전열관을 일정 간격으로 고정시키는 튜브시트(2350)로 형성된다.The first heat exchange unit 2300 of the second embodiment includes a water chamber 2310 in which the circulating medium and the cooling water exchange heat, a heat exchanger tube 2320 installed inside the water chamber 2310 and passing the cooling water, and first and second heat exchange spaces. A tube sheet for fixing the connecting water chamber cover 2330 communicating 23111 and 23112, the water chamber cover 2340 connected to the cooling water passage 500, and the plurality of heat transfer tubes forming the heat transfer tube unit 2320 at regular intervals ( 2350) is formed.

이때 연결수실커버(2330)는 수실(2310)의 사이에 형성되어 저압냉각부(L,100)를 순환하는 순환매체 관통하는 제1열교환공간(23111)과 고압냉각부(H,200)를 순환하는 순환매체 관통하는 제2열교환공간(23112)은 전열관부(2320)를 가로지르는 방향으로 구분되어 형성된다.At this time, the connection water chamber cover 2330 is formed between the water chamber 2310 and circulates the first heat exchange space 23111 passing through the circulating medium circulating in the low-pressure cooling unit (L, 100) and the high-pressure cooling unit (H, 200). The second heat exchange space 23112 through which the circulating medium passes is formed by being divided in a direction crossing the heat transfer tube unit 2320.

따라서 제2실시 예의 제1열교환부(2300)는 제1실시 예의 제1열교환부(300)와 달리 제1,2열교환공간(23111,23112)이 구획되는 동시에 연결수실커버(2330)에 의해 별도의 공간으로 형성되어 저압냉각부(L,100)를 순환하는 순환매체와 고압냉각부(H,200)를 순환하는 순환매체 사이에 발생되는 열교환을 차단하여 냉각수와 순환매체 사이의 열교환 효율을 보다 향상시키는 효과를 갖는다.Therefore, in the first heat exchange unit 2300 of the second embodiment, unlike the first heat exchange unit 300 of the first embodiment, the first and second heat exchange spaces 23111 and 23112 are partitioned and separated by the connection water chamber cover 2330. The heat exchange between the circulating medium circulating in the low-pressure cooling unit (L, 100) and the circulating medium circulating in the high-pressure cooling unit (H, 200) is blocked to increase the heat exchange efficiency between the cooling water and the circulating medium. have an enhancing effect.

전열관부(2320)는 제1열교환공간(23111)에 배치되는 제1전열관부(2321)와 제2열교환부(2300)공간에 배치되는 제2전열관부(2322)로 형성되어 냉각수가 저압냉각부(L,100) 및 고압냉각부(H,200)와 순차적으로 열교환되도록 한다.The heat transfer tube unit 2320 is formed of a first heat transfer tube unit 2321 disposed in the first heat exchange space 23111 and a second heat transfer tube unit 2322 disposed in the second heat exchange unit 2300 space, so that the cooling water is a low-pressure cooling unit. (L, 100) and the high-pressure cooling unit (H, 200) to sequentially exchange heat.

연결수실커버(2330)는 수실(2310) 사이에 형성되어 제1,2열교환공간(23111,23112)을 구분하고, 제1전열관부(2321)와 제1전열관부(2321) 사이를 연통시키는 제1연통공간(2333)과, 제1전열관부(2321)와 제2전열관부(2322) 사이를 연통시키는 제2연통공간(2334)과, 제2전열관부(2322)와 제2전열관부(2322) 사이를 연통시키는 제3연통공간(2335)으로 형성되어 냉각수가 순환매체와 제1,2열교환공간(23111,23112)에서 반복하여 열교환되도록 하는 동시에 제1열교환공간(23111)과 제2열교환공간(23112)을 순차적으로 순환하며 열교환되도록 하여 순환매체와 냉각수의 열교환 효율 향상 효과를 증대시킨다.The connecting water chamber cover 2330 is formed between the water chambers 2310 to divide the first and second heat exchange spaces 23111 and 23112, and to communicate the first and second heat exchanger tubes 2321 with each other. The first communication space 2333, the second communication space 2334 that communicates between the first heat transfer tube portion 2321 and the second heat transfer tube portion 2322, and the second heat transfer tube portion 2322 and the second heat transfer tube portion 2322 ) is formed as a third communication space 2335 communicating between them, so that the cooling water is repeatedly heat-exchanged with the circulating medium in the first and second heat exchange spaces 23111 and 23112, and at the same time, the first heat exchange space 23111 and the second heat exchange space 23112 is sequentially circulated and heat exchanged to increase the heat exchange efficiency improvement effect between the circulating medium and the cooling water.

