KR20230001519A - Identification of novel drug-binding protein using proximity labeling - Google Patents

Identification of novel drug-binding protein using proximity labeling Download PDF

Info

Publication number
KR20230001519A
KR20230001519A KR1020220072973A KR20220072973A KR20230001519A KR 20230001519 A KR20230001519 A KR 20230001519A KR 1020220072973 A KR1020220072973 A KR 1020220072973A KR 20220072973 A KR20220072973 A KR 20220072973A KR 20230001519 A KR20230001519 A KR 20230001519A
Authority
KR
South Korea
Prior art keywords
protein
cells
drug
proteins
turbid
Prior art date
Application number
KR1020220072973A
Other languages
Korean (ko)
Inventor
이현우
곽철환
박철훈
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20230001519A publication Critical patent/KR20230001519A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04015Biotin-[acetyl-CoA-carboxylase] ligase (6.3.4.15)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for identifying a novel drug-binding protein in living cells using a proximal protein modification reaction. According to the present invention, a target protein which interacts with a drug transiently in vivo can be specifically identified, and thus the target protein of the drug that interacts in the in vivo environment can be more accurately identified. In addition, the possibility of false positives can be significantly reduced compared to existing methods for identifying target proteins using cell lysates.

Description

근위 단백질 변형 반응을 이용한 신규한 약물 결합 단백질의 동정 {Identification of novel drug-binding protein using proximity labeling} Identification of novel drug-binding protein using proximity labeling using proximal protein modification reaction {Identification of novel drug-binding protein using proximity labeling}

본 발명은 근위 단백질 변형 반응을 이용한 신규한 약물 결합 단백질의 동정에 관한 기술로, 더 상세하게는, 할로택 (HT) 단백질에 바이오틴 라이게이즈 효소단백질 (TurbID)이 결합되어 있는 HT-TurbID 단백질을 살아있는 세포에서 발현시키고 할로택 리간드가 접합된 약물을 처리하여 약물에 근접한 약물의 표적 단백질을 바이오틴화하고, 바이오틴화된 표적 단백질을 분리하여 질량분석함으로써, 약물의 신규한 표적 단백질을 동정하는 기술에 관한 것이다.The present invention relates to a technology for the identification of novel drug-binding proteins using a proximal protein modification reaction, and more particularly, HT-TurbID protein in which biotin ligase enzyme protein (TurbID) is conjugated to halotac (HT) protein. technology to identify a novel target protein of a drug by expressing in living cells, treating a drug conjugated with a halotac ligand, biotinylating a target protein of a drug close to the drug, and isolating the biotinylated target protein for mass spectrometry. It is about.

인간의 질환을 치료하기 위하여 다양한 천연물과 합성 소분자 약물이 이용되고 있으며, 이들 약물 중 다수는 단백질 또는 핵산과 같은 표적 생체분자와 직접적이고 특이적인 물리적 상호작용을 하게 되는데, 이들 약물과 물리적 상호작용을 하는 결합 분자에 대한 정보는 치료 효과의 기저에 있는 메커니즘을 이해하는데 도움이 된다. 또한, 약물의 표적 식별 (target-ID)은 규제기관의 승인뿐만 아니라 약학적 효능의 이해, 잠재적 부작용 평가 및 이전에 승인된 약물의 용도 변경을 위한 필수 전제 조건이다. A variety of natural and synthetic small molecule drugs are used to treat human diseases, and many of these drugs have direct and specific physical interactions with target biomolecules such as proteins or nucleic acids. Information about the binding molecules involved is helpful in understanding the mechanisms underlying the therapeutic effect. In addition, target-ID of drugs is an essential prerequisite not only for regulatory approval, but also for understanding pharmacological efficacy, assessing potential side effects, and repurposing previously approved drugs.

따라서, 다양한 천연물이나 합성 소분자 약물의 물리적 결합 단백질 또는 "표적" 단백질을 확인하기 위한 여러 방법이 개발되었고 (Ha et al., 2021), 그 중에서도 친화성 기반 방법이 표적 식별 접근법에서 가장 널리 사용되어 왔다 (Jost et al., 2018). 그러나 DARTS (Lomenick et al., 2009) 및 CETSA (Molina et al., 2013)를 포함한 이러한 방법은 세포를 용해시킨 조건에서 실험을 수행해야 하며, 이는 인공 용해 완충액 조건으로 인해 잘못된 표적이 발견되는 비율을 증가시키거나 진정한 양성 결과를 놓칠 수 있다는 단점이 있다 (Diether et al., 2017).Therefore, several methods have been developed to identify physical binding proteins or “target” proteins of various natural or synthetic small-molecule drugs (Ha et al., 2021), among which affinity-based methods are most widely used in target identification approaches. has come (Jost et al., 2018). However, these methods, including DARTS (Lomenick et al., 2009) and CETSA (Molina et al., 2013), require experiments to be performed under conditions in which the cells are lysed, which is due to artificial lysis buffer conditions that result in false targeting rates. The downside is that it may increase or miss true positive results (Diether et al., 2017).

근위 단백질 변형 반응은 로컬 단백질 네트워크를 포괄적으로 이해하기 위해 개발된 기술이다. 근위 단백질 변형 반응에는 APEX; APEX2; BioID; 바이오틴-페녹실 라디칼과 같은 단기 반응성 종을 생성할 수 있는 BioID의 동역학적으로 개선된 버전인 TurbID (Branon et al., 2018), 바이오틴-AMP (Lee et al., 2016) 와 같은 조작된 효소를 사용할 수 있다. 이러한 근위 단백질 변형 반응 기술을 사용하면 50 nm 미만의 크기 범위에서 단백질 성분을 식별하기에 충분한 주기 해상도 (temporal resolution)를 제공한다. 이 근접-기반 라벨링 체계를 사용하여, NEDD8-UBC12의 티오에스테르 접합체를 반응성 핸들로 사용하는 Neddylator (Hill et al., 2016; Zhuang et al., 2013)를 이용한 새로운 표적 식별 접근법을 제공한다. 그러나 이 방법도 역시 앞서 언급한 비생리적 용해물 조건에서 수행되었기 때문에, 살아있는 세포에서의 표적 식별이 아니며, 풀다운 (pull-down) 단백질의 변형되지 않은 펩타이드만 검출되기 때문에 변형된 단백질을 직접 식별할 수 없다는 단점이 있다. 기존 근위 단백질 변형 반응 기술(예: APEX, BioID/TurbID)을 사용하는 간접 질량 식별 워크플로우 (indirect mass identification workflow)에서도 친화성 캡처 (affinity capturing) 후 위양성 생성을 포함하여 동일한 문제가 발생한다. Proximal protein modification reactions are a technique developed to comprehensively understand local protein networks. Proximal protein modification reactions include APEX; APEX2; BioID; Engineered enzymes such as TurbID (Branon et al., 2018), biotin-AMP (Lee et al., 2016), a kinetically improved version of BioID capable of generating short-lived reactive species such as biotin-phenoxyl radicals can be used. Using this proximal protein modification reaction technique provides sufficient temporal resolution to identify protein components in the size range of less than 50 nm. Using this proximity-based labeling scheme, we provide a novel target identification approach using Neddylator (Hill et al., 2016; Zhuang et al., 2013), which uses a thioester conjugate of NEDD8-UBC12 as a reactive handle. However, since this method was also performed under the aforementioned non-physiological lysate conditions, it is not target identification in living cells, and since only unmodified peptides of the pull-down protein are detected, it is not possible to directly identify the modified protein. There is a downside to not being able to. Indirect mass identification workflows using existing proximal protein modification reaction technologies (e.g. APEX, BioID/TurbID) suffer from the same issues including generating false positives after affinity capturing.

이러한 문제를 극복하기 위해 본 발명자들은 Spot-BioID(이하 Spot-ID)라고 하는 방법을 개발하였으며, 이 방법은 MS(mass spectrometry) 분석을 통해 바이오틴 변형 잔기를 검출하여 근위 단백질 변형 반응 변형 단백질을 직접 동정하는 기술이다. 살아있는 세포에서 이 방법을 사용하여 FRB-BioID를 미끼 단백질로 FKBP25를 새로운 라파마이신 결합 단백질로 식별할 수 있었으며, FRB(mTOR의 라파마이신 결합 도메인)를 라파마이신의 어댑터 단백질로 사용하여 FKBP25를 FRB BioID의 바이오틴 표지 반경으로 모집할 수 있었다. 하지만 이 FRB-BioID를 이용한 방법은 FRB에만 특이적으로 결합하는 라파마이신 결합 단백질을 규명하는 것에만 사용될 수 있기 때문에 일반적인 약물 결합단백질을 동정하는데 사용될 수 없다는 문제점이 있었다.To overcome this problem, the present inventors developed a method called Spot-BioID (hereafter referred to as Spot-ID), which detects biotin-modified residues through MS (mass spectrometry) analysis and directly converts the modified protein to the proximal protein modification reaction. It is a technique of sympathy. Using this method in living cells, we were able to identify FRB-BioID as a bait protein and FKBP25 as a novel rapamycin-binding protein, and using FRB (rapamycin-binding domain of mTOR) as an adapter protein for rapamycin, FKBP25 was identified as FRB BioID. could be recruited with a biotin-labeled radius of . However, this method using FRB-BioID has a problem in that it cannot be used to identify general drug-binding proteins because it can only be used to identify rapamycin-binding proteins that bind specifically to FRB.

본 발명자들은 이 근위 단백질 변형 반응 접근 방식을 일반적인 표적 식별 방법으로 개발하고자 예의 노력한 결과, 살아있는 세포에서 근위 단백질 변형 반응과 할로택 시스템을 결합하여 약물 표적 단백질을 식별할 수 있는 PROCID(PROximity-based Compound binding protein IDentification)라는 새로운 표적 식별 (target-ID) 방법을 개발하였고, 이 방법을 이용하여 살아있는 세포에서 다사티닙에 강한 친화력을 가진 새로운 표적 단백질로 DNA 헬리카제 단백질인 SMARCA2를 신규하게 동정할 수 있었으며, 이와 같이 본 발명이 살아있는 세포 시스템에서 약물 분자의 표적을 식별할 수 있는 효과적인 방법임을 검증함으로써 본 발명을 완성하였다. The present inventors have made diligent efforts to develop this proximal protein modification reaction approach as a general target identification method. As a result, PROCID ( PRO ximity-based PRO Ximity-based Compound binding protein ID entification) was developed, and using this method, SMARCA2 , a DNA helicase protein, was newly identified as a new target protein with strong affinity to dasatinib in living cells. Thus, the present invention was completed by verifying that the present invention is an effective method for identifying the target of a drug molecule in a living cell system.

Ha, J. et al., (2021), Cell Chemical Biology 28, 394-423;Ha, J. et al., (2021), Cell Chemical Biology 28, 394-423; Jost, M. et al., (2018), Acs Chemical Biology 13, 366-37;Jost, M. et al., (2018), Acs Chemical Biology 13, 366-37; Lomenick, B. et al, (2009), Proceedings of the National Academy of Sciences of the United States of America 106, 21984-21989;Lomenick, B. et al, (2009), Proceedings of the National Academy of Sciences of the United States of America 106, 21984-21989; Molina, D.M. et al, (2013), Science 341, 84-87;Molina, D.M. et al, (2013), Science 341, 84-87; Diether, M et al., (2017), Curr Opin Microbiol 39, 16-23; Diether, M et al., (2017), Curr Opin Microbiol 39, 16-23; Branon, T.C. et al., (2018), Nature Biotechnology 36, 880-887;Branon, T.C. et al., (2018), Nature Biotechnology 36, 880-887; Lee, S.-Y. et al., (2016), Acs Central Sci 2, 506-516;Lee, S.-Y. et al., (2016), Acs Central Sci 2, 506-516; Hill, Z.B. et al., (2016), J Am Chem Soc 138, 13123-13126;Hill, Z.B. et al., (2016), J Am Chem Soc 138, 13123-13126; Zhuang, M. et al., (2013), Mol Cell 49, 273-282.Zhuang, M. et al., (2013), Mol Cell 49, 273-282.

본 발명은 살아있는 세포에서 약물과 결합하는 표적 단백질을 동정하기 위한 신규한 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a novel method for identifying a target protein that binds to a drug in living cells.

상기 목적을 달성하기 위하여, 본 발명은 택 단백질에 바이오틴 라이게이즈 효소단백질인 TurbID가 결합되어 있는 융합단백질을 제공한다.In order to achieve the above object, the present invention provides a fusion protein in which TurbID, a biotin ligase enzyme protein, is linked to a tag protein.

본 발명에 있어서, 상기 택 단백질은 할로택, 스냅택, 클립택 또는 아비딘인 것을 특징으로 할 수 있다.In the present invention, the tag protein may be halotak, snaptack, cliptack or avidin.

본 발명은 또한, 상기 융합 단백질을 암호화하는 핵산을 제공한다.The present invention also provides a nucleic acid encoding the fusion protein.

본 발명은 또한, 상기 핵산 또는 상기 핵산을 포함하는 벡터가 도입되어 있는 세포를 제공한다.The present invention also provides a cell into which the nucleic acid or a vector containing the nucleic acid has been introduced.

본 발명은 또한, 다음 단계를 포함하는 약물 표적 단백질 동정 방법을 제공한다:The present invention also provides a method for identifying a drug target protein comprising the following steps:

(a) 상기 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합되어 있는 약물을 처리하는 단계:(a) treating the cell with a drug bound to a ligand that specifically binds to the tag protein:

(b) 상기 세포를 용해시키는 단계; 및(b) lysing the cells; and

(c) 상기 용해된 세포에서 바이오틴화 된 단백질을 약물 표적 단백질로 식별하는 단계.(c) identifying biotinylated proteins in the lysed cells as drug target proteins.

본 발명에 있어서, 상기 (a) 단계의 세포는 살아있는 세포인 것을 특징으로 한다.In the present invention, the cells of step (a) are characterized in that they are living cells.

본 발명에 있어서, 상기 방법은 상기 (a) 단계에서, 약물 표적 단백질이 in cellulo 바이오틴화 되는 것을 특징으로 한다.In the present invention, the method is characterized in that in step (a), the drug target protein is in cellulo biotinylated.

본 발명에 있어서, 상기 방법은 상기 (b) 단계 후, (b') 상기 용해된 세포에서 바이오틴화된 단백질을 분리하는 단계를 더 포함하는 것을 특징으로 한다. In the present invention, the method is characterized by further comprising, after step (b), (b') separating biotinylated proteins from the lysed cells.

본 발명에 있어서, 상기 방법은 상기 (b') 단계 후, (b'') 상기 분리된 단백질을 가수분해 효소로 분해(digestion)시키는 단계를 더 포함하는 것을 특징으로 한다.In the present invention, the method is characterized in that, after step (b'), (b'') further comprising the step of digesting the separated protein with a hydrolytic enzyme.

본 발명에 있어서, 상기 (c) 단계에서 바이오틴화된 단백질은 질량분석법에 의해 식별되는 것을 특징으로 한다.In the present invention, the biotinylated protein in step (c) is characterized in that it is identified by mass spectrometry.

본 발명에 있어서, 상기 방법은 상기 (c) 단계에서 상기 융합 단백질이 발현되는 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합된 약물을 처리하지 않은 상태에서 바이오틴화 되는 단백질은 약물 표적 단백질에서 제외시키는 것을 특징으로 한다. In the present invention, in the method, in the step (c), the biotinylated protein is transferred from the drug target protein in the state where the cell expressing the fusion protein is not treated with the drug to which the ligand specifically binding to the tag protein is bound. characterized by exclusion.

본 발명은 또한, 상기 핵산을 포함하는 벡터 및 상기 택 단백질에 특이적으로 결합하는 리간드를 포함하는 약물 표적 단백질 동정용 키트를 제공한다. The present invention also provides a kit for identifying a drug target protein comprising a vector containing the nucleic acid and a ligand specifically binding to the tag protein.

본 발명에 있어서, 상기 키트는 바이오틴, 스트렙타비딘 비드, 키트 사용 지침서로 구성된 군에서 선택되는 하나 이상을 추가로 포함하는 것을 특징으로 한다. In the present invention, the kit is characterized in that it further comprises at least one selected from the group consisting of biotin, streptavidin beads, and instructions for use of the kit.

본 발명은 살아있는 세포에서 약물과 결합하는 표적 단백질을 동정할 수 있는 방법을 제공하기 위한 것으로, 특히 생체 내에서 일시적으로(transiently) 약물과 상호작용하는 표적 단백질까지 동정해 낼 수 있는 방법을 제공하는 바, 약물의 생체 내 표적 단백질을 더 정확하게 식별할 수 있고, 세포 용해물을 이용하여 표적 단백질을 동정하는 기존의 방법에 비해 위양성의 가능성을 현저히 낮출 수 있는 장점이 있다. The present invention is to provide a method for identifying a target protein that binds to a drug in a living cell, and in particular, to provide a method for identifying a target protein that interacts with a drug transiently in vivo. Bar, it is possible to more accurately identify the target protein of the drug in vivo, and it has the advantage of significantly lowering the possibility of false positives compared to the existing method of identifying the target protein using cell lysates.

도 1은 본 발명의 작동 원리를 설명하는 모식도이다.
도 2a는 본 발명의 전체 절차, 표적 단백질의 약물-매개 바이오틴화 및 질량 분석에 의한 이의 식별 단계를 보여주는 개략도이다.
도 2b는 기존 표적 식별 방법과 본 발명의 비교표이다.
도 3a는 두 개의 상이한 길이(파란색)를 가진 클로로알칸 태그에 접합된 다사티닙(DA; 보라색)으로, 더 짧은 클로로알칸 태그를 가진 구조는 DA3으로 명명되었고 다른 하나는 DA5로 명명하였다.
도 3b는 DA, DA3 및 DA5의 K562 세포 성장 억제 효과를 분석한 것으로, 세포를 다양한 농도의 DA 및 이의 유도체가 포함된 배양 배지에서 72시간 동안 배양한 후, 세포 생존율을 CCK-8 분석으로 측정하였다.
도 3c는 K562 세포에서 DA, DA3 및 DA5의 GI50 값을 나타낸 것이다.
도 3d는 전위 분석의 개략도를 나타낸다. DA의 표적 단백질(예: KDABL1)이 표면에 전시됨에 따라 HT-TurbID가 DA의 인큐베이션에 따라 미토콘드리아로 전위될 것으로 예측된다.
도 3e는 U2OS 세포에서 HT-TurbID-MoA 및 HA-KDABL1을 사용한 in cellulo 단백질 전위를 공초점 이미지로 확인한 결과이다. 16시간 후, 세포를 DMSO 또는 500nM의 DA5-HTL로 3시간 동안 처리한 다음, 세포를 항-V5 항체(CY5)로 염색하고 항-HA 항체(녹색)로 대조염색하였다. 오른쪽 패널: Fiji/ImageJ로 수행된 coloc2 분석의 2D 강도 히스토그램 출력. 숫자는 anti-V5와 anti-HA 사이의 픽셀 강도 상관 관계의 고전적인 Pearson 계수를 나타낸다. 스케일 바: 18.1μm.
도 3f는 HT-V5-TurbID(분자량 = 70kDa, 검은색 화살표)에 의한 HA-KDABL1(분자량 = 50kDa, 열린 화살표)의 바이오틴화에 대한 웨스턴 블롯 분석 결과이다. 플라스미드를 16시간 동안 HEK293T 세포에 공동 형질감염시킨 다음 DA5-HTL(500nM) 또는 비히클(DMSO)로 3시간 동안 처리하였다. 30분 동안 바이오틴(100μM) 인큐베이션 후, 세포를 용해시키고 TOM20-HA-KDABL1을 항-HA 항체로 면역침전시켰다. Streptavidin-HRP(SA-HRP), 항-HA 및 항-V5 항체는 풀다운 프로세스에서 유입, 통과 및 용출 분획의 면역블롯팅 분석에 사용되었다
도 4a는 본 발명에 따른 다사티닙 결합 단백질의 대량 동정 과정을 보여주는 개략도이다.
도 4b는 DA5와 함께 HT-TurbID (즉, DA5-HT-TurbID)로 바이오틴화 된 단백질이 HT-TurbID (즉, DMSO 처리)에 의한 비특이적 바이오틴화 된 단백질보다 통계적으로 유의미한 농축을 보여주는 볼케이노 플롯(그룹 I)을 나타낸다. 바이오틴(50μM) 처리 후 30분 경과.
도 4c는 DA5-HT-TurbID에 의해 바이오틴화 된 대표적인 단백질을 나타낸다(그룹-I). 버블 크기는 DA5-HT-TurbID에 의해 바이오틴화 된 펩타이드의 질량 신호 강도를 나타낸다. 바이오틴화 된 펩타이드의 단백질 이름은 (b)의 볼케이노 플롯에 표시되어 있다.
도 4d는 K562 세포에서 DA5-HT-TurbID에 의해 바이오틴화 된 34개 단백질을 나타낸다(그룹-I). 색상 강도는 생물학적 삼중 샘플당 각 바이오틴 표지 펩타이드의 질량 강도를 나타낸다.
도 5a는 DA5 처리된 샘플(D4-6) 및 대조군 샘플(C1-3)에서 그룹 I의 단백질 타이로신 카이네이즈 상의 바이오틴화 된 부위의 질량 강도를 나타낸다. (좌측: ABL1 및 2, 우측: CSK 및 BTK).
도 5b는 BTK(상)와 CSK(하)의 구조를 보여준다. BTK의 구조는 BTK(392aa-434aa, 442aa-541aa, 559aa-658aa) 및 dasatinib(PDB ID: 3K54, 녹색)의 X선 공결정 구조(X-tal 구조)와 예측 구조(전체, 1 - 659 aa) AlphaFold 데이터베이스(Uniprot ID: Q06187, 회색)에 의해 생성되었다. CSK의 X-tal 구조와 예측된 구조는 각각 protein databank(PDB ID: 1BYG, green)와 AlphaFold Database(Uniprot ID: P41240)에서 얻었다. 도킹 시뮬레이션 프로그램(AutoDock Vina)에서 DA(마젠타)의 국소화된 위치를 얻었다. BTK와 CSK의 예측된 구조는 좌측에 제시되어 있으며, 각 색상(즉, 파란색, 청록색, 노란색 및 주황색)은 예측된 국소 거리 차이 테스트(pLDDT)의 잔기별 신뢰도 점수를 나타낸다. 파란색: pLDDT > 90, 청록색: 70 < pLDDT < 90, 노란색: 50 < pLDDT < 70, 주황색: pLDDT < 50. 본 발명에 의한 바이오틴화 된 라이신 잔기는 각각 BTK(상) 및 CSK(하)의 정렬된 구조에서 빨간색으로 표시하였다.
도 5c는 U2OS 세포에서 HT-V5-TurbID-MoA 및 BTK-mCherry-HA(좌) 또는 CSK-EGFP-HA(우) 발현 플라스미드에 따른 in cellulo 단백질 전위의 공초점 이미지를 나타낸다. 16시간 후, 세포를 DMSO(대조군) 또는 500nM의 DA5-HTL로 3시간 동안 처리한 다음, 세포를 항-V5 항체(보라색)로 염색하였다. 각 이미지 세트의 우측 패널: 2D 강도 히스토그램 및 Pearson 상관 값.
도 5d는 BTK-mCherry-HA(상) 및 CSK-EGFP-HA(하)의 In cellulo 바이오틴화 분석을 나타낸다. BTK 및 CSK 플라스미드를 HT-V5-TurbID (분자량 = 70kDa, 블랏 이미지의 검은색 화살표)로 공동 형질감염시켰다. 발현 후, HEK293T 세포에 DMSO 또는 DA5-HTL를 3시간 동안 처리하였다. 바이오틴의 인큐베이션(100μm, 30분)에 의해 바이오틴화를 수행하였다. 세포 용해 후, 항-HA 항체를 풀다운에 사용하였다. 스트렙타비딘-HRP(SA-HRP), 항-HA 및 항-V5를 면역블롯팅(WB)에 사용하였다. BTK-mCherry-HA (분자량 = 105kDa) 또는 CSK-EGFP-HA (분자량 = 79kDa)는 블롯 결과에서 열린 화살표로 표시되었다.
도 6a는 SMARCA2의 도메인 영역을 보여주는 개략도이다.
도 6b는 DA5 처리된 샘플 (D1-D3) 및 대조군 샘플 (C1-C3)에서 바이오틴화 SMARCA2의 정규화된 질량 강도를 나타낸다.
도 6c는 SMARCA2의 헬리카제-ATP 결합 도메인(아미노산 736-901, 녹색) 및 ATP(노란색, PDB ID: 6EG3) 그리고 AlphaFold 구조(Uniprot ID: P51531, 좌측)의 X선 공결정 구조(X-tal 구조)의 정렬에 의해 생성된 SMARCA2의 구조를 나타낸다. AlphaFold 구조의 Helicase-ATP 결합 도메인(아미노산 736-901)과 헬리카제 C-말단 도메인(아미노산 1054-1216)은 각각 마젠타색과 하늘색으로 표시되었다. 다사티닙(파란색)의 결합 부위는 AutoDock Vina를 사용한 단백질-리간드 도킹 시뮬레이션에 의해 계산되었다. AlphaFold 데이터베이스로부터 SMARCA2 구조(Uniprot ID: P51531, 좌측)는 신뢰도별 점수(pLDDT)를 나타내는 파란색, 청록색, 노란색 및 주황색으로 표시되었다. (파란색: pLDDT > 90, 청록색: 70 < pLDDT < 90, 노란색: 50 < pLDDT < 70, 주황색: pLDDT < 50). 바이오틴화 된 라이신 잔기(K904)는 빨간색으로 표시되었다.
도 6d는 HEK293-AD 세포에서 TOM20-V5-할로택(항-V5) 및 ABD SMARCA2(736-901aa 헬리카제-ATP 결합 도메인)-HA 사용한 in cellulo 단백질 전위의 공초점 이미지를 나타낸다. 16시간 후, 세포를 DMSO(대조군) 또는 500nM의 DA5-HTL로 3시간 동안 처리하고, 항-V5 항체(RFP 채널) 및 항-HA 항체(GFP 채널)로 염색하였다. 각 이미지 세트의 우측 패널: 2D 강도 히스토그램 및 Pearson 상관 값.
도 6e는 본 발명에 따른 다사티닙 의존 상호작용체 식별의 개략도를 나타낸다.
1 is a schematic diagram illustrating the operating principle of the present invention.
Figure 2a is a schematic diagram showing the overall procedure of the present invention, the steps of drug-mediated biotinylation of a target protein and its identification by mass spectrometry.
Figure 2b is a comparison table between the existing target identification method and the present invention.
3A shows Dasatinib (DA; purple) conjugated to chloroalkane tags with two different lengths (blue), the structure with the shorter chloroalkane tag named DA3 and the other DA5.
Figure 3b is an analysis of the K562 cell growth inhibitory effect of DA, DA3 and DA5. After culturing the cells in a culture medium containing various concentrations of DA and its derivatives for 72 hours, cell viability was measured by CCK-8 assay did
Figure 3c shows the GI50 values of DA, DA3 and DA5 in K562 cells.
Figure 3d shows a schematic diagram of potential analysis. As target proteins of DA (e.g., KD ABL1) are displayed on the surface, it is predicted that HT-TurbID will translocate to mitochondria upon incubation of DA.
Figure 3e shows the results of confocal imaging of in-cellulo protein translocation using HT-TurbID-MoA and HA- KD ABL1 in U2OS cells. After 16 hours, cells were treated with DMSO or 500 nM of DA5-HTL for 3 hours, then cells were stained with anti-V5 antibody (CY5) and counterstained with anti-HA antibody (green). Right panel: 2D intensity histogram output of coloc2 analysis performed with Fiji/ImageJ. Numbers represent classical Pearson coefficients of pixel intensity correlation between anti-V5 and anti-HA. Scale bar: 18.1 μm.
Fig. 3f is a Western blot analysis result of biotinylation of HA- KD ABL1 (molecular weight = 50 kDa, open arrow) by HT-V5-TurbID (molecular weight = 70 kDa, black arrow). Plasmids were co-transfected into HEK293T cells for 16 hours and then treated with DA5-HTL (500 nM) or vehicle (DMSO) for 3 hours. After incubation with biotin (100 μM) for 30 minutes, cells were lysed and TOM20-HA- KD ABL1 was immunoprecipitated with anti-HA antibody. Streptavidin-HRP (SA-HRP), anti-HA and anti-V5 antibodies were used for immunoblotting analysis of inflow, passage and elution fractions in the pull-down process
Figure 4a is a schematic diagram showing a process for mass identification of Dasatinib binding proteins according to the present invention.
Figure 4b is a Volcano plot showing a statistically significant enrichment of proteins biotinylated with HT-TurbID (i.e., DA5-HT-TurbID) together with DA5 over non-specific biotinylated proteins with HT-TurbID (i.e., DMSO treatment) ( group I). 30 minutes after treatment with biotin (50 μM).
Figure 4c shows representative proteins biotinylated by DA5-HT-TurbID (group-I). Bubble size represents the mass signal intensity of peptides biotinylated by DA5-HT-TurbID. Protein names of biotinylated peptides are indicated in the Volcano plot in (b).
Figure 4d shows 34 proteins biotinylated by DA5-HT-TurbID in K562 cells (group-I). Color intensity represents the mass intensity of each biotin-labeled peptide per biological triplicate sample.
Figure 5a shows the mass intensity of biotinylated sites on protein tyrosine kinases of group I in DA5-treated samples (D4-6) and control samples (C1-3). (Left: ABL1 and 2, right: CSK and BTK).
Figure 5b shows the structures of BTK (top) and CSK (bottom). The structures of BTK are X-ray co-crystal structures (X-tal structure) and predicted structures (full, 1 - 659 aa ) was created by the AlphaFold database (Uniprot ID: Q06187, gray). The X-tal structure and predicted structure of CSK were obtained from protein databank (PDB ID: 1BYG, green) and AlphaFold Database (Uniprot ID: P41240), respectively. The localized position of DA (magenta) was obtained in the docking simulation program (AutoDock Vina). The predicted structures of BTK and CSK are presented on the left, and each color (i.e., blue, cyan, yellow, and orange) represents the residue-specific reliability score of the predicted local distance difference test (pLDDT). Blue: pLDDT > 90, cyan: 70 < pLDDT < 90, yellow: 50 < pLDDT < 70, orange: pLDDT < 50. Biotinylated lysine residues according to the present invention are aligned with BTK (top) and CSK (bottom), respectively. The structure is marked in red.
Figure 5c shows confocal images of in-cellulo protein translocation according to HT-V5-TurbID-MoA and BTK-mCherry-HA (left) or CSK-EGFP-HA (right) expression plasmids in U2OS cells. After 16 hours, cells were treated with DMSO (control) or 500 nM of DA5-HTL for 3 hours, then cells were stained with anti-V5 antibody (purple). Right panel for each image set: 2D intensity histogram and Pearson correlation values.
Figure 5d shows the in cellulo biotinylation assay of BTK-mCherry-HA (top) and CSK-EGFP-HA (bottom). BTK and CSK plasmids were co-transfected with HT-V5-TurbID (molecular weight = 70 kDa, black arrows in blot images). After expression, HEK293T cells were treated with DMSO or DA5-HTL for 3 hours. Biotinylation was performed by incubation of biotin (100 μm, 30 min). After cell lysis, anti-HA antibody was used for pull-down. Streptavidin-HRP (SA-HRP), anti-HA and anti-V5 were used for immunoblotting (WB). BTK-mCherry-HA (molecular weight = 105 kDa) or CSK-EGFP-HA (molecular weight = 79 kDa) were indicated by open arrows in the blot results.
6A is a schematic diagram showing domain regions of SMARCA2.
Figure 6b shows the normalized mass intensity of biotinylated SMARCA2 in DA5 treated samples (D1-D3) and control samples (C1-C3).
Figure 6c shows the X-ray cocrystal structure (X-tal structure) of SMARCA2. The Helicase-ATP binding domain (amino acids 736-901) and the helicase C-terminal domain (amino acids 1054-1216) of the AlphaFold structure are shown in magenta and light blue, respectively. The binding site of dasatinib (blue) was calculated by protein-ligand docking simulation using AutoDock Vina. The SMARCA2 structure (Uniprot ID: P51531, left) from the AlphaFold database is shown in blue, turquoise, yellow and orange, representing scores per confidence level (pLDDT). (Blue: pLDDT > 90, Cyan: 70 < pLDDT < 90, Yellow: 50 < pLDDT < 70, Orange: pLDDT < 50). Biotinylated lysine residue (K904) is shown in red.
Figure 6d shows confocal images of in cellulo protein potential using TOM20-V5-Halotag (anti-V5) and ABD SMARCA2 (736-901aa helicase-ATP binding domain)-HA in HEK293-AD cells. After 16 hours, cells were treated with DMSO (control) or 500 nM of DA5-HTL for 3 hours and stained with anti-V5 antibody (RFP channel) and anti-HA antibody (GFP channel). Right panel for each image set: 2D intensity histogram and Pearson correlation values.
6E shows a schematic of Dasatinib dependent interactor identification according to the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are those well known and commonly used in the art.

