KR20230003785A - Fluidizing filler composition using circulating resources - Google Patents

Fluidizing filler composition using circulating resources Download PDF

Info

Publication number
KR20230003785A
KR20230003785A KR1020210085298A KR20210085298A KR20230003785A KR 20230003785 A KR20230003785 A KR 20230003785A KR 1020210085298 A KR1020210085298 A KR 1020210085298A KR 20210085298 A KR20210085298 A KR 20210085298A KR 20230003785 A KR20230003785 A KR 20230003785A
Authority
KR
South Korea
Prior art keywords
weight
parts
filler composition
binder
filler
Prior art date
Application number
KR1020210085298A
Other languages
Korean (ko)
Inventor
문경주
윤성진
서세관
조대성
Original Assignee
주식회사 대웅
주식회사 지안산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대웅, 주식회사 지안산업 filed Critical 주식회사 대웅
Priority to KR1020210085298A priority Critical patent/KR20230003785A/en
Publication of KR20230003785A publication Critical patent/KR20230003785A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • C04B14/185Perlite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/202Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/204Mica; Vermiculite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/42Pore formers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The present invention relates to a fluidizing filler composition using circulating resources. The fluidizing filler composition of the present invention is a lightweight, low strength and non-contract fluidizing filler composition comprising, as a binder, 15-1,000 parts by weight of blast furnace slag micro powder and 15-1,000 parts by weight of one kind of cement, based on 100 parts by weight of steelmaking process dust containing content of 30-50 wt% of Na_2O and 30-50 wt% of SO_3 generated during desulfurizing processes in a steel mill and as a lightweight aggregate, 5-5,000 parts by weight of any one or in a mixture of waste insulation materials selected from expanded perlite or expanded vermiculite and crushed to have a particle size of 10 mm or less. The binder and aggregate are replaced and used as circulating resources and serve as self-compacting and high fluidized filler, and quick hardening is possible after filling the same into an empty space as a back filler of a structure and pipes and filler for grounds, closed stone quarry, closed mine, and closed pipes, and weight reduction, re-excavation and volume stabilization are possible.

Description

순환자원을 이용한 유동화 채움재 조성물{FLUIDIZING FILLER COMPOSITION USING CIRCULATING RESOURCES}Fluidizing filler composition using circulating resources {FLUIDIZING FILLER COMPOSITION USING CIRCULATING RESOURCES}

본 발명은 순환자원을 이용한 유동화 채움재 조성물에 관한 것으로서, 더욱 상세하게는 결합재로서 제철소 탈황 공정 중에 발생되는 Na2O 함량이 30∼50중량%, SO3 함량이 30∼50중량%인 제철 공정 분진 100중량부에 대하여, 고로슬래그 미분말 15∼1,000중량부 및 1종 시멘트 15∼1,000중량부를 포함하며, 경량골재로서 팽창진주암(Perlite) 또는 팽창질석에서 선택된 폐보온단열재를 입경 10mm 이하로 분쇄된 어느 하나 또는 혼합물 형태로 5∼5,000 중량부를 포함함으로써, 상기 결합재 및 골재가 순환자원으로 대체 이용되면서도 무다짐 고유동 채움재로 가능하고, 특히 경량 효과가 크게 발현되면서 빈 공간이 공동 현상없이 안정적으로 채워짐으로써, 구조물 및 관로 뒷채움재용, 지반, 폐석산, 폐광산 및 폐관 채움재용도로 유용한 유동화 채움재 조성물에 관한 것이다. The present invention relates to a fluidized filler composition using circulating resources, and more particularly, as a binder, steel-making process dust having a Na 2 O content of 30 to 50% by weight and a SO 3 content of 30 to 50% by weight generated during the desulfurization process of a steelworks. For 100 parts by weight, it contains 15 to 1,000 parts by weight of blast furnace slag fine powder and 15 to 1,000 parts by weight of type 1 cement, and as a lightweight aggregate, any waste thermal insulation material selected from expanded perlite or expanded vermiculite is crushed to a particle size of 10 mm or less. By including 5 to 5,000 parts by weight in one or a mixture form, the binder and aggregate can be used as a circulating resource as an alternative, but can be used as a non-compacting, high-flow filling material, in particular, while the light weight effect is greatly expressed, the empty space is stably filled without cavitation It relates to a fluidized filler composition useful for structures and pipeline backfills, ground, waste mines, abandoned mines and closed pipe fills.

최근, 철거가 어려운 노후된 지중 폐관의 파괴에 의한 지반 함몰을 방지하기 위하여 경량기포콘크리트 등을 채우는 공법이 많이 적용되고 있으나, 시멘트와 기포제를 다량 사용함에 따라 재료비와 시공비가 15∼25만원/㎥ 수준의 고가공법이며, 기포의 파포에 의한 2차 침하가 발생하고 내구성이 약해 수명이 짧은 문제점 발생하다. Recently, in order to prevent ground sinking due to the destruction of old underground closed pipes that are difficult to demolish, a method of filling lightweight foamed concrete has been widely applied. It is a high-level processing method, and secondary settlement occurs due to bubble bursting, and durability is weak, resulting in a short lifespan.

또한, 옹벽 축조 시 그 후위부에 성토재로 뒷채움을 수행하여 침하 및 붕괴를 방지하기 위하여, 연약 지반에 하중을 경감시켜 부동침하를 방지하며 토압을 경감시켜 측방유동을 방지할 수 있는 경량 성토재로서 발포성 폴리스티렌(일명 스치로폼) 알갱이를 시멘트 및 현장토와 혼합하여 타설하는 공법이 주로 사용되어 왔다. In addition, in order to prevent subsidence and collapse by backfilling the rear part of the retaining wall with embankment material during the construction of the retaining wall, it is a lightweight embankment material that can prevent lateral flow by reducing the earth pressure and reducing the load on the soft ground to prevent subsidence. A method of pouring by mixing polystyrene (aka styrofoam) granules with cement and field soil has been mainly used.

그러나 향후 발포성 폴리스티렌 알갱이에 의한 환경오염을 유발할 수 있는 문제점을 내포하고 있다.However, it has a problem that can cause environmental pollution by future expandable polystyrene grains.

따라서, 충진 성능이 우수하며 내구수명 및 환경안정성을 갖춘 원가절감형 경량-저강도-무수축 유동화채움재 개발이 필요하다. Therefore, it is necessary to develop a cost-saving lightweight-low-strength-non-shrinkage fluidized filling material with excellent filling performance and durability and environmental stability.