이때 연결수실커버(2330)는 제2연통공간(2334)이 왕곡 형성될 수 있도록 구획되어 형성되고, 구획되어 형성되는 제2연통공간(2334)에 의해 서징(surging) 현상 등이 발생되는 경우에도 진동 등의 일부 상쇄시키는 동시에 각 전열관에 냉각수가 동일한 압력으로 공급될 수 있도록 하여 냉각수가 안정적으로 순환되도록 하여 보다 안정적인 냉방을 제공하고, 열교환 효율 향상 효과를 극대화한다.At this time, the connection water chamber cover 2330 is partitioned and formed so that the second communication space 2334 can be formed evenly, even when a surging phenomenon occurs due to the partitioned and formed second communication space 2334. While partially canceling vibration, etc., cooling water is supplied to each heat pipe at the same pressure so that cooling water is stably circulated to provide more stable cooling and maximize the effect of improving heat exchange efficiency.

수실커버(2340)는 수실(2310)의 양 측에 각각 설치되고, 냉각수유로(500)와 연통되는 제4연통공간(2341)과, 전열관부(2320)와 연통되는 제5연통공간(2342) 형성되어 냉각수가 복수의 전열관부(2320)를 연속하여 순환하도록 유로를 제공한다.The water chamber cover 2340 is installed on both sides of the water chamber 2310, and includes a fourth communication space 2341 communicating with the cooling water flow path 500 and a fifth communication space 2342 communicating with the heat transfer tube unit 2320. formed to provide a flow path so that the cooling water continuously circulates through the plurality of heat transfer pipe units 2320.

다시 말해 제1열교환부(2300)는 냉각수공급유로(510)와 연결되는 수실커버(2340), 튜브시트(2350), 수실(2310), 튜브시트(2350), 연결수실커버(2330), 튜브시트(2350), 수실(2310), 튜브시트(2350) 및 냉각수배출유로(520)와 연결되는 수실커버(2340)가 순차적으로 결합되어 형성되고, 이때 튜브시트(2350)에는 각 수실(2310)을 관통하는 전열관부(2320)가 형성되어 냉각수가 저압냉각부(L,100) 및 고압냉각수와 순차적으로 열교환되도록 한다.In other words, the first heat exchange unit 2300 includes a water chamber cover 2340 connected to the cooling water supply passage 510, a tube sheet 2350, a water chamber 2310, a tube sheet 2350, a connecting water chamber cover 2330, and a tube. A seat 2350, a water chamber 2310, a tube sheet 2350, and a water chamber cover 2340 connected to the cooling water discharge passage 520 are formed by sequentially combining each water chamber 2310 in the tube sheet 2350. A heat transfer pipe portion 2320 passing through is formed so that the cooling water sequentially exchanges heat with the low-pressure cooling portion L100 and the high-pressure cooling water.