본 발명에서는 근위 단백질 변형 반응 접근 방식을 일반적인 표적 식별 방법에 적용할 수 있는 방법을 연구하던 중, 할로택을 관심 화합물에 대한 어댑터 단백질로 사용하는 PROCID (PROximity-based Compound binding protein IDentification, 이하, 본 발명은 'PROCID'라는 용어와 상호 교환적으로 사용됨)라는 새로운 표적 식별 (target-ID) 방법을 개발하였다. 할로택은 클로로알칸 모이어티 (HTL)가 있는 할로택 리간드를 인식하고 공유 결합을 형성하는데, 할로택의 결합 역학은 매우 빠르며, HTL을 살아있는 세포에 처리할 때 공유 결합의 90% 이상이 일반적으로 5분 이내에 완료된다. 또한, 많은 HTL 접합 모이어티 (예: 형광단, 억제제)가 할로택 단백질에 성공적으로 표적화 될 수 있어, HTL에 접합된 화합물이 할로택 단백질의 표면에 노출될 것으로 예상되었다. HTL-접합된 부분이 할로택 표면에 완전히 노출될 수 있다면, 할로택 단백질에 결합하는 HTL에 접합된 약물 분자는 결합 단백질을 모집할 수 있을 것이다. 이러한 특성에서 착안하여 본 발명에서는 약물 결합 상호작용체를 명확하게 식별할 수 있는 방법을 개발하였다. In the present invention, while studying a method for applying the proximal protein modification reaction approach to a general target identification method, PROCID ( PRO ximity -based Compound binding protein ID entification, Hereinafter, the present invention has developed a new target identification (target-ID) method called 'PROCID' (which is used interchangeably with the term 'PROCID'). Halotag recognizes a halotag ligand with a chloroalkane moiety (HTL) and forms a covalent bond. The binding kinetics of halotag is very fast, and more than 90% of covalent bonds are typically achieved when HTL is applied to living cells. It is done within 5 minutes. In addition, many HTL conjugation moieties (e.g., fluorophores, inhibitors) could be successfully targeted to halotac proteins, so it was expected that compounds conjugated to HTL would be exposed on the surface of halotac proteins. If the HTL-conjugated moiety can be fully exposed on the halotag surface, HTL-conjugated drug molecules that bind to the halotag protein will be able to recruit the binding protein. Taking note of these characteristics, in the present invention, a method for clearly identifying drug-binding interactors was developed.

구체적으로, 본 발명에서는 다사티닙(Dasatinib)을 모델 화합물로 사용하여 살아있는 시스템에서 약물 결합 단백질을 식별할 수 있는지 확인하기 위하여, 개념 증명 실험을 수행하였다. 그 결과, 음성 대조군에 비해 PROCID에서 재현 가능하게 포획된 34개의 비오틴화된 단백질을 분명히 식별해 낼 수 있었는데, 이중에는 이전의 시험관 내 특성화에 따라 다사티닙에 결합하는 것으로 알려진 타이로신 카이네이즈인 ABL1, ABL2, BTK 및 CSK가 포함되어 있었다. 뿐만 아니라, PROCID는 또한 SMARCA2를 다사티닙 결합 단백질로 새롭게 식별하였다. 이는 기존의 표적 식별 연구에서 다사티닙 상호작용 단백질로 전혀 보고된 바 없는 신규한 상호작용체로, 이는 SMARCA2가 살아있는 세포 환경에서 다사티닙에 결합할 수 있으며 살아있는 세포에서 수행되도록 설계된 PROCID 만이 이를 감지할 수 있음을 의미한다. Specifically, in the present invention, a proof-of-concept experiment was performed to confirm whether a drug-binding protein could be identified in a living system using Dasatinib as a model compound. As a result, we were able to clearly identify 34 biotinylated proteins that were reproducibly captured by PROCID compared to the negative control, including ABL1, a tyrosine kinase known to bind dasatinib according to previous in vitro characterization; ABL2, BTK and CSK were included. In addition, PROCID also newly identified SMARCA2 as a dasatinib binding protein. This is a novel interactor that has never been reported as a Dasatinib-interacting protein in previous target identification studies. This means that SMARCA2 can bind to Dasatinib in a living cell environment and only PROCID designed to work in living cells can detect it. It means you can.

따라서, 본 발명은 일 관점에서, 택 단백질에 바이오틴 라이게이즈 효소단백질인 TurbID가 결합되어 있는 융합단백질에 관한 것이다. Accordingly, in one aspect, the present invention relates to a fusion protein in which TurbID, a biotin ligase enzyme protein, is linked to a tag protein.

본 발명에 있어서, 상기 택 단백질은 할로택, 스냅택 (Gautier et al. Chemistry and Biology, 2008, 15, 128-136), 클립택 (Gautier et al. Chemistry and Biology, 2008, 15, 128-136) 또는 아비딘 (Guardia et al. Plos Biology, 17(5): e3000279.)인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the tag protein is halotak, snaptack (Gautier et al. Chemistry and Biology, 2008, 15, 128-136), cliptack (Gautier et al. Chemistry and Biology, 2008, 15, 128-136 ) or avidin (Guardia et al. Plos Biology, 17(5): e3000279.), but is not limited thereto.

일 양태로서, 본 발명은 할로택에 바이오틴 라이게이즈 효소단백질인 TurbID가 결합되어 있는 HT-TurbID 융합 단백질일 수 있으나, 이에 한정되지는 않는다. In one aspect, the present invention may be a HT-TurbID fusion protein in which halotag is coupled with TurbID, a biotin ligase enzyme protein, but is not limited thereto.

본 발명에 있어서, 상기 HT-TurbID 융합 단백질은 서열번호 1로 표시될 수 있으나, 이에 한정되지는 않는다.In the present invention, the HT-TurbID fusion protein may be represented by SEQ ID NO: 1, but is not limited thereto.

<서열번호 1> HT-TurbID<SEQ ID NO: 1> HT-TurbID

MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIPHVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDWGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGPGLNLLQEDNPDLIGSEIARWLSTLEISGGRPLAGKPIPNPLLGLDSTKDNTVPLKLIALLANGEFHSGEQLGETLGMSRAAINKHIQTLRDWGVDVFTVPGKGYSLPEPIPLLNAKQILGQLDGGSVAVLPVVDSTNQYLLDRIGELKSGDACIAEYQQAGRGSRGRKWFSPFGANLYLSMFWRLKRGPAAIGLGPVIGIVMAEALRKLGADKVRVKWPNDLYLQDRKLAGILVELAGITGDAAQIVIGAGINVAMRRVEESVVNQGWITLQEAGINLDRNTLAATLIRELRAALELFEQEGLAPYLPRWEKLDNFINRPVKLIIGDKEIFGISRGIDKQGALLLEQDGVIKPWMGGEISLRSAEKMAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIPHVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDWGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGPGLNLLQEDNPDLIGSEIARWLSTLEISGGRPLAGKPIPNPLLGLDSTKDNTVPLKLIALLANGEFHSGEQLGETLGMSRAAINKHIQTLRDWGVDVFTVPGKGYSLPEPIPLLNAKQILGQLDGGSVAVLPVVDSTNQYLLDRIGELKSGDACIAEYQQAGRGSRGRKWFSPFGANLYLSMFWRLKRGPAAIGLGPVIGIVMAEALRKLGADKVRVKWPNDLYLQDRKLAGILVELAGITGDAAQIVIGAGINVAMRRVEESVVNQGWITLQEAGINLDRNTLAATLIRELRAALELFEQEGLAPYLPRWEKLDNFINRPVKLIIGDKEIFGISRGIDKQGALLLEQDGVIKPWMGGEISLRSAEK

다른 관점에서, 본 발명은 융합 단백질을 암호화하는 핵산에 관한 것이다.In another aspect, the present invention relates to nucleic acids encoding fusion proteins.

또 다른 관점에서, 본 발명은 핵산 또는 상기 핵산을 포함하는 벡터가 도입되어 있는 세포에 관한 것이다. In another aspect, the invention relates to a cell into which a nucleic acid or a vector comprising the nucleic acid has been introduced.

본 발명은 또 다른 관점에서, 다음 단계를 포함하는 약물 표적 단백질 동정 방법에 관한 것이다:In another aspect, the present invention relates to a method for identifying a drug target protein comprising the following steps:

(a) 상기 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합되어 있는 약물을 처리하는 단계:(a) treating the cell with a drug bound to a ligand that specifically binds to the tag protein:

(b) 상기 세포를 용해시키는 단계; 및(b) lysing the cells; and

(c) 상기 용해된 세포에서 바이오틴화 된 단백질을 약물 표적 단백질로 식별하는 단계.(c) identifying biotinylated proteins in the lysed cells as drug target proteins.

본 발명에서는 살아있는 세포에서 일시적으로 결합하는 약물 결합 단백질을 동정할 수 있는 효과를 입증한 바, 본 발명에 있어서, 상기 (a) 단계의 세포는 살아있는 세포인 것을 특징으로 할 수 있으며, 따라서 본 발명에서 상기 (a) 단계는 살아있는 세포에 할로택 리간드가 결합되어 있는 약물을 처리하는 것을 특징으로 할 수 있다.The present invention has demonstrated the effect of identifying drug-binding proteins that transiently bind to living cells. In the present invention, the cells in step (a) can be characterized as living cells, and therefore the present invention In the step (a), living cells may be treated with a drug to which a halotac ligand is bound.

같은 맥락에서, 본 발명의 상기 (a) 단계에서, 약물 표적 단백질은 in cellulo 바이오틴화 되는 것을 특징으로 할 수 있다. In the same context, in step (a) of the present invention, the drug target protein may be characterized in that it is in cellulo biotinylated.

본 발명에 있어서, 상기 방법은 (b) 단계 후, (b') 상기 용해된 세포에서 바이오틴화 된 단백질을 분리하는 단계를 더 포함하는 것을 특징으로 할 수 있는데, 상기 분리는 스트렙타비딘, 아비딘, 바이오틴에 가역적으로 결합하는 스트렙타비딘의 유사체 또는 바이오틴에 가역적으로 결합하는 아비딘의 유사체 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the method may further include, after step (b), (b') separating the biotinylated protein from the lysed cells, wherein the separation is performed using streptavidin or avidin , It may be an analogue of streptavidin that reversibly binds to biotin or an analogue of avidin that reversibly binds to biotin, but is not limited thereto.

본 발명에 있어서, 상기 방법은 상기 (b') 단계 후, (b'') 상기 분리된 단백질을 가수분해 효소로 분해(digestion)시키는 단계를 더 포함하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the method may further include, after step (b'), (b'') digesting the separated protein with a hydrolytic enzyme, but is not limited thereto. does not

본 발명에 있어서, 상기 가수분해 효소는 트립신(Trypsin), 아르기닌 C(Arg-C), 아스파르트산 N(Asp-N), 글루탐산 C(Glu-C), 라이신 C(Lys-C), 키모트립신(Chymotrypsin), 프로테인나아제 K(Proteinase k) 및 프로나아제(Pronase)으로 구성되는 군으로부터 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the hydrolase is trypsin, arginine C (Arg-C), aspartic acid N (Asp-N), glutamic acid C (Glu-C), lysine C (Lys-C), chymotrypsin (Chymotrypsin), proteinase K (Proteinase k) and pronase (Pronase) characterized in that selected from the group consisting of, but is not limited thereto.

본 발명에 있어서, 상기 (c) 단계에서 바이오틴화된 단백질은 질량분석법에 의해 식별되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the biotinylated protein in step (c) may be identified by mass spectrometry, but is not limited thereto.

본 발명에 있어서, 상기 질량 분석을 위한 질량분석기는 LTQ-FT, Orbitrap, Triple-Tof, Q-Tof, Tof-Tof 및 Q Exactive로 구성되는 군으로부터 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the mass spectrometer for mass spectrometry may be selected from the group consisting of LTQ-FT, Orbitrap, Triple-Tof, Q-Tof, Tof-Tof and Q Exactive, but is not limited thereto does not

본 발명에 있어서, 상기 방법은 상기 (c) 단계에서 상기 융합 단백질이 발현되는 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합된 약물을 처리하지 않은 상태에서 바이오틴화 되는 단백질은 약물 표적 단백질에서 제외시키는 것을 특징으로 할 수 있는데, 이와 같은 과정에 의해 위양성 약물 결합 단백질이 동정되는 것을 방지할 수 있다. In the present invention, in the method, in the step (c), the biotinylated protein is transferred from the drug target protein in the state where the cell expressing the fusion protein is not treated with the drug to which the ligand specifically binding to the tag protein is bound. It can be characterized by excluding it, and it is possible to prevent false-positive drug-binding proteins from being identified by this process.

또한, 본 발명에서는 미토콘드리아 외막-표적 펩타이드를 HTL-약물 또는 HT-TurbID에 추가로 융합시키는 경우, in cellulo 미토콘드리아 전위를 통해 살아있는 세포에서 상호 작용 단백질 검증에 활용할 수 있음을 확인하였다.In addition, in the present invention, it was confirmed that when a mitochondrial outer membrane-targeting peptide is additionally fused to HTL-drug or HT-TurbID, it can be used to verify interaction proteins in living cells through in-cellulo mitochondrial translocation.

따라서, 본 발명은 또 다른 관점에서, HT-TurbID 융합 단백질에 세포 내 기관 표적 펩타이드가 추가로 융합되어 있는 세포 내 기관 표적 융합 단백질에 관한 것이다.Accordingly, in another aspect, the present invention relates to an intracellular organ-targeting fusion protein in which an intracellular organ-targeting peptide is further fused to an HT-TurbID fusion protein.

본 발명에 있어서, 상기 융합 단백질은 면역 표지를 위한 태그 서열이 추가로 결합되어 있는 것을 특징으로 할 수 있다.In the present invention, the fusion protein may be characterized in that a tag sequence for immune labeling is additionally bound thereto.

본 발명에 있어서, 상기 태그는 HA, V5, Myc, His 및 Flag으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.In the present invention, the tag may be selected from the group consisting of HA, V5, Myc, His and Flag, but is not limited thereto.

또 다른 관점에서, 본 발명은 세포 내 기관 표적 융합 단백질을 암호화하는 핵산에 관한 것이다.In another aspect, the present invention relates to nucleic acids encoding intracellular organelle targeting fusion proteins.

또 다른 관점에서, 본 발명은 상기 핵산 또는 상기 핵산을 포함하는 벡터; 및 검증하고자 하는 약물의 상호작용 단백질을 암호화하는 핵산 또는 상기 핵산을 포함하는 벡터;가 도입되어 있는 세포에 관한 것이다.In another aspect, the present invention provides a nucleic acid or a vector comprising the nucleic acid; and a nucleic acid encoding a drug interaction protein to be verified or a vector containing the nucleic acid.

본 발명에 있어서, 상기 약물의 상호작용 단백질은 면역 표지를 위한 태그 서열이 추가로 결합되어 있는 것을 특징으로 할 수 있다.In the present invention, the drug interaction protein may be characterized in that a tag sequence for immunolabeling is additionally bound thereto.

본 발명에 있어서, 상기 태그는 HA, V5, Myc, His 및 Flag으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. In the present invention, the tag may be selected from the group consisting of HA, V5, Myc, His and Flag, but is not limited thereto.

이 경우, 융합 상기 단백질은 면역 표지를 위한 태그와 상기 약물의 상호작용 단백질은 면역 표지를 위한 태그는 서로 상이한 것이 바람직하다.In this case, it is preferable that the tag for immunolabeling of the fusion protein and the tag for immunolabeling of the drug interaction protein are different from each other.

한편, 본 발명에 있어서, 상기 세포 내 기관 표적 융합 단백질을 암호화하는 핵산과 검증하고자 하는 약물의 상호작용 단백질을 암호화하는 핵산은 하나의 벡터에 포함될 수 있고, 또한 상기 세포 내 기관 표적 융합 단백질을 암호화하는 핵산과 검증하고자 하는 약물의 상호작용 단백질을 암호화하는 핵산은 각각 별개의 벡터에 포함될 수도 있다. Meanwhile, in the present invention, the nucleic acid encoding the intracellular organ-targeting fusion protein and the nucleic acid encoding the drug interaction protein to be verified may be included in one vector, and also encodes the intracellular organ-targeting fusion protein. The nucleic acid to be tested and the nucleic acid encoding the drug interaction protein to be verified may be included in separate vectors.

또 다른 관점에서, 본 발명은 다음 단계를 포함하는 살아있는 세포에서 약물 상호작용 단백질을 검증하는 방법에 관한 것이다:In another aspect, the present invention relates to a method for validating a drug interacting protein in living cells comprising the steps of:

(a) 상기 세포에 할로택 리간드가 결합되어 있는 약물을 처리하는 단계:(a) treating the cells with a drug to which halotac ligand is bound:

(b) 상기 세포를 고정 및 투과하는 단계; 및(b) fixing and permeabilizing the cells; and

(c) 상기 세포 내 기관 표적 융합 단백질 및 상기 약물의 상호작용 단백질을 각각 면역 형광으로 가시화하는 단계.(c) visualizing the intracellular organ-targeting fusion protein and the drug-interacting protein by immunofluorescence, respectively.

본 발명에 있어서, 상기 (c) 단계에서 상기 세포 내 기관 표적 융합 단백질의 면역 형광과 상기 약물의 상호작용 단백질의 면역 형광이 오버랩되는 경우, 상기 두 단백질은 20 나노미터 이내의 근위 거리에 존재하는 것으로 평가할 수 있다. In the present invention, when the immunofluorescence of the intracellular organ-targeting fusion protein and the immunofluorescence of the drug-interacting protein overlap in step (c), the two proteins exist at a proximal distance within 20 nanometers. can be evaluated as

본 발명에 있어서, 상기 (c) 단계에서 상기 세포 내 기관 표적 융합 단백질의 면역 형광과 상기 약물의 상호작용 단백질의 면역 형광이 오버랩되는 경우, 상기 두 단백질은 1 내지 20nm 거리에 존재하는 것을 특징으로 할 수 있다. In the present invention, when the immunofluorescence of the intracellular organ-targeting fusion protein and the immunofluorescence of the drug-interacting protein overlap in step (c), the two proteins are present at a distance of 1 to 20 nm. can do.

본 발명은 또 다른 관점에서 약물 표적 단백질 동정용 키트에 관한 것이다.In another aspect, the present invention relates to a kit for identifying a drug target protein.

본 발명에 있어서, 상기 키트는 상기 융합단백질 발현용 벡터 및 택 단백질에 특이적으로 결합하는 리간드를 포함하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. In the present invention, the kit may be characterized in that it includes a ligand specifically binding to the vector for expressing the fusion protein and the tag protein, but is not limited thereto.

본 발명에 있어서, 상기 키트는 바이오틴, 스트렙타비딘 비드, 키트 사용 지침서로 구성된 군에서 선택되는 하나 이상을 추가로 포함하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. In the present invention, the kit may be characterized in that it further comprises at least one selected from the group consisting of biotin, streptavidin beads, and instructions for use of the kit, but is not limited thereto.

본 발명에 있어서, 상기 사용 지첨서는 상기 구성 물질에 대한 설명, 택 단백질에 특이적으로 결합하는 리간드 물질을 약물에 결합시키는 방법을 비롯한 약물 표적 단백질을 동정하기 위한 일련의 과정에 대한 설명 등이 기재될 수 있으나, 이에 한정되지는 않는다. In the present invention, the instructions for use include a description of the constituent materials, a description of a series of processes for identifying a drug target protein, including a method of binding a ligand substance that specifically binds to a tag protein to a drug, and the like. It may be, but is not limited thereto.

본 발명에서 사용된 융합 단백질의 일부 아미노산은 비 보존 치환 또는 보존된 치환된 것일 수 있다. Some amino acids of the fusion protein used in the present invention may be non-conservative substitutions or conserved substitutions.

일 양태로서, 아미노산 치환은 비 보존 치환(non-conserved substitutions)일 수 있다. 상기 비 보존 치환은, 예를 들어, 특정 측쇄 크기 또는 특정 특성 (예를 들어, 친수성)을 갖는 아미노산 잔기를 상이한 측쇄 크기 또는 상이한 특성 (예를 들어, 소수성)을 갖는 아미노산 잔기로 대체하는 것과 같은 비 보존 방식으로, 표적 단백질 또는 폴리펩티드의 아미노산 잔기를 변경하는 것을 포함할 수 있다. In one aspect, amino acid substitutions may be non-conserved substitutions. Such non-conservative substitutions include, for example, replacement of an amino acid residue having a particular side chain size or a particular property (eg, hydrophilicity) with an amino acid residue having a different side chain size or different property (eg, hydrophobicity). It may involve altering amino acid residues of the target protein or polypeptide in a non-conservative manner.

상기 아미노산 치환은 또한 보존된 치환(conserved substitutions)일 수 있다. 상기 보존된 치환은, 예를 들어, 특정 측쇄 크기 또는 특정 특징 (예를 들어, 친수성)을 갖는 아미노산 잔기를 동일하거나 유사한 측쇄 크기 또는 동일하거나 유사한 특성 (예 : 여전히 친수성)을 갖는 아미노산 잔기로 대체하는 것과 같이, 보존된 방식으로 표적 단백질 또는 폴리펩티드의 아미노산 잔기를 변경하는 것을 포함할 수 있다. 이러한 보존된 치환은 일반적으로 생산된 단백질의 구조 또는 기능에 큰 영향을 미치지 않는다. 본 출원에서, 융합 단백질의 돌연변이인 아미노산 서열 변이체, 이의 단편, 또는 하나 이상의 아미노산이 치환된 이의 변이체는 단백질의 구조 또는 기능을 현저하게 변화시키지 않는 보존된 아미노산 치환을 포함할 수 있다.The amino acid substitutions may also be conserved substitutions. Such conserved substitutions are, for example, replacement of an amino acid residue having a particular side chain size or a particular characteristic (eg, hydrophilicity) with an amino acid residue having the same or similar side chain size or the same or similar characteristic (eg, still hydrophilic). such as altering amino acid residues of a target protein or polypeptide in a conserved manner. These conserved substitutions usually do not significantly affect the structure or function of the produced protein. In the present application, amino acid sequence variants that are mutations of fusion proteins, fragments thereof, or variants thereof in which one or more amino acids are substituted may contain conserved amino acid substitutions that do not significantly change the structure or function of the protein.

예를 들어, 다음 그룹 각각에서 아미노산 간의 상호 치환(mutual substitutions)은 본 출원에서 보존적 치환으로 간주될 수 있다:For example, mutual substitutions between amino acids in each of the following groups may be considered conservative substitutions in this application:

비극성 측쇄를 갖는 아미노산 그룹: 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 트립토판 및 메티오닌.A group of amino acids with non-polar side chains: alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan and methionine.

극성 측쇄를 갖는 비하전 아미노산 그룹: 글리신, 세린, 트레오닌, 시스테인, 티로신, 아스파라긴 및 글루타민.A group of uncharged amino acids with polar side chains: glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine.

극성 측쇄를 갖는 음전하 아미노산 그룹: 아스파르트산 및 글루탐산.A group of negatively charged amino acids with polar side chains: aspartic acid and glutamic acid.

양전하를 띤 염기성 아미노산 그룹: 라이신, 아르기닌 및 히스티딘.A group of positively charged basic amino acids: lysine, arginine and histidine.

페닐을 갖는 아미노산 그룹: 페닐알라닌, 트립토판 및 티로신. A group of amino acids with phenyl: phenylalanine, tryptophan and tyrosine.

본 발명에 포함된 단백질, 폴리펩티드 및/또는 아미노산 서열은 또한 적어도 다음 범위를 포함하는 것으로 이해될 수 있다: 상기 단백질 또는 폴리펩티드와 동일하거나 유사한 기능을 갖는 변이체 또는 상동체(homologues).A protein, polypeptide and/or amino acid sequence encompassed by the present invention may also be understood to encompass at least the following: variants or homologues having the same or similar function as the protein or polypeptide.

본 발명에서, 상기 변이체는 상기 단백질 및/또는 상기 폴리펩티드의 아미노산 서열과 비교하여 하나 이상의 아미노산의 치환, 결실 또는 첨가에 의해 생성된 단백질 또는 폴리펩티드 일 수 있다. 예를 들어, 상기 기능적 변이체는 적어도 1 개의 아미노산의 치환, 결실 및/또는 삽입, 예를 들어 1-30, 1-20 또는 1-10, 대안적으로, 예를 들어 1, 2, 3, 4, 또는 5 아미노산의 치환, 결실 및/또는 삽입에 의한 아미노산 변화를 갖는 단백질 또는 폴리펩티드를 포함할 수 있다. 상기 기능적 변이체는 변화 (예를 들어, 치환, 결실 또는 첨가) 전에 상기 단백질 또는 상기 폴리펩티드의 생물학적 특성을 실질적으로 보유할 수 있다. 예를 들어, 상기 기능적 변이체는 변경 전에 상기 단백질 또는 상기 폴리펩티드의 생물학적 활성의 60 %, 70 %, 80 %, 90 % 또는 100 % 이상을 보유할 수 있다.In the present invention, the variant may be a protein or polypeptide produced by substitution, deletion or addition of one or more amino acids compared to the amino acid sequence of the protein and/or the polypeptide. For example, the functional variant comprises substitutions, deletions and/or insertions of at least one amino acid, eg 1-30, 1-20 or 1-10, alternatively, eg 1, 2, 3, 4 , or proteins or polypeptides with amino acid changes by substitution, deletion and/or insertion of 5 amino acids. The functional variant may substantially retain the biological properties of the protein or polypeptide prior to changes (eg, substitutions, deletions or additions). For example, the functional variant may retain at least 60%, 70%, 80%, 90% or 100% of the biological activity of the protein or polypeptide prior to alteration.

본 발명에서, 상기 상동체(homologue)는 상기 단백질 및/또는 상기 폴리펩티드의 아미노산 서열과 적어도 약 80 % (예를 들어, 적어도 약 85 %, 약 90 %, 약 91 %, 약 92 %, 약 93 %, 약 94 %, 약 95 %, 약 96 %, 약 97 %, 약 98 %, 약 99 % 이상) 서열 상동성을 갖는 단백질 또는 폴리펩티드 일 수 있다. In the present invention, the homologue is at least about 80% (e.g., at least about 85%, about 90%, about 91%, about 92%, about 93%) identical to the amino acid sequence of the protein and/or the polypeptide. %, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more) may be proteins or polypeptides having sequence homology.