일반적으로 도시 내 송전관로, 가스관로, 상수도관로 등을 매설하기 위하여 굴착공사를 시행하는데, 공사에서 발생한 현장토는 사토 처리하고 양질의 모래를 구입하여 관로 부설 배후면을 되메움하는 방법으로 시공되고 있다. 그러나 이는 현장발생토의 사토장 운송 및 폐기비용과 양질의 모래 구입비용 등 시공비용이 높아지는 문제점이 있으며, 공사 시공품질 면에 있어서도 부설관로 배후면의 특성상 다짐을 하기가 곤란하며, 다짐을 하더라도 모래나 토사가 부설관로 배후면의 좁은 공간으로 충분히 침투되지 않아 시공 후 침하가 필연적으로 발생하는 등 많은 문제점이 있다. In general, excavation work is carried out to bury transmission pipelines, gas pipelines, water supply pipelines, etc. in cities. The site soil generated in the construction is treated with soil, and high-quality sand is purchased to backfill the back surface of the pipe laying. there is. However, this has problems in that the construction cost increases, such as the cost of transporting and discarding the site-generated soil to the sandy site and the cost of purchasing high-quality sand. There are many problems, such as the inevitability of settlement after construction, because it does not sufficiently penetrate into the narrow space on the rear surface of the laid pipe.

또한, 이러한 부적절한 다짐을 개선하기 위해 물다짐공법과 같은 방법을 이용하기도 하지만 굴착공사의 구배 등에 의해 물이 특정구간으로 흘러가는 등 시공 상의 많은 어려움이 있다. In addition, although a method such as a water compaction method is used to improve such inappropriate compaction, there are many difficulties in construction such as water flowing into a specific section due to a gradient of excavation work.

이러한 문제점을 해결하기 위해 현장토, 시멘트, 플라이애시, 물, 혼화제 등으로 구성된 저강도 고화토(CLSM: Controlled Low Strength Materials)를 활용하는 방안도 강구되기는 하나, 시공비가 많이 소용되는 경제적인 문제점과 양생기간이 길다는 단점이 있어 실제 시공에 활용되고 있지 않다. In order to solve these problems, a plan to utilize CLSM (Controlled Low Strength Materials) composed of field soil, cement, fly ash, water, admixture, etc. It has the disadvantage of long curing period, so it is not used in actual construction.

최근에는 이러한 기존의 되메움공법의 문제점을 개선하여 일반시멘트에 속경성 시멘트와 슬래그 미분말 등을 혼합한 속경성 고화재들이 제시되고 있다. Recently, by improving the problems of the existing backfilling method, fast-setting solidification materials in which general cement is mixed with fast-setting cement and slag fine powder have been proposed.

그 일례로, 특허문헌 1과 특허문헌 2에서는 일반시멘트와 슬래그 미분말에 칼슘 페로 알루미네이트(CFA: Calcium Ferro Aluminate) 또는 칼슘 설포 알루미네이트(CSA: Calcium Sulpho Aluminate)계 광물을 각각 15∼30 중량부와 25∼45 중량부를 혼합하는 기술을 제안한 바 있다. For example, in Patent Document 1 and Patent Document 2, 15 to 30 parts by weight of calcium ferro aluminate (CFA) or calcium sulfo aluminate (CSA)-based minerals are added to general cement and slag fine powder, respectively. and a technique of mixing 25 to 45 parts by weight has been proposed.

그러나 사용되는 칼슘 페로 알루미네이트(CFA: Calcium Ferro Aluminate) 또는 칼슘 설포 알루미네이트(CSA: Calcium Sulpho Aluminate)는 국내에서는 생산되지 않고 주로 중국과 일본에서 수입되고 있는 특수시멘트로서, 1톤당 가격이 약 70만원을 상회하여, 일반시멘트 가격의 약 10배에 달하는 엄청난 고가 제품이기 때문에 매우 많은 비용이 들어가는 비합리적인 방법이라 할 수 있다. However, Calcium Ferro Aluminate (CFA) or Calcium Sulpho Aluminate (CSA) is a special cement that is not produced in Korea but mainly imported from China and Japan. It is an extremely expensive product that exceeds 10,000 won and is about 10 times the price of general cement, so it is an irrational method that requires a lot of cost.

상기의 종래기술은 시멘트, 고로슬래그 미분말, CSA, CFA, 석회 등으로 혼합된 무기성 고화재와 흙을 수화 반응시키고 에트린가이트를 형성시켜 흙의 강도를 높이고 내구성을 향상시키려 의도하고 있으나, 천연 흙에는 유기물이 분해되어 형성한 유기산 등에 의하여 이러한 반응이 저해된다. The above prior art is intended to increase the strength and durability of the soil by hydrating the inorganic solidifying material and soil mixed with cement, blast furnace slag powder, CSA, CFA, lime, etc. and forming ettringite, but the natural This reaction is inhibited by organic acids formed by the decomposition of organic matter in soil.

따라서 소정의 강도 및 내구성을 갖기 위해서는 일정량 이상의 시멘트가 필요하나 시멘트는 강알칼리 물질로서 고화토의 알칼리도가 높아져 토양의 염기성화를 촉진시키는 나쁜 영향을 준다. Therefore, in order to have a predetermined strength and durability, more than a certain amount of cement is required, but cement is a strong alkali substance and has a bad effect of accelerating basicity of the soil by increasing the alkalinity of the solidified soil.

이에, 본 발명자들은 종래의 문제점을 개선하고자 노력한 결과, 결합재, 골재 및 물로 이루어지되, 상기 결합재 및 골재로서 제철소에서 발생되는 제철 공정 분진, 고로슬래그 미분말과 석유화학단지 배관 보온 단열재 교체 공사 현장에서 발생되는 폐보온단열재를 이용하여 무다짐 충전이 가능한 유동화 채움재 조성물을 제공하고, 상기 조성물을 구조물 및 관로 뒷채움재용, 지반, 폐석산, 폐광산 및 폐관 채움재용 등 대형의 빈 공간에 채워 넣은 후 경화시킨 경화체가 경량-저강도-무수축 성능을 가지는 물성을 확인함으로써, 본 발명을 완성하였다. Accordingly, the inventors of the present invention have made efforts to improve the conventional problems, and as a result, the binder, aggregate, and water are generated at the steelmaking process dust, blast furnace slag powder, and the replacement of the thermal insulation insulation material in the petrochemical complex piping, which are generated in steel mills as the binder and aggregate. Provides a fluidized filler composition capable of compaction-free filling using waste heat-insulating insulation materials, and hardened after filling the composition into large voids such as structures and pipeline backfills, ground, waste mines, abandoned mines and closed pipe fills The present invention was completed by confirming the physical properties of lightweight-low-strength-non-shrinkage performance.

대한민국특허 제10-0772637호 (2007.11.02 공고)Republic of Korea Patent No. 10-0772637 (2007.11.02 announcement) 대한민국특허 제10-0772638호 (2007.11.02 공고)Republic of Korea Patent No. 10-0772638 (2007.11.02 announcement)

본 발명은 순환자원을 이용한 유동화 채움재 조성물을 제공하는 것이다. The present invention is to provide a fluidized filler composition using circulating resources.