구체적으로 냉각수와 순환매체의 흐름을 살펴보면, 냉각수는 냉각수공급유로(510), 제4연통공간(2341), 제1전열관부(2321), 제2연통공간(2334), 제1전열관부(2321), 제5연통공간(2342), 제1전열관부(2321), 제2연통공간(2334), 제2전열관부(2322), 제5연통공간(2342), 제2전열관부(2322), 제3연통공간(2335), 제2전열관부(2322), 제4연통공간(2341) 및 냉각수배출유로(520)를 순차적으로 이동하고, 저압냉각부(L,100)를 순환하는 순환매체는 제1순환유로(130)를 통해 제1열교환공간(23111)을 관통하고, 고압냉각부(H,200)를 순환하는 순환매체는 제2순환유로(230)를 통해 제2열교환공간(3112)을 관통하여 냉각수와 이중으로 열교환된다.Specifically, looking at the flow of the cooling water and the circulating medium, the cooling water flows through the cooling water supply passage 510, the fourth communication space 2341, the first heat transfer pipe part 2321, the second communication space 2334, and the first heat transfer pipe part 2321. ), the fifth communication space 2342, the first heat transfer pipe part 2321, the second communication space 2334, the second heat transfer pipe part 2322, the fifth communication space 2342, the second heat transfer pipe part 2322, The circulating medium that sequentially moves through the third communication space 2335, the second heat transfer pipe part 2322, the fourth communication space 2341, and the cooling water discharge passage 520 and circulates through the low pressure cooling part L100 is The circulating medium passing through the first heat exchange space 23111 through the first circulation passage 130 and circulating in the high-pressure cooling unit H 200 enters the second heat exchange space 3112 through the second circulation passage 230. It passes through and exchanges double heat with the cooling water.

제2열교환부(2300)는 제1열교환부(2300)와 동일한 구조를 가지나, 부하측(30)에서 유입되는 승온된 냉수가 고압냉각부(H,200) 및 저압냉각부(L,100)와 순차적으로 열교환될 수 있도록, 냉수공급유로(610), 제4연통공간(2341), 제2전열관부(2322), 제2연통공간(2334), 제2전열관부(2322), 제5연통공간(2342), 제2전열관부(2322), 제2연통공간(2334), 제1전열관부(2321), 제5연통공간(2342), 제1전열관부(2321), 제3연통공간(2335), 제1전열관부(2321), 제4연통공간(2341) 및 냉수배출유로(620)를 따라 냉수가 순차적으로 이동된다.The second heat exchange unit 2300 has the same structure as the first heat exchange unit 2300, but the heated cold water introduced from the load side 30 is connected to the high-pressure cooling unit H200 and the low-pressure cooling unit L100. To sequentially exchange heat, the cold water supply passage 610, the fourth communication space 2341, the second heat transfer tube part 2322, the second communication space 2334, the second heat transfer tube part 2322, and the fifth communication space (2342), second heat transfer pipe part (2322), second communication space (2334), first heat transfer pipe part (2321), fifth communication space (2342), first heat transfer pipe part (2321), third communication space (2335) ), the first heat transfer tube unit 2321, the fourth communication space 2341, and the cold water discharge passage 620, the cold water is sequentially moved.

따라서 본 발명의 제2실시 예의 제1,2열교환부(2300)는 연결수실커버(2330)에 의해 분리되어 형성되어 냉각수 또는 냉수가 제1,2전열관부(2321,2322)를 반복하여 관통하도록 하는 동시에 제1전열관부(2321)와 제2전열관부(2322)를 연속하여 이동하도록 하여 순환매체와 냉각수 또는 냉수의 열교환 효율을 현저하게 향상시키는 효과를 갖는다.Therefore, the first and second heat exchange units 2300 according to the second embodiment of the present invention are formed by being separated by the connecting water chamber cover 2330 so that cooling water or cold water repeatedly passes through the first and second heat exchanger tube units 2321 and 2322. At the same time, by continuously moving the first heat transfer tube 2321 and the second heat transfer tube 2322, the efficiency of heat exchange between the circulating medium and cooling water or cold water is remarkably improved.