본 발명에서, 상기 상동성은 일반적으로 둘 이상의 서열 간의 유사성(similarity), 유의성(analogousness) 또는 연관성(association)을 지칭한다. "서열 상동성 백분율(percent of sequence homology)"은 동일한 핵산 염기 (예: A, T, C, G, I) 또는 동일한 아미노산 잔기 (예 : Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys 및 Met)가 존재하는 위치의 수를 결정하는 비교 창에서 정렬된 두 서열을 비교하는 방식에 의해 계산될 수 있으며, 비교 창(즉, 윈도우 사이즈)의 일치하는 위치의 수를 제공하기 위하여 일치하는 위치의 수를 총 위치 수로 나누고, 결과에 100을 곱하여 서열 상동성의 백분율을 제공한다. 서열 상동성의 백분율을 결정하기 위한 정렬은 예를 들어 BLAST, BLAST-2, ALIGN 또는 Megalign (DNASTAR) 소프트웨어와 같은 공개적으로 이용 가능한 컴퓨터 소프트웨어를 사용하여 당업계에 알려진 다양한 방식으로 수행될 수 있다. 당업자는 비교되는 전장 서열 내에서 또는 표적 서열 영역 내에서 최대 정렬을 달성하는 데 필요한 임의의 알고리즘을 포함하여 서열 정렬을 위한 적절한 파라미터를 결정할 수 있다. 상기 상동성은 또한 다음 방법에 의해 결정될 수 있다: FASTA 및 BLAST. FASTA 알고리즘은 예를 들어 W. R. Pearson and D. J. Lipman's "Improved Tool for Biological Sequence Comparison", Proc. Natl. Acad. Sci., 85: 2444-2448, 1988; 및 D, J. Lipman and W. R. Pearson's "Fast and Sensitive Protein Similarity Search", Science, 227:1435-1441, 1989에 개시되어 있고, BLAST 알고리즘에 대한 설명은 S. Altschul, W. Gish, W. Miller, E. W. Myers and D. Lipman, "A Basic Local Alignment Search Tool", Journal of Molecular Biology, 215: 403-410, 1990를 참조하길 바란다.In the present invention, the homology generally refers to similarity, analogousness or association between two or more sequences. “Percent of sequence homology” refers to identical nucleic acid bases (e.g. A, T, C, G, I) or identical amino acid residues (e.g. Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) can be calculated by comparing the two aligned sequences in a comparison window to determine the number of positions present. and divide the number of matched positions by the total number of positions to give the number of matched positions in the comparison window (i.e., window size), and multiply the result by 100 to give the percentage of sequence identity. Alignment to determine percent sequence homology can be performed in a variety of ways known in the art, for example using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. One skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms necessary to achieve maximal alignment within the full-length sequences being compared or within the target sequence region. The homology can also be determined by the following methods: FASTA and BLAST. The FASTA algorithm is described, for example, in W. R. Pearson and D. J. Lipman's "Improved Tool for Biological Sequence Comparison", Proc. Natl. Acad. Sci., 85: 2444-2448, 1988; and D, J. Lipman and W. R. Pearson's "Fast and Sensitive Protein Similarity Search", Science, 227:1435-1441, 1989; a description of the BLAST algorithm is provided by S. Altschul, W. Gish, W. Miller, See E. W. Myers and D. Lipman, "A Basic Local Alignment Search Tool", Journal of Molecular Biology, 215: 403-410, 1990.

본 명세서에서 사용되는 용어, "벡터"는 숙주세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 코즈미드 벡터; 박테리오파지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스벡터 같은 바이러스 벡터 등을 포함한다. 상기 벡터에서 항체를 코딩하는 핵산은 프로모터와 작동적으로 연결되어 있다.As used herein, the term "vector" refers to a plasmid vector as a means for expressing a gene of interest in a host cell; cosmid vector; and viral vectors such as bacteriophage vectors, adenoviral vectors, retroviral vectors, and adeno-associated viral vectors. In the vector, the nucleic acid encoding the antibody is operably linked to a promoter.

"작동적으로 연결"은 핵산 발현조절서열(예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다."Operably linked" means a functional linkage between a nucleic acid expression control sequence (eg, a promoter, signal sequence, or array of transcriptional regulator binding sites) and another nucleic acid sequence, whereby the control sequence is linked to the other nucleic acid. It will regulate the transcription and/or translation of the sequence.

원핵세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 또한, 예를 들어, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터, β-액틴 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40프로모터, 사이토메갈로바이러스(CMV) 프로모터, HSV의 tk 프로모터, 마우스 유방종양 바이러스(MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터엡스타인 바 바이러스(EBV)의 프로모터 및 로우스 사코마 바이러스(RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.When prokaryotic cells are used as hosts, a strong promoter capable of promoting transcription (e.g., tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pLλ promoter, pRλ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter), a ribosome binding site for initiation of translation, and a transcription/translation termination sequence. Further, for example, when a eukaryotic cell is used as a host, a promoter derived from the genome of a mammalian cell (e.g., metallotionine promoter, β-actin promoter, human hemoglobin promoter, and human muscle creatine promoter) or mammalian Promoters derived from animal viruses, such as adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus (CMV) promoter, tk promoter from HSV, mouse mammary tumor virus (MMTV) promoter, LTR promoter from HIV , the promoter of Moloney virus, the promoter of Epstein Barr virus (EBV) and the promoter of Rouss sarcoma virus (RSV) can be used, and usually has a polyadenylation sequence as a transcription termination sequence.

경우에 따라서, 벡터는 그로부터 발현되는 단백질의 정제를 용이하게 하기 위하여 다른 서열과 융합될 수도 있다. 융합되는 서열은, 예컨대 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG(IBI, USA) 및 6x His(hexahistidine; Quiagen, USA) 등이 있다.In some cases, vectors may be fused with other sequences to facilitate purification of proteins expressed therefrom. Sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA).

상기 벡터는 선택표지로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.The vector contains an antibiotic resistance gene commonly used in the art as a selectable marker, for example, for ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin and tetracycline. There is a resistance gene.

본 발명에서 상기 세포는 원핵생물, 효모 또는 고등 진핵생물 세포일 수 있으며, 이에 한정되는 것은 아니다.In the present invention, the cell may be a prokaryotic, yeast or higher eukaryotic cell, but is not limited thereto.

이중에서도 동물 세포에 대한 관심이 가장 크며, 유용한 숙주 세포주의 예는 COS-7, BHK, CHO, CHOK1, DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK, BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, 3T3, RIN, A549, PC12, K562, PER.C6, SP2/0, NS-0, U20S, 또는 HT1080일 수 있으나, 이에 한정되는 것은 아니다.Of these, animal cells are of greatest interest, and examples of useful host cell lines include COS-7, BHK, CHO, CHOK1, DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK, BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, 3T3, RIN, A549, PC12, K562, PER.C6, SP2/0, NS-0 , U20S, or HT1080, but is not limited thereto.

본 명세서에서 사용된 용어 "약물"은 화합물 또는 단백질을 포함하여, 생체 내에서 상호작용 단백질을 확인하고자 하는 모든 물질을 포함하는 용어이다. As used herein, the term "drug" is a term that includes any substance, including compounds or proteins, for which an interacting protein is to be identified in vivo.

실시예Example

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실험방법Experiment method

1-1. 세포 배양 및 형질 감염1-1. Cell culture and transfection

HEK293T 세포는 American Type Culture Collection(Manassas, VA, USA)에서 입수하고, < 20 계대에서 사용되었다. HEK293-AD cell은 UNIST에서 입수하였다. U2OS, COS7 및 K562 세포는 Korean Cell Line Bank에서 입수하였다. Ba/F3 세포는 RIKEN BioResource Research Center(RCB0805, 일본)에서 입수하였고, 안정적으로 발현하는 BCR-ABL 세포는 DGMIF 연구소에서 맞춤 제작하였다. HEK293T, HEK293-AD, U2OS 및 COS7 세포주는 37 ℃, 5% CO2(v/v) 조건에서 10% FBS(소태아혈청)가 포함된 고포도당-DMEM에서 배양하였다. 이들 세포주는 60 - 80% 컨플루언시에서 폴리에틸렌이민(PEI)을 사용하여 일시적으로 형질감염시켰다. K562 세포는 37 ℃, 5% CO2(v/v) 조건에서 10% FBS가 포함된 RPMI 1640 배지에서 배양하였다. 모든 세포주는 형태 및 Mycoplasma 오염에 대해 현미경으로 자주 확인 및 테스트하였다. HEK293T cells were obtained from the American Type Culture Collection (Manassas, VA, USA) and were used at <20 passages. HEK293-AD cells were obtained from UNIST. U2OS, COS7 and K562 cells were obtained from Korean Cell Line Bank. Ba/F3 cells were obtained from the RIKEN BioResource Research Center (RCB0805, Japan), and stably expressing BCR-ABL cells were custom-made by the DGMIF laboratory. HEK293T, HEK293-AD, U2OS, and COS7 cell lines were cultured in high glucose-DMEM containing 10% FBS (fetal bovine serum) at 37 °C and 5% CO 2 (v/v). These cell lines were transiently transfected with polyethyleneimine (PEI) at 60 - 80% confluency. K562 cells were cultured in RPMI 1640 medium containing 10% FBS at 37 °C and 5% CO 2 (v/v) conditions. All cell lines were frequently checked and tested microscopically for morphology and Mycoplasma contamination.

1-2. 화합물 합성1-2. compound synthesis

모든 핵자기 공명(NMR) 실험은 5mm 광대역 관찰 프로브 헤드(Bruker, Billerica, MA, USA)가 장착된 Avance III 400MHz NMR 분광기를 사용하여 수행되었다. Bruker Topspin 3.1 소프트웨어를 사용하여 NMR 스펙트럼을 최적화하였다. 화합물을 CDCl3 또는 d-MeOH에 용해하고 스펙트럼을 25 ℃에서 획득하였다. 질량 스펙트럼은 LCMS-2020 시스템(Shimadzu, Tokyo, Japan)에서 양성 전자분무 이온화(ESI) 모드로 측정되었다. 컬럼 크로마토그래피는 RediSep Rf(Teledyne Isco, Lincoln, NE, USA)가 있는 CombiFlash Rf 시스템을 사용하여 수행되었다. 최종 화합물의 경우 Kinetex 5 μm Biphenyl 100 Å(GX-281 HPLC 시스템, Gilson, Middleton, WI, USA, 컬럼 튜브: 250 mm × 21.2 mm ID)에서 용리액으로 아세토니트릴/H2O를 사용하여 분취용 고성능 액체 크로마토그래피(HPLC)로 추가 정제를 수행하였다. All nuclear magnetic resonance (NMR) experiments were performed using an Avance III 400 MHz NMR spectrometer equipped with a 5 mm broadband observation probe head (Bruker, Billerica, MA, USA). NMR spectra were optimized using Bruker Topspin 3.1 software. Compounds were dissolved in CDCl3 or d-MeOH and spectra were acquired at 25 °C. Mass spectra were measured in positive electrospray ionization (ESI) mode on an LCMS-2020 system (Shimadzu, Tokyo, Japan). Column chromatography was performed using a CombiFlash Rf system with RediSep Rf (Teledyne Isco, Lincoln, NE, USA). Preparative high performance liquid chromatography using acetonitrile/H2O as eluent on a Kinetex 5 μm Biphenyl 100 Å (GX-281 HPLC system, Gilson, Middleton, WI, USA; column tube: 250 mm × 21.2 mm ID) for final compounds. Further purification was carried out by chromatography (HPLC).

표적 화합물의 순도는 이중 상이 파장 자외선 검출기를 사용한 분석 HPLC에 의해 > 95%인 것으로 확인되었다. 출발 물질은 Sigma-Aldrich(St. Louis, MO, USA) 또는 Alfa Aesa(Ward Hill, MA, USA)에서 입수하였다. 용매는 Fisher Scientific (Hampton, NH, USA) 또는 Sigma-Aldrich에서 구입하였고, 달리 명시되지 않는 한 추가 정제 없이 사용하였다. The purity of the target compound was confirmed to be >95% by analytical HPLC using a dual phase wavelength UV detector. Starting materials were obtained from Sigma-Aldrich (St. Louis, MO, USA) or Alfa Aesa (Ward Hill, MA, USA). Solvents were purchased from Fisher Scientific (Hampton, NH, USA) or Sigma-Aldrich and were used without further purification unless otherwise specified.

DA-HTL 합성DA-HTL synthesis

Figure pat00001
Figure pat00001

2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl (4-nitrophenyl) carbonate (2번 화합물)2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl (4 -nitrophenyl) carbonate ( compound 2 )

다사티닙(1, 0.2g, 0.410mmol)을 무수 테트라히드로푸란(10mL) 중 4-니트로페닐 클로로포르메이트(0.091g, 0.451mmol) 및 DIPEA(0.200mL, 1.148mmol)로 혼합하였다. 반응 혼합물을 실온에서 8시간 동안 교반한 후, 4-니트로페닐 클로로포르메이트(0.091g, 0.451mmol)를 첨가하였다. 16 시간 후, 용액이 맑아지면, 용매를 감압하에 증발시켰다. 잔류물을 아세트산으로 중화하고 에틸 아세테이트로 고화시킨 후, 고체 화합물을 여과하여 황색을 띤 화합물 2를 얻었다(90 mg, 수율 34%). LC/MS(ESI) m/z : 654 [M]+Dasatinib (1, 0.2 g, 0.410 mmol) was mixed with 4-nitrophenyl chloroformate (0.091 g, 0.451 mmol) and DIPEA (0.200 mL, 1.148 mmol) in anhydrous tetrahydrofuran (10 mL). After the reaction mixture was stirred at room temperature for 8 hours, 4-nitrophenyl chloroformate (0.091 g, 0.451 mmol) was added. After 16 hours, when the solution was clear, the solvent was evaporated under reduced pressure. The residue was neutralized with acetic acid and solidified with ethyl acetate, and then the solid compound was filtered to obtain yellowish compound 2 (90 mg, yield 34%). LC/MS (ESI) m/z: 654 [M]+

2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethyl)carbamate trifluoroacetate salt (2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(2 -(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethyl)carbamate trifluoroacetate salt ( 3a 화합물3a compound ))

2-(2-(2-((6-클로로헥실)옥시)에톡시)에톡시)에탄아민, 염화수소염(0.024g, 0.079mmol) 및 화합물 2(0.020g, 0.031mmol)의 혼합물을 DIPEA(0.050mL, 0.286mmol)와 함께 무수 테트라히드로푸란(5mL)에 용해시켰다. 반응 혼합물을 실온에서 16시간 동안 교반하였다. 용매를 진공 하에 증발시키고 혼합물을 분취-HPLC로 정제하여 화합물 3a (21 mg, 수율 88%)를 얻었다.A mixture of 2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethanamine, hydrogen chloride (0.024 g, 0.079 mmol) and compound 2 (0.020 g, 0.031 mmol) was prepared by DIPEA ( 0.050 mL, 0.286 mmol) in anhydrous tetrahydrofuran (5 mL). The reaction mixture was stirred at room temperature for 16 hours. The solvent was evaporated in vacuo and the mixture was purified by prep-HPLC to give compound 3a (21 mg, 88% yield).

1H NMR (400 MHz, DMSO) δ11.65 (brs, 1H), 9.92 (s, 2H), 8.24 (s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 7.40 - 7.24 (m, 3H), 6.15 (s, 1H), 4.31 (brs, 2H), 3.63 - 3.61 (m, 4H), 3.44 - 3.36 (m, 10H), 3.19 - 3.17 (m, 4H), 2.45 (s, 3H), 2.24 (s, 3H), 1.71 - 1.68 (m, 2H), 1.50 - 1.45 (m, 2H), 1.39 - 1.27 (m, 4H); LC/MS (ESI) m/z : 781 [M]+. 1 H NMR (400 MHz, DMSO) δ11.65 (brs, 1H), 9.92 (s, 2H), 8.24 (s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 7.40 - 7.24 (m, 3H), 6.15 (s, 1H), 4.31 (brs, 2H), 3.63 - 3.61 (m, 4H), 3.44 - 3.36 (m, 10H), 3.19 - 3.17 (m, 4H), 2.45 (s, 3H) , 2.24 (s, 3H), 1.71 - 1.68 (m, 2H), 1.50 - 1.45 (m, 2H), 1.39 - 1.27 (m, 4H); LC/MS (ESI) m/z: 781 [M]+.

2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(21-chloro-3,6,9,12,15-pentaoxahenicosyl)carbamate trifluoroacetate salt (2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(21 -chloro-3,6,9,12,15-pentaoxahenicosyl)carbamate trifluoroacetate salt ( 3b 화합물3b compound ))

21-클로로-3,6,9,12,15-펜타옥사헤니코산-1-아민, 염화수소염(0.056g, 0.144mmol) 및 화합물 2(0.094g, 0.144mmol)의 혼합물을 DIPEA(0.050mL, 0.288mmol)와 함께 무수 테트라히드로푸란(10mL)에 용해시켰다. 반응 혼합물을 실온에서 16 시간 동안 교반하였다. 용매를 진공 하에 증발시키고 혼합물을 분취-HPLC로 정제하여 생성물 3b(76 mg, 수율 61%)를 얻었다.A mixture of 21-chloro-3,6,9,12,15-pentaoxahenicosan-1-amine, hydrogen chloride (0.056 g, 0.144 mmol) and compound 2 (0.094 g, 0.144 mmol) was mixed with DIPEA (0.050 mL, 0.288 mmol) in anhydrous tetrahydrofuran (10 mL). The reaction mixture was stirred at room temperature for 16 hours. The solvent was evaporated in vacuo and the mixture was purified by prep-HPLC to give product 3b (76 mg, 61% yield).

1H NMR (400 MHz, DMSO) δ11.69 (s, 1H), 9.93 (s, 2H), 8.24 (s, 1H), 7.49 - 7.33 (m, 2H), 7.33 - 7.21 (m, 2H), 6.14 (s, 1H), 4.37 - 4.30 (m, 2H), 4.21 - 3.68 (m, 18H), 3.68 - 3.58 (m, 4H), 3.47 - 3.40 (m, 4H), 3.35 (t, J = 6.5 Hz, 2H), 3.33 - 3.06 (m, 6H), 2.45 (s, 3H), 2.23 (s, 3H), 1.69 (p, J = 6.8 Hz, 2H), 1.47 (p, J = 6.8 Hz, 2H), 1.41 - 1.18 (m, 4H); LC/MS (ESI) m/z : 870 [M+H]+. 1 H NMR (400 MHz, DMSO) δ11.69 (s, 1H), 9.93 (s, 2H), 8.24 (s, 1H), 7.49 - 7.33 (m, 2H), 7.33 - 7.21 (m, 2H), 6.14 (s, 1H), 4.37 - 4.30 (m, 2H), 4.21 - 3.68 (m, 18H), 3.68 - 3.58 (m, 4H), 3.47 - 3.40 (m, 4H), 3.35 (t, J = 6.5 Hz, 2H), 3.33 - 3.06 (m, 6H), 2.45 (s, 3H), 2.23 (s, 3H), 1.69 (p, J = 6.8 Hz, 2H), 1.47 (p, J = 6.8 Hz, 2H) ), 1.41 - 1.18 (m, 4H); LC/MS (ESI) m/z : 870 [M+H]+.

1-3. 발현 플라스미드 클로닝1-3. Expression plasmid cloning

유전자는 표준 효소 제한 분해를 사용하여 지정된 벡터에 클로닝 된 다음 T4 DNA 리가제로 연결되었다. 짧은 태그(예: V5 에피토프 태그) 또는 신호 서열이 단백질에 부착된 컨스트럭트를 생성하기 위해 유전자를 PCR 증폭하는 데 사용되는 프라이머에 태그를 포함시켰다. PCR 산물을 제한 효소로 분해하고 절단 벡터(예: pcDNA3, pcDNA5 및 pLX304)에 연결하였다. 거대세포바이러스(CMV) 프로모터가 포유동물 세포에서의 발현에 사용되었다. 본 발명에서 클로닝된 정보는 표 1에 나타내었다. Genes were cloned into the indicated vectors using standard enzyme restriction digestion and then ligated with T4 DNA ligase. A tag was included in the primers used to PCR amplify the gene to generate a construct with a short tag (eg V5 epitope tag) or signal sequence attached to the protein. PCR products were digested with restriction enzymes and ligated into cutting vectors (eg pcDNA3, pcDNA5 and pLX304). The cytomegalovirus (CMV) promoter has been used for expression in mammalian cells. Information cloned in the present invention is shown in Table 1.

Name
Name
FeaturesFeatures Promotor/
Vector
Promotor/
Vector
DetailsDetails
BTK-mCherry-HA BTK-mCherry-HA KpnI-BTK-mcherry-HA-Stop-XhoI (서열번호 2) KpnI -BTK-mcherry-HA-Stop- XhoI (SEQ ID NO: 2) CMV/
pCDNA5
CMV/
pCDNA5
pMSCV-BTK-mCherry was purchased from addgene (Addgene plasmid #50043).
Red fluorescent fused to BTK protein
pMSCV-BTK-mCherry was purchased from addgene (Addgene plasmid #50043).
Red fluorescent fused to BTK protein
CSK-EGFP-HA CSK-EGFP-HA HindIII-CSK-EGFP-HA-Stop-XhoI (서열번호 3) HindIII -CSK-EGFP-HA-Stop- XhoI (SEQ ID NO: 3) CMV/
pCDNA5
CMV/
pCDNA5
Tet-myc-CSK-GFP was purchased from addgene (Addgene plasmid #83470).
Green fluorescent fused to CSK protein
Tet-myc-CSK-GFP was purchased from addgene (Addgene plasmid #83470).
Green fluorescent fused to CSK protein
HaloTag-V5-TurboIDHaloTag-V5-TurboID NotI-HaloTag-BamHI-V5-TurboID-Stop-ApaI (서열번호 4) NotI- HaloTag- BamHI- V5-TurboID - Stop -ApaI (SEQ ID NO: 4) CMV/
pCDNA3
CMV/
pCDNA3
TurboID fused to HaloTag proteinTurboID fused to HaloTag protein
HaloTag-V5-TurboIDHaloTag-V5-TurboID BsiWI- HaloTag-NheI-V5-TurboID-Stop-AgeI (서열번호 5) BsiWI- HaloTag- NheI- V5-TurboID - Stop -AgeI (SEQ ID NO: 5) CMV/
pLX304
CMV/
pLX304
TurboID fused to HaloTag protein for generation of lentiviral particlesTurboID fused to HaloTag protein for generation of lentiviral particles
HaloTag-V5-TurboID-MoAHaloTag-V5-TurboID-MoA BsiWI- HaloTag-NheI-V5-TurboID-MoA-Stop-AgeI (서열번호 6) BsiWI- HaloTag- NheI- V5-TurboID - MoA-Stop -AgeI (SEQ ID NO: 6) CMV/
pLX304
CMV/
pLX304
MoA (signal sequence for targeting to outer mitochondria) fused to HaloTag-TurboID MoA (signal sequence for targeting to outer mitochondria) fused to HaloTag-TurboID
HA-KDABL1HA- KD ABL1 HindIII-HA-Abl Kinetic Domain-Stop-XhoI (서열번호 7) HindIII -HA-Abl Kinetic Domain-Stop- XhoI (SEQ ID NO: 7) CMV/pCDNA3CMV/pCDNA3 Kinetic domain of ABL1 for translocation assay and immunoprecipitationKinetic domain of ABL1 for translocation assay and immunoprecipitation TOM20-HA- KDABL1TOM20-HA- KD ABL1 KpnI-TOM20-HA-Kinetic Domain-Stop-XhoI (서열번호 8) KpnI -TOM20-HA-Kinetic Domain-Stop- XhoI (SEQ ID NO: 8) CMV/pCDNA5CMV/pCDNA5 Kinetic domain of ABL1 fused to TOM20 protein (OMM protein) for translocation assay Kinetic domain of ABL1 fused to TOM20 protein (OMM protein) for translocation assay TOM20-Myc-ABDSMARCA2-HATOM20-Myc- ABD SMARCA2-HA BsiWI- TOM20-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI (서열번호 9) BsiWI -TOM20-SMARCA2 Helicase ATP binding domain-HA-Stop- AgeI (SEQ ID NO: 9) CMV/pLX304CMV/pLX304 ATP binding domain of SMARCA2 fused to TOM20 protein (OMM protein) for translocation assay and immunoprecipitationATP binding domain of SMARCA2 fused to TOM20 protein (OMM protein) for translocation assay and immunoprecipitation ABDSMARCA2-HA ABD SMARCA2-HA BsiWI-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI (서열번호 10) BsiWI -SMARCA2 Helicase ATP binding domain-HA-Stop- AgeI (SEQ ID NO: 10) CMV/pLX304CMV/pLX304 ATP binding domain of SMARCA2 for translocation assay and immunoprecipitationATP binding domain of SMARCA2 for translocation assay and immunoprecipitation

1-4. 할로택 리간드의 1-4. halotac ligand in vitro in vitro 경쟁 분석competition analysis

할로택 단백질의 정제는 Kang et al. (2017, Chemical Communications 53, 9226-9229)을 참조하였다. 정제된 할로택(10μM) 및 화합물(10μM, 순수 약물 또는 약물-HTL)을 PBS 버퍼에서 30분 동안 공동 인큐베이션 하였다. 이후, dansyl-HTL(10μM)을 첨가하고 30분 동안 인큐베이션하였다. 5x SDS loading buffer를 가한 후 각 반응 혼합물을 5분간 끓이고 SDS-PAGE를 수행하였다. 겔 내 형광은 GeneSys(Syngene, UK)의 AF430 채널에 의해 분석되었다. Purification of halotag proteins was carried out by Kang et al. (2017, Chemical Communications 53, 9226-9229). Purified halotac (10 μM) and compounds (10 μM, pure drug or drug-HTL) were co-incubated in PBS buffer for 30 min. Then, dansyl-HTL (10 μM) was added and incubated for 30 minutes. After adding 5x SDS loading buffer, each reaction mixture was boiled for 5 minutes and subjected to SDS-PAGE. In-gel fluorescence was analyzed by the AF430 channel from GeneSys (Syngene, UK).

1-5. CCK-8 분석1-5. CCK-8 assay

Ba/F3, K562 및 안정발현 K562 세포를 10% FBS가 보충된 RPMI 배지에서 배양하였다. 8 x 103개의 세포를 96웰 마이크로플레이트에 분주하고, 화합물을 DMSO 대조군을 포함하여 5배 연속 희석(0~10μM)에 걸쳐 10 포인트 농도로 37℃ CO2 인큐베이터에서 72시간 동안 처리하였다. 72시간 후, 10㎕의 CCK-8 용액(Dojindo)을 각 웰에 첨가하고 CO2 인큐베이터에서 2시간 동안 인큐베이션하였다. 450 nm 흡광도를 Synergy-neo2 마이크로플레이트 리더(BioTek)로 측정하였고, GI50은 GraphPad Prism 7(GraphPad software Inc)로 계산하였다.Ba/F3, K562 and stable expression K562 cells were cultured in RPMI medium supplemented with 10% FBS. 8 x 10 3 cells were seeded in a 96-well microplate, and compounds were treated at 10 point concentrations over 5-fold serial dilutions (0-10 μM) including DMSO control in a 37° C. CO 2 incubator for 72 hours. After 72 hours, 10 μl of CCK-8 solution (Dojindo) was added to each well and incubated for 2 hours in a CO 2 incubator. Absorbance at 450 nm was measured with a Synergy-neo2 microplate reader (BioTek), and GI50 was calculated with GraphPad Prism 7 (GraphPad software Inc).

1-6. 공초점 현미경을 이용한 U2OS 세포의 전위 분석1-6. Potential analysis of U2OS cells using confocal microscopy

표적 단백질의 세포내 국소화 (subcellular localization)를 시각화하기 위하여, HT-V5-TurbID 및 표적 단백질을 일시적으로 발현하는 U2OS 세포를 DA5-HTL 처리 후 커버슬립(두께 1.5, 반경 18 mm)에 플레이팅하였다. 이후 세포를 DMEM 중 DMSO 또는 DA5-HTL(500nM)로 37 ℃에서 3시간 동안 처리하고, 차가운 DPBS로 3회 세척하였다. 세포를 4% 파라포름알데히드에 고정하고 -20 ℃에서 5분 동안 차가운 메탄올로 투과화한 다음 DPBS로 세척하고 실온에서 DPBS 중 2% FBS로 1시간 동안 블로킹하였다.To visualize the subcellular localization of the target protein, HT-V5-TurbID and U2OS cells transiently expressing the target protein were plated on coverslips (thickness 1.5, radius 18 mm) after DA5-HTL treatment. . Cells were then treated with DMSO or DA5-HTL (500 nM) in DMEM at 37 °C for 3 hours and washed three times with cold DPBS. Cells were fixed in 4% paraformaldehyde, permeabilized with cold methanol for 5 minutes at -20 °C, washed with DPBS and blocked with 2% FBS in DPBS for 1 hour at room temperature.

면역 표지는 적절하게 희석된 항체(항-V5 및 항-HA) 및 Alexa Fluor 표지된 이차 항체(마우스 항-Alexa Fluor 647 및 토끼 항-Alexa Fluor 488)가 포함된 블로킹 용액에서 광범위한 세척과 함께 수행되었다. 면역형광 이미지를 획득하고 SP8 X Leica 현미경(NICEM, 서울대학교, 대한민국)에서 대물 렌즈(HC PL APO 100×/1.40 OIL), 백색광 레이저(470 - 670 nm, 1 nm 가변 레이저) 및 LAS X 소프트웨어로 제어되는 HyD 검출기를 사용하여 분석하였다. Immunolabeling is performed in a blocking solution containing appropriately diluted antibodies (anti-V5 and anti-HA) and Alexa Fluor labeled secondary antibodies (mouse anti-Alexa Fluor 647 and rabbit anti-Alexa Fluor 488) with extensive washes It became. Immunofluorescence images were acquired on an SP8 X Leica microscope (NICEM, Seoul National University, Korea) with an objective lens (HC PL APO 100×/1.40 OIL), a white light laser (470 - 670 nm, 1 nm tunable laser) and LAS X software. Analysis was performed using a controlled HyD detector.