위와 같은 기술적 과제를 해결하기 위하여, 본 발명은 결합재로서 제철소 탈황 공정 중에 발생되는 Na2O 함량이 30∼50중량%, SO3 함량이 30∼50중량%인 제철 공정 분진 100중량부에 대하여, 고로슬래그 미분말 15∼1,000중량부 및 1종 시멘트 15∼1,000중량부를 포함하며, 경량골재로서 팽창진주암 또는 팽창질석에서 선택된 폐보온단열재를 입경 10mm 이하로 분쇄된 어느 하나 또는 둘 이상의 혼합물 5∼5,000 중량부를 포함한, 유동화 채움재 조성물을 제공한다. In order to solve the above technical problem, the present invention, as a binder, the Na 2 O content generated during the steelworks desulfurization process is 30 to 50 wt% and the SO 3 content is 30 to 50 wt% Regarding 100 parts by weight of dust in the steelmaking process, It contains 15 to 1,000 parts by weight of blast furnace slag fine powder and 15 to 1,000 parts by weight of type 1 cement, and 5 to 5,000 parts by weight of any one or a mixture of two or more pulverized waste thermal insulation materials selected from expanded perlite or expanded vermiculite as a lightweight aggregate to a particle size of 10 mm or less. It provides a fluidized filler composition, including a part.

상기에서 결합재에는 상기 제철 공정 분진 100중량부에 대하여, CaO 성분이 15중량% 이상인 팽창성 플라이애시 5∼500중량부가 더 포함될 수 있으며, 상기 플라이애시는 석탄, 고형연료, 유기성 슬러지 및 폐비닐로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 연료로 하여 배출된 것이다.In the above, the binder may further include 5 to 500 parts by weight of expandable fly ash having a CaO component of 15% by weight or more with respect to 100 parts by weight of the steelmaking process dust, and the fly ash is composed of coal, solid fuel, organic sludge and waste vinyl It is emitted by using any one or a mixture of two or more selected from the group as fuel.

또한, 상기에서 결합재에는 경량성을 향상시키기 위하여, 상기 제철 공정 분진 100중량부에 대하여 동물성 기포제, 식물성 기포제, 과산화 수소 및 알루미늄 분말 중 선택된 어느 하나 또는 둘 이상의 혼합물의 기포 형성제 0.1∼100중량부가 더 포함될 수 있다. In addition, in order to improve the light weight of the binder, 0.1 to 100 parts by weight of any one selected from animal foaming agents, vegetable foaming agents, hydrogen peroxide, and aluminum powder, or a foaming agent of a mixture of two or more, based on 100 parts by weight of the steelmaking process dust. More may be included.

본 발명의 유동화 채움재 조성물에 있어서, 경량골재는 폐보온단열재 분쇄 시 별도의 섬유 분리 과정 없이 배출되며, 절건밀도 0.15∼1.0g/cm3의 범위인 것을 사용한다.In the fluidized filler composition of the present invention, the lightweight aggregate is discharged without a separate fiber separation process when the waste thermal insulation material is pulverized, and the absolute dry density is in the range of 0.15 to 1.0 g/cm 3 is used.

본 발명의 유동화 채움재 조성물에 따르면, 무다짐 충전이 가능하고, 하중절감, 재굴착 및 체적 안정성 확보가 가능하도록 재령 28일 압축강도 0.3∼5MPa의 저강도, 단위용적중량 500∼1,500kg/m3의 경량성 및 블리딩율 5% 이하 성능이 발현된다.According to the fluidized filler composition of the present invention, it is possible to fill without compaction, and to enable load reduction, re - excavation, and volume stability. Light weight and performance of less than 5% bleeding rate are expressed.

따라서, 본 발명의 유동화 채움재 조성물은 빈 공간에 채워 넣은 후 급속한 경화가 가능하므로, 구조물 및 관로 뒷채움재용, 지반, 폐석산, 폐광산, 폐관 채움재용으로 유용하다.Therefore, since the fluidized filler composition of the present invention can be rapidly cured after being filled in empty spaces, it is useful for backfilling of structures and pipelines, ground, abandoned mines, abandoned mines, and closed pipes.

본 발명의 유동화 채움재 조성물에 포함되는 결합재 및 골재는 제철소에서 발생되는 제철 공정 분진, 고로슬래그 미분말과 석유화학단지 배관 보온 단열재 교체 공사 현장에서 발생되는 폐보온단열재를 사용하는 것으로서, 천연자원을 훼손하여 얻어야만 하는 시멘트 및 천연골재를 대체할 수 있다. Binders and aggregates included in the fluidized filler composition of the present invention use steelmaking process dust, blast furnace slag fine powder, and waste thermal insulation materials generated at the site of replacing thermal insulation insulation materials in petrochemical complexes generated in steel mills, and by damaging natural resources. It can replace cement and natural aggregates that must be obtained.

또한, 본 발명의 유동화 채움재 조성물은 현장에서 품질관리가 용이하도록 공장에서 미리 혼합하여 현장에서 물만 부어 사용할 수 있는 장점이 있다. In addition, the fluidized filler composition of the present invention has the advantage that it can be used by pouring only water in the field after mixing in advance at the factory so as to facilitate quality control at the site.

이하, 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail.

본 발명의 유동화 채움재 조성물은 결합재, 골재 및 물로 이루어지되, 결합재로서 제철소 탈황 공정 중에 발생되는 Na2O 함량이 30∼50중량%, SO3 함량이 30∼50중량%인 제철 공정 분진 100중량부에 대하여, 고로슬래그 미분말 15∼1,000중량부 및 1종 시멘트 15∼1,000중량부를 포함하며, 경량골재로서 팽창진주암 또는 팽창질석에서 선택된 폐보온단열재를 10mm 이하로 분쇄하여 조정된 어느 하나 또는 둘 이상의 혼합물 5∼5,000 중량부를 포함한 것으로, 순환자원을 이용한 경량-저강도-무수축 성능을 발현하는 유동화 채움재 조성물을 제공한다. The fluidized filler composition of the present invention is composed of a binder, an aggregate, and water, and 100 parts by weight of steelmaking process dust having a Na 2 O content of 30 to 50% by weight and a SO 3 content of 30 to 50% by weight generated during the steelworks desulfurization process as a binder. 15 to 1,000 parts by weight of blast furnace slag fine powder and 15 to 1,000 parts by weight of type 1 cement, and any one or a mixture of two or more adjusted by grinding waste thermal insulation materials selected from expanded perlite or expanded vermiculite as lightweight aggregates to 10 mm or less It contains 5 to 5,000 parts by weight, and provides a fluidized filler composition that expresses light-weight-low-strength-non-shrinkage performance using circulating resources.

이하, 본 발명의 순환자원을 이용한 유동화 채움재 조성물의 조성별 특징에 대하여 설명한다. Hereinafter, the characteristics of each composition of the fluidized filler composition using the circulating resource of the present invention will be described.

1) 결합재 1) binder

본 발명의 유동화 채움재 조성물에 있어서, 결합재는 제철소 탈황 공정 중에 발생되는 Na2O 함량이 30∼50중량%, SO3 함량이 30∼50중량%를 포함한 제철 공정 분진을 포함하는 것이다. In the fluidized filler composition of the present invention, the binder includes iron-making process dust including 30 to 50% by weight of Na 2 O content and 30 to 50% by weight of SO 3 content generated during the steelworks desulfurization process.