이에 따라 본 발명의 대온도차 냉동기(10)는 궁극적으로 동일한 냉동부하 제공 시 필요 동력을 최소화할 수 있으며, 순환매체 사이의 열교환을 방지하여 순환매체와 냉각수 또는 냉수의 열교환시간을 충분히 확보하여 궁극적으로는 보다 향상된 대온도차 냉동기(10)의 내구성 및 효율을 제공한다.Accordingly, the large temperature difference chiller 10 of the present invention can ultimately minimize the required power when providing the same refrigerating load, and prevent heat exchange between the circulating medium to sufficiently secure the heat exchange time between the circulating medium and the cooling water or the cold water, ultimately Provides more improved durability and efficiency of the large temperature difference refrigerator (10).

이상에서 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경 가능한 것이다.Although preferred embodiments of the present invention have been described above by way of example, the scope of the present invention is not limited only to these specific embodiments, and can be appropriately changed within the scope described in the claims.

10,20 대온도차 냉동기
30 부하측 40 냉각탑
100 저압냉각부(L) 110 제1압축기
120 제1팽창기 130 제1순환유로
200 고압냉각부(H) 210 제2압축기
220 제2팽창밸브 230 제2순환유로
300,2300 제1,2열교환부 310,2310 수실
311 격벽 3111,23111 제1열교환공간
3112,23112 제2열교환공간
320,2320 전열관부 321,2321 제1전열관부
322,2322 제2전열관부
330,2330 연결수실커버 331 제1연결공간
332 제2연결공간 333 연통공간
3331 연통홀 334 분리벽
2333 제1연통공간 2334 제2연통공간
2335 제3연통공간
340,2340 수실커버 2341 제4연통공간
2342 제5연통공간
350,2350 튜브시트
500 냉각수유로 510 냉각수공급유로
520 냉각수배출유로
600 냉수유로 610 냉수공급유로
620 냉수배출유로
10,20 large temperature difference freezer
30 load side 40 cooling tower
100 Low pressure cooling unit (L) 110 1st compressor
120 first expander 130 first circulation passage
200 High pressure cooling unit (H) 210 2nd compressor
220 second expansion valve 230 second circulation passage
300,2300 1st, 2nd heat exchange part 310,2310 water chamber
311 bulkhead 3111, 23111 first heat exchange space
3112,23112 2nd heat exchange space
320,2320 Heat transfer tube part 321,2321 1st heat transfer tube part
322,2322 2nd heat pipe part
330,2330 Connecting room cover 331 1st connecting space
332 2nd connection space 333 communication space
3331 through hole 334 dividing wall
2333 1st communication space 2334 2nd communication space
2335 third communication space
340,2340 water chamber cover 2341 4th communication space
2342 5th communication space
350,2350 tubesheet
500 Cooling water passage 510 Cooling water supply passage
520 cooling water discharge path
600 cold water passage 610 cold water supply passage
620 cold water discharge path

Claims (7)