1-7. HT-V5-TurbID 안정 발현 K562 세포주 구축1-7. Construction of K562 cell line stably expressing HT-V5-TurbID

HT-V5-TurbID를 안정적으로 발현하는 K562 세포를 제작하기 위하여, 약 60% 컨플루언시의 세포에 6 ㎕ 폴리에틸렌이민 (PEI) (물 중 6.7 mg/mL, pH 7.3)을 사용하여 관심 유전자와 렌티바이러스 패키징 플라스미드 psPAX2(750ng) 및 엔벨로프 플라스미드 pM.D2.G (250ng)를 포함하는 1,000ng의 렌티바이러스 벡터로 무혈청 배지에서 형질감염 시켰다. 48시간 후, 렌티바이러스 입자를 포함하는 세포 배지를 수확하고 0.45 ㎛ 필터를 사용하여 여과하였다. 이후, 약 50% 컨플루언시의 K562 세포를 조 렌티바이러스 입자 (crude lentiviral particles)로 감염시킨 다음, 성장 배지에서 적어도 14일 동안 800㎍/mL의 Geneticin(G-418)을 이용하여 선별하였다. 선별된 세포주는 미끼의 발현 수준 및 바이오틴화 신호를 기존의 생화학적 분석(면역형광 및 면역블롯팅)으로 테스트하고 바이오틴화 된 단백질은 질량 분석법으로 분석하였다. To construct K562 cells stably expressing HT-V5-TurbID, cells at about 60% confluency were treated with 6 μl polyethylenimine (PEI) (6.7 mg/mL in water, pH 7.3) to induce expression of the gene of interest. and 1,000 ng of the lentiviral vector containing the lentiviral packaging plasmid psPAX2 (750ng) and the envelope plasmid pM.D2.G (250ng) were transfected in serum-free medium. After 48 hours, the cell medium containing the lentiviral particles was harvested and filtered using a 0.45 μm filter. Then, K562 cells at about 50% confluency were infected with crude lentiviral particles, and then selected using 800 μg/mL Geneticin (G-418) in growth medium for at least 14 days. . The selected cell lines were tested for bait expression levels and biotinylation signals by conventional biochemical assays (immunofluorescence and immunoblotting), and biotinylated proteins were analyzed by mass spectrometry.

1-8. MS 분석을 위한 바이오틴 라벨링 및 시료 준비1-8. Biotin labeling and sample preparation for MS analysis

대량 샘플링을 위해 HT-V5-TurbID를 안정적으로 발현하는 K562 세포를 150Φ세포 배양 접시에서 성장시켰다. MS 분석을 위해 각 3중 샘플에 대해 2개의 접시(총 6개의 샘플)를 준비하였다. 3개의 접시에는 DMSO를, 다른 3개의 접시에 DA5-HTL(500 nM)을 37 ℃에서 3시간 동안 처리한 후 RPMI 배지로 3회 세척하였다. 이후 세포를 DMEM 중 바이오틴(50μM)으로 37 ℃에서 30분 동안 처리하였다. 바이오틴 표지 후, 세포를 차가운 DPBS로 3 - 4회 세척하고, 1X TBS (25mM Tris, 0.15M NaCl, pH 7.2), 1X 프로테아제 억제제 칵테일 중 1.5mL 2% SDS로 용해시켰다. 용해물은 냉수욕으로 15분 동안 초음파 처리(Bioruptor, diagenode)에 의해 정화시키고, 두 접시를 합쳐주었다 (약 2 ㎖). For bulk sampling, K562 cells stably expressing HT-V5-TurbID were grown in 150 Φ cell culture dishes. Two dishes (6 samples in total) were prepared for each triplicate sample for MS analysis. Three dishes were treated with DMSO and the other three dishes were treated with DA5-HTL (500 nM) at 37 °C for 3 hours, and then washed three times with RPMI medium. Cells were then treated with biotin (50 μM) in DMEM at 37° C. for 30 min. After biotin labeling, cells were washed 3-4 times with cold DPBS and lysed with 1.5mL 2% SDS in 1X TBS (25mM Tris, 0.15M NaCl, pH 7.2), 1X Protease Inhibitor Cocktail. The lysate was clarified by sonication (Bioruptor, diagenode) for 15 min in a cold water bath, and the two dishes were combined (approximately 2 ml).

1-9. 면역침전과 근위 단백질 변형 반응의 결합 (PL-IP)1-9. Combination of Immunoprecipitation and Proximal Protein Modification Reaction (PL-IP)

HT-V5-TurbID 발현 세포를 바이오틴화하고 100X 희석된 프로테아제 억제제 칵테일을 함유하는 PBS 완충 용액(pH 7.4) 중 0.5% NP40에서 용해시켰다. HT-V5-TurbID expressing cells were biotinylated and lysed in 0.5% NP40 in PBS buffer (pH 7.4) containing 100X diluted protease inhibitor cocktail.

입력 분획을 수집한 후, 용해물을 4 ℃에서 16시간 동안 항-HA 코팅된 단백질 G 자기 비드와 혼합하였다. 각 실험에서 FT(flow-through) 분획을 수집한 후, 비드를 용해 완충액으로 2회 세척하고, 용출 완충액(PBS 완충액에 5배 희석된 5x SDS 로딩 완충액)을 첨가하고 비드로부터 단백질 용출을 위해 10분 동안 끓여 주었다. After collecting the input fractions, the lysates were mixed with anti-HA coated Protein G magnetic beads for 16 hours at 4°C. After collecting the flow-through (FT) fraction in each experiment, the beads were washed twice with lysis buffer, elution buffer (5x SDS loading buffer diluted 5-fold in PBS buffer) was added and 10 μm for protein elution from the beads. Boiled for minutes.

1-10. 바이오틴화 펩타이드 농축 및 LC MS/MS 분석1-10. Biotinylated Peptide Concentration and LC MS/MS Analysis

1-10-1. 바이오틴화 된 펩타이드의 분해 및 농축1-10-1. Digestion and Concentration of Biotinylated Peptides

-20 ℃에 보관된 차가운 아세톤(4mL)을 용해물과 혼합하고 -20 ℃에서 최소 2시간 동안 보관하였다. 이 샘플을 4 ℃에서 10분 동안 13,000 x g에서 원심분리하고 상층액을 조심스럽게 제거하였다. 펠릿을 50mM 중탄산암모늄 내 8M 요소 500 ㎕에 재현탁하였다. BCA(bicinchoninic acid) 분석을 사용하여 단백질 농도를 결정한 후, 단백질 샘플을 Thermomixer(Eppendorf)를 사용하여 37 ℃에서 1시간 동안 650rpm에서 변성시켰다. 샘플에 각각 10mM 디티오트레이톨 및 40mM 요오도아세트아미드를 첨가하고 Thermomixer를 사용하여 37 ℃에서 1시간 동안 650rpm에서 인큐베이션하여 환원 및 알킬화를 개별적으로 수행하였다. 샘플을 50mM ABC를 사용하여 8배 희석한 후 최종 농도가 1mM가 되도록 CaCl2를 첨가하였다. 샘플은 트립신(50:1 w/w)을 사용하여 37 ℃에서 6-18시간 동안 650rpm으로 Thermomixer에서 분해하였다. 불용성 물질은 10,000 xg에서 3분 동안 원심분리하여 제거하였다. SA 비드(200㎕)를 1X TBS 내 2M 우레아로 3 - 4회 세척한 다음 샘플에 첨가하였다. 이어서, 혼합물을 실온에서 1시간 동안 회전시킨 다음, 비드를 50mM ABC 중 2M 우레아로 2 - 3회 세척하였다; FT 분획은 버리지 않았다. 상층액을 버린 후, 비드를 순수한 물로 세척하고 새 튜브로 옮겨주었다. 100 ㎕의 80% Acetonitrile, 0.2% 트리플루오로아세트산(TFA) 및 0.1% 포름산을 첨가한 후, 바이오틴화 된 펩타이드를 60 ℃에서 가열하고 650rpm에서 혼합하였다. SA 비드가 없는 상층액을 새 튜브로 옮겨주었다. 이 용출 단계를 4회 이상 반복한 후, 전체 용출 분획을 Speed-vac(Eppendorf)을 사용하여 5시간 동안 건조시켰다. MS 분석에 사용하기 전에 샘플을 -20 ℃에서 보관하였다. Cold acetone (4 mL) stored at -20 °C was mixed with the lysate and stored at -20 °C for a minimum of 2 hours. This sample was centrifuged at 13,000 xg for 10 minutes at 4 °C and the supernatant was carefully removed. The pellet was resuspended in 500 μl of 8 M urea in 50 mM ammonium bicarbonate. After determining the protein concentration using the bicinchoninic acid (BCA) assay, the protein samples were denatured at 650 rpm for 1 hour at 37 °C using a Thermomixer (Eppendorf). Reduction and alkylation were separately performed by adding 10 mM dithiothreitol and 40 mM iodoacetamide to each sample and incubating at 650 rpm for 1 hour at 37 °C using a Thermomixer. After diluting the sample 8-fold with 50 mM ABC, CaCl 2 was added to a final concentration of 1 mM. Samples were digested in a Thermomixer at 650 rpm for 6-18 hours at 37 °C using trypsin (50:1 w/w). Insoluble material was removed by centrifugation at 10,000 xg for 3 minutes. SA beads (200 μl) were washed 3-4 times with 2M Urea in 1X TBS and then added to the samples. The mixture was then spun at room temperature for 1 hour, then the beads were washed 2 - 3 times with 2 M Urea in 50 mM ABC; The FT fraction was not discarded. After discarding the supernatant, the beads were washed with pure water and transferred to a new tube. After adding 100 μl of 80% Acetonitrile, 0.2% trifluoroacetic acid (TFA) and 0.1% formic acid, the biotinylated peptide was heated at 60 °C and mixed at 650 rpm. The supernatant without SA beads was transferred to a new tube. After repeating this elution step at least four times, the entire elution fraction was dried for 5 hours using a Speed-vac (Eppendorf). Samples were stored at -20 °C prior to use for MS analysis.

1-10-2. LC-MS/MS1-10-2. LC-MS/MS

생성된 트립신 분해된 펩타이드를 LC-MS/MS로 분석하였다. 모든 질량 분석은 나노전자분무 이온 소스가 장착된 Q Exactive Plus 오비트랩 질량 분석기(Thermo Fisher Scientific, MA, USA)를 이용하여 수행되었다. 300 nL/min의 유속으로 120분 동안 4 - 32.5% 구배의 아세토니트릴/0.1% 포름산을 사용하는 C18 역상 HPLC 컬럼 (500mm × 75μm ID)을 이용하여 펩타이드 혼합물을 분리하였다. MS/MS 분석을 위해 내부 잠금 질량이 있는 m/z 400에서 70,000의 분해능으로 Orbitrap에서 전구체 이온 스캔 MS 스펙트럼(m/z 400~2000)을 획득하였다. 15개의 가장 집중적인 이온이 고에너지 충돌 유도 해리(HCD)에 의해 분리되고 단편화되었다. The resulting tryptic digested peptides were analyzed by LC-MS/MS. All mass spectrometry was performed using a Q Exactive Plus Orbitrap Mass Spectrometer (Thermo Fisher Scientific, MA, USA) equipped with a nanoelectrospray ion source. The peptide mixture was separated using a C18 reverse phase HPLC column (500 mm x 75 μm ID) using a gradient of 4 - 32.5% acetonitrile/0.1% formic acid for 120 min at a flow rate of 300 nL/min. Precursor ion scan MS spectra (m/z 400 to 2000) were acquired on an Orbitrap at a resolution of 70,000 at m/z 400 with internal lock mass for MS/MS analysis. The 15 most concentrated ions were separated and fragmented by high-energy collision-induced dissociation (HCD).

1-10-3. LC-MS/MS 데이터 처리1-10-3. LC-MS/MS data processing

모든 MS/MS 샘플은 Sequest Sorcerer 플랫폼 (Sagen-N Research, San Jose, CA, USA)을 사용하여 분석되었다. Sequest는 소화 효소 트립신을 가정하여 자주 관찰되는 오염 물질을 포함하는 Homo sapiens 단백질 서열 데이터베이스(20676 항목, UniProt(http://www.uniprot. org/))를 검색하도록 설정되었다. 1.00 Da의 단편 이온 질량 허용 오차와 10.0 ppm의 모 이온 허용 오차로 Sequest를 검색하였다. 시스테인의 카르바미도메틸화는 Sequest에서 고정된 변형으로 지정되었다. n-말단의 메티오닌과 아세틸의 산화, 라이신의 바이오틴은 Sequest에서 가변 변형으로 지정되었다. Scaffold(버전 4.11.0, Proteome Software Inc., Portland, OR, USA)를 사용하여 MS/MS 기반 펩타이드 및 단백질 식별을 검증하였다. 1.0% 미만의 FDR(False Discovery Rate)을 달성하기 위하여 Scaffold Local FDR 알고리즘에 의해 83.0% 이상의 확률로 확립될 수 있는 경우, 펩타이드 식별을 허용하였다. 1.0% 미만의 FDR을 달성하기 위하여 90.0% 이상의 확률로 확립될 수 있고, 적어도 2개의 확인된 펩타이드를 포함하는 경우, 펩타이드 식별을 허용하였다. 단백질 확률은 Protein Prophet 알고리즘에 의해 할당되었다. 유사한 펩타이드를 함유하고 MS/MS 분석만으로는 구별이 불가능한 단백질을 간결성의 원칙을 만족시키기 위해 그룹화하였다. 단백질은 National Center of Biotechnology Information 데이터베이스(NCBI, 2019년 11월 1일 다운로드)에서 Gene Ontology(GO) 용어로 주석을 달았다.All MS/MS samples were analyzed using the Sequest Sorcerer platform (Sagen-N Research, San Jose, CA, USA). Sequest was set up to search the Homo sapiens protein sequence database (20676 entries, UniProt (http://www.uniprot.org/)) containing frequently observed contaminants assuming the digestive enzyme trypsin. Sequest was searched with a fragment ion mass tolerance of 1.00 Da and a parent ion tolerance of 10.0 ppm. Carbamidomethylation of cysteine was designated as a fixed modification in Sequest. Oxidation of methionine and acetyl at the n-terminus, and biotin at lysine were designated variable modifications in Sequest. MS/MS-based peptide and protein identification was validated using Scaffold (version 4.11.0, Proteome Software Inc., Portland, OR, USA). Peptide identification was allowed if it could be established with a probability of 83.0% or more by the Scaffold Local FDR algorithm to achieve a False Discovery Rate (FDR) of less than 1.0%. Peptide identification was allowed if it could be established with a probability of greater than 90.0% to achieve an FDR of less than 1.0% and contained at least two identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm. Proteins containing similar peptides and indistinguishable by MS/MS analysis alone were grouped to satisfy the principle of brevity. Proteins were annotated with Gene Ontology (GO) terms in the National Center of Biotechnology Information database (NCBI, downloaded on November 1, 2019).

1-11. 단백질-리간드 도킹 시뮬레이션1-11. Protein-ligand docking simulation

도킹 시뮬레이션은 AutoDockTools 및 AutoDock vina 소프트웨어로 수행되었다. 단백질의 PDB 파일은 AlphaFold 및 PDB 웹사이트에서 다운로드하였다. AutoDockTools로 파일을 편집하고 도킹 시뮬레이션이 일어날 그리드 박스의 부피와 위치를 설정하였다. 리간드의 3D 구조는 PubChem 웹사이트에서 다운로드한 후, AutoDock vina (에너지 범위 = 4, 완전성 = 8)를 사용하여 도킹 시뮬레이션을 수행하였다. Docking simulations were performed with AutoDockTools and AutoDock vina software. PDB files of proteins were downloaded from AlphaFold and PDB websites. I edited the file with AutoDockTools and set the volume and location of the grid box where the docking simulation will occur. After downloading the 3D structure of the ligand from the PubChem website, a docking simulation was performed using AutoDock vina (energy range = 4, completeness = 8).

1-12. 시약 정보1-12. reagent information

본 발명에서 사용된 시약 정보는 다음과 같다.Reagent information used in the present invention is as follows.

REAGENT or SOURCESREAGENT or SOURCES SOURCESOURCE IDENTIFIERIDENTIFIER AntibodiesAntibodies Anti-V5 Tag Monoclonal Antibody (mouse)Anti-V5 Tag Monoclonal Antibody (mouse) InvitrogenInvitrogen Cat # R960-25Cat# R960-25 V5-tag Antibody, pAb, RabbitV5-tag Antibody, pAb, Rabbit GenScriptGenScript Cat # A00623Cat#A00623 Goat Anti-Mouse IgG (H + L)-HRP conjugateGoat Anti-Mouse IgG (H + L)-HRP conjugate Bio-Rad LaboratoriesBio-Rad Laboratories Cat # 1706516Cat#1706516 Anti-rabbit IgG, HRP-linked AntibodyAnti-rabbit IgG, HRP-linked Antibody Cell Signaling TechnologyCell Signaling Technology Cat # 7074SCat#7074S Streptavidin-HRPStreptavidin-HRP Thermo Fisher ScientificThermo Fisher Scientific Cat # 21126Cat#21126 Streptavidin, Alexa Fluor 647 conjugateStreptavidin, Alexa Fluor 647 conjugate InvitrogenInvitrogen Cat # S21374Cat#S21374 HA-tag Antibody (F-7)HA-tag Antibody (F-7) SantacruzSantacruz Cat # sc-7392Cat#sc-7392 HA Tag Polyclonal Antibody (SG77)HA Tag Polyclonal Antibody (SG77) InvitrogenInvitrogen Cat # 71-5500Cat#71-5500 Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 InvitrogenInvitrogen Cat # A-11008Cat#A-11008 Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 InvitrogenInvitrogen Cat # A-21235Cat#A-21235 Chemicals, Peptides, and Recombinant ProteinsChemicals, Peptides, and Recombinant Proteins BiotinBiotin Alfa AesarAlfa Aesar Cat # A14207Cat#A14207 RIPA lysis bufferRIPA lysis buffer ELPISBIOELPISBIO Cat # EBA-1149Cat# EBA-1149 Protease inhibitor cocktailProtease inhibitor cocktail InvitrogenInvitrogen Cat # 78438Cat#78438 UreaUrea Sigma-AldrichSigma-Aldrich Cat # U5378Cat#U5378 20X TBS20X TBS Thermo Fisher ScientificThermo Fisher Scientific Cat # 28358Cat#28358 AcetoneAcetone Sigma-AldrichSigma-Aldrich Cat # 650501Cat#650501 Ammonium bicarbonateAmmonium bicarbonate Sigma-AldrichSigma-Aldrich Cat # A6141Cat#A6141 TPCK-TrypsinTPCK-Trypsin Thermo Fisher ScientificThermo Fisher Scientific Cat # 20233Cat#20233 DithiothreitolDithiothreitol Sigma-AldrichSigma-Aldrich Cat # 43819Cat#43819 IodoacetoamideIodoacetoamide Sigma-AldrichSigma-Aldrich Cat # I1149Cat#I1149 CaCl2 CaCl 2 Alfa AesarAlfa Aesar Cat # 12312Cat#12312 Trifluoroacetic acidTrifluoroacetic acid Sigma-AldrichSigma-Aldrich Cat # T6508-10AMPCat# T6508-10AMP Formic acidFormic acid Thermo Fisher ScientificThermo Fisher Scientific Cat # 28905Cat#28905 AcetonitrileAcetonitrile Sigma-AldrichSigma-Aldrich Cat # 900667Cat#900667 PEI (polyetherimide)Polyetherimide (PEI) PolysciencePolyscience Cat # 23966-1Cat#23966-1 NonidetTM P 40 Substitute (NP40)Nonidet P 40 Substitute (NP40) Sigma-AldrichSigma-Aldrich Cat # 74385Cat#74385 4% paraformaldehyde solution4% paraformaldehyde solution ChembioChembio Cat # CBPF-9004Cat#CBPF-9004 Protein G magnetic beadProtein G magnetic beads Thermo Fisher ScientificThermo Fisher Scientific Cat # 88847Cat#88847 5X SDS loading buffer5X SDS loading buffer BiosesangBiosesang Cat # SF2002-110-00Cat# SF2002-110-00 Recombinant DNA (See detail information in Table 1) Recombinant DNA (See detail information in Table 1) BTK-mCherry-HABTK-mCherry-HA This studyThis study pCDNA5 / AmpicillinpCDNA5/Ampicillin CSK-EGFP-HACSK-EGFP-HA This studyThis study pCDNA5 / AmpicillinpCDNA5/Ampicillin HaloTag-V5-TurboIDHaloTag-V5-TurboID This studyThis study pCDNA3 / AmpicillinpCDNA3/Ampicillin HaloTag-V5-TurboIDHaloTag-V5-TurboID This studyThis study pLX304 / AmpicillinpLX304/Ampicillin HaloTag-V5-TurboID-MoAHaloTag-V5-TurboID-MoA This studyThis study pLX304 / AmpicillinpLX304/Ampicillin HA-KDABL1HA- KD ABL1 This studyThis study pcDNA3.1(+)-zeo vector/ AmpicillinpcDNA3.1(+)-zeo vector/ Ampicillin TOM20-HA- KDABL1TOM20-HA- KD ABL1 This studyThis study pCDNA5 / AmpicillinpCDNA5/Ampicillin TOM20-Myc-ABDSMARCA2-HATOM20-Myc- ABD SMARCA2-HA This studyThis study pLX304 / AmpicillinpLX304/Ampicillin ABDSMARCA2-HA ABD SMARCA2-HA This studyThis study pLX304 / AmpicillinpLX304/Ampicillin Software and AlgorithmsSoftware and Algorithms Image JImage J NIHNIH https://imagej.nih.gov/ij/https://imagej.nih.gov/ij/ PymolPymol SchrodingerSchrodinger https://pymol.org/2/https://pymol.org/2/ NormalizerNormalizer Lund University, Medicon Village 406, 223 81, Lund, SwedenLund University, Medicon Village 406, 223 81, Lund, Sweden http://normalyzer.immunoprot.lth.se/http://normalyzer.immunoprot.lth.se/ PerseusPerseus Max-Planck-Institute of BiochemistryMax-Planck-Institute of Biochemistry https://maxquant.net/perseus/https://maxquant.net/perseus/ AutoDock VinaAutoDock Vina The Scripps Research Institute, TSRIThe Scripps Research Institute, TSRI http://vina.scripps.edu/http://vina.scripps.edu/ GraphPad Prism 7 / 9.1.2GraphPad Prism 7/9.1.2 GraphPadGraphPad https://www.graphpad.com/https://www.graphpad.com/

PROCID 설계: 할로택 시스템과 근위 단백질 변형 반응 기술의 결합PROCID Design: Combining the Halotax System with Proximal Protein Modification Reaction Technology

할로택과 TurbID의 유전자 융합 구조가 발현될 수 있다면, 할로택 단백질은 미끼 단백질 (즉, 화합물 결합 단백질)을 TurbID의 근접 부위로 모집할 수 있을 것으로 예측하였다. 이 경우, 화합물-HTL 분자를 처리할 때 TurbID는 살아있는 세포에서 근접 의존적인 방식으로 약물 결합 단백질을 우선적으로 바이오틴화 할 수 있을 것이다 (도 2a). If the gene fusion construct of Halotag and TurbID can be expressed, it is predicted that the Halotag protein will be able to recruit the bait protein (i.e., compound binding protein) to the proximal site of TurbID. In this case, when processing compound-HTL molecules, TurbID will be able to preferentially biotinylate drug-binding proteins in a proximity-dependent manner in living cells (Fig. 2a).

10 - 30분 동안 in cellulo 바이오틴화 반응 후, 세포를 용해시키고, TurbID의 바이오틴화 된 펩타이드는 Streptavidin(SA) 비드로 농축시킨 후, MS 분석하였다. 이 경우, 복제 샘플(replicates sample) 대 대조군 샘플(control sample)의 질량 분석을 통해 약물-HTL 처리 샘플에서만 재현 가능하게 식별되는 바이오틴화 된 단백질을 약물 결합 단백질로 간주할 수 있다. After in cellulo biotinylation for 10 - 30 minutes, the cells were lysed, and TurbID biotinylated peptides were concentrated with Streptavidin (SA) beads, followed by MS analysis. In this case, a biotinylated protein that is reproducibly identified only in drug-HTL treated samples through mass spectrometry of replicates versus control samples can be considered as a drug-binding protein.

본 발명(즉, PROCID)은 다른 기존의 표적 식별 방법에 비해 몇 가지 장점을 제공한다 (도 2b). 첫째, PROCID는 세포 용해와 같은 비생리적 환경에 의한 인공물(artifacts) 감소시키는 in cellulo 조건에서 수행되도록 고안되었다. 둘째, PROCID는 바이오틴 표지 펩타이드의 질량 분석을 통해 특정 결합제(binder)를 식별할 수 있었다 (도 2a).The present invention (i.e., PROCID) offers several advantages over other existing target identification methods (FIG. 2b). First, PROCID is designed to be performed in cellulo conditions that reduce artifacts caused by non-physiological environments such as cell lysis. Second, PROCID was able to identify specific binders through mass spectrometry of biotin-labeled peptides (Fig. 2a).

PROCID 방법이 살아있는 세포에서 표적 단백질을 효과적으로 식별할 수 있는지 검증하기 위하여, 만성골수성백혈병 (CML) 치료제로 잘 알려진 타이로신 카이네이즈 저해제 (tyrosine kinase inhibitor)인 다사티닙 (dasatinib)을 사용하여 모델 시스템을 준비하였다. 다사티닙의 표적 단백질은 이미 친화성 침전, 유비퀴틴 유사 단백질 태깅, 광가교를 포함하여 다양한 방법을 통해 확인된 바 있어, 본 발명을 검증하는 데 유용한 약물이 될 것이라고 판단하였고, 또한 in cellulo 조건에서 실험을 진행한다는 점에서, 본 발명에 의해 기존에 알려지지 않았던 다사티닙의 새로운 물리적 상호 작용 파트너를 찾을 수도 있을 것으로 기대하였다. In order to verify that the PROCID method can effectively identify target proteins in living cells, a model system was prepared using dasatinib, a tyrosine kinase inhibitor well known for the treatment of chronic myelogenous leukemia (CML). did Dasatinib's target protein has already been identified through various methods including affinity precipitation, ubiquitin-like protein tagging, and photocrosslinking , so it was judged that it would be a useful drug for verifying the present invention. In terms of conducting the experiment, it was expected that a new physical interaction partner of dasatinib previously unknown could be found by the present invention.

다사티닙을 할로택 시스템과 결합하기 위하여 클로로알칸의 길이가 다른 두 개의 다사티닙-HTL (DA 140 HTL) 분자를 준비하였다: DA3-HTL(DA3) 및 DA5-HTL(DA5) (도 3a). 그 합성방법은 다음과 같다.Two Dasatinib-HTL (DA 140 HTL) molecules with different chloroalkane lengths were prepared to bind Dasatinib to the Halotac system: DA3-HTL (DA3) and DA5-HTL (DA5) (FIG. 3A ). The synthesis method is as follows.

2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4- yl)piperazin-1-yl)ethyl (4-nitrophenyl) carbonate (2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl (4 -nitrophenyl) carbonate ( 화합물 2compound 2 ).).

다사티닙( 화합물 1 , 0.2g, 0.410mmol)을 무수 테트라히드로푸란(10mL) 중 4-니트로페닐 클로로포르메이트(0.091g, 0.451mmol) 및 DIPEA(0.200mL, 1.148mmol)와 혼합하였다. 반응 혼합물을 실온에서 8시간 동안 교반한 후, 4-니트로페닐 클로로포르메이트(0.091g, 0.451mmol)를 첨가하였다. 16시간 후, 용액이 맑아지면, 용매를 감압하에 증발시켰다. 잔류물을 아세트산으로 중화하고 에틸 아세테이트로 고화시키고 고체 화합물을 여과하여 황색을 띤 화합물 2 를 얻었다(90 mg, 수율 34%). LC/MS(ESI) m/z : 654 [M]+Dasatinib ( compound 1 , 0.2 g, 0.410 mmol) was mixed with 4-nitrophenyl chloroformate (0.091 g, 0.451 mmol) and DIPEA (0.200 mL, 1.148 mmol) in anhydrous tetrahydrofuran (10 mL). After the reaction mixture was stirred at room temperature for 8 hours, 4-nitrophenyl chloroformate (0.091 g, 0.451 mmol) was added. After 16 hours, when the solution was clear, the solvent was evaporated under reduced pressure. The residue was neutralized with acetic acid and solidified with ethyl acetate, and the solid compound was filtered to give yellowish compound 2 (90 mg, yield 34%). LC/MS (ESI) m/z: 654 [M]+

2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethyl)carbamate trifluoroacetate salt (2-(4-(6-((5-((2-chloro-6-methylphenyl) carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(2 -(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethyl)carbamate trifluoroacetate salt ( 화합물 3acompound 3a ))

2-(2-(2-((6-클로로헥실)옥시)에톡시)에톡시)에탄아민, 염화수소염(0.024g, 0.079mmol) 및 화합물 2(0.020g, 0.031mmol)의 혼합물을 DIPEA(0.050 mL, 0.286 mmol)와 함께 무수 테트라히드로푸란(5 mL)에 용해시켰다. 반응 혼합물을 실온에서 16시간 동안 교반하였다. 용매를 진공 하에 증발시키고 혼합물을 prep-HPLC로 정제하여 화합물 3a (21 mg, 수율 88%)를 얻었다.A mixture of 2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethanamine, hydrogen chloride (0.024 g, 0.079 mmol) and compound 2 (0.020 g, 0.031 mmol) was prepared by DIPEA ( 0.050 mL, 0.286 mmol) in anhydrous tetrahydrofuran (5 mL). The reaction mixture was stirred at room temperature for 16 hours. The solvent was evaporated in vacuo and the mixture was purified by prep-HPLC to give compound 3a (21 mg, 88% yield).

1H NMR (400 MHz, DMSO) δ11.65 (brs, 1H), 9.92 (s, 2H), 8.24 (s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 7.40 - 7.24 (m, 3H), 6.15 (s, 1H), 4.31 (brs, 2H), 3.63 - 3.61 (m, 4H), 3.44 - 3.36 (m, 10H), 3.19 - 3.17 (m, 4H), 2.45 (s, 3H), 2.24 (s, 3H), 1.71 - 1.68 (m, 2H), 1.50 - 1.45 (m, 2H), 1.39 - 1.27 (m, 4H); LC/MS (ESI) m/z : 781 [M]+. 1 H NMR (400 MHz, DMSO) δ11.65 (brs, 1H), 9.92 (s, 2H), 8.24 (s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 7.40 - 7.24 (m, 3H), 6.15 (s, 1H), 4.31 (brs, 2H), 3.63 - 3.61 (m, 4H), 3.44 - 3.36 (m, 10H), 3.19 - 3.17 (m, 4H), 2.45 (s, 3H) , 2.24 (s, 3H), 1.71 - 1.68 (m, 2H), 1.50 - 1.45 (m, 2H), 1.39 - 1.27 (m, 4H); LC/MS (ESI) m/z: 781 [M]+.