제철 공정 분진은 제철소에서 철광석을 고로에 투입하기 전에 소결광을 제조하게 되는데, 하기 반응식 1에 따라, 발생하는 가스 내 황산화물(SOx)을 포집하기 위하여 분말도가 높은 고분말의 중조(NaHCO3)를 투입하게 된다. 중조는 탈황 반응을 거쳐 최종적으로 주성분이 황산나트륨(Na2SO4)을 분진 형태로 배출된다. In the steelmaking process, sintered ore is produced before iron ore is put into the blast furnace at the steelworks . ) will be put in. Sodium bicarbonate undergoes a desulfurization reaction and finally, the main component is sodium sulfate (Na 2 SO 4 ), which is discharged in the form of dust.

반응식 1Scheme 1

Figure pat00001
Figure pat00001

상기 제철 공정 분진은 Fe, Ca 등의 유용성분 부족으로 인해 제철소내 공정 재활용이 불가능하며, 매립처리 외에는 적절한 처리방안이 없는 상황이다. The steelmaking process dust cannot be recycled in the steelworks due to the lack of useful components such as Fe and Ca, and there is no appropriate treatment method other than landfill treatment.

그러나 매립처리 역시 2018년도부터 시행된 자원순환기본법의 영향으로 처분부담금이 발생하고, 위탁매립처리비 역시 급격히 동반상승하고 있는 실정이므로, 제철 공정 분진의 매립량 저감을 위하여, 대체처리 방안이 필요한 상황이다. However, due to the influence of the Framework Act on Resource Circulation, which has been enforced since 2018, disposal charges are incurred for landfill treatment, and consigned landfill treatment costs are also rapidly increasing. .

그러나 상기 제철 공정 분진인 황산나트륨(Na2SO4)의 경우, 물과 반응 시 Na+ 및 SO4 2-로 용해되어 시멘트의 수화반응을 급격히 촉진시킬 수 있고 알칼리 및 황산염 복합자극을 유도하므로 잠재수경성 물질인 고로슬래그 미분말을 자극하여 수화반응을 초기에 급격히 촉진할 수 있다. However, in the case of sodium sulfate (Na 2 SO 4 ), which is the dust in the steelmaking process, when reacting with water, it dissolves into Na + and SO 4 2- , which can rapidly accelerate the hydration reaction of cement and induces a complex stimulation of alkali and sulfate, so it has latent hydraulic properties. By stimulating the blast furnace slag fine powder, which is a material, the hydration reaction can be rapidly promoted at an early stage.

또한, 물에 쉽게 용해되는 성질이 있고 고운 분말 형태로 발생하기 때문에 파(분)쇄와 같은 별도 가공 없이 바로 사용 가능한 장점이 있다. 따라서 제철 공정 중에 부산물로 발생하는 중조 탈황 분진은 시멘트의 수화 촉진 작용 및 고로 슬래그의 반응 자극제로서 활용할 수 있는 장점이 있다. In addition, since it is easily soluble in water and occurs in the form of a fine powder, it has the advantage of being immediately usable without additional processing such as crushing. Therefore, sodium bicarbonate desulfurization dust generated as a by-product during the steelmaking process has the advantage of being utilized as a hydration promoting action of cement and a reaction stimulator of blast furnace slag.

본 발명은 결합재로서, 상기 제철 공정 분진 100중량부에 대하여 CaO 성분이 15중량% 이상인 팽창성 플라이애시 5∼500중량부를 더 포함할 수 있다. The present invention, as a binder, may further include 5 to 500 parts by weight of expandable fly ash having a CaO component of 15% by weight or more based on 100 parts by weight of the steelmaking process dust.

상기 플라이애시는 석탄, 고형연료(SRF, BIO-SRF), 유기성 슬러지 및 폐비닐로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 연료로 하여 배출된 것을 사용한다. The fly ash is discharged using any one or a mixture of two or more selected from the group consisting of coal, solid fuel (SRF, BIO-SRF), organic sludge, and waste vinyl as fuel.

상기 플라이애시는 물과 반응 시 체적팽창과 더불어 채울 공간 내부에 존재하는 잉여수량 흡착 및 점성을 증가하는 역할을 수행하여 재료분리를 억제한다. When the fly ash reacts with water, it plays a role of adsorbing an excess amount of water present in the space to be filled and increasing viscosity, along with volume expansion, thereby suppressing material separation.

이때, 제철 공정 분진 100중량부에 대하여, 상기 플라이애시가 5중량부 미만으로 함유될 경우 그 효과가 발휘되지 못하고, 반면에 500중량부를 초과할 경우 상대적으로 유동성이 급격하게 저하하고 팽창이 과도해질 수 있다. At this time, with respect to 100 parts by weight of dust in the steelmaking process, if the fly ash is contained in less than 5 parts by weight, the effect is not exhibited, whereas if it exceeds 500 parts by weight, the relatively fluidity rapidly decreases and the expansion becomes excessive. can

또한, 본 발명의 유동화 채움재 조성물은 경량 효과를 증진시키기 위하여, 상기 제철 공정 분진 100중량부에 대하여 기공 형성제 0.1∼100중량부 더 포함할 수 있다. In addition, the fluidized filler composition of the present invention may further include 0.1 to 100 parts by weight of a pore former with respect to 100 parts by weight of the iron-making process dust in order to enhance the lightweight effect.

상기 기공 형성제는 동물성 기포제, 식물성 기포제, 과산화수소 및 알루미늄 분말로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것이 바람직하다. 이때, 상기 기포 형성제가 0.1 중량부 미만일 경우, 그 효과가 없으며 100 중량부 초과일 경우 경량성 확보에는 더욱 유리하나 강도가 급격하게 저하되는 문제점이 발생한다.The pore forming agent is preferably any one or a mixture of two or more selected from the group consisting of animal foaming agents, vegetable foaming agents, hydrogen peroxide, and aluminum powder. At this time, if the amount of the bubble forming agent is less than 0.1 parts by weight, the effect is ineffective, and if it is greater than 100 parts by weight, it is more advantageous to secure light weight, but the strength rapidly decreases.

본 발명의 유동화 채움재 조성물에 있어서, 결합재로 포함되는 고로슬래그 미분말은 제철 고로 공정에서 부산물로 발생하는 고온 용융상태의 슬래그를 물로 급냉 처리한 부산물이다. 고로슬래그 미분말은 물과 접촉하면 비결정질 피막이 형성되어 스스로 수화반응을 하지 않기 때문에 고로슬래그 미분말을 잠재수경성물질이라 한다. 잠재수경성이 발휘되기 위해서는 비결정질 피막이 파괴되어야 한다. In the fluidized filler composition of the present invention, the fine powder of blast furnace slag included as a binder is a by-product obtained by quenching slag in a high-temperature molten state, which is generated as a by-product in the steel-making blast furnace process, with water. When the blast furnace slag powder comes into contact with water, it forms an amorphous film and does not undergo a hydration reaction by itself, so the blast furnace slag powder is called latent hydraulic material. In order to exhibit latent hydraulic properties, the amorphous film must be destroyed.