제1압축기와, 제1팽창밸브를 구비하는 저압냉각부;
제2압축기와, 제2팽창밸브를 구비하는 고압냉각부;
저온의 냉각수와 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체를 열교환시켜 승온된 냉각수를 배출시키는 제1열교환부;
부하측으로부터 승온된 냉수와 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체를 열교환시켜 저온의 냉수를 배출시키는 제2열교환부;
냉각수가 상기 저압냉각부 및 상기 고압냉각부와 순차적으로 열교환되도록 상기 제1열교환부를 순환하는 냉각수유로; 및
냉수가 상기 고압냉각부 및 상기 저압냉각부와 순차적으로 열교환되도록 상기 제2열교환부를 순환하는 냉수유로;를 포함하고,
상기 제1,2열교환부는
상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체가 각각 관통되도록 구획된 제1,2열교환공간이 형성된 수실과, 상기 냉각수유로 또는 상기 냉수유로와 연결되고 상기 제1,2열교환공간에 형성된 전열관부와, 상기 제1열교환공간에 배치된 제1전열관부와 상기 제2열교환공간에 형성된 제2전열관부를 연통시키는 연결수실커버로 형성되어, 냉각수 또는 냉수가 상기 저압냉각부와 상기 고압냉각부를 순환하는 순환매체와 연속하여 열교환되는 것을 특징으로 하는 대온도차 냉동기.
a low-pressure cooling unit having a first compressor and a first expansion valve;
a high-pressure cooling unit having a second compressor and a second expansion valve;
a first heat exchange unit for exchanging heat between the low-temperature cooling water and the circulating medium circulating between the low-pressure cooling unit and the high-pressure cooling unit to discharge elevated cooling water;
a second heat exchange unit for discharging low-temperature cold water by exchanging heat between the cold water heated from the load side and the circulating medium circulating between the low-pressure cooling unit and the high-pressure cooling unit;
a cooling water passage through which the cooling water is circulated through the first heat exchange unit to sequentially exchange heat with the low-pressure cooling unit and the high-pressure cooling unit; and
A cold water flow path circulating through the second heat exchange unit so that the cold water is sequentially heat-exchanged with the high-pressure cooling unit and the low-pressure cooling unit;
The first and second heat exchange units
A water chamber having first and second heat exchange spaces partitioned so that the low-pressure cooling unit and the circulating medium circulating in the high-pressure cooling unit pass through, respectively, and a heat transfer pipe connected to the cooling water flow path or the cold water flow path and formed in the first and second heat exchange spaces. and a connecting water chamber cover that communicates the first heat exchanger tube disposed in the first heat exchange space with the second heat exchanger tube formed in the second heat exchange space, so that cooling water or cold water circulates through the low-pressure cooling unit and the high-pressure cooling unit. A large temperature difference refrigerator, characterized in that the heat is continuously exchanged with the circulating medium.
제1항에 있어서,
상기 수실은
상기 전열관부와 나란하게 구획되어 상기 제1,2열교환공간이 상기 전열관부와 나란하게 형성되고,
상기 연결수실커버는
상기 제1전열관부와 연결되는 제1연결공간과, 상기 제2전열관부와 연결되는 제2연결공간과, 연통홀을 통해 상기 제1,2연결공간을 연통시키는 연통공간으로 형성되는 것을 특징으로 하는 대온도차 냉동기.
According to claim 1,
The number room
It is partitioned parallel to the heat exchanger tube unit so that the first and second heat exchange spaces are formed parallel to the heat transfer tube unit,
The connection water chamber cover
Characterized in that it is formed of a first connection space connected to the first heat transfer pipe part, a second connection space connected to the second heat transfer pipe part, and a communication space communicating the first and second connection spaces through a communication hole. large temperature difference freezer.
제2항에 있어서,
상기 제1,2열교환부는
상기 수실의 일 측에는 상기 연결수실커버가 형성되고, 타 측에는 상기 제1전열관부 사이를 연결시키거나 상기 제2전열관부 사이를 연결시키는 수실커버가 형성되는 것을 특징으로 하는 대온도차 냉동기.
According to claim 2,
The first and second heat exchange units
The connection water chamber cover is formed on one side of the water chamber, and a water chamber cover connecting the first heat transfer tube parts or connecting the second heat transfer tube parts is formed on the other side.
제1항에 있어서,
상기 연결수실커버는
상기 수실 사이에 형성되고, 상기 제1전열관부와 상기 제1전열관부를 연통시키는 제1연통공간과, 상기 제1전열관부와 상기 제2전열관부를 연통시키는 제2연통공간과, 상기 제2전열관부와 상기 제2전열관부를 연결시키는 제3연통공간으로 형성되는 것을 특징으로 하는 대온도차 냉동기.
According to claim 1,
The connection water chamber cover
A first communication space formed between the water chambers and communicating the first heat transfer tube portion with the first heat transfer tube portion; a second communication space communicating the first heat transfer tube portion and the second heat exchanger tube portion; and the second heat transfer tube portion. and a third communication space connecting the second heat exchanger tube.
제4항에 있어서,
상기 제1,2열교환부는
상기 제1연결공간과 상기 제2연결공간 사이에 상기 연결수실커버가 형성되고, 상기 수실의 양 측에는 상기 제1전열관부와 상기 제1전열관부 또는 상기 제2전열관부와 상기 제2전열관부를 연통시키는 제4연통공간과, 상기 제1전열관부 또는 상기 2전열관부와 상기 냉각수유로 또는 상기 냉수유로를 연통시키는 제5연통공간으로 형성되는 수실커버가 형성되는 것을 특징으로 하는 대온도차 냉동기.
According to claim 4,
The first and second heat exchange units
The connection water chamber cover is formed between the first connection space and the second connection space, and the first heat transfer tube part communicates with the first heat transfer tube part or the second heat exchanger part and the second heat transfer pipe part communicate with each other on both sides of the water chamber. A water chamber cover formed of a fourth communication space for communicating with the first heat transfer pipe part or the second heat transfer pipe part and the cooling water flow path or the cold water flow path is formed.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 제1압축기와 상기 제2압축기는 동일한 압축비를 갖는 것을 특징으로 하는 대온도차 냉동기.
According to any one of claims 1 to 5,
The large temperature difference refrigerator, characterized in that the first compressor and the second compressor have the same compression ratio.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 저압냉각부와 상기 고압냉각부는 동일한 용량비를 갖는 것을 특징으로 하는 대온도차 냉동기.
According to any one of claims 1 to 6,
The low-pressure cooling unit and the high-pressure cooling unit have the same capacity ratio.
KR1020210086465A 2021-07-01 2021-07-01 Large temperature difference chiller KR20230005577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210086465A KR20230005577A (en) 2021-07-01 2021-07-01 Large temperature difference chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210086465A KR20230005577A (en) 2021-07-01 2021-07-01 Large temperature difference chiller