2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(21-chloro-3,6,9,12,15-pentaoxahenicosyl)carbamate trifluoroacetate salt (2-(4-(6-((5-((2-chloro-6-methylphenyl)carbamoyl)thiazol-2-yl)amino)-2-methylpyrimidin-4-yl)piperazin-1-yl)ethyl(21 -chloro-3,6,9,12,15-pentaoxahenicosyl)carbamate trifluoroacetate salt ( 화합물 3bcompound 3b ).).

21-클로로-3,6,9,12,15-펜타옥사헤니코산-1-아민, 염화수소염 (0.056g, 0.144mmol) 및 화합물 2 (0.094g, 0.144mmol)의 혼합물을 DIPEA(0.050mL, 0.288mmol)와 함께 무수 테트라히드로푸란(10mL)에 용해시켰다. 반응 혼합물을 실온에서 16시간 동안 교반하였다. 용매를 진공 하에 증발시키고 혼합물을 prep-HPLC로 정제하여 화합물 3b (76 mg, 수율 61%)를 얻었다.A mixture of 21-chloro-3,6,9,12,15-pentaoxahenicosan-1-amine, hydrogen chloride (0.056g, 0.144mmol) and compound 2 (0.094g, 0.144mmol) was mixed with DIPEA (0.050mL, 0.288 mmol) in anhydrous tetrahydrofuran (10 mL). The reaction mixture was stirred at room temperature for 16 hours. The solvent was evaporated in vacuo and the mixture was purified by prep-HPLC to give compound 3b (76 mg, yield 61%).

1H NMR(400MHz, DMSO) δ11.69(s, 1H), 9.93(s, 2H), 8.24(s, 1H), 7.49 - 7.33(m, 2H), 7.33 - 7.21(m, 2H), s, 1H), 4.37 - 4.30(m, 2H), 4.21 - 3.68(m, 18H), 3.68 - 3.58(m, 4H), 3.47 - 3.40(m, 4H), 3.35(t, J =, 6 2H), 3.33 - 3.06(m, 6H), 2.45(s, 3H), 2.23(s, 3H), 1.69(p, J = 6.8Hz, 2H), 1.47(p, J = 6.8Hz, 2H), 1.41 - 1.18(m, 4H); LC/MS(ESI) m/z: 870 [M+H]+. 1 H NMR (400 MHz, DMSO) δ11.69 (s, 1H), 9.93 (s, 2H), 8.24 (s, 1H), 7.49 - 7.33 (m, 2H), 7.33 - 7.21 (m, 2H), s , 1H), 4.37 - 4.30(m, 2H), 4.21 - 3.68(m, 18H), 3.68 - 3.58(m, 4H), 3.47 - 3.40(m, 4H), 3.35(t, J =, 6 2H) , 3.33 - 3.06(m, 6H), 2.45(s, 3H), 2.23(s, 3H), 1.69(p, J = 6.8Hz, 2H), 1.47(p, J = 6.8Hz, 2H), 1.41 - 1.18 (m, 4H); LC/MS (ESI) m/z: 870 [M+H]+.

Figure pat00002
Figure pat00002

합성된 두 분자의 할로택에 대한 결합 친화도는 높은 형광 신호를 나타내는 dansyl-HTL을 사용한 경쟁 분석을 통해 확인하였다. DA-HTL의 존재 하에서 dansyl-HTL는 할로택에 대한 결합이 감소하여 형광 신호도 감소되었으며, 따라서 DA3과 DA5가 모두 할로택에 잘 결합한다는 것을 알 수 있었다 (데이터 미도시).The binding affinity of the two synthesized molecules to the halotag was confirmed through a competition assay using dansyl-HTL, which exhibits a high fluorescence signal. In the presence of DA-HTL, the binding of dansyl-HTL to halotag was reduced and thus the fluorescence signal was also reduced, indicating that both DA3 and DA5 bind well to halotag (data not shown).

다음으로, DA-HTL이 비접합 다사티닙과 비교하여 암세포에 대해 유사한 항증식 효과를 나타내는지 여부를 확인하고자 하였다. 이를 위하여 다사티닙의 표적 단백질인 내인성 BCR-ABL 카이네이즈의 발현 수준이 높은 두 세포주로, 인간 CML 세포주 K562 및 쥐 인터루킨-3 의존성 pro-B 세포주 Ba/F3를 이용하여 실험을 진행하였다. 그 결과, DA3 및 DA5 모두 50% 성장 억제를 유발하는 농도(GI50 값)가 서브마이크로몰 범위로 확인되어, 암세포의 성장을 효율적으로 억제하는 것으로 나타났다. DA-HTL의 GI50 값은 약물 분자에 대한 예상된 리간드 접합 효과로 인해 유리 다사티닙보다는 높았다 (도 3b, 3c).Next, we tried to confirm whether DA-HTL exhibits a similar antiproliferative effect on cancer cells compared to unconjugated dasatinib. To this end, two cell lines with high expression levels of endogenous BCR-ABL kinase, a target protein of dasatinib, were tested using human CML cell line K562 and mouse IL-3 dependent pro-B cell line Ba/F3. As a result, both DA3 and DA5 were found to have concentrations (GI 50 values) that induce 50% growth inhibition in the submicromolar range, indicating that they effectively inhibit the growth of cancer cells. The GI 50 values of DA-HTL were higher than those of free Dasatinib due to the expected ligand conjugation effect on the drug molecule (Figs. 3b, 3c).

PROCID 검증PROCID validation

PROCID를 검증하기 위하여, HT-TurbID 단백질에 고정된 DA-HTL이 살아있는 세포에서 이미 표적으로 알려진 화합물 결합 단백질(즉, ABL kinase)을 모집할 수 있는지 확인하고자 하였다. 이를 위하여, DA-HTL 처리 후, 표적 단백질이 HT-TurbID가 위치하는 미토콘드리아로 세포내 전위되는지 이미징 하는 전위 분석 (translocation assay)을 진행하였다(도 3d). In order to verify PROCID, we wanted to confirm whether DA-HTL immobilized on the HT-TurbID protein could recruit a compound-binding protein (i.e., ABL kinase) already known as a target in living cells. To this end, after DA-HTL treatment, a translocation assay was performed to image whether the target protein was translocated into the mitochondria where HT-TurbID is located (Fig. 3d).

할로택, TurbID, MoA (아민 산화효소의 미토콘드리아 막 고정 도메인, 아미노산 490-527, Uniprot ID: P21397)이 접합되어 있는 구조로, 미토콘드리아 외부 막에 위치되는, V5 태그된 HT-TurbID-MoA 컨스트럭트 및 DA 결합 도메인으로 알려져 있는 ABL1의 HA 에피토프-태그된 카이네이즈 도메인(KD) (KDABL1, 아미노산 239-512, Uniprot ID: P00519)을 준비하였다. 이들 컨스트럭트를 U2OS 세포에서 공동 발현시키고, 각각 500nM의 DA3 또는 DA5로 3시간 동안 처리하였다. 화합물 인큐베이션 후, 세포를 고정 및 투과화하고, 두 단백질 모두 면역형광에 의해 가시화하였다. A V5-tagged HT-TurbID-MoA construct, located in the mitochondrial outer membrane, with halotac, TurbID, MoA (mitochondrial membrane constant domain of amine oxidase, amino acids 490-527, Uniprot ID: P21397) conjugated The HA epitope-tagged kinase domain (KD) of ABL1, known as the T and DA binding domain ( KD ABL1, amino acids 239-512, Uniprot ID: P00519), was prepared. These constructs were co-expressed in U2OS cells and treated with 500 nM of DA3 or DA5, respectively, for 3 hours. After compound incubation, cells were fixed and permeabilized, and both proteins were visualized by immunofluorescence.

그 결과, DA5를 처리한 경우, 다른 대조군 샘플(예: DMSO, DA)에서는 검출되지 않은 세포질에서 미토콘드리아로의 KDABL1의 효율적인 전위를 관찰할 수 있었다 (도 3e). 특히, DA5는 DA3 (R2 = 0.56)와 비교하여 HT-TurbID-MoA로 KDABL1을 더 효율적으로 전위시킬 수 있었다 (R2 = 0.89). 이러한 결과는 DA5에서의 더 긴 링커가 할로택 표면에서 단백질-약물 결합을 위한 더 많은 공간을 제공하기 때문인 것으로 해석된다. 유사하게, DA5의 처리에 의해 HT-TurbID의 TOM20-KDABL1(TOM20을 표적으로 하는 외부 미토콘드리아 막)으로의 미토콘드리아 전위가 확인되었다 (데이터 미도시).As a result, when DA5 was treated, efficient translocation of KD ABL1 from the cytosol to mitochondria, which was not detected in other control samples (eg, DMSO, DA), was observed (Fig. 3e). In particular, DA5 was able to more efficiently translocate KD ABL1 with HT-TurbID-MoA compared to DA3 (R 2 = 0.56) (R 2 = 0.89). This result is interpreted as being because the longer linker in DA5 provides more space for protein-drug binding on the halotac surface. Similarly, treatment with DA5 confirmed mitochondrial translocation of HT-TurbID to TOM20- KD ABL1 (the outer mitochondrial membrane targeting TOM20) (data not shown).

다음으로, HT-TurbID (V5-tagged)가 DA5에 의해 모집된 KDABL1을 근접 의존적 바이오틴화 (proximity-dependent biotinylation reaction) 시키는지 확인하고자 하였다. HA-KDABL1 및 HT-TurbID를 공동 발현시킨 세포의 세포 용해물에서 항-HA 항체로 KDABL1(HA 태그)을 농축시키고, 면역형광 실험을 진행하였다. Next, we investigated whether HT-TurbID (V5-tagged) activates the proximity-dependent biotinylation reaction of KD ABL1 recruited by DA5. KD ABL1 (HA tag) was enriched with an anti-HA antibody in cell lysates of cells co-expressing HA- KD ABL1 and HT-TurbID, and immunofluorescence experiments were performed.

그 결과, 예상한 바대로 살아있는 세포에서 DA5로 처리되었을 때만 KDABL1이 HT-TurbID에 의해 바이오틴화 된다는 것이 확인되었다 (도 3f의 웨스턴 블롯에서 SA-HRP에 표시됨). 또한, 세포질에서 HT-TurbID에 의한 TOM20-HA-KDABL1의 재현 가능한 DA5 의존성 바이오틴화를 관찰할 수 있었다(데이터 미도시). 이러한 결과로부터 HT-TurbID가 약물-리간드(즉, DA-HTL) 분자의 존재 하에 약물 결합 단백질 (즉, KDABL1)을 바이오틴화할 수 있음을 입증하였다. As a result, as expected, it was confirmed that KD ABL1 was biotinylated by HT-TurbID only when living cells were treated with DA5 (shown in SA-HRP in the western blot of Fig. 3f). In addition, reproducible DA5-dependent biotinylation of TOM20-HA- KD ABL1 by HT-TurbID was observed in the cytoplasm (data not shown). These results demonstrated that HT-TurbID can biotinylate a drug-binding protein (ie, KD ABL1) in the presence of a drug-ligand (ie, DA-HTL) molecule.

CML 세포주에서 다사티닙 표적 단백질 동정Identification of dasatinib target proteins in CML cell lines

실시예 3에서 HT-TurbID 시스템을 통해 DA5가 다사티닙 결합 단백질을 모집하고 바이오틴화 하는데 제대로 작동할 수 있음을 확인한 바, 살아있는 세포에서 기존의 세포 용해물에서는 확인되지 않았던 다사티닙에 결합하는 신규한 표적 단백질을 동정할 수 있는지 조사해 보고자 하였다. In Example 3, it was confirmed that DA5 can properly recruit and biotinylate Dasatinib-binding proteins through the HT-TurbID system. We wanted to investigate whether a novel target protein could be identified.

이를 위하여, 렌티바이러스 감염 후 선별 과정을 통해, HT-TurbID를 안정적으로 발현하는 K562 세포주를 제작하였다. 상기 세포주에서 DA5, DA 및 비히클(DMSO)를 처리한 경우 모두 강력한 바이오틴화 반응을 확인할 수 있었으며, streptavidin-HRP 웨스턴 블롯 패턴은 DA 및 DMSO 처리 샘플의 패턴과 비교하여 DA5 처리에서 미묘하게 차이가 있었다. 이 결과는 HT-TurbID에 의해 바이오틴화 되는 단백질이 할로택 단백질과 DA5이 복합체를 형성함으로써 변경될 수 있음을 의미한다. To this end, a K562 cell line stably expressing HT-TurbID was prepared through a selection process after infection with lentivirus. Strong biotinylation reactions were confirmed in all cases of DA5, DA, and vehicle (DMSO) treatment in the above cell lines, and the streptavidin-HRP Western blot pattern was slightly different in DA5 treatment compared to the pattern of DA and DMSO treatment samples. . This result means that the protein biotinylated by HT-TurbID can be altered by forming a complex between the halotac protein and DA5.

DA5 처리 및 DA5 미처리 샘플의 바이오틴화 단백질의 질량 분석 결과를 비교함으로써 K562 세포의 다사티닙 결합 단백질을 식별할 수 있을 것으로 기대하고, 질량 분석을 위해 DA5 처리된 샘플(D1-D3) 및 음성 대조군 샘플(C1-C3, DA5 처리하지 않음)과 같이 K562 세포의 샘플을 3중으로 (triplicate) 준비하였다. TurbID 매개 바이오틴화 된 샘플에서 바이오틴화 된 라이신 잔기(K+226 Da)의 질량 관찰에 의해 바이오틴화 된 펩타이드를 직접 식별하였다 (자세한 방법은 Lee, S.-Y. et al., (2016). Acs Central Sci 2, 506-516 참조). 3중 샘플은 재현가능하고 질량 신호 강도가 우수했으며, 샘플에서 상당한 수의 바이오틴화 된 펩타이드를 감지할 수 있었다 (총: 3912, 잘못된 발견된 비율 < 1%). 질량 신호 강도는 Student's t-test에 대한 LOESS R 프로토콜에 의해 정규화되었다. 대조군에 비해 DA5 처리에서만 HT-TurbID에 의해 재현 가능하게 바이오틴화 되는 33개의 단백질이 관찰되었다: P 값 < 0.05, Log2(Fold Change, FC)> 1.2). 하나의 음성 대조군 샘플에서 오검출로 인해 표준보다 약간 더 높은 P 값(P=0.065)을 가지나 가장 높은 배수 변화 (FC=5.14)를 나타내는 하나의 단백질(SMARCA2)을 추가하여, 살아있는 K562 세포에서 총 34개의 단백질을 "다사티닙-상호작용체(그룹 I)"로 선별하였다(도 4b).By comparing the mass spectrometry results of biotinylated proteins of DA5-treated and DA5-untreated samples, we expect to be able to identify dasatinib-binding proteins in K562 cells, DA5-treated samples (D1-D3) and negative controls for mass spectrometry Samples of K562 cells were prepared in triplicate as in samples (C1-C3, no DA5 treatment). Biotinylated peptides were directly identified by mass observation of biotinylated lysine residues (K+226 Da) in TurbID-mediated biotinylated samples (Lee, S.-Y. et al., (2016) for details. see Acs Central Sci 2, 506-516). The triplicate samples were reproducible and had good mass signal intensity, and a significant number of biotinylated peptides could be detected in the samples (total: 3912, false discovery rate < 1%). Mass signal intensities were normalized by the LOESS R protocol for Student's t-test . Thirty-three proteins were observed that were reproducibly biotinylated by HT-TurbID only in DA5 treatment compared to control: P-value < 0.05, Log 2 (Fold Change, FC) > 1.2). One protein (SMARCA2) was added that had a slightly higher P-value than the standard (P=0.065) but the highest fold change (FC=5.14) due to false detections in one negative control sample (SMARCA2), resulting in total total in viable K562 cells. Thirty-four proteins were selected as "dasatinib-interactors (group I)" (Fig. 4b).

다사티닙-상호작용체로 선별된 34개 단백질(그룹 I 단백질) 중, 4개의 단백질 타이로신 카이네이즈(ABL1, ABL2, BTK 및 CSK)와 2개의 ATP 결합 단백질 (RIOK1 및 SMARCA2)는 특히 DA5 처리 샘플에서 HT-TurbID에 의해 고도로 바이오틴화 되었으나(도 4c, 4d), 총 37개의 카이네이즈와 57개의 ATP 결합 단백질은 두 샘플 모두에서 HT-TurbID에 의해 표지되는 것으로 확인되었다(데이터 미도시). 이와 같은 결과는, 이들 선별된 카이네이즈 단백질과 ATP 결합 단백질이 살아있는 세포에서 다사티닙에 대해 강한 친화성을 가진다는 의미이다. Of the 34 proteins (group I proteins) selected as dasatinib-interactants, 4 protein tyrosine kinases (ABL1, ABL2, BTK and CSK) and 2 ATP binding proteins (RIOK1 and SMARCA2) were found to be significantly higher in DA5-treated samples. Although highly biotinylated by HT-TurbID (Fig. 4c, 4d), a total of 37 kinases and 57 ATP-binding proteins were found to be labeled by HT-TurbID in both samples (data not shown). These results indicate that these selected kinase and ATP-binding proteins have strong affinity for Dasatinib in living cells.

한편, FDA가 승인한 다사티닙의 표적 단백질인 ABL1과 ABL2가 HT-TurbID에 의해 선택적으로 바이오틴화 된다는 결과는, PROCID가 예상대로 작동한다는 것을 서포팅하는 좋은 "개념 증명" 결과이다. On the other hand, the FDA-approved results that dasatinib's target proteins, ABL1 and ABL2, are selectively biotinylated by HT-TurbID are good "proof-of-concept" results supporting that PROCID works as expected.

BTK와 CSK가 PROCID에 의해 다사티닙 표적 단백질로 추가로 확인되었는데, 이들 단백질은 FDA 승인을 받은 다사티닙 표적 단백질은 아니지만 in vitro 특성화 결과 다사티닙에 대한 결합 친화력이 있음을 검증할 수 있었다. 따라서 이들 단백질은 기존 세포 용해물에서 확인할 수 없었던, 살아있는 세포 또는 in cellulo 상태에서 특이적으로 다사티닙에 대해 결합 친화성을 갖는다는 것을 의미한다. 이를 검증하고자 후속 실험을 진행하였다. BTK and CSK were further identified as Dasatinib target proteins by PROCID. Although these proteins are not FDA-approved Dasatinib target proteins, in vitro characterization confirmed that they have binding affinity for Dasatinib. . Therefore, it means that these proteins have binding affinity for dasatinib specifically in living cells or in cellulo , which could not be confirmed in conventional cell lysates. To verify this, a follow-up experiment was conducted.

PROCID로 동정된 다사티닙 결합 표적 단백질 검증Validation of dasatinib-binding target proteins identified by PROCID

MS 분석 결과 BTK 및 CSK의 다수의 라이신 잔기가 DA5 처리된 HT-TurbID에 의해 바이오틴화 된다는 것이 확인되었다 (도 5a, 5b). 이 결과는 살아있는 세포에서 이들이 DA5와 강력하게 상호 작용한다는 것을 의미하는바, 이를 검증하기 위하여, DA5 처리 후 미토콘드리아 표적 할로택 단백질로 BTK 및 CSK 단백질이 이동하는지 in cellulo 전위 분석을 수행하였다 (도 3d). As a result of MS analysis, it was confirmed that many lysine residues of BTK and CSK were biotinylated by DA5-treated HT-TurbID (FIGS. 5a and 5b). This result means that they interact strongly with DA5 in living cells. To verify this, in cellulopotential analysis was performed to see if BTK and CSK proteins move to mitochondrial target halotak proteins after DA5 treatment (Fig. 3d). ).

KDABL1과 유사하게 외부 미토콘드리아 막에 위치하는 V5 태그된 HT-TurbID-MoA와 세포질에 위하는 HA 태그된 BTK-mCherry 또는 CSK-EGFP를 일시적으로 발현시켰다. DA5 처리한 결과, 두 표적 단백질 모두 세포질에서 미토콘드리아로 전위되는 것이 확인되었다 (도 5c). 또한 BTK와 CSK 모두 DA5 처리 후 Pearson의 상관 계수가 급격히 증가했다. 이러한 DA5 의존성 전위 결과는 COS-7 세포주를 사용한 실험에서도 그대로 재현되었다 (데이터 미도시).Similar to KD ABL1, V5-tagged HT-TurbID-MoA localized to the outer mitochondrial membrane and HA-tagged BTK-mCherry or CSK-EGFP localized to the cytoplasm were transiently expressed. As a result of DA5 treatment, it was confirmed that both target proteins were translocated from the cytosol to the mitochondria (FIG. 5c). In addition, Pearson's correlation coefficient increased rapidly after DA5 treatment for both BTK and CSK. These DA5-dependent translocation results were also reproduced in experiments using the COS-7 cell line (data not shown).

BTK 및 CSK 단백질이 DA5 처리 하에서 HT-TurbID에 의해 바이오틴화 되었는지 확인하기 위하여 면역침전분석과 결합된 근위 단백질 변형 반응 (PL-IP)을 수행하였다. 이를 위하여, V5 태그가 있는 세포질 HT-TurbID와 HA 태그가 있는 BTK-mCherry 또는 CSK-EGFP를 세포 내에서 일시적으로 발현시켰다 (도 5d). HA 태그가 있는 미끼 단백질 BTK-mCherry 및 CSK-EGFP는 항-HA 풀다운으로 잘 농축되었지만, HT-TurbID는 DA5 처리 샘플에서만 미끼 단백질과 공동 정제되었다. 또한, 농축된 BTK-mCherry 및 CSK-EGFP는 DA5 처리 하에서만 바이오틴화되었다 (SA-HRP 웨스턴 블롯에 표시됨). 이러한 DA5 의존성 바이오틴화 결과는 HT-TurbID 대신 HT-TurbID-MoA 형질감염된 세포를 사용한 결과에서도 그대로 재현되었다(데이터 미도시). 이러한 결과는 DA5 처리에 의해 BTK 및 CSK가 DA5에 강력하게 결합되고, HT-TurbID에 HT-TurbID에 의해 근접 방식으로 바이오틴화 되었음을 나타내며, 이 결과로부터 이들 단백질에 앞선 PROCID 결과가 유효함을 알 수 있었다. Proximal protein modification reaction (PL-IP) coupled with immunoprecipitation assay was performed to confirm that BTK and CSK proteins were biotinylated by HT-TurbID under DA5 treatment. To this end, V5-tagged cytoplasmic HT-TurbID and HA-tagged BTK-mCherry or CSK-EGFP were transiently expressed intracellularly (Fig. 5d). The HA-tagged bait proteins BTK-mCherry and CSK-EGFP were well enriched with the anti-HA pulldown, but HT-TurbID was co-purified with the bait protein only from DA5 treated samples. In addition, concentrated BTK-mCherry and CSK-EGFP were biotinylated only under DA5 treatment (shown in SA-HRP western blot). These DA5-dependent biotinylation results were also reproduced in the results using HT-TurbID-MoA-transfected cells instead of HT-TurbID (data not shown). These results indicate that BTK and CSK are strongly bound to DA5 by DA5 treatment and that HT-TurbID is biotinylated by HT-TurbID in a close manner. From these results, it can be seen that the PROCID results preceding these proteins are valid. there was.

다사티닙의 신규한 상호작용 단백질로의 SMARCA2 동정Identification of SMARCA2 as a Novel Interacting Protein of Dasatinib

HT-TurbID 표지된 단백질 중 DA5 처리에 의해 가장 높은 배수 변화를 나타낸 단백질은 SMARCA2로 확인되었다 (FC=5.14). SMARCA2는 염색질 리모델링 과정에 관여하는 비교적 큰 단백질(아미노산 1590개, 181kDa)로서, SMARCA2에는 ATP 결합 도메인 (아미노산 736-901)이 있으며 HT-TurbID(K904)의 바이오틴화 된 부위가 이 ATP 결합 도메인 근처에서 발견되었다 (도 6a). Among the HT-TurbID-tagged proteins, the protein with the highest fold change by DA5 treatment was identified as SMARCA2 (FC=5.14). SMARCA2 is a relatively large protein (1590 amino acids, 181 kDa) involved in the process of chromatin remodeling. SMARCA2 has an ATP-binding domain (amino acids 736-901) and the biotinylated site of HT-TurbID (K904) is located near this ATP-binding domain. was found in (Fig. 6a).

이에, 살아있는 세포에서 DA5 처리에 따라 다사티닙이 HT-TurbID에 의해 특이적으로 표지된 이 ATP 결합 도메인과 결합될 것으로 가정하고 (도 6b), 이를 검증하고자 AlphaFold 데이터베이스에서 예측된 SMARCA2의 3D 구조를 통해 SMARCA2의 다사티닙 결합 부위에 대한 구조 분석을 수행하였다. Autodock의 분자 시뮬레이션 결과, 다사티닙 결합 부위는 X선 공결정 구조(PDB ID: 6EG3)에서 SMARCA2 단백질의 ATP 결합 부위와 명확히 오버랩되었다 (도 6c). 이와 같은 결과로부터, 다사티닙이 실제로 SMARCA2의 ATP 결합 부위를 표적으로 할 수 있음을 알 수 있었다. Therefore, it was assumed that Dasatinib would bind to this ATP-binding domain specifically labeled by HT-TurbID following DA5 treatment in living cells (Fig. 6b), and to verify this, the 3D structure of SMARCA2 predicted in the AlphaFold database Structural analysis of the dasatinib-binding site of SMARCA2 was performed. As a result of Autodock's molecular simulation, the Dasatinib binding site clearly overlapped with the ATP binding site of the SMARCA2 protein in the X-ray co-crystal structure (PDB ID: 6EG3) (Fig. 6c). From these results, it was found that dasatinib can actually target the ATP binding site of SMARCA2.