상기 고로슬래그 미분말은 0.045㎜(45㎛) 체 잔분이 10% 미만으로 검사 판정되거나, 분쇄 분급된 것이며, 물에 의해 슬래그를 급냉시킨 수쇄 급냉 고로슬래그를 분말화하여 사용한다. The blast furnace slag fine powder is inspected to have a 0.045 mm (45 μm) sieve residue of less than 10%, or pulverized and classified, and water quenched blast furnace slag obtained by quenching the slag with water is pulverized and used.

상기 고로슬래그 미분말이 0.045㎜(45㎛) 체 잔분이 10% 미만으로 이루어져 있어 입자의 활성도가 향상됨으로써 잠재수경성이 발휘될 수 있는 이점이 있다. Since the blast furnace slag fine powder consists of less than 10% of the 0.045 mm (45 μm) sieve residue, there is an advantage in that latent hydraulic properties can be exhibited by improving the activity of the particles.

통상의 고로슬래그 미분말에 물을 투입하게 되면, 표면에 비결정질 피막이 형성되어, 내부의 Ca2+, Al3+ 등의 용출이 이루어지지 않는다. 그러나, 상기 제철 공정 분진을 혼입 후 물을 투입하게 되면, 물을 급격히 흡수하지 않고 물에 빨리 용해되면서 Na+와 SO4 2-로 나뉘어 이온 상태로 분리되어 SO4 2-성분이 고로슬래그 미분말의 비결정질 피막을 파괴하여 Ca2+, Al3+ 등의 용출이 용이하게 되고, 용출 이온들이 CaO-SiO2-H2O계 수화물 등을 생성함으로써 경화를 빠르게 촉진하고, 잉여 황산화물은 침상형의 구조를 가지는 팽창성 광물인 에트린가이트 수화생성물(3CaOㆍAl2O3ㆍ3CaSO4ㆍ32H2O)을 생성시킴으로써 수화체 내부의 조직을 치밀화하여 경화체의 압축강도 향상 및 팽창성을 유도할 수 있다. When water is added to the normal blast furnace slag fine powder, an amorphous film is formed on the surface, and elution of Ca 2+ , Al 3+ , etc. from the inside does not occur. However, when water is introduced after mixing the steelmaking process dust, it does not absorb water rapidly and is quickly dissolved in water, divided into Na + and SO 4 2- and separated into ionic states, so that the SO 4 2- component of the blast furnace slag fine powder By destroying the amorphous film, elution of Ca 2+ and Al 3+ is facilitated, and elution ions accelerate hardening by generating CaO-SiO 2 -H 2 O-based hydrates, etc., and excess sulfur oxides are needle-shaped. By generating an ettringite hydration product (3CaO·Al 2 O 3 ·3CaSO 4 ·32H 2 O), which is an expansive mineral having a structure, the internal structure of the hydrated body is densified to improve the compressive strength and expandability of the hardened body. Can be induced.

상기 제철 공정 분진 100중량부에 대하여, 고로슬래그 미분말은 15∼1,000중량부가 혼입되는 것이 바람직하다. 이때, 상기 고로슬래그 미분말 함량이 15중량부 미만일 경우 고로슬래그 미분말의 반응은 거의 100% 이루어질 수 있으나 고로슬래그 미분말에 비하여 상대적으로 자극제의 양이 과도하여 반응하지 못한 제철 공정 분진이 다량 존재하여 강도 발현이 어렵게 된다. 반면에, 고로슬래그가 1,000중량부로 초과하여 혼입되면, 상기 공정 분진에 의한 자극 효과가 약하여 초기강도가 급격히 저하되고 수화반응을 개시하지 못한 슬래그의 잉여량이 존재하게 되며 경제성측면에서 불리하게 된다. It is preferable that 15 to 1,000 parts by weight of the blast furnace slag fine powder is mixed with respect to 100 parts by weight of the iron-making process dust. At this time, when the content of the fine blast furnace slag powder is less than 15 parts by weight, the reaction of the fine blast furnace slag powder can be achieved by almost 100%, but the amount of the stimulant is relatively excessive compared to the fine powder of blast furnace slag, so that a large amount of unreacted steelmaking process dust exists to express strength this becomes difficult On the other hand, when the blast furnace slag is mixed in an amount exceeding 1,000 parts by weight, the stimulating effect by the process dust is weak, so the initial strength is rapidly lowered, and an excess amount of slag that does not initiate a hydration reaction exists, which is disadvantageous in terms of economy.

또한, 본 발명의 유동화 채움재 조성물에서 결합재로 포함되는 시멘트는 시중에서 일반적으로 유통되는 1종 시멘트, 플라이애시 시멘트, 고로슬래그 시멘트, 조강시멘트, 준조강 시멘트 등이면 사용이 가능하다. In addition, cement included as a binder in the fluidized filler composition of the present invention can be used as long as it is generally commercially available type 1 cement, fly ash cement, blast furnace slag cement, early strong cement, semi early strong cement.

시멘트는 제철 공정 분진 100중량부에 대하여, 1종 시멘트 15∼1,000중량부가 바람직하다. 이때, 시멘트가 15중량부 미만으로 포함되면 초기 강도 발현이 어렵고 1,000중량부 초과될 경우 강도가 과도하게 발현되어 향후 재굴착이 어렵게 된다.Cement is preferably 15 to 1,000 parts by weight of type 1 cement based on 100 parts by weight of iron manufacturing process dust. At this time, if cement is included in less than 15 parts by weight, it is difficult to develop initial strength, and if it exceeds 1,000 parts by weight, strength is excessively expressed, making future re-excavation difficult.

2) 경량골재2) lightweight aggregate

본 발명의 유동화 채움재 조성물에 포함되는 경량골재는 팽창진주암 또는 팽창질석이 50% 이상 함유되어 있는 폐보온단열재를 분쇄하여 입경 10㎜ 이하, 더욱 바람직하게는 0.01∼10mm로 조정된 것이 바람직하다. The lightweight aggregate included in the fluidized filler composition of the present invention is preferably adjusted to a particle size of 10 mm or less, more preferably 0.01 to 10 mm by pulverizing waste thermal insulation materials containing 50% or more of expanded perlite or expanded vermiculite.

높은 온도를 유지해야 하는 석유화학산업단지 등의 플랜트 배관 보온 단열을 위해 팽창진주암 또는 팽창질석 계열의 보온재가 많이 사용되어, 배관 교체 공사 시 많은 양의 폐보온단열재가 발생하게 된다. Expanded perlite or expanded vermiculite-based insulation materials are widely used to heat and insulate plant pipes in petrochemical industrial complexes, etc., where high temperatures must be maintained, resulting in a large amount of waste insulation materials during pipe replacement construction.