Publications (1)

Publication Number Publication Date
KR20230005577A true KR20230005577A (en) 2023-01-10

Family

ID=84893879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210086465A KR20230005577A (en) 2021-07-01 2021-07-01 Large temperature difference chiller

Country Status (1)

Country Link
KR (1) KR20230005577A (en)

Similar Documents

Publication Publication Date Title
KR100823653B1 (en) Air conditioning system for communication equipment
CN104807087A (en) Air conditioner
CN109028413B (en) Combined multisource integrated multi-connected unit and control method thereof
KR102236126B1 (en) Air-cooled chiller system for indoor cooling of data center using liquid pump
CN101086352A (en) Air conditioner
CN110595013A (en) Air conditioner refrigeration method and system for data center and data center
JP5669348B2 (en) Electronic communication equipment room cooling system
CN113483412B (en) Multi-mode water-fluorine multi-split air conditioner system
US5347831A (en) Refrigeration system consisting of a plurality of refrigerating cycles
KR102236125B1 (en) Local cooling system in data center using latent heat of evaporation of refrigerant
CN104697247A (en) Shell-and-tube multifunctional heat exchanger
CN110173779B (en) Combined type large-temperature-difference cooling system and control method thereof
KR20230005577A (en) Large temperature difference chiller
KR20190087200A (en) Module type hybrid outdoor unit for air conditioning apparatus
CN212987691U (en) Distributed multi-connected refrigeration house refrigerating system
CN110035644B (en) Centralized cooling type heat pipe air conditioner multi-split system
CN210663426U (en) Low-temperature grain surface temperature control unit and granary
CN211204524U (en) Secondary refrigerant refrigerating system and modular refrigerator
CN110285603B (en) Heat exchanger and refrigeration system using same
CN113133289A (en) Terminal and computer lab air conditioner of indoor air conditioner
KR100225628B1 (en) Refrigerant distribution structure of multi type airconditioner
CN210070112U (en) Combined type large-temperature-difference cooling system
CN111397233A (en) Distributed multi-connected refrigeration house refrigerating system
CN112867373A (en) Water-cooling heat pipe double-module machine room air conditioner multi-connected unit
CN112146211A (en) Water-cooling three-mode machine room air conditioner

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application