이와 같은 구조 데이터 기반 결과를 실험적으로 검증하고자, SMARCA2(ABD SMARCA2)의 ATP 결합 도메인을 사용하여 세포 내 전위 분석 및 PL-IP 분석을 수행하였다. 그 결과, ABDSMARCA2는 미토콘드리아를 표적으로 하는 HT-TurbID 단백질로 이동하는 것이 관찰되었으며, 종합적으로, 이러한 결과는 ABDSMARCA2가 다사티닙에 대한 물리적 결합 친화성을 가지고 있으며, 본 발명에 따른 PROCID 방법이 살아있는 세포에서 기존의 세포 용해 방식으로 동정하지 못하는 약물 등의 신규한 상호작용체를 규명해 낼 수 있음을 나타낸다 (도 6e).In order to experimentally verify these structural data-based results, intracellular potential analysis and PL-IP analysis were performed using the ATP-binding domain of SMARCA2 (ABD SMARCA2). As a result, ABD SMARCA2 was observed to migrate to mitochondria-targeted HT-TurbID protein. Collectively, these results suggest that ABD SMARCA2 has physical binding affinity for dasatinib, and the PROCID method according to the present invention This indicates that novel interactors such as drugs that cannot be identified by conventional cell lysis methods can be identified in these living cells (FIG. 6e).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<서열번호 1> Halotag-TurboID
MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIPHVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDWGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGPGLNLLQEDNPDLIGSEIARWLSTLEISGGRPLAGKPIPNPLLGLDSTKDNTVPLKLIALLANGEFHSGEQLGETLGMSRAAINKHIQTLRDWGVDVFTVPGKGYSLPEPIPLLNAKQILGQLDGGSVAVLPVVDSTNQYLLDRIGELKSGDACIAEYQQAGRGSRGRKWFSPFGANLYLSMFWRLKRGPAAIGLGPVIGIVMAEALRKLGADKVRVKWPNDLYLQDRKLAGILVELAGITGDAAQIVIGAGINVAMRRVEESVVNQGWITLQEAGINLDRNTLAATLIRELRAALELFEQEGLAPYLPRWEKLDNFINRPVKLIIGDKEIFGISRGIDKQGALLLEQDGVIKPWMGGEISLRSAEK
<서열번호 2> KpnI-BTK-mcherry-HA-Stop-XhoI
GGTACCATGGCTGCAGTGATACTGGAGAGCATCTTTCTGAAGCGCTCCCAGCAGAAAAAGAAAACATCACCTTTAAACTTCAAGAAGCGCCTGTTTCTCTTGACTGTACACAAACTTTCATACTATGAATATGACTTTGAACGTGGGAGAAGAGGCAGTAAGAAAGGTTCAATAGATGTTGAGAAGATCACCTGTGTTGAAACAGTAATTCCTGAAAAAAATCCCCCACCAGAAAGACAGATTCCGAGGAGAGGTGAGGAGTCTAGTGAAATGGAACAGATTTCAATCATTGAAAGGTTCCCGTACCCATTCCAGGTTGTATATGATGAAGGACCTCTCTATGTTTTCTCCCCAACTGAAGAGCTGAGAAAGCGCTGGATTCACCAGCTCAAAAATGTAATCCGGTACAATAGTGACCTGGTACAGAAATACCATCCTTGCTTCTGGATTGATGGACAGTATCTCTGCTGCTCTCAGACAGCCAAGAATGCTATGGGCTGCCAAATTTTGGAGAACAGGAATGGAAGCTTAAAACCTGGGAGTTCTCATCGAAAAACGAAAAAGCCTCTTCCCCCTACCCCAGAGGAAGATCAGATCTTGAAAAAACCGCTTCCCCCGGAGCCAACAGCAGCACCAATCTCCACAACCGAGCTGAAAAAGGTCGTGGCCCTTTATGATTACATGCCAATGAACGCAAATGACTTACAATTGCGAAAGGGCGAGGAGTATTTTATCCTGGAGGAGAGCAACCTACCGTGGTGGCGAGCACGAGATAAAAATGGGCAGGAAGGCTACATCCCAAGTAACTATATCACTGAAGCTGAGGACTCCATAGAGATGTATGAGTGGTATTCCAAGCACATGACTCGAAGTCAAGCTGAGCAACTGCTAAAGCAAGAGGGGAAAGAAGGAGGTTTCATTGTCAGAGACTCCAGCAAAGCTGGAAAATACACCGTGTCTGTGTTTGCTAAATCTACTGGGGAGCCTCAAGGGGTGATCCGCCATTACGTTGTGTGTTCCACGCCACAGAGCCAGTATTACCTGGCTGAGAAACACCTCTTCAGCACCATCCCTGAGCTCATTAACTACCATCAACACAACTCTGCAGGCCTCATATCCAGGCTGAAATATCCTGTGTCTAAACAAAACAAAAACGCGCCTTCTACTGCAGGCCTGGGCTATGGATCATGGGAAATTGATCCAAAGGACCTCACCTTCTTGAAGGAGCTTGGGACTGGACAATTCGGTGTCGTGAAATATGGGAAGTGGAGGGGCCAATATGATGTGGCCATCAAGATGATCAGAGAAGGTTCCATGTCGGAGGATGAATTCATTGAAGAAGCCAAAGTCATGATGAATCTTTCCCATGAGAAGCTGGTGCAGTTGTATGGCGTCTGCACCAAACAACGCCCCATCTTCATCATCACCGAGTACATGGCTAATGGCTGCCTCTTGAACTACCTGAGGGAGATGCGGCACCGCTTCCAGACACAGCAGCTGCTTGAGATGTGCAAAGATGTCTGTGAAGCAATGGAATACTTGGAGTCGAAGCAGTTCCTTCACAGAGACCTGGCAGCTCGAAACTGTTTGGTAAACGATCAAGGAGTTGTGAAAGTATCTGACTTTGGCCTGTCTAGGTATGTCCTTGATGATGAGTACACCAGCTCTGTAGGCTCCAAGTTTCCAGTCCGGTGGTCTCCACCAGAAGTGCTTATGTATAGCAAGTTCAGCAGCAAATCTGACATCTGGGCTTTTGGGGTTTTAATGTGGGAGATCTACTCCCTGGGGAAGATGCCGTATGAGAGATTTACTAACAGTGAGACAGCAGAACACATTGCTCAAGGCTTACGTCTCTACAGGCCTCATCTGGCATCAGAGAGGGTATATACCATCATGTACAGCTGCTGGCACGAGAAAGCAGATGAACGTCCTAGTTTCAAAATTCTCTTGAGTAACATTCTAGATGTGATGGATGAAGAATCCCCTAGGGGAGGAGGAGGATCAGGAGGAGGAGGATCAGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTACCCTTACGATGTACCGGATTACGCATAACTCGAG
<서열번호 3> HindIII-CSK-EGFP-HA-Stop-XhoI
AAGCTTATGTCAGCAATACAGGCCGCCTGGCCATCCGGTACAGAATGTATTGCCAAGTACAACTTCCACGGCACTGCCGAGCAGGACCTGCCCTTCTGCAAAGGAGACGTGCTCACCATTGTGGCCGTCACCAAGGACCCCAACTGGTACAAAGCCAAAAACAAGGTGGGCCGTGAGGGCATCATCCCAGCCAACTACGTCCAGAAGCGGGAGGGCGTGAAGGCGGGTACCAAACTCAGCCTCATGCCTTGGTTCCACGGCAAGATCACACGGGAGCAGGCTGAGCGGCTTCTGTACCCGCCGGAGACAGGCCTGTTCCTGGTGCGGGAGAGCACCAACTACCCCGGAGACTACACGCTGTGCGTGAGCTGCGACGGCAAGGTGGAGCACTACCGCATCATGTACCATGCCAGCAAGCTCAGCATCGACGAGGAGGTGTACTTTGAGAACCTCATGCAGCTGGTGGAGCACTACACCTCAGACGCAGATGGACTCTGTACGCGCCTCATTAAACCAAAGGTCATGGAGGGCACAGTGGCGGCCCAGGATGAGTTCTACCGCAGCGGCTGGGCCCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCGGGAAGGGGGAGTTCGGAGACGTGATGCTGGGCGATTACCGAGGGAACAAAGTCGCCGTCAAGTGCATTAAGAACGACGCCACTGCCCAGGCCTTCCTGGCTGAAGCCTCAGTCATGACGCAACTGCGGCATAGCAACCTGGTGCAGCTCCTGGGCGTGATCGTGGAGGAGAAGGGCGGGCTCTACATCGTCACTGAGTACATGGCCAAGGGGAGCCTTGTGGACTACCTGCGGTCTAGGGGTCGGTCAGTGCTGGGCGGAGACTGTCTCCTCAAGTTCTCGCTAGATGTCTGCGAGGCCATGGAATACCTGGAGGGCAACAATTTCGTGCATCGAGACCTGGCTGCCCGCAATGTGCTGGTGTCTGAGGACAACGTGGCCAAGGTCAGCGACTTTGGTCTCACCAAGGAGGCGTCCAGCACCCAGGACACGGGCAAGCTGCCAGTCAAGTGGACAGCCCCTGAGGCCCTGAGAGAGAAGAAATTCTCCACTAAGTCTGACGTGTGGAGTTTCGGAATCCTTCTCTGGGAAATCTACTCCTTTGGGCGAGTGCCTTATCCAAGAATTCCCCTGAAGGACGTCGTCCCTCGGGTGGAGAAGGGCTACAAGATGGATGCCCCCGACGGCTGCCCGCCCGCAGTCTATGAAGTCATGAAGAACTGCTGGCACCTGGACGCCGCCATGCGGCCCTCCTTCCTACAGCTCCGAGAGCAGCTTGAGCACATCAAAACCCACGAGCTGCACCTGGCGGCCGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTACCCTTACGATGTACCGGATTACGCATAACTCGAG
<서열번호 4> NotI-HaloTag-BamHI-V5-TurboID-Stop-ApaI
GCGGCCGCATGGCAGAAATCGGTACTGGCTTTCCATTCGACCCCCATTATGTGGAAGTCCTGGGCGAGCGCATGCACTACGTCGATGTTGGTCCGCGCGATGGCACCCCTGTGCTGTTCCTGCACGGTAACCCGACCTCCTCCTACGTGTGGCGCAACATCATCCCGCATGTTGCACCGACCCATCGCTGCATTGCTCCAGACCTGATCGGTATGGGCAAATCCGACAAACCAGACCTGGGTTATTTCTTCGACGACCACGTCCGCTTCATGGATGCCTTCATCGAAGCCCTGGGTCTGGAAGAGGTCGTCCTGGTCATTCACGACTGGGGCTCCGCTCTGGGTTTCCACTGGGCCAAGCGCAATCCAGAGCGCGTCAAAGGTATTGCATTTATGGAGTTCATCCGCCCTATCCCGACCTGGGACGAATGGCCAGAATTTGCCCGCGAGACCTTCCAGGCCTTCCGCACCACCGACGTCGGCCGCAAGCTGATCATCGATCAGAACGTTTTTATCGAGGGTACGCTGCCGATGGGTGTCGTCCGCCCGCTGACTGAAGTCGAGATGGACCATTACCGCGAGCCGTTCCTGAATCCTGTTGACCGCGAGCCACTGTGGCGCTTCCCAAACGAGCTGCCAATCGCCGGTGAGCCAGCGAACATCGTCGCGCTGGTCGAAGAATACATGGACTGGCTGCACCAGTCCCCTGTCCCGAAGCTGCTGTTCTGGGGCACCCCAGGCGTTCTGATCCCACCGGCCGAAGCCGCTCGCCTGGCCAAAAGCCTGCCTAACTGCAAGGCTGTGGACATCGGCCCGGGTCTGAATCTGCTGCAAGAAGACAACCCGGACCTGATCGGCAGCGAGATCGCGCGCTGGCTGTCGACGCTCGAGATTTCCGGCAAGGATCCAGGCAAGCCCATCCCCAACCCCCTGCTGGGCCTGGACAGCACCAAAGACAATACTGTGCCTCTGAAGCTGATCGCTCTCCTGGCTAATGGCGAGTTCCATAGTGGCGAACAGCTGGGAGAAACCCTGGGCATGTCCAGGGCCGCTATCAACAAGCACATTCAGACTCTGCGCGACTGGGGCGTGGACGTGTTCACCGTGCCCGGAAAGGGCTACTCTCTGCCCGAGCCTATCCCGCTGCTGAACGCTAAACAGATTCTGGGACAGCTGGACGGCGGGAGCGTGGCAGTCCTGCCTGTGGTCGACTCCACCAATCAGTACCTGCTGGATCGAATCGGCGAGCTGAAGAGTGGGGATGCTTGCATTGCAGAATATCAGCAGGCAGGGAGAGGAAGCAGAGGGAGGAAATGGTTCTCTCCTTTTGGAGCTAACCTGTACCTGAGTATGTTTTGGCGCCTGAAGCGGGGACCAGCAGCAATCGGCCTGGGCCCGGTCATCGGAATTGTCATGGCAGAAGCGCTGCGAAAGCTGGGAGCAGACAAGGTGCGAGTCAAATGGCCCAATGACCTGTATCTGCAGGATAGAAAGCTGGCAGGCATCCTGGTGGAGCTGGCCGGAATAACAGGCGATGCTGCACAGATCGTCATTGGCGCCGGGATTAACGTGGCTATGAGGCGCGTGGAGGAAAGCGTGGTCAATCAGGGCTGGATCACACTGCAGGAAGCAGGGATTAACCTGGACAGGAATACTCTGGCCGCTACGCTGATCCGAGAGCTGCGGGCAGCCCTGGAACTGTTCGAGCAGGAAGGCCTGGCTCCATATCTGCCACGGTGGGAGAAGCTGGATAACTTCATCAATAGACCCGTGAAGCTGATCATTGGGGACAAAGAGATTTTCGGGATTAGCCGGGGGATTGATAAACAGGGAGCCCTGCTGCTGGAACAGGACGGAGTTATCAAACCCTGGATGGGCGGAGAAATCAGTCTGCGGTCTGCCGAAAAGTAATGATCTAGAGGGCCC
<서열번호 5> BsiWI- HaloTag-NheI-V5-TurboID-Stop-AgeI
CGTACGATGGCAGAAATCGGTACTGGCTTTCCATTCGACCCCCATTATGTGGAAGTCCTGGGCGAGCGCATGCACTACGTCGATGTTGGTCCGCGCGATGGCACCCCTGTGCTGTTCCTGCACGGTAACCCGACCTCCTCCTACGTGTGGCGCAACATCATCCCGCATGTTGCACCGACCCATCGCTGCATTGCTCCAGACCTGATCGGTATGGGCAAATCCGACAAACCAGACCTGGGTTATTTCTTCGACGACCACGTCCGCTTCATGGATGCCTTCATCGAAGCCCTGGGTCTGGAAGAGGTCGTCCTGGTCATTCACGACTGGGGCTCCGCTCTGGGTTTCCACTGGGCCAAGCGCAATCCAGAGCGCGTCAAAGGTATTGCATTTATGGAGTTCATCCGCCCTATCCCGACCTGGGACGAATGGCCAGAATTTGCCCGCGAGACCTTCCAGGCCTTCCGCACCACCGACGTCGGCCGCAAGCTGATCATCGATCAGAACGTTTTTATCGAGGGTACGCTGCCGATGGGTGTCGTCCGCCCGCTGACTGAAGTCGAGATGGACCATTACCGCGAGCCGTTCCTGAATCCTGTTGACCGCGAGCCACTGTGGCGCTTCCCAAACGAGCTGCCAATCGCCGGTGAGCCAGCGAACATCGTCGCGCTGGTCGAAGAATACATGGACTGGCTGCACCAGTCCCCTGTCCCGAAGCTGCTGTTCTGGGGCACCCCAGGCGTTCTGATCCCACCGGCCGAAGCCGCTCGCCTGGCCAAAAGCCTGCCTAACTGCAAGGCTGTGGACATCGGCCCGGGTCTGAATCTGCTGCAAGAAGACAACCCGGACCTGATCGGCAGCGAGATCGCGCGCTGGCTGTCGACGCTCGAGATTTCCGGCGGCCGGCCGCTAGCAGGCAAGCCCATCCCCAACCCCCTGCTGGGCCTGGACAGCACCAAAGACAATACTGTGCCTCTGAAGCTGATCGCTCTCCTGGCTAATGGCGAGTTCCATAGTGGCGAACAGCTGGGAGAAACCCTGGGCATGTCCAGGGCCGCTATCAACAAGCACATTCAGACTCTGCGCGACTGGGGCGTGGACGTGTTCACCGTGCCCGGAAAGGGCTACTCTCTGCCCGAGCCTATCCCGCTGCTGAACGCTAAACAGATTCTGGGACAGCTGGACGGCGGGAGCGTGGCAGTCCTGCCTGTGGTCGACTCCACCAATCAGTACCTGCTGGATCGAATCGGCGAGCTGAAGAGTGGGGATGCTTGCATTGCAGAATATCAGCAGGCAGGGAGAGGAAGCAGAGGGAGGAAATGGTTCTCTCCTTTTGGAGCTAACCTGTACCTGAGTATGTTTTGGCGCCTGAAGCGGGGACCAGCAGCAATCGGCCTGGGCCCGGTCATCGGAATTGTCATGGCAGAAGCGCTGCGAAAGCTGGGAGCAGACAAGGTGCGAGTCAAATGGCCCAATGACCTGTATCTGCAGGATAGAAAGCTGGCAGGCATCCTGGTGGAGCTGGCCGGAATAACAGGCGATGCTGCACAGATCGTCATTGGCGCCGGGATTAACGTGGCTATGAGGCGCGTGGAGGAAAGCGTGGTCAATCAGGGCTGGATCACACTGCAGGAAGCAGGGATTAACCTGGACAGGAATACTCTGGCCGCTACGCTGATCCGAGAGCTGCGGGCAGCCCTGGAACTGTTCGAGCAGGAAGGCCTGGCTCCATATCTGCCACGGTGGGAGAAGCTGGATAACTTCATCAATAGACCCGTGAAGCTGATCATTGGGGACAAAGAGATTTTCGGGATTAGCCGGGGGATTGATAAACAGGGAGCCCTGCTGCTGGAACAGGACGGAGTTATCAAACCCTGGATGGGCGGAGAAATCAGTCTGCGGTCTGCCGAAAAGTGATAAACCCAGCTTTCTTGTACAAAGTGGTACCGGT
<서열번호 6> BsiWI- HaloTag-NheI-V5-TurboID-MoA-Stop-AgeI
CGTACGATGGCAGAAATCGGTACTGGCTTTCCATTCGACCCCCATTATGTGGAAGTCCTGGGCGAGCGCATGCACTACGTCGATGTTGGTCCGCGCGATGGCACCCCTGTGCTGTTCCTGCACGGTAACCCGACCTCCTCCTACGTGTGGCGCAACATCATCCCGCATGTTGCACCGACCCATCGCTGCATTGCTCCAGACCTGATCGGTATGGGCAAATCCGACAAACCAGACCTGGGTTATTTCTTCGACGACCACGTCCGCTTCATGGATGCCTTCATCGAAGCCCTGGGTCTGGAAGAGGTCGTCCTGGTCATTCACGACTGGGGCTCCGCTCTGGGTTTCCACTGGGCCAAGCGCAATCCAGAGCGCGTCAAAGGTATTGCATTTATGGAGTTCATCCGCCCTATCCCGACCTGGGACGAATGGCCAGAATTTGCCCGCGAGACCTTCCAGGCCTTCCGCACCACCGACGTCGGCCGCAAGCTGATCATCGATCAGAACGTTTTTATCGAGGGTACGCTGCCGATGGGTGTCGTCCGCCCGCTGACTGAAGTCGAGATGGACCATTACCGCGAGCCGTTCCTGAATCCTGTTGACCGCGAGCCACTGTGGCGCTTCCCAAACGAGCTGCCAATCGCCGGTGAGCCAGCGAACATCGTCGCGCTGGTCGAAGAATACATGGACTGGCTGCACCAGTCCCCTGTCCCGAAGCTGCTGTTCTGGGGCACCCCAGGCGTTCTGATCCCACCGGCCGAAGCCGCTCGCCTGGCCAAAAGCCTGCCTAACTGCAAGGCTGTGGACATCGGCCCGGGTCTGAATCTGCTGCAAGAAGACAACCCGGACCTGATCGGCAGCGAGATCGCGCGCTGGCTGTCGACGCTCGAGATTTCCGGCGGCCGGCCGCTAGCAGGCAAGCCCATCCCCAACCCCCTGCTGGGCCTGGACAGCACCAAAGACAATACTGTGCCTCTGAAGCTGATCGCTCTCCTGGCTAATGGCGAGTTCCATAGTGGCGAACAGCTGGGAGAAACCCTGGGCATGTCCAGGGCCGCTATCAACAAGCACATTCAGACTCTGCGCGACTGGGGCGTGGACGTGTTCACCGTGCCCGGAAAGGGCTACTCTCTGCCCGAGCCTATCCCGCTGCTGAACGCTAAACAGATTCTGGGACAGCTGGACGGCGGGAGCGTGGCAGTCCTGCCTGTGGTCGACTCCACCAATCAGTACCTGCTGGATCGAATCGGCGAGCTGAAGAGTGGGGATGCTTGCATTGCAGAATATCAGCAGGCAGGGAGAGGAAGCAGAGGGAGGAAATGGTTCTCTCCTTTTGGAGCTAACCTGTACCTGAGTATGTTTTGGCGCCTGAAGCGGGGACCAGCAGCAATCGGCCTGGGCCCGGTCATCGGAATTGTCATGGCAGAAGCGCTGCGAAAGCTGGGAGCAGACAAGGTGCGAGTCAAATGGCCCAATGACCTGTATCTGCAGGATAGAAAGCTGGCAGGCATCCTGGTGGAGCTGGCCGGAATAACAGGCGATGCTGCACAGATCGTCATTGGCGCCGGGATTAACGTGGCTATGAGGCGCGTGGAGGAAAGCGTGGTCAATCAGGGCTGGATCACACTGCAGGAAGCAGGGATTAACCTGGACAGGAATACTCTGGCCGCTACGCTGATCCGAGAGCTGCGGGCAGCCCTGGAACTGTTCGAGCAGGAAGGCCTGGCTCCATATCTGCCACGGTGGGAGAAGCTGGATAACTTCATCAATAGACCCGTGAAGCTGATCATTGGGGACAAAGAGATTTTCGGGATTAGCCGGGGGATTGATAAACAGGGAGCCCTGCTGCTGGAACAGGACGGAGTTATCAAACCCTGGATGGGCGGAGAAATCAGTCTGCGGTCTGCCGAAAAGAGATCTCGAGCTCAAGCTTCGAATTCGAGTGCTGGTGGTTTCTGGGAAAGGAACCTGCCCTCTGTTTCTGGCCTGCTGAAGATCATTGGATTTTCCACATCAGTAACTGCCCTGGGGTTTGTGCTGTACAAATACAAGCTCCTGCCACGGTCTTGAACCCAGCTTTCTTGTACAAAGTGGTACCGGT
<서열번호 7> HindIII-HA-Abl Kinetic Domain-Stop-XhoI
AAGCTTATGTACCCTTACGATGTACCGGATTACGCAAGTCCGAACTATGACAAATGGGAAATGGAACGTACCGATATCACCATGAAACACAAATTGGGTGGTGGCCAGTACGGTGAGGTGTATGAAGGCGTTTGGAAAAAATATAGCCTGACCGTGGCGGTTAAAACCCTGAAAGAAGATACGATGGAAGTTGAAGAGTTTCTGAAAGAAGCGGCAGTGATGAAGGAAATTAAACATCCTAACCTGGTCCAGCTGCTGGGCGTGTGTACCCGTGAACCCCCGTTTTATATCATTACCGAGTTCATGACTTATGGTAACTTGCTGGATTATCTGCGCGAGTGCAACCGTCAAGAAGTGAATGCCGTTGTGCTGCTGTATATGGCGACGCAGATCTCTTCTGCGATGGAGTATCTGGAGAAAAAGAACTTCATCCATCGTGATCTGGCGGCGCGCAACTGCTTGGTGGGTGAGAACCATCTGGTGAAGGTGGCTGATTTTGGCCTCAGTCGGCTGATGACGGGCGATACATATACCGCTCACGCCGGTGCGAAATTTCCGATTAAATGGACCGCACCGGAGTCCCTGGCGTATAATAAGTTCTCGATTAAAAGCGATGTTTGGGCGTTTGGCGTTTTGCTGTGGGAGATTGCGACCTATGGTATGTCCCCGTATCCGGGCATTGACTTGAGTCAAGTGTATGAACTGCTCGAAAAAGATTATCGCATGGAGCGTCCAGAGGGCTGCCCCGAGAAAGTCTATGAGCTGATGCGCGCATGCTGGCAGTGGAACCCGTCCGACCGCCCGAGCTTCGCGGAAATCCACCAAGCCTTTGAAACGATGTTTCAAGAGAGTAGCATTAGTGACGAAGTGGAAAAAGAACTCGGAAAGTAACTCGAG
<서열번호 8> KpnI-TOM20-HA-Kinetic Domain-Stop-XhoI
GGTACCATGGTGGGTCGGAACAGCGCCATCGCCGCCGGTGTATGCGGGGCCCTTTTCATTGGGTACTGCATCTACTTCGACCGCAAAAGACGAAGTGACCCCAACTTCAAGAACAGGCTTCGAGAACGAAGAAAGAAACAGAAGCTTGCCAAGGAGAGAGCTGGGCTTTCCAAGTTACCTGACCTTAAAGATGCTGAAGCTGTTCAGAAGTTCTTCCTTGAAGAAATACAGCTTGGTGAAGAGTTACTAGCTCAAGGTGAATATGAGAAGGGCGTAGACCATCTGACAAATGCAATTGCTGTGTGTGGACAGCCACAGCAGTTACTGCAGGTCTTACAGCAAACTCTTCCACCACCAGTGTTCCAGATGCTTCTGACTAAGCTCCCAACAATTAGTCAGAGAATTGTAAGTGCTCAGAGCTTGGCTGAAGATGATGTGGAAGGATCCTACCCTTACGATGTACCGGATTACGCAAGTCCGAACTATGACAAATGGGAAATGGAACGTACCGATATCACCATGAAACACAAATTGGGTGGTGGCCAGTACGGTGAGGTGTATGAAGGCGTTTGGAAAAAATATAGCCTGACCGTGGCGGTTAAAACCCTGAAAGAAGATACGATGGAAGTTGAAGAGTTTCTGAAAGAAGCGGCAGTGATGAAGGAAATTAAACATCCTAACCTGGTCCAGCTGCTGGGCGTGTGTACCCGTGAACCCCCGTTTTATATCATTACCGAGTTCATGACTTATGGTAACTTGCTGGATTATCTGCGCGAGTGCAACCGTCAAGAAGTGAATGCCGTTGTGCTGCTGTATATGGCGACGCAGATCTCTTCTGCGATGGAGTATCTGGAGAAAAAGAACTTCATCCATCGTGATCTGGCGGCGCGCAACTGCTTGGTGGGTGAGAACCATCTGGTGAAGGTGGCTGATTTTGGCCTCAGTCGGCTGATGACGGGCGATACATATACCGCTCACGCCGGTGCGAAATTTCCGATTAAATGGACCGCACCGGAGTCCCTGGCGTATAATAAGTTCTCGATTAAAAGCGATGTTTGGGCGTTTGGCGTTTTGCTGTGGGAGATTGCGACCTATGGTATGTCCCCGTATCCGGGCATTGACTTGAGTCAAGTGTATGAACTGCTCGAAAAAGATTATCGCATGGAGCGTCCAGAGGGCTGCCCCGAGAAAGTCTATGAGCTGATGCGCGCATGCTGGCAGTGGAACCCGTCCGACCGCCCGAGCTTCGCGGAAATCCACCAAGCCTTTGAAACGATGTTTCAAGAGAGTAGCATTAGTGACGAAGTGGAAAAAGAACTCGGAAAGTAACTCGAG
<서열번호 9> BsiWI- TOM20-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI
CGTACGATGGTGGGTCGGAACAGCGCCATCGCCGCCGGTGTATGCGGGGCCCTTTTCATTGGGTACTGCATCTACTTCGACCGCAAAAGACGAAGTGACCCCAACTTCAAGAACAGGCTTCGAGAACGAAGAAAGAAACAGAAGCTTGCCAAGGAGAGAGCTGGGCTTTCCAAGTTACCTGACCTTAAAGATGCTGAAGCTGTTCAGAAGTTCTTCCTTGAAGAAATACAGCTTGGTGAAGAGTTACTAGCTCAAGGTGAATATGAGAAGGGCGTAGACCATCTGACAAATGCAATTGCTGTGTGTGGACAGCCACAGCAGTTACTGCAGGTCTTACAGCAAACTCTTCCACCACCAGTGTTCCAGATGCTTCTGACTAAGCTCCCAACAATTAGTCAGAGAATTGTAAGTGCTCAGAGCTTGGCTGAAGATGATGTGGAAGAACAAAAACTCATCTCAGAAGAGGATCTGATGGTTTCCCTGTATAATAACAACTTGAACGGAATCTTAGCCGATGAAATGGGGCTTGGAAAGACCATACAGACCATTGCACTCATCACTTATCTGATGGAGCACAAAAGACTCAATGGCCCCTATCTCATCATTGTTCCCCTTTCGACTCTATCTAACTGGACATATGAATTTGACAAATGGGCTCCTTCTGTGGTGAAGATTTCTTACAAGGGTACTCCTGCCATGCGTCGCTCCCTTGTCCCCCAGCTACGGAGTGGCAAATTCAATGTCCTCTTGACTACTTATGAGTATATTATAAAAGACAAGCACATTCTTGCAAAGATTCGGTGGAAATACATGATAGTGGACGAAGGCCACCGAATGAAGAATCACCACTGCAAGCTGACTCAGGTCTTGAACACTCACTATGTGGCCCCCAGAAGGATCCTCTTGACTGGGACCCCGCTGCAGAATAAGCTCCCTGAACTCTGGGCCCTCCTCAACTTCCTCCTCCCAACATACCCTTACGATGTACCGGATTACGCATGATAAACCCAGCTTTCTTGTACAAAGTGGTACCGGT
<서열번호 10> BsiWI-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI
CGTACGATGGTTTCCCTGTATAATAACAACTTGAACGGAATCTTAGCCGATGAAATGGGGCTTGGAAAGACCATACAGACCATTGCACTCATCACTTATCTGATGGAGCACAAAAGACTCAATGGCCCCTATCTCATCATTGTTCCCCTTTCGACTCTATCTAACTGGACATATGAATTTGACAAATGGGCTCCTTCTGTGGTGAAGATTTCTTACAAGGGTACTCCTGCCATGCGTCGCTCCCTTGTCCCCCAGCTACGGAGTGGCAAATTCAATGTCCTCTTGACTACTTATGAGTATATTATAAAAGACAAGCACATTCTTGCAAAGATTCGGTGGAAATACATGATAGTGGACGAAGGCCACCGAATGAAGAATCACCACTGCAAGCTGACTCAGGTCTTGAACACTCACTATGTGGCCCCCAGAAGGATCCTCTTGACTGGGACCCCGCTGCAGAATAAGCTCCCTGAACTCTGGGCCCTCCTCAACTTCCTCCTCCCAACATACCCTTACGATGTACCGGATTACGCATGATAAACCCAGCTTTCTTGTACAAAGTGGTACCGGT
<SEQ ID NO: 1> Halotag-TurboID