현재, 폐보온단열재의 주성분은 팽창진주암 또는 팽창질석이며, 결합재로 규산소다가 사용되고 및 보강재로 유기질 단섬유로 이루어져 있으나, 폐기 시 이의 별도 분리가 어려워 현재는 재활용이 되지 않아 전량 매립을 하고 있다. 그러나 자체 밀도가 매우 낮아 부피를 워낙 많이 차지하기 때문에 매립에 있어 큰 비용을 지불하고 있는 실정이다. Currently, the main component of the waste thermal insulation material is expanded perlite or expanded vermiculite, sodium silicate is used as a binding material and organic short fibers are used as a reinforcing material, but it is difficult to separate them during disposal. However, since it has a very low density and occupies a large volume, it is expensive to landfill.

상기 폐보온단열재 경량골재는 다수의 기공을 형성하고 있어 절건밀도가 평균 약 0.15∼1.0g/㎤, 더욱 바람직하게는 0.2∼0.4/㎤으로 매우 낮아 하중절감에 의한 토압 저감 등에 매우 효과적일 수 있다. The waste thermal insulation lightweight aggregate forms a large number of pores, so the average dry density is about 0.15 to 1.0 g / cm 3, more preferably 0.2 to 0.4 / cm 3, which is very low, and can be very effective in reducing earth pressure by reducing load. .

또한, 상기 경량골재는 폐보온단열재 분쇄 시 별도의 섬유 분리 과정 없이 배출되며, 별도의 분리과정 없이 단순 분쇄하여 본 발명의 유동화 채움재로 활용한다면 폐보온단열재에 함유된 보강섬유에 의해 인장력 및 휨강도를 증가시키는 역할을 수행할 수 있고, 거칠게 분쇄된 골재 표면 및 섬유에 의해 물과 혼합 시 재료분리를 억제하는 효과가 있다.In addition, the lightweight aggregate is discharged without a separate fiber separation process when pulverizing the waste thermal insulation material, and if it is simply pulverized without a separate separation process and used as the fluidized filler of the present invention, the reinforcing fibers contained in the waste thermal insulation material increase tensile force and bending strength It can play a role in increasing the amount of aggregate, and has the effect of suppressing material separation when mixed with water due to the coarsely ground aggregate surface and fibers.

상기 제철 공정 분진 100중량부에 대하여, 경량골재는 5∼5,000중량부 포함되는 것이 바람직하다. 이때, 5중량 미만일 경우 경량성을 확보할 수 없고 5,000중량부 초과일 경우 물과 혼합 시 재료분리가 심하게 일어나고 소정의 강도 발현이 어렵게 된다.With respect to 100 parts by weight of the iron-making process dust, it is preferable that the lightweight aggregate is included in 5 to 5,000 parts by weight. At this time, if it is less than 5 weight, it is not possible to secure light weight, and if it is more than 5,000 parts by weight, material separation occurs severely when mixed with water, and it is difficult to express a predetermined strength.

이상 본 발명의 순환자원을 이용한 유동화 채움재 조성물은 결합재 및 골재로서 제철소에서 발생되는 제철 공정 분진, 고로슬래그 미분말과 석유화학단지 배관 보온 단열재 교체 공사 현장에서 발생되는 폐보온단열재를 이용하여 무다짐 충전이 가능하고, 하중절감, 재굴착 및 체적 안정성 확보가 가능하도록 재령 28일 압축강도 0.3∼5MPa의 저강도, 단위용적중량 500∼1,500kg/m3의 경량성 및 블리딩율 5% 이하 성능이 발현된다. The above fluidized filler composition using circulating resources of the present invention is a binder and aggregate, which can be filled without compaction by using steelmaking process dust, blast furnace slag fine powder, and waste thermal insulation materials generated at the site of replacing thermal insulation insulation materials in petrochemical complexes. It is possible to reduce load, re-excavation, and secure volume stability. 28 days of age, low strength of compressive strength of 0.3 to 5 MPa, unit volume weight of 500 to 1,500 kg/m 3 , light weight and bleeding rate of 5% or less. .

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail through examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.These examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited to these examples.

<비교예><Comparative example>

결합재로서 1종 포틀랜드 시멘트 100중량부에 대하여, 골재로서 현장에서 발생된 점성토(단위용적중량 1.72ton/m3) 1,000중량부, 10mm 이하로 분쇄된 스치로폼 알갱이 20중량부 및 물 150중량부를 균질하게 혼합한 후 제조된 시료(1종 포틀랜드 시멘트 + 현장토 + 스치로폼 알갱이)를 이용하여 슬럼프 플로우 시험을 실시하였고, 지름 10㎝, 높이 20㎝ 원주형 몰드에 타설하여 경화시킨 후, 단위용적중량 및 재령별 일축 압축강도를 측정하였다.Based on 100 parts by weight of Type 1 Portland cement as a binder, 1,000 parts by weight of viscous soil (unit volume weight 1.72 ton/m 3 ) generated on site as an aggregate, 20 parts by weight of Styrofoam grains ground to 10 mm or less, and 150 parts by weight of water homogeneously After mixing, a slump flow test was conducted using the prepared sample (Type 1 Portland cement + field soil + Styrofoam pellets), and after curing by pouring into a cylindrical mold with a diameter of 10 cm and a height of 20 cm, unit volume weight and material age Star uniaxial compressive strength was measured.

<실시예 1><Example 1>

결합재(제철 공정 분진 30중량%, 고로슬래그 미분말 40중량%, 1종 시멘트 30중량%) 100중량부에 대하여, 경량골재로서 폐보온단열재(팽창진주암)를 10㎜ 이하로 분쇄한 분쇄물 200중량부, 물 200중량부를 균질하게 혼합한 후 제조된 시료를 이용하여 슬럼프 플로우 시험을 실시하였고, 지름 10㎝, 높이 20㎝ 원주형 몰드에 타설하여 경화된 후 단위용적중량 및 재령별 일축 압축강도를 측정하였다. Based on 100 parts by weight of the binder (30% by weight of dust from the steelmaking process, 40% by weight of blast furnace slag powder, 30% by weight of type 1 cement), 200% by weight of pulverized waste thermal insulation material (expanded perlite) pulverized to 10 mm or less as a lightweight aggregate After homogeneously mixing 200 parts by weight of water and 200 parts by weight of water, a slump flow test was conducted using the prepared sample. After curing by pouring into a cylindrical mold with a diameter of 10 cm and a height of 20 cm, measured.

<실시예 2><Example 2>

결합재(제철 공정 분진 20중량%, 고로슬래그 미분말 40중량%, 1종 시멘트 30중량%, 팽창성 플라이애시 10중량%) 100중량부에 대하여, 경량골재로서 폐보온단열재(팽창진주암)를 10㎜ 이하로 분쇄한 분쇄물 200중량부, 물 200중량부를 균질하게 혼합한 후 제조된 시료를 이용하여 슬럼프 플로우 시험을 실시하였고, 지름 10㎝, 높이 20㎝ 원주형 몰드에 타설하여 경화된 후 단위용적중량 및 재령별 일축 압축강도를 측정하였다. Relative to 100 parts by weight of the binder (20% by weight of dust from the steelmaking process, 40% by weight of blast furnace slag powder, 30% by weight of type 1 cement, 10% by weight of expandable fly ash), use 10 mm or less of waste thermal insulation material (expanded perlite) as a lightweight aggregate. After homogeneously mixing 200 parts by weight of pulverized material and 200 parts by weight of water, a slump flow test was conducted using the prepared sample, and after being poured into a cylindrical mold with a diameter of 10 cm and a height of 20 cm and cured, unit volume weight and uniaxial compressive strength by age were measured.

<실시예 3><Example 3>

결합재(제철 공정 분진 29.5중량%, 고로슬래그 미분말 40중량%, 1종 시멘트 30중량%, 알루미늄 분말 0.5중량%) 100중량부에 대하여, 경량골재로서 폐보온단열재(팽창퍼라이트)를 10㎜ 이하로 분쇄한 200중량부, 물 200중량부를 균질하게 혼합한 후 제조된 시료를 이용하여 슬럼프 플로우 시험을 실시하였고, 지름 10㎝, 높이 20㎝ 원주형 몰드에 타설하여 경화된 후 단위용적중량 및 재령별 일축 압축강도를 측정하였다. With respect to 100 parts by weight of the binding material (29.5% by weight of dust in the steelmaking process, 40% by weight of blast furnace slag powder, 30% by weight of type 1 cement, 0.5% by weight of aluminum powder), the waste heat-insulating material (expanded perlite) as a lightweight aggregate is reduced to 10 mm or less. After homogeneously mixing 200 parts by weight of pulverized water and 200 parts by weight of water, a slump flow test was conducted using the prepared sample. Uniaxial compressive strength was measured.

<실험예 1> 유동화 채움재의 성능시험<Experimental Example 1> Performance test of fluidized filler

하기 표 1에 나타낸 바와 같이, 슬럼프 시험은 콘크리트의 슬럼프 시험방법(KS F 2402), 압축강도 시험은 콘크리트의 압축강도 시험방법(KS F 2405)에 의해 실시하였으며, 28일 경화제 기준하여 단위용적중량을 측정하였고, 체적변화는 육안으로 검사하였다. 그 결과를 표 2에 나타내었다. As shown in Table 1 below, the slump test was conducted according to the slump test method for concrete (KS F 2402) and the compressive strength test was performed according to the test method for compressive strength of concrete (KS F 2405), and the unit volume weight based on the 28-day curing agent was measured, and the volume change was visually inspected. The results are shown in Table 2 .

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

(1) 슬럼프 플로우 시험 결과(1) Slump flow test results

상기 비교예와 실시예 1 내지 3에서 제조된 경화체에 대하여, 슬럼프 플로우를 측정한 결과, 비교예 및 실시예 1 내지 3 경우, 모두 60cm 이상 발현됨으로써, 무다짐 고유동 채움재로서 만족하는 결과를 보였다. As a result of measuring the slump flow for the cured bodies prepared in Comparative Examples and Examples 1 to 3, in the case of Comparative Examples and Examples 1 to 3, all of them were expressed at 60 cm or more, showing satisfactory results as a non-compacting high flow filling material. .

특히, 실시예 2에서 팽창성 플라이애시가 혼입된 경우, 다소 슬럼프 플로우가 저하되는 경향을 보였는데, 이는 팽창성 플라이애시가 순간적으로 다량의 수분을 흡수하기 때문으로 해석된다.In particular, when the expandable fly ash was incorporated in Example 2, the slump flow tended to decrease slightly, which is interpreted as the fact that the expandable fly ash instantly absorbs a large amount of moisture.

(2) 경화체 단위용적중량(2) Unit volume weight of hardened body

상기 비교예와 실시예 1 내지 3에서 제조된 경화체에 대하여, 28일 경화체 단위용적중량을 측정한 결과, 비교예의 경우 1.32ton/m3으로 스치로폼 알갱이 혼입으로 인해 일반적인 현장토사를 이용한 유동화토 중량 1.6∼1.8ton/m3에 비해 단위용적중량이 감소하였으나 단위용적중량이 1.0ton/m3 이상으로 하중저감에 큰 효과가 없었다. As a result of measuring the unit volume weight of the cured product on the 28th for the cured product prepared in Comparative Example and Examples 1 to 3, in the case of the comparative example, it was 1.32 ton/m 3 , and due to the incorporation of Styrofoam grains, the weight of fluidized soil using general field sand was 1.6 Compared to ∼1.8 ton/m 3 , the unit volume weight decreased, but the unit volume weight was over 1.0 ton/m 3 , so there was no significant effect on the load reduction.

그러나 실시예 1 내지 3에서 제조된 경화체는 단위용적중량이 1.0ton/m3 이하로 나타나 하중저감에 매우 큰 효과가 있는 것으로 확인되었다. 이러한 결과는 폐보온단열재 분쇄물을 경량골재로 활용하였기 때문이며 팽창성 플라이애시 또는 알루미늄 분말 혼입 시 그 경량 효과는 더 크게 발현되는 것으로 확인되었다. However, it was confirmed that the cured bodies prepared in Examples 1 to 3 had a unit volume weight of 1.0 ton/m 3 or less, which had a very large effect on reducing the load. This result is because the pulverized waste heat insulation insulation material was used as a lightweight aggregate, and it was confirmed that the lightweight effect was more pronounced when expandable fly ash or aluminum powder was mixed.

이상으로부터, 실시예 1 내지 3에서 제조된 경화체는 단위용적중량 500∼1,500kg/m3의 경량성을 확인하였다. From the above, the cured bodies prepared in Examples 1 to 3 were confirmed to have a unit volume weight of 500 to 1,500 kg/m 3 and light weight.

(3) 일축압축강도 시험성과(3) Uniaxial compressive strength test results

상기 비교예와 실시예 1 내지 3에서 제조된 경화체에 대하여, 일축압축강도를 시험한 결과, 비교예는 재령 3일에서 강도 측정이 불가하였으나 실시예 1 내지 3에서 제조된 시험체는 재령 3일에서 강도 발현이 가능하였고 전반적으로 비교예에 비하여 약 2배 이상의 강도가 발현되었음을 확인하였다. 이상으로부터, 실시예 1 내지 3에서 제조된 경화체는 재령 28일 압축강도 0.3∼5MPa의 저강도 발현을 뒷받침한다. As a result of testing the uniaxial compressive strength of the cured bodies prepared in Comparative Example and Examples 1 to 3, the comparative example could not measure the strength at the age of 3 days, but the test specimens prepared in Examples 1 to 3 at the age of 3 days It was confirmed that the strength expression was possible and that the overall strength was expressed about twice as compared to the comparative example. From the above, the cured bodies prepared in Examples 1 to 3 support the development of low strength of 0.3 to 5 MPa in compressive strength at age 28 days.