<SEQ ID NO: 2> KpnI -BTK-mcherry-HA-Stop- XhoI

<SEQ ID NO: 3> HindIII -CSK-EGFP-HA-Stop- XhoI

<SEQ ID NO: 4> NotI- HaloTag- BamHI- V5-TurboID - Stop -ApaI

<SEQ ID NO: 5> BsiWI- HaloTag- NheI- V5-TurboID - Stop -AgeI

<SEQ ID NO: 6> BsiWI- HaloTag- NheI- V5-TurboID - MoA-Stop -AgeI

<SEQ ID NO: 7> HindIII -HA-Abl Kinetic Domain-Stop- XhoI

<SEQ ID NO: 8> KpnI -TOM20-HA-Kinetic Domain-Stop- XhoI

<SEQ ID NO: 9> BsiWI- TOM20-SMARCA2 Helicase ATP binding domain-HA- Stop -AgeI

<SEQ ID NO: 10> BsiWI -SMARCA2 Helicase ATP binding domain-HA-Stop- AgeI

<110> Seoul National University R and DB Foundation <120> Identification of novel drug-binding protein using proximity labeling <130> 1069437 <150> KR 1020210084273 <151> 2021-06-28 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 635 <212> PRT <213> Artificial Sequence <220> <223> HT-TurbID <400> 1 Met Ala Glu Ile Gly Thr Gly Phe Pro Phe Asp Pro His Tyr Val Glu 1 5 10 15 Val Leu Gly Glu Arg Met His Tyr Val Asp Val Gly Pro Arg Asp Gly 20 25 30 Thr Pro Val Leu Phe Leu His Gly Asn Pro Thr Ser Ser Tyr Val Trp 35 40 45 Arg Asn Ile Ile Pro His Val Ala Pro Thr His Arg Cys Ile Ala Pro 50 55 60 Asp Leu Ile Gly Met Gly Lys Ser Asp Lys Pro Asp Leu Gly Tyr Phe 65 70 75 80 Phe Asp Asp His Val Arg Phe Met Asp Ala Phe Ile Glu Ala Leu Gly 85 90 95 Leu Glu Glu Val Val Leu Val Ile His Asp Trp Gly Ser Ala Leu Gly 100 105 110 Phe His Trp Ala Lys Arg Asn Pro Glu Arg Val Lys Gly Ile Ala Phe 115 120 125 Met Glu Phe Ile Arg Pro Ile Pro Thr Trp Asp Glu Trp Pro Glu Phe 130 135 140 Ala Arg Glu Thr Phe Gln Ala Phe Arg Thr Thr Asp Val Gly Arg Lys 145 150 155 160 Leu Ile Ile Asp Gln Asn Val Phe Ile Glu Gly Thr Leu Pro Met Gly 165 170 175 Val Val Arg Pro Leu Thr Glu Val Glu Met Asp His Tyr Arg Glu Pro 180 185 190 Phe Leu Asn Pro Val Asp Arg Glu Pro Leu Trp Arg Phe Pro Asn Glu 195 200 205 Leu Pro Ile Ala Gly Glu Pro Ala Asn Ile Val Ala Leu Val Glu Glu 210 215 220 Tyr Met Asp Trp Leu His Gln Ser Pro Val Pro Lys Leu Leu Phe Trp 225 230 235 240 Gly Thr Pro Gly Val Leu Ile Pro Pro Ala Glu Ala Ala Arg Leu Ala 245 250 255 Lys Ser Leu Pro Asn Cys Lys Ala Val Asp Ile Gly Pro Gly Leu Asn 260 265 270 Leu Leu Gln Glu Asp Asn Pro Asp Leu Ile Gly Ser Glu Ile Ala Arg 275 280 285 Trp Leu Ser Thr Leu Glu Ile Ser Gly Gly Arg Pro Leu Ala Gly Lys 290 295 300 Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Lys Asp Asn Thr 305 310 315 320 Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asn Gly Glu Phe His Ser 325 330 335 Gly Glu Gln Leu Gly Glu Thr Leu Gly Met Ser Arg Ala Ala Ile Asn 340 345 350 Lys His Ile Gln Thr Leu Arg Asp Trp Gly Val Asp Val Phe Thr Val 355 360 365 Pro Gly Lys Gly Tyr Ser Leu Pro Glu Pro Ile Pro Leu Leu Asn Ala 370 375 380 Lys Gln Ile Leu Gly Gln Leu Asp Gly Gly Ser Val Ala Val Leu Pro 385 390 395 400 Val Val Asp Ser Thr Asn Gln Tyr Leu Leu Asp Arg Ile Gly Glu Leu 405 410 415 Lys Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln Gln Ala Gly Arg Gly 420 425 430 Ser Arg Gly Arg Lys Trp Phe Ser Pro Phe Gly Ala Asn Leu Tyr Leu 435 440 445 Ser Met Phe Trp Arg Leu Lys Arg Gly Pro Ala Ala Ile Gly Leu Gly 450 455 460 Pro Val Ile Gly Ile Val Met Ala Glu Ala Leu Arg Lys Leu Gly Ala 465 470 475 480 Asp Lys Val Arg Val Lys Trp Pro Asn Asp Leu Tyr Leu Gln Asp Arg 485 490 495 Lys Leu Ala Gly Ile Leu Val Glu Leu Ala Gly Ile Thr Gly Asp Ala 500 505 510 Ala Gln Ile Val Ile Gly Ala Gly Ile Asn Val Ala Met Arg Arg Val 515 520 525 Glu Glu Ser Val Val Asn Gln Gly Trp Ile Thr Leu Gln Glu Ala Gly 530 535 540 Ile Asn Leu Asp Arg Asn Thr Leu Ala Ala Thr Leu Ile Arg Glu Leu 545 550 555 560 Arg Ala Ala Leu Glu Leu Phe Glu Gln Glu Gly Leu Ala Pro Tyr Leu 565 570 575 Pro Arg Trp Glu Lys Leu Asp Asn Phe Ile Asn Arg Pro Val Lys Leu 580 585 590 Ile Ile Gly Asp Lys Glu Ile Phe Gly Ile Ser Arg Gly Ile Asp Lys 595 600 605 Gln Gly Ala Leu Leu Leu Glu Gln Asp Gly Val Ile Lys Pro Trp Met 610 615 620 Gly Gly Glu Ile Ser Leu Arg Ser Ala Glu Lys 625 630 635 <210> 2 <211> 2760 <212> DNA <213> Artificial Sequence <220> <223> KpnI-BTK-mcherry-HA-Stop-XhoI <400> 2 ggtaccatgg ctgcagtgat actggagagc atctttctga agcgctccca gcagaaaaag 60 aaaacatcac ctttaaactt caagaagcgc ctgtttctct tgactgtaca caaactttca 120 tactatgaat atgactttga acgtgggaga agaggcagta agaaaggttc aatagatgtt 180 gagaagatca cctgtgttga aacagtaatt cctgaaaaaa atcccccacc agaaagacag 240 attccgagga gaggtgagga gtctagtgaa atggaacaga tttcaatcat tgaaaggttc 300 ccgtacccat tccaggttgt atatgatgaa ggacctctct atgttttctc cccaactgaa 360 gagctgagaa agcgctggat tcaccagctc aaaaatgtaa tccggtacaa tagtgacctg 420 gtacagaaat accatccttg cttctggatt gatggacagt atctctgctg ctctcagaca 480 gccaagaatg ctatgggctg ccaaattttg gagaacagga atggaagctt aaaacctggg 540 agttctcatc gaaaaacgaa aaagcctctt ccccctaccc cagaggaaga tcagatcttg 600 aaaaaaccgc ttcccccgga gccaacagca gcaccaatct ccacaaccga gctgaaaaag 660 gtcgtggccc tttatgatta catgccaatg aacgcaaatg acttacaatt gcgaaagggc 720 gaggagtatt ttatcctgga ggagagcaac ctaccgtggt ggcgagcacg agataaaaat 780 gggcaggaag gctacatccc aagtaactat atcactgaag ctgaggactc catagagatg 840 tatgagtggt attccaagca catgactcga agtcaagctg agcaactgct aaagcaagag 900 gggaaagaag gaggtttcat tgtcagagac tccagcaaag ctggaaaata caccgtgtct 960 gtgtttgcta aatctactgg ggagcctcaa ggggtgatcc gccattacgt tgtgtgttcc 1020 acgccacaga gccagtatta cctggctgag aaacacctct tcagcaccat ccctgagctc 1080 attaactacc atcaacacaa ctctgcaggc ctcatatcca ggctgaaata tcctgtgtct 1140 aaacaaaaca aaaacgcgcc ttctactgca ggcctgggct atggatcatg ggaaattgat 1200 ccaaaggacc tcaccttctt gaaggagctt gggactggac aattcggtgt cgtgaaatat 1260 gggaagtgga ggggccaata tgatgtggcc atcaagatga tcagagaagg ttccatgtcg 1320 gaggatgaat tcattgaaga agccaaagtc atgatgaatc tttcccatga gaagctggtg 1380 cagttgtatg gcgtctgcac caaacaacgc cccatcttca tcatcaccga gtacatggct 1440 aatggctgcc tcttgaacta cctgagggag atgcggcacc gcttccagac acagcagctg 1500 cttgagatgt gcaaagatgt ctgtgaagca atggaatact tggagtcgaa gcagttcctt 1560 cacagagacc tggcagctcg aaactgtttg gtaaacgatc aaggagttgt gaaagtatct 1620 gactttggcc tgtctaggta tgtccttgat gatgagtaca ccagctctgt aggctccaag 1680 tttccagtcc ggtggtctcc accagaagtg cttatgtata gcaagttcag cagcaaatct 1740 gacatctggg cttttggggt tttaatgtgg gagatctact ccctggggaa gatgccgtat 1800 gagagattta ctaacagtga gacagcagaa cacattgctc aaggcttacg tctctacagg 1860 cctcatctgg catcagagag ggtatatacc atcatgtaca gctgctggca cgagaaagca 1920 gatgaacgtc ctagtttcaa aattctcttg agtaacattc tagatgtgat ggatgaagaa 1980 tcccctaggg gaggaggagg atcaggagga ggaggatcag tgagcaaggg cgaggaggat 2040 aacatggcca tcatcaagga gttcatgcgc ttcaaggtgc acatggaggg ctccgtgaac 2100 ggccacgagt tcgagatcga gggcgagggc gagggccgcc cctacgaggg cacccagacc 2160 gccaagctga aggtgaccaa gggcggcccc ctgcccttcg cctgggacat cctgtcccct 2220 cagttcatgt acggctccaa ggcctacgtg aagcaccccg ccgacatccc cgactacttg 2280 aagctgtcct tccccgaggg cttcaagtgg gagcgcgtga tgaacttcga ggacggcggc 2340 gtggtgaccg tgacccagga ctcctccctg caggacggcg agttcatcta caaggtgaag 2400 ctgcgcggca ccaacttccc ctccgacggc cccgtaatgc agaagaagac catgggctgg 2460 gaggcctcct ccgagcggat gtaccccgag gacggcgccc tgaagggcga gatcaagcag 2520 aggctgaagc tgaaggacgg cggccactac gacgccgagg tcaagaccac ctacaaggcc 2580 aagaagcccg tgcagctgcc cggcgcctac aacgtcaaca tcaagctgga catcacctcc 2640 cacaacgagg actacaccat cgtggaacag tacgagcgcg ccgagggccg ccactccacc 2700 ggcggcatgg acgagctgta caagtaccct tacgatgtac cggattacgc ataactcgag 2760 2760 <210> 3 <211> 2118 <212> DNA <213> Artificial Sequence <220> <223> HindIII-CSK-EGFP-HA-Stop-XhoI <400> 3 aagcttatgt cagcaataca ggccgcctgg ccatccggta cagaatgtat tgccaagtac 60 aacttccacg gcactgccga gcaggacctg cccttctgca aaggagacgt gctcaccatt 120 gtggccgtca ccaaggaccc caactggtac aaagccaaaa acaaggtggg ccgtgagggc 180 atcatcccag ccaactacgt ccagaagcgg gagggcgtga aggcgggtac caaactcagc 240 ctcatgcctt ggttccacgg caagatcaca cgggagcagg ctgagcggct tctgtacccg 300 ccggagacag gcctgttcct ggtgcgggag agcaccaact accccggaga ctacacgctg 360 tgcgtgagct gcgacggcaa ggtggagcac taccgcatca tgtaccatgc cagcaagctc 420 agcatcgacg aggaggtgta ctttgagaac ctcatgcagc tggtggagca ctacacctca 480 gacgcagatg gactctgtac gcgcctcatt aaaccaaagg tcatggaggg cacagtggcg 540 gcccaggatg agttctaccg cagcggctgg gccctgaaca tgaaggagct gaagctgctg 600 cagaccatcg ggaaggggga gttcggagac gtgatgctgg gcgattaccg agggaacaaa 660 gtcgccgtca agtgcattaa gaacgacgcc actgcccagg ccttcctggc tgaagcctca 720 gtcatgacgc aactgcggca tagcaacctg gtgcagctcc tgggcgtgat cgtggaggag 780 aagggcgggc tctacatcgt cactgagtac atggccaagg ggagccttgt ggactacctg 840 cggtctaggg gtcggtcagt gctgggcgga gactgtctcc tcaagttctc gctagatgtc 900 tgcgaggcca tggaatacct ggagggcaac aatttcgtgc atcgagacct ggctgcccgc 960 aatgtgctgg tgtctgagga caacgtggcc aaggtcagcg actttggtct caccaaggag 1020 gcgtccagca cccaggacac gggcaagctg ccagtcaagt ggacagcccc tgaggccctg 1080 agagagaaga aattctccac taagtctgac gtgtggagtt tcggaatcct tctctgggaa 1140 atctactcct ttgggcgagt gccttatcca agaattcccc tgaaggacgt cgtccctcgg 1200 gtggagaagg gctacaagat ggatgccccc gacggctgcc cgcccgcagt ctatgaagtc 1260 atgaagaact gctggcacct ggacgccgcc atgcggccct ccttcctaca gctccgagag 1320 cagcttgagc acatcaaaac ccacgagctg cacctggcgg ccgccatggt gagcaagggc 1380 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 1440 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 1500 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 1560 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 1620 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 1680 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 1740 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 1800 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 1860 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 1920 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 1980 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 2040 accgccgccg ggatcactct cggcatggac gagctgtaca agtaccctta cgatgtaccg 2100 gattacgcat aactcgag 2118 <210> 4 <211> 1925 <212> DNA <213> Artificial Sequence <220> <223> NotI-HaloTag-BamHI-V5-TurboID-Stop-ApaI <400> 4 gcggccgcat ggcagaaatc ggtactggct ttccattcga cccccattat gtggaagtcc 60 tgggcgagcg catgcactac gtcgatgttg gtccgcgcga tggcacccct gtgctgttcc 120 tgcacggtaa cccgacctcc tcctacgtgt ggcgcaacat catcccgcat gttgcaccga 180 cccatcgctg cattgctcca gacctgatcg gtatgggcaa atccgacaaa ccagacctgg 240 gttatttctt cgacgaccac gtccgcttca tggatgcctt catcgaagcc ctgggtctgg 300 aagaggtcgt cctggtcatt cacgactggg gctccgctct gggtttccac tgggccaagc 360 gcaatccaga gcgcgtcaaa ggtattgcat ttatggagtt catccgccct atcccgacct 420 gggacgaatg gccagaattt gcccgcgaga ccttccaggc cttccgcacc accgacgtcg 480 gccgcaagct gatcatcgat cagaacgttt ttatcgaggg tacgctgccg atgggtgtcg 540 tccgcccgct gactgaagtc gagatggacc attaccgcga gccgttcctg aatcctgttg 600 accgcgagcc actgtggcgc ttcccaaacg agctgccaat cgccggtgag ccagcgaaca 660 tcgtcgcgct ggtcgaagaa tacatggact ggctgcacca gtcccctgtc ccgaagctgc 720 tgttctgggg caccccaggc gttctgatcc caccggccga agccgctcgc ctggccaaaa 780 gcctgcctaa ctgcaaggct gtggacatcg gcccgggtct gaatctgctg caagaagaca 840 acccggacct gatcggcagc gagatcgcgc gctggctgtc gacgctcgag atttccggca 900 aggatccagg caagcccatc cccaaccccc tgctgggcct ggacagcacc aaagacaata 960 ctgtgcctct gaagctgatc gctctcctgg ctaatggcga gttccatagt ggcgaacagc 1020 tgggagaaac cctgggcatg tccagggccg ctatcaacaa gcacattcag actctgcgcg 1080 actggggcgt ggacgtgttc accgtgcccg gaaagggcta ctctctgccc gagcctatcc 1140 cgctgctgaa cgctaaacag attctgggac agctggacgg cgggagcgtg gcagtcctgc 1200 ctgtggtcga ctccaccaat cagtacctgc tggatcgaat cggcgagctg aagagtgggg 1260 atgcttgcat tgcagaatat cagcaggcag ggagaggaag cagagggagg aaatggttct 1320 ctccttttgg agctaacctg tacctgagta tgttttggcg cctgaagcgg ggaccagcag 1380 caatcggcct gggcccggtc atcggaattg tcatggcaga agcgctgcga aagctgggag 1440 cagacaaggt gcgagtcaaa tggcccaatg acctgtatct gcaggataga aagctggcag 1500 gcatcctggt ggagctggcc ggaataacag gcgatgctgc acagatcgtc attggcgccg 1560 ggattaacgt ggctatgagg cgcgtggagg aaagcgtggt caatcagggc tggatcacac 1620 tgcaggaagc agggattaac ctggacagga atactctggc cgctacgctg atccgagagc 1680 tgcgggcagc cctggaactg ttcgagcagg aaggcctggc tccatatctg ccacggtggg 1740 agaagctgga taacttcatc aatagacccg tgaagctgat cattggggac aaagagattt 1800 tcgggattag ccgggggatt gataaacagg gagccctgct gctggaacag gacggagtta 1860 tcaaaccctg gatgggcgga gaaatcagtc tgcggtctgc cgaaaagtaa tgatctagag 1920 ggccc 1925 <210> 5 <211> 1948 <212> DNA <213> Artificial Sequence <220> <223> BsiWI- HaloTag-NheI-V5-TurboID-Stop-AgeI <400> 5 cgtacgatgg cagaaatcgg tactggcttt ccattcgacc cccattatgt ggaagtcctg 60 ggcgagcgca tgcactacgt cgatgttggt ccgcgcgatg gcacccctgt gctgttcctg 120 cacggtaacc cgacctcctc ctacgtgtgg cgcaacatca tcccgcatgt tgcaccgacc 180 catcgctgca ttgctccaga cctgatcggt atgggcaaat ccgacaaacc agacctgggt 240 tatttcttcg acgaccacgt ccgcttcatg gatgccttca tcgaagccct gggtctggaa 300 gaggtcgtcc tggtcattca cgactggggc tccgctctgg gtttccactg ggccaagcgc 360 aatccagagc gcgtcaaagg tattgcattt atggagttca tccgccctat cccgacctgg 420 gacgaatggc cagaatttgc ccgcgagacc ttccaggcct tccgcaccac cgacgtcggc 480 cgcaagctga tcatcgatca gaacgttttt atcgagggta cgctgccgat gggtgtcgtc 540 cgcccgctga ctgaagtcga gatggaccat taccgcgagc cgttcctgaa tcctgttgac 600 cgcgagccac tgtggcgctt cccaaacgag ctgccaatcg ccggtgagcc agcgaacatc 660 gtcgcgctgg tcgaagaata catggactgg ctgcaccagt cccctgtccc gaagctgctg 720 ttctggggca ccccaggcgt tctgatccca ccggccgaag ccgctcgcct ggccaaaagc 780 ctgcctaact gcaaggctgt ggacatcggc ccgggtctga atctgctgca agaagacaac 840 ccggacctga tcggcagcga gatcgcgcgc tggctgtcga cgctcgagat ttccggcggc 900 cggccgctag caggcaagcc catccccaac cccctgctgg gcctggacag caccaaagac 960 aatactgtgc ctctgaagct gatcgctctc ctggctaatg gcgagttcca tagtggcgaa 1020 cagctgggag aaaccctggg catgtccagg gccgctatca acaagcacat tcagactctg 1080 cgcgactggg gcgtggacgt gttcaccgtg cccggaaagg gctactctct gcccgagcct 1140 atcccgctgc tgaacgctaa acagattctg ggacagctgg acggcgggag cgtggcagtc 1200 ctgcctgtgg tcgactccac caatcagtac ctgctggatc gaatcggcga gctgaagagt 1260 ggggatgctt gcattgcaga atatcagcag gcagggagag gaagcagagg gaggaaatgg 1320 ttctctcctt ttggagctaa cctgtacctg agtatgtttt ggcgcctgaa gcggggacca 1380 gcagcaatcg gcctgggccc ggtcatcgga attgtcatgg cagaagcgct gcgaaagctg 1440 ggagcagaca aggtgcgagt caaatggccc aatgacctgt atctgcagga tagaaagctg 1500 gcaggcatcc tggtggagct ggccggaata acaggcgatg ctgcacagat cgtcattggc 1560 gccgggatta acgtggctat gaggcgcgtg gaggaaagcg tggtcaatca gggctggatc 1620 acactgcagg aagcagggat taacctggac aggaatactc tggccgctac gctgatccga 1680 gagctgcggg cagccctgga actgttcgag caggaaggcc tggctccata tctgccacgg 1740 tgggagaagc tggataactt catcaataga cccgtgaagc tgatcattgg ggacaaagag 1800 attttcggga ttagccgggg gattgataaa cagggagccc tgctgctgga acaggacgga 1860 gttatcaaac cctggatggg cggagaaatc agtctgcggt ctgccgaaaa gtgataaacc 1920 cagctttctt gtacaaagtg gtaccggt 1948 <210> 6 <211> 2098 <212> DNA <213> Artificial Sequence <220> <223> BsiWI- HaloTag-NheI-V5-TurboID-MoA-Stop-AgeI <400> 6 cgtacgatgg cagaaatcgg tactggcttt ccattcgacc cccattatgt ggaagtcctg 60 ggcgagcgca tgcactacgt cgatgttggt ccgcgcgatg gcacccctgt gctgttcctg 120 cacggtaacc cgacctcctc ctacgtgtgg cgcaacatca tcccgcatgt tgcaccgacc 180 catcgctgca ttgctccaga cctgatcggt atgggcaaat ccgacaaacc agacctgggt 240 tatttcttcg acgaccacgt ccgcttcatg gatgccttca tcgaagccct gggtctggaa 300 gaggtcgtcc tggtcattca cgactggggc tccgctctgg gtttccactg ggccaagcgc 360 aatccagagc gcgtcaaagg tattgcattt atggagttca tccgccctat cccgacctgg 420 gacgaatggc cagaatttgc ccgcgagacc ttccaggcct tccgcaccac cgacgtcggc 480 cgcaagctga tcatcgatca gaacgttttt atcgagggta cgctgccgat gggtgtcgtc 540 cgcccgctga ctgaagtcga gatggaccat taccgcgagc cgttcctgaa tcctgttgac 600 cgcgagccac tgtggcgctt cccaaacgag ctgccaatcg ccggtgagcc agcgaacatc 660 gtcgcgctgg tcgaagaata catggactgg ctgcaccagt cccctgtccc gaagctgctg 720 ttctggggca ccccaggcgt tctgatccca ccggccgaag ccgctcgcct ggccaaaagc 780 ctgcctaact gcaaggctgt ggacatcggc ccgggtctga atctgctgca agaagacaac 840 ccggacctga tcggcagcga gatcgcgcgc tggctgtcga cgctcgagat ttccggcggc 900 cggccgctag caggcaagcc catccccaac cccctgctgg gcctggacag caccaaagac 960 aatactgtgc ctctgaagct gatcgctctc ctggctaatg gcgagttcca tagtggcgaa 1020 cagctgggag aaaccctggg catgtccagg gccgctatca acaagcacat tcagactctg 1080 cgcgactggg gcgtggacgt gttcaccgtg cccggaaagg gctactctct gcccgagcct 1140 atcccgctgc tgaacgctaa acagattctg ggacagctgg acggcgggag cgtggcagtc 1200 ctgcctgtgg tcgactccac caatcagtac ctgctggatc gaatcggcga gctgaagagt 1260 ggggatgctt gcattgcaga atatcagcag gcagggagag gaagcagagg gaggaaatgg 1320 ttctctcctt ttggagctaa cctgtacctg agtatgtttt ggcgcctgaa gcggggacca 1380 gcagcaatcg gcctgggccc ggtcatcgga attgtcatgg cagaagcgct gcgaaagctg 1440 ggagcagaca aggtgcgagt caaatggccc aatgacctgt atctgcagga tagaaagctg 1500 gcaggcatcc tggtggagct ggccggaata acaggcgatg ctgcacagat cgtcattggc 1560 gccgggatta acgtggctat gaggcgcgtg gaggaaagcg tggtcaatca gggctggatc 1620 acactgcagg aagcagggat taacctggac aggaatactc tggccgctac gctgatccga 1680 gagctgcggg cagccctgga actgttcgag caggaaggcc tggctccata tctgccacgg 1740 tgggagaagc tggataactt catcaataga cccgtgaagc tgatcattgg ggacaaagag 1800 attttcggga ttagccgggg gattgataaa cagggagccc tgctgctgga acaggacgga 1860 gttatcaaac cctggatggg cggagaaatc agtctgcggt ctgccgaaaa gagatctcga 1920 gctcaagctt cgaattcgag tgctggtggt ttctgggaaa ggaacctgcc ctctgtttct 1980 ggcctgctga agatcattgg attttccaca tcagtaactg ccctggggtt tgtgctgtac 2040 aaatacaagc tcctgccacg gtcttgaacc cagctttctt gtacaaagtg gtaccggt 2098 <210> 7 <211> 897 <212> DNA <213> Artificial Sequence <220> <223> HindIII-HA-Abl Kinetic Domain-Stop-XhoI <400> 7 aagcttatgt acccttacga tgtaccggat tacgcaagtc cgaactatga caaatgggaa 60 atggaacgta ccgatatcac catgaaacac aaattgggtg gtggccagta cggtgaggtg 120 tatgaaggcg tttggaaaaa atatagcctg accgtggcgg ttaaaaccct gaaagaagat 180 acgatggaag ttgaagagtt tctgaaagaa gcggcagtga tgaaggaaat taaacatcct 240 aacctggtcc agctgctggg cgtgtgtacc cgtgaacccc cgttttatat cattaccgag 300 ttcatgactt atggtaactt gctggattat ctgcgcgagt gcaaccgtca agaagtgaat 360 gccgttgtgc tgctgtatat ggcgacgcag atctcttctg cgatggagta tctggagaaa 420 aagaacttca tccatcgtga tctggcggcg cgcaactgct tggtgggtga gaaccatctg 480 gtgaaggtgg ctgattttgg cctcagtcgg ctgatgacgg gcgatacata taccgctcac 540 gccggtgcga aatttccgat taaatggacc gcaccggagt ccctggcgta taataagttc 600 tcgattaaaa gcgatgtttg ggcgtttggc gttttgctgt gggagattgc gacctatggt 660 atgtccccgt atccgggcat tgacttgagt caagtgtatg aactgctcga aaaagattat 720 cgcatggagc gtccagaggg ctgccccgag aaagtctatg agctgatgcg cgcatgctgg 780 cagtggaacc cgtccgaccg cccgagcttc gcggaaatcc accaagcctt tgaaacgatg 840 tttcaagaga gtagcattag tgacgaagtg gaaaaagaac tcggaaagta actcgag 897 <210> 8 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> KpnI-TOM20-HA-Kinetic Domain-Stop-XhoI <400> 8 ggtaccatgg tgggtcggaa cagcgccatc gccgccggtg tatgcggggc ccttttcatt 60 gggtactgca tctacttcga ccgcaaaaga cgaagtgacc ccaacttcaa gaacaggctt 120 cgagaacgaa gaaagaaaca gaagcttgcc aaggagagag ctgggctttc caagttacct 180 gaccttaaag atgctgaagc tgttcagaag ttcttccttg aagaaataca gcttggtgaa 240 gagttactag ctcaaggtga atatgagaag ggcgtagacc atctgacaaa tgcaattgct 300 gtgtgtggac agccacagca gttactgcag gtcttacagc aaactcttcc accaccagtg 360 ttccagatgc ttctgactaa gctcccaaca attagtcaga gaattgtaag tgctcagagc 420 ttggctgaag atgatgtgga aggatcctac ccttacgatg taccggatta cgcaagtccg 480 aactatgaca aatgggaaat ggaacgtacc gatatcacca tgaaacacaa attgggtggt 540 ggccagtacg gtgaggtgta tgaaggcgtt tggaaaaaat atagcctgac cgtggcggtt 600 aaaaccctga aagaagatac gatggaagtt gaagagtttc tgaaagaagc ggcagtgatg 660 aaggaaatta aacatcctaa cctggtccag ctgctgggcg tgtgtacccg tgaacccccg 720 ttttatatca ttaccgagtt catgacttat ggtaacttgc tggattatct gcgcgagtgc 780 aaccgtcaag aagtgaatgc cgttgtgctg ctgtatatgg cgacgcagat ctcttctgcg 840 atggagtatc tggagaaaaa gaacttcatc catcgtgatc tggcggcgcg caactgcttg 900 gtgggtgaga accatctggt gaaggtggct gattttggcc tcagtcggct gatgacgggc 960 gatacatata ccgctcacgc cggtgcgaaa tttccgatta aatggaccgc accggagtcc 1020 ctggcgtata ataagttctc gattaaaagc gatgtttggg cgtttggcgt tttgctgtgg 1080 gagattgcga cctatggtat gtccccgtat ccgggcattg acttgagtca agtgtatgaa 1140 ctgctcgaaa aagattatcg catggagcgt ccagagggct gccccgagaa agtctatgag 1200 ctgatgcgcg catgctggca gtggaacccg tccgaccgcc cgagcttcgc ggaaatccac 1260 caagcctttg aaacgatgtt tcaagagagt agcattagtg acgaagtgga aaaagaactc 1320 ggaaagtaac tcgag 1335 <210> 9 <211> 1036 <212> DNA <213> Artificial Sequence <220> <223> BsiWI- TOM20-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI <400> 9 cgtacgatgg tgggtcggaa cagcgccatc gccgccggtg tatgcggggc ccttttcatt 60 gggtactgca tctacttcga ccgcaaaaga cgaagtgacc ccaacttcaa gaacaggctt 120 cgagaacgaa gaaagaaaca gaagcttgcc aaggagagag ctgggctttc caagttacct 180 gaccttaaag atgctgaagc tgttcagaag ttcttccttg aagaaataca gcttggtgaa 240 gagttactag ctcaaggtga atatgagaag ggcgtagacc atctgacaaa tgcaattgct 300 gtgtgtggac agccacagca gttactgcag gtcttacagc aaactcttcc accaccagtg 360 ttccagatgc ttctgactaa gctcccaaca attagtcaga gaattgtaag tgctcagagc 420 ttggctgaag atgatgtgga agaacaaaaa ctcatctcag aagaggatct gatggtttcc 480 ctgtataata acaacttgaa cggaatctta gccgatgaaa tggggcttgg aaagaccata 540 cagaccattg cactcatcac ttatctgatg gagcacaaaa gactcaatgg cccctatctc 600 atcattgttc ccctttcgac tctatctaac tggacatatg aatttgacaa atgggctcct 660 tctgtggtga agatttctta caagggtact cctgccatgc gtcgctccct tgtcccccag 720 ctacggagtg gcaaattcaa tgtcctcttg actacttatg agtatattat aaaagacaag 780 cacattcttg caaagattcg gtggaaatac atgatagtgg acgaaggcca ccgaatgaag 840 aatcaccact gcaagctgac tcaggtcttg aacactcact atgtggcccc cagaaggatc 900 ctcttgactg ggaccccgct gcagaataag ctccctgaac tctgggccct cctcaacttc 960 ctcctcccaa cataccctta cgatgtaccg gattacgcat gataaaccca gctttcttgt 1020 acaaagtggt accggt 1036 <210> 10 <211> 571 <212> DNA <213> Artificial Sequence <220> <223> BsiWI-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI <400> 10 cgtacgatgg tttccctgta taataacaac ttgaacggaa tcttagccga tgaaatgggg 60 cttggaaaga ccatacagac cattgcactc atcacttatc tgatggagca caaaagactc 120 aatggcccct atctcatcat tgttcccctt tcgactctat ctaactggac atatgaattt 180 gacaaatggg ctccttctgt ggtgaagatt tcttacaagg gtactcctgc catgcgtcgc 240 tcccttgtcc cccagctacg gagtggcaaa ttcaatgtcc tcttgactac ttatgagtat 300 attataaaag acaagcacat tcttgcaaag attcggtgga aatacatgat agtggacgaa 360 ggccaccgaa tgaagaatca ccactgcaag ctgactcagg tcttgaacac tcactatgtg 420 gcccccagaa ggatcctctt gactgggacc ccgctgcaga ataagctccc tgaactctgg 480 gccctcctca acttcctcct cccaacatac ccttacgatg taccggatta cgcatgataa 540 acccagcttt cttgtacaaa gtggtaccgg t 571 <110> Seoul National University R and DB Foundation <120> Identification of novel drug-binding protein using proximity labeling <130> 1069437 <150> KR 1020210084273 <151> 2021-06-28 <160> 10 <170> KoPatentIn 3.0 < 210> 1 <211> 635 <212> PRT <213> Artificial Sequence <220> <223> HT-TurbID <400> 1 Met Ala Glu Ile Gly Thr Gly Phe Pro Phe Asp Pro His Tyr Val Glu 1 5 10 15 Val Leu Gly Glu Arg Met His Tyr Val Asp Val Gly Pro Arg Asp Gly 20 25 30 Thr Pro Val Leu Phe Leu His Gly Asn Pro Thr Ser Ser Tyr Val Trp 35 40 45 Arg Asn Ile Ile Pro His Val Ala Pro Thr His Arg Cys Ile Ala Pro 50 55 60 Asp Leu Ile Gly Met Gly Lys Ser Asp Lys Pro Asp Leu Gly Tyr Phe 65 70 75 80 Phe Asp Asp His Val Arg Phe Met Asp Ala Phe Ile Glu Ala Leu Gly 85 90 95 Leu Glu Glu Val Val Val Leu Val Ile His Asp Trp Gly Ser Ala Leu Gly 100 105 110 Phe His Trp Ala Lys Arg Asn Pro Glu Arg Val Lys Gly Ile Ala Phe 115 120 125 Met Glu Phe Ile Arg Pro Ile Pro Thr Trp Asp Glu Trp Pro Glu Phe 130 135 140 Ala Arg Glu Thr Phe Gln Ala Phe Arg Thr Thr Asp Val Gly Arg Lys 145 150 155 160 Leu Ile Ile Asp Gln Asn Val Phe Ile Glu Gly Thr Leu Pro Met Gly 165 170 175 Val Val Arg Pro Leu Thr Glu Val Glu Met Asp His Tyr Arg Glu Pro 180 185 190 Phe Leu Asn Pro Val Asp Arg Glu Pro Leu Trp Arg Phe Pro Asn Glu 195 200 205 Leu Pro Ile Ala Gly Glu Pro Ala Asn Ile Val Ala Leu Val Glu Glu 210 215 220 Tyr Met Asp Trp Leu His Gln Ser Pro Val Pro Lys Leu Leu Phe Trp 225 230 235 240 Gly Thr Pro Gly Val Leu Ile Pro Pro Ala Glu Ala Ala Arg Leu Ala 245 250 255 Lys Ser Leu Pro Asn Cys Lys Ala Val Asp Ile Gly Pro Gly Leu Asn 260 265 270 Leu Leu Gln Glu Asp Asn Pro Asp Leu Ile Gly Ser Glu Ile Ala Arg 275 280 285 Trp Leu Ser Thr Leu Glu Ile Ser Gly Gly Arg Pro Leu Ala Gly Lys 290 295 300 Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr Lys Asp Asn Thr 305 310 315 320 Val Pro Leu Lys Leu Ile Ala Leu Leu Ala Asn Gly Glu Phe His Ser 325 330 335 Gly Glu Gln Leu Gly Glu Thr Leu Gly Met Ser Arg Ala Ala Ile Asn 340 345 350 Lys His Ile Gln Thr Leu Arg Asp Trp Gly Val Asp Val Phe Thr Val 355 360 365 Pro Gly Lys Gly Tyr Ser Leu Pro Glu Pro Ile Pro Leu Leu Asn Ala 370 375 380 Lys Gln Ile Leu Gly Gln Leu Asp Gly Gly Ser Val Ala Val Leu Pro 385 390 395 400 Val Val Asp Ser Thr Asn Gln Tyr Leu Leu Asp Arg Ile Gly Glu Leu 405 410 415 Lys Ser Gly Asp Ala Cys Ile Ala Glu Tyr Gln Gln Ala Gly Arg Gly 420 425 430 Ser Arg Gly Arg Lys Trp Phe Ser Pro Phe Gly Ala Asn Leu Tyr Leu 435 440 445 Ser Met Phe Trp Arg Leu Lys Arg Gly Pro Ala Ala Ile Gly Leu Gly 450 455 460 Pro Val Ile Gly Ile Val Met Ala Glu Ala Leu Arg Lys Leu Gly Ala 465 470 475 480 Asp Lys Val Arg Val Lys Trp Pro Asn Asp Leu Tyr Leu Gln Asp Arg 485 490 495 Lys Leu Ala Gly Ile Leu Glu Glu Ser Val Val Val Asn Gln Gly Trp Ile Thr Leu Gln Glu Ala Gly 530 535 540 Ile Asn Leu Asp Arg Asn Thr Leu Ala Ala Thr Leu Ile Arg Glu Leu 545 550 555 560 Arg Ala Ala Leu Glu Leu Phe Glu Gln Glu Gly Leu Ala Pro Tyr Leu 565 570 575 Pro Arg Trp Glu Lys Leu Asp Asn Phe Ile Asn Arg Pro Val Lys Leu 580 585 590 Ile Ile Gly Asp Lys Glu Ile Phe Gly Ile Ser Arg Gly Ile Asp Lys 595 600 605 Gln Gly Ala Leu Leu Leu Glu Gln Asp Gly Val Ile Lys Pro Trp Met 610 615 620 Gly Gly Glu Ile Ser Leu Arg Ser Ala Glu Lys 625 630 635 <210> 2 <211> 2760 < 212> DNA <213> Artificial Sequence <220> <223> KpnI-BTK-mcherry-HA-Stop-XhoI <400> 2 ggtaccatgg ctgcagtgat actggagagc atctttctga agcgctccca gcagaaaaag 60 aaaacatcac ctttaaactt caagaagcgc ctgtttctct tgactgtaca caaactttca 120 tactatgaat atgactttga acgtgggaga agaggcagta agaaaggttc aatagatgtt 180 gagaagatca cctgtgttga aacagtaatt cctgaaaaaa atcccccacc agaaagacag 240 attccgagga gaggtgagga gtctagtgaa atggaacaga tttcaatcat tgaaaggttc 300 ccgtacccat tccaggttgt atatgatgaa ggacctctct atgttttctc cccaactgaa 360 gagctgagaa agcgctggat tcaccagctc aaaaatgtaa tccggtacaa tagtgacctg 420 gtacagaaat accatccttg cttctggatt gatggacagt atctctgctg ctctcagaca 480 gccaagaatg ctatgggctg ccaaattttg gagaacagga atggaagctt aaaacctggg 540 agttctcatc gaaaaacgaa aaagcctctt ccccctaccc cagaggaaga tcagatcttg 600 aaaaaaccgc ttcccccgga gccaacagca gcaccaatct ccacaaccga gctgaaaaag 660 gtcgtggccc tttatgatta catgccaatg aacgcaaatg acttacaatt gcgaaagggc 720 gaggagtatt ttatcctgga ggagagcaac ctaccgtggt ggcgagcacg agataaaaat 780 gggcaggaag gctacatccc aagtaactat atcactgaag ctgaggactc catagagatg 840 tatgagtggt attccaagca catgactcga agtcaagctg agcaactgct aaagcaagag 900 gggaaagaag gaggtttcat tgtcagagac tccagcaaag ctggaaaata caccgtgtct 960 gtgtttgcta aatctactgg ggagcctcaa ggggtgatcc gccattacgt tgtgtgttcc 1020 acgccacaga gccagtatta cctggctgag aaacacctct tcagcaccat ccctgagctc 1080 attaactacc atcaacacaa ctctgcaggc ctcatatcca ggctgaaata tcctgtgtct 1140 aaacaaaaca aaaacgcgcc ttctactgca ggcctg ggct atggatcatg ggaaattgat 1200 ccaaaggacc tcaccttctt gaaggagctt gggactggac aattcggtgt cgtgaaatat 1260 gggaagtgga ggggccaata tgatgtggcc atcaagatga tcagagaagg ttccatgtcg 1320 gaggatgaat tcattgaaga agccaaagtc atgatgaatc tttcccatga gaagctggtg 1380 cagttgtatg gcgtctgcac caaacaacgc cccatcttca tcatcaccga gtacatggct 1440 aatggctgcc tcttgaacta cctgagggag atgcggcacc gcttccagac acagcagctg 1500 cttgagatgt gcaaagatgt ctgtgaagca atggaatact tggagtcgaa gcagttcctt 1560 cacagagacc tggcagctcg aaactgtttg gtaaacgatc aaggagttgt gaaagtatct 1620 gactttggcc tgtctaggta tgtccttgat gatgagtaca ccagctctgt aggctccaag 1680 tttccagtcc ggtggtctcc accagaagtg cttatgtata gcaagttcag cagcaaatct 1740 gacatctggg cttttggggt tttaatgtgg gagatctact ccctggggaa gatgccgtat 1800 gagagattta ctaacagtga gacagcagaa cacattgctc aaggcttacg tctctacagg 1860 cctcatctgg catcagagag ggtatatacc atcatgtaca gctgctggca cgagaaagca 1920 gatgaacgtc ctagtttcaa aattctcttg agtaacattc tagatgtgat ggatgaagaa 1980 tcccctaggg gaggaggagg atcaggagga ggaggatcag t gagcaaggg cgaggaggat 2040 aacatggcca tcatcaagga gttcatgcgc ttcaaggtgc acatggaggg ctccgtgaac 2100 ggccacgagt tcgagatcga gggcgagggc gagggccgcc cctacgaggg cacccagacc 2160 gccaagctga aggtgaccaa gggcggcccc ctgcccttcg cctgggacat cctgtcccct 2220 cagttcatgt acggctccaa ggcctacgtg aagcaccccg ccgacatccc cgactacttg 2280 aagctgtcct tccccgaggg cttcaagtgg gagcgcgtga tgaacttcga ggacggcggc 2340 gtggtgaccg tgacccagga ctcctccctg caggacggcg agttcatcta caaggtgaag 2400 ctgcgcggca ccaacttccc ctccgacggc cccgtaatgc agaagaagac catgggctgg 2460 gaggcctcct ccgagcggat gtaccccgag gacggcgccc tgaagggcga gatcaagcag 2520 aggctgaagc tgaaggacgg cggccactac gacgccgagg tcaagaccac ctacaaggcc 2580 aagaagcccg tgcagctgcc cggcgcctac aacgtcaaca tcaagctgga catcacctcc 2640 cacaacgagg actacaccat cgtggaacag tacgagcgcg ccgagggccg ccactccacc 2700 ggcggcatgg acgagctgta caagtaccct tacgatgtac cggattacgc ataactcgag 2760 2760 <210> 3 <211> 2118 <212> DNA <213> Artificial Sequence <220> <223> HindIII-CSK-EGFP-HA-Stop-XhoI <400> 3 aagcttatgt c agcaataca ggccgcctgg ccatccggta cagaatgtat tgccaagtac 60 aacttccacg gcactgccga gcaggacctg cccttctgca aaggagacgt gctcaccatt 120 gtggccgtca ccaaggaccc caactggtac aaagccaaaa acaaggtggg ccgtgagggc 180 atcatcccag ccaactacgt ccagaagcgg gagggcgtga aggcgggtac caaactcagc 240 ctcatgcctt ggttccacgg caagatcaca cgggagcagg ctgagcggct tctgtacccg 300 ccggagacag gcctgttcct ggtgcgggag agcaccaact accccggaga ctacacgctg 360 tgcgtgagct gcgacggcaa ggtggagcac taccgcatca tgtaccatgc cagcaagctc 420 agcatcgacg aggaggtgta ctttgagaac ctcatgcagc tggtggagca ctacacctca 480 gacgcagatg gactctgtac gcgcctcatt aaaccaaagg tcatggaggg cacagtggcg 540 gcccaggatg agttctaccg cagcggctgg gccctgaaca tgaaggagct gaagctgctg 600 cagaccatcg ggaaggggga gttcggagac gtgatgctgg gcgattaccg agggaacaaa 660 gtcgccgtca agtgcattaa gaacgacgcc actgcccagg ccttcctggc tgaagcctca 720 gtcatgacgc aactgcggca tagcaacctg gtgcagctcc tgggcgtgat cgtggaggag 780 aagggcgggc tctacatcgt cactgagtac atggccaagg ggagccttgt ggactacctg 840 cggtctaggg gtcggtcagt gctgggcggagactgtctcc tcaagttctc gctagatgtc 900 tgcgaggcca tggaatacct ggagggcaac aatttcgtgc atcgagacct ggctgcccgc 960 aatgtgctgg tgtctgagga caacgtggcc aaggtcagcg actttggtct caccaaggag 1020 gcgtccagca cccaggacac gggcaagctg ccagtcaagt ggacagcccc tgaggccctg 1080 agagagaaga aattctccac taagtctgac gtgtggagtt tcggaatcct tctctgggaa 1140 atctactcct ttgggcgagt gccttatcca agaattcccc tgaaggacgt cgtccctcgg 1200 gtggagaagg gctacaagat ggatgccccc gacggctgcc cgcccgcagt ctatgaagtc 1260 atgaagaact gctggcacct ggacgccgcc atgcggccct ccttcctaca gctccgagag 1320 cagcttgagc acatcaaaac ccacgagctg cacctggcgg ccgccatggt gagcaagggc 1380 gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 1440 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 1500 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 1560 acctacggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 1620 aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc 1680 aactacaaga cccgcgccga ggtgaagttc gagggcga ca ccctggtgaa ccgcatcgag 1740 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac 1800 tacaacagcc acaacgtcta tatcatggcc gacaagcaga agaacggcat caaggtgaac 1860 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 1920 aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag 1980 tccgccctga gcaaagaccc caacgagaag cgcgatcaca tggtcctgct ggagttcgtg 2040 accgccgccg ggatcactct cggcatggac gagctgtaca agtaccctta cgatgtaccg 2100 gattacgcat aactcgag 2118 < 210> 4 <211> 1925 <212> DNA <213> Artificial Sequence <220> <223> NotI-HaloTag-BamHI-V5-TurboID-Stop-ApaI <400> 4 gcggccgcat ggcagaaatc ggtactggct ttccattcga cccccattat gtggaagtcc 60 tgggcgagtcggtc tggcacccct gtgctgttcc 120 tgcacggtaa cccgacctcc tcctacgtgt ggcgcaacat catcccgcat gttgcaccga 180 cccatcgctg cattgctcca gacctgatcg gtatgggcaa atccgacaaa ccagacctgg 240 gttatttctt cgacgaccac gtccgcttca tggatgcctt catcgaagcc ctgggtctgg 300 aagaggtcgt cctggtcatt cacgactggg gctccgctct gggtttccac tgggccaagc 360 gcaatccaga gcgcgtcaaa ggtattgcat ttatggagtt catccgccct atcccgacct 420 gggacgaatg gccagaattt gcccgcgaga ccttccaggc cttccgcacc accgacgtcg 480 gccgcaagct gatcatcgat cagaacgttt ttatcgaggg tacgctgccg atgggtgtcg 540 tccgcccgct gactgaagtc gagatggacc attaccgcga gccgttcctg aatcctgttg 600 accgcgagcc actgtggcgc ttcccaaacg agctgccaat cgccggtgag ccagcgaaca 660 tcgtcgcgct ggtcgaagaa tacatggact ggctgcacca gtcccctgtc ccgaagctgc 720 tgttctgggg caccccaggc gttctgatcc caccggccga agccgctcgc ctggccaaaa 780 gcctgcctaa ctgcaaggct gtggacatcg gcccgggtct gaatctgctg caagaagaca 840 acccggacct gatcggcagc gagatcgcgc gctggctgtc gacgctcgag atttccggca 900 aggatccagg caagcccatc cccaaccccc tgctgggcct ggacagcacc aaagacaata 960 ctgtgcctct gaagctgatc gctctcctgg ctaatggcga gttccatagt ggcgaacagc 1020 tgggagaaac cctgggcatg tccagggccg ctatcaacaa gcacattcag actctgcgcg 1080 actggggcgt ggacgtgttc accgtgcccg gaaagggcta ctctctgccc gagcctatcc 1140 cgctgctgaa cgctaaacag attctgggac agctggacgg cgggagcgtg gcagtcctgc 1200 c tgtggtcga ctccaccaat cagtacctgc tggatcgaat cggcgagctg aagagtgggg 1260 atgcttgcat tgcagaatat cagcaggcag ggagaggaag cagagggagg aaatggttct 1320 ctccttttgg agctaacctg tacctgagta tgttttggcg cctgaagcgg ggaccagcag 1380 caatcggcct gggcccggtc atcggaattg tcatggcaga agcgctgcga aagctgggag 1440 cagacaaggt gcgagtcaaa tggcccaatg acctgtatct gcaggataga aagctggcag 1500 gcatcctggt ggagctggcc ggaataacag gcgatgctgc acagatcgtc attggcgccg 1560 ggattaacgt ggctatgagg cgcgtggagg aaagcgtggt caatcagggc tggatcacac 1620 tgcaggaagc agggattaac ctggacagga atactctggc cgctacgctg atccgagagc 1680 tgcgggcagc cctggaactg ttcgagcagg aaggcctggc tccatatctg ccacggtggg 1740 agaagctgga taacttcatc aatagacccg tgaagctgat cattggggac aaagagattt 1800 tcgggattag ccgggggatt gataaacagg gagccctgct gctggaacag gacggagtta 1860 tcaaaccctg gatgggcgga gaaatcagtc tgcggtctgc cgaaaagtaa tgatctagag 1920 ggccc 1925 <210> 5 <211> 1948 <212> DNA <213 > Artificial Sequence <220> <223> BsiWI- HaloTag-NheI-V5-TurboID-Stop-AgeI <400> 5 cgtacgatgg cagaaatcgg tactggcttt ccattcgacc cccattatgt ggaagtcctg 60 ggcgagcgca tgcactacgt cgatgttggt ccgcgcgatg gcacccctgt gctgttcctg 120 cacggtaacc cgacctcctc ctacgtgtgg cgcaacatca tcccgcatgt tgcaccgacc 180 catcgctgca ttgctccaga cctgatcggt atgggcaaat ccgacaaacc agacctgggt 240 tatttcttcg acgaccacgt ccgcttcatg gatgccttca tcgaagccct gggtctggaa 300 gaggtcgtcc tggtcattca cgactggggc tccgctctgg gtttccactg ggccaagcgc 360 aatccagagc gcgtcaaagg tattgcattt atggagttca tccgccctat cccgacctgg 420 gacgaatggc cagaatttgc ccgcgagacc ttccaggcct tccgcaccac cgacgtcggc 480 cgcaagctga tcatcgatca gaacgttttt atcgagggta cgctgccgat gggtgtcgtc 540 cgcccgctga ctgaagtcga gatggaccat taccgcgagc cgttcctgaa tcctgttgac 600 cgcgagccac tgtggcgctt cccaaacgag ctgccaatcg ccggtgagcc agcgaacatc 660 gtcgcgctgg tcgaagaata catggactgg ctgcaccagt cccctgtccc gaagctgctg 720 ttctggggca ccccaggcgt tctgatccca ccggccgaag ccgctcgcct ggccaaaagc 780 ctgcctaact gcaaggctgt ggacatcggc ccgggtctga atctgctgca agaagacaac 840 ccggacctga tcggcagcga gatcgcgcgc tggctgtcga cgctcgagat ttccggcggc 900 cggccgctag caggcaagcc catccccaac cccctgctgg gcctggacag caccaaagac 960 aatactgtgc ctctgaagct gatcgctctc ctggctaatg gcgagttcca tagtggcgaa 1020 cagctgggag aaaccctggg catgtccagg gccgctatca acaagcacat tcagactctg 1080 cgcgactggg gcgtggacgt gttcaccgtg cccggaaagg gctactctct gcccgagcct 1140 atcccgctgc tgaacgctaa acagattctg ggacagctgg acggcgggag cgtggcagtc 1200 ctgcctgtgg tcgactccac caatcagtac ctgctggatc gaatcggcga gctgaagagt 1260 ggggatgctt gcattgcaga atatcagcag gcagggagag gaagcagagg gaggaaatgg 1320 ttctctcctt ttggagctaa cctgtacctg agtatgtttt ggcgcctgaa gcggggacca 1380 gcagcaatcg gcctgggccc ggtcatcgga attgtcatgg cagaagcgct gcgaaagctg 1440 ggagcagaca aggtgcgagt caaatggccc aatgacctgt atctgcagga tagaaagctg 1500 gcaggcatcc tggtggagct ggccggaata acaggcgatg ctgcacagat cgtcattggc 1560 gccgggatta acgtggctat gaggcgcgtg gaggaaagcg tggtcaatca gggctggatc 1620 acactgcagg aagcagggat taacctggac aggaatactc tggccgctac gctgatccga 1680 gagctgcggg cagccctgga actgttcgag caggaaggcc tggctcc ata tctgccacgg 1740 tgggagaagc tggataactt catcaataga cccgtgaagc tgatcattgg ggacaaagag 1800 attttcggga ttagccgggg gattgataaa cagggagccc tgctgctgga acaggacgga 1860 gttatcaaac cctggatggg cggagaaatc agtctgcggt ctgccgaaaa gtgataaacc 1920 cagctttctt gtacaaagtg gtaccggt 1948 <210> 6 <211> 2098 <212> DNA <213> Artificial Sequence <220> <223 > BsiWI- HaloTag-NheI-V5-TurboID-MoA-Stop-AgeI <400> 6 cgtacgatgg cagaaatcgg tactggcttt ccattcgacc cccattatgt ggaagtcctg 60 ggcgagcgca tgcactacgt cgatgttggt ccgcgcgatg gcacccctgt gctgttcctg 120 cacggtaacc cgacctcctc ctacgtgtgg cgcaacatca tcccgcatgt tgcaccgacc 180 catcgctgca ttgctccaga cctgatcggt atgggcaaat ccgacaaacc agacctgggt 240 tatttcttcg acgaccacgt ccgcttcatg gatgccttca tcgaagccct gggtctggaa 300 gaggtcgtcc tggtcattca cgactggggc tccgctctgg gtttccactg ggccaagcgc 360 aatccagagc gcgtcaaagg tattgcattt atggagttca tccgccctat cccgacctgg 420 gacgaatggc cagaatttgc ccgcgagacc ttccaggcct tccgcaccac cgacgtcggc 480 cgcaagctga tcatcgatca gaacgttttt atcgagggta cgctgccg at gggtgtcgtc 540 cgcccgctga ctgaagtcga gatggaccat taccgcgagc cgttcctgaa tcctgttgac 600 cgcgagccac tgtggcgctt cccaaacgag ctgccaatcg ccggtgagcc agcgaacatc 660 gtcgcgctgg tcgaagaata catggactgg ctgcaccagt cccctgtccc gaagctgctg 720 ttctggggca ccccaggcgt tctgatccca ccggccgaag ccgctcgcct ggccaaaagc 780 ctgcctaact gcaaggctgt ggacatcggc ccgggtctga atctgctgca agaagacaac 840 ccggacctga tcggcagcga gatcgcgcgc tggctgtcga cgctcgagat ttccggcggc 900 cggccgctag caggcaagcc catccccaac cccctgctgg gcctggacag caccaaagac 960 aatactgtgc ctctgaagct gatcgctctc ctggctaatg gcgagttcca tagtggcgaa 1020 cagctgggag aaaccctggg catgtccagg gccgctatca acaagcacat tcagactctg 1080 cgcgactggg gcgtggacgt gttcaccgtg cccggaaagg gctactctct gcccgagcct 1140 atcccgctgc tgaacgctaa acagattctg ggacagctgg acggcgggag cgtggcagtc 1200 ctgcctgtgg tcgactccac caatcagtac ctgctggatc gaatcggcga gctgaagagt 1260 ggggatgctt gcattgcaga atatcagcag gcagggagag gaagcagagg gaggaaatgg 1320 ttctctcctt ttggagctaa cctgtacctg agtatgtttt ggcgcctgaa gcggggacca 1380 gcagcaatcg gcctgggccc ggtcatcgga attgtcatgg cagaagcgct gcgaaagctg 1440 ggagcagaca aggtgcgagt caaatggccc aatgacctgt atctgcagga tagaaagctg 1500 gcaggcatcc tggtggagct ggccggaata acaggcgatg ctgcacagat cgtcattggc 1560 gccgggatta acgtggctat gaggcgcgtg gaggaaagcg tggtcaatca gggctggatc 1620 acactgcag g aagcagggat taacctggac aggaatactc tggccgctac gctgatccga 1680 gagctgcggg cagccctgga actgttcgag caggaaggcc tggctccata tctgccacgg 1740 tgggagaagc tggataactt catcaataga cccgtgaagc tgatcattgg ggacaaagag 1800 attttcggga ttagccgggg gattgataaa cagggagccc tgctgctgga acaggacgga 1860 gttatcaaac cctggatggg cggagaaatc agtctgcggt ctgccgaaaa gagatctcga 1920 gctcaagctt cgaattcgag tgctggtggt ttctgggaaa ggaacctgcc ctctgtttct 1980 ggcctgctga agatcattgg attttccaca tcagtaactg ccctggggtt tgtgctgtac 2040 aaatacaagc tcctgccacg gtcttgaacc cagctttctt gtacaaagtg gtaccggt 2098 <210> 7 <211> 897 <212> DNA <213> Artificial Sequence <220> <223> HindIII-HA-Abl Kinetic Domain-Stop-XhoI <400> 7 aagcttatgt acccttacga tgtaccgaagggat cacagatgaggtac tacgatcagggat 60 atggaacgta ccgatatcac catgaaacac aaattgggtg gtggccagta cggtgaggtg 120 tatgaaggcg tttggaaaaa atatagcctg accgtggcgg ttaaaaccct gaaagaagat 180 acgatggaag ttgaagagtt tctgaaagaa gcggcagtga tgaaggaaat taaacatcct 240 aacctggtcc agctgctggg cgtgtgtacc cgtgaacccc cgtttt atat cattaccgag 300 ttcatgactt atggtaactt gctggattat ctgcgcgagt gcaaccgtca agaagtgaat 360 gccgttgtgc tgctgtatat ggcgacgcag atctcttctg cgatggagta tctggagaaa 420 aagaacttca tccatcgtga tctggcggcg cgcaactgct tggtgggtga gaaccatctg 480 gtgaaggtgg ctgattttgg cctcagtcgg ctgatgacgg gcgatacata taccgctcac 540 gccggtgcga aatttccgat taaatggacc gcaccggagt ccctggcgta taataagttc 600 tcgattaaaa gcgatgtttg ggcgtttggc gttttgctgt gggagattgc gacctatggt 660 atgtccccgt atccgggcat tgacttgagt caagtgtatg aactgctcga aaaagattat 720 cgcatggagc gtccagaggg ctgccccgag aaagtctatg agctgatgcg cgcatgctgg 780 cagtggaacc cgtccgaccg cccgagcttc gcggaaatcc accaagcctt tgaaacgatg 840 tttcaagaga gtagcattag tgacgaagtg gaaaaagaac tcggaaagta actcgag 897 <210> 8 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> KpnI-TOM20- HA-Kinetic Domain-Stop-XhoI <400> 8 ggtaccatgg tgggtcggaa cagcgccatc gccgccggtg tatgcggggc ccttttcatt 60 gggtactgca tctacttcga ccgcaaaaga cgaagtgacc ccaacttcaa gaacaggctt 120 cgagaacgaa gaaagaaaca gaagcttg cc aaggagagag ctgggctttc caagttacct 180 gaccttaaag atgctgaagc tgttcagaag ttcttccttg aagaaataca gcttggtgaa 240 gagttactag ctcaaggtga atatgagaag ggcgtagacc atctgacaaa tgcaattgct 300 gtgtgtggac agccacagca gttactgcag gtcttacagc aaactcttcc accaccagtg 360 ttccagatgc ttctgactaa gctcccaaca attagtcaga gaattgtaag tgctcagagc 420 ttggctgaag atgatgtgga aggatcctac ccttacgatg taccggatta cgcaagtccg 480 aactatgaca aatgggaaat ggaacgtacc gatatcacca tgaaacacaa attgggtggt 540 ggccagtacg gtgaggtgta tgaaggcgtt tggaaaaaat atagcctgac cgtggcggtt 600 aaaaccctga aagaagatac gatggaagtt gaagagtttc tgaaagaagc ggcagtgatg 660 aaggaaatta aacatcctaa cctggtccag ctgctgggcg tgtgtacccg tgaacccccg 720 ttttatatca ttaccgagtt catgacttat ggtaacttgc tggattatct gcgcgagtgc 780 aaccgtcaag aagtgaatgc cgttgtgctg ctgtatatgg cgacgcagat ctcttctgcg 840 atggagtatc tggagaaaaa gaacttcatc catcgtgatc tggcggcgcg caactgcttg 900 gtgggtgaga accatctggt gaaggtggct gattttggcc tcagtcggct gatgacgggc 960 gatacatata ccgctcacgc cggtgcgaaa tttccgatta aatgga ccgc accggagtcc 1020 ctggcgtata ataagttctc gattaaaagc gatgtttggg cgtttggcgt tttgctgtgg 1080 gagattgcga cctatggtat gtccccgtat ccgggcattg acttgagtca agtgtatgaa 1140 ctgctcgaaa aagattatcg catggagcgt ccagagggct gccccgagaa agtctatgag 1200 ctgatgcgcg catgctggca gtggaacccg tccgaccgcc cgagcttcgc ggaaatccac 1260 caagcctttg aaacgatgtt tcaagagagt agcattagtg acgaagtgga aaaagaactc 1320 ggaaagtaac tcgag 1335 <210> 9 <211> 1036 < 212> DNA <213> Artificial