(4) 체적수축(4) Volumetric contraction

상기 비교예와 실시예 1 내지 3에서 제조된 경화체에 대하여, 체적수축을 육안으로 관찰한 결과, 비교예는 약 10% 이상 체적수축을 확인한 반면, 실시예 1 내지 3에서 제조된 시험체는 체적수축이 전혀 발생하지 않았고 팽창성 플라이애시 또는 알루미늄 분말을 혼입한 실시예 2 및 3에서는 오히려 체적이 1% 이상 오히려 약간 팽창한 결과를 보여, 빈 공간을 공동 현상 없이 안정적으로 채울 수 있을 것으로 판단되었다. As a result of visually observing the volumetric shrinkage of the cured products prepared in Comparative Example and Examples 1 to 3, the comparative example confirmed a volumetric shrinkage of about 10% or more, whereas the test body prepared in Examples 1 to 3 had volumetric shrinkage. This did not occur at all, and in Examples 2 and 3 incorporating expandable fly ash or aluminum powder, the volume slightly expanded by more than 1%, and it was judged that the empty space could be stably filled without cavitation.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the specific embodiments described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention, and it is natural that such changes and modifications fall within the scope of the appended claims.

Claims (5)

결합재로서 제철소 탈황 공정 중에 발생되는 Na2O 함량이 30∼50중량%, SO3 함량이 30∼50중량%인 제철 공정 분진 100중량부에 대하여, 고로슬래그 미분말 15∼1,000중량부 및 1종 시멘트 15∼1,000중량부를 포함하며,
경량골재로서 팽창진주암 또는 팽창질석에서 선택된 폐보온단열재를 입경 10mm 이하로 분쇄된 어느 하나 또는 혼합물 형태로 5∼5,000 중량부를 포함한 유동화 채움재 조성물.
As a binder, 15 to 1,000 parts by weight of blast furnace slag powder and 1-class cement are used for 100 parts by weight of iron-making process dust having 30 to 50% by weight of Na 2 O and 30 to 50% by weight of SO 3 generated during the desulfurization process of steelworks. 15 to 1,000 parts by weight,
A fluidized filler composition containing 5 to 5,000 parts by weight of any one or mixture of waste thermal insulation materials selected from expanded perlite or expanded vermiculite as a lightweight aggregate pulverized to a particle diameter of 10 mm or less.
제1항에 있어서, 상기 결합재로서, 제철 공정 분진 100중량부에 대하여, CaO 성분이 15중량% 이상인 팽창성 플라이애시 5∼500중량부가 더 포함된 것을 특징으로 하는 유동화 채움재 조성물.The fluidized filler composition according to claim 1, wherein, as the binder, 5 to 500 parts by weight of expandable fly ash having a CaO content of 15% by weight or more is further included based on 100 parts by weight of iron-making dust. 제2항에 있어서, 상기 플라이애시가 석탄, 고형연료, 유기성 슬러지 및 폐비닐로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 연료로 하여 배출된 것을 특징으로 하는 유동화 채움재 조성물.The fluidized filler composition according to claim 2, wherein the fly ash is discharged using any one or a mixture of two or more selected from the group consisting of coal, solid fuel, organic sludge and waste vinyl as fuel. 제1항에 있어서, 상기 결합재로서, 제철 공정 분진 100중량부에 대하여, 동물성 기포제, 식물성 기포제, 과산화 수소 및 알루미늄 분말로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물의 기포 형성제 0.1∼100중량부가 더 포함된 것을 특징으로 하는 유동화 채움재 조성물.The method of claim 1, wherein, as the binder, 0.1 to 100 parts by weight of any one or a mixture of two or more foaming agents selected from the group consisting of animal foaming agents, vegetable foaming agents, hydrogen peroxide and aluminum powder, based on 100 parts by weight of steelmaking process dust A fluidized filler composition, characterized in that it further contains additional. 제1항에 있어서, 상기 경량골재가 절건밀도 0.15∼1.0g/cm3의 범위인 것을 특징으로 하는 유동화 채움재 조성물.The fluidized filler composition according to claim 1, wherein the lightweight aggregate has an absolute dry density in the range of 0.15 to 1.0 g/cm 3 .
KR1020210085298A 2021-06-30 2021-06-30 Fluidizing filler composition using circulating resources KR20230003785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210085298A KR20230003785A (en) 2021-06-30 2021-06-30 Fluidizing filler composition using circulating resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210085298A KR20230003785A (en) 2021-06-30 2021-06-30 Fluidizing filler composition using circulating resources

Publications (1)

Publication Number Publication Date
KR20230003785A true KR20230003785A (en) 2023-01-06

Family

ID=84924207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210085298A KR20230003785A (en) 2021-06-30 2021-06-30 Fluidizing filler composition using circulating resources

Country Status (1)

Country Link
KR (1) KR20230003785A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772638B1 (en) 2006-04-22 2007-11-02 한국전력공사 Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
KR100772637B1 (en) 2006-04-22 2007-11-02 한국전력공사 Composition for solidifying of slurry backfill material to apply to underground cable duct and structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772638B1 (en) 2006-04-22 2007-11-02 한국전력공사 Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
KR100772637B1 (en) 2006-04-22 2007-11-02 한국전력공사 Composition for solidifying of slurry backfill material to apply to underground cable duct and structure

Similar Documents

Publication Publication Date Title
KR101840470B1 (en) Grouting agent and method
Parhi et al. A comprehensive study on controlled low strength material
KR100772638B1 (en) Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
KR102454865B1 (en) Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner
Ban et al. Properties and microstructure of lime kiln dust activated slag-fly ash mortar
JP2017122203A (en) Manufacturing method of mud-containing solidified body
KR100773991B1 (en) Solidification method of dredged soils
KR102457167B1 (en) Eco friendly injection for ground reinforcement grout composition and construction method using the same
KR102503145B1 (en) Expandable mortar composition and pile construction method
Tran et al. A state-of-the-art review on the utilization of new green binders in the production of controlled low-strength materials
KR102226027B1 (en) Soil grouting material and groution method using the same
KR20060136325A (en) Solidification method of dredged soils
Zhang et al. Properties and environmental impact of building foundation pit backfilling materials containing iron and steel solid waste
KR100772637B1 (en) Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
KR20160147286A (en) Grounting composition for high pressure injection soil solidification method
JP6682920B2 (en) Manufacturing method of artificial stone
KR20230068544A (en) Fluidized filler composition
KR20130122170A (en) Solidified agent composition
KR20130122163A (en) Method for manufacturing the filling agent composition and system therefor
JP2016034893A (en) pH ADJUSTING AGENT FOR CEMENT COMPOSITION, CONCRETE COMPOSITION, CEMENT COMPOSITION, AND APPLICATION METHOD OF pH ADJUSTING AGENT FOR CEMENT COMPOSITION
KR20230003785A (en) Fluidizing filler composition using circulating resources
KR102359260B1 (en) Solidifying agent composition for soft ground and method for stabilizing soft ground using the same
KR0125466B1 (en) Soil stabilizer and process thereof
KR101666074B1 (en) System that allow for high-speed site renovation using high water content dredged sediment and dredging work at the same time and method for hihg-speed site renovation
KR102369849B1 (en) Weak foundation treatment method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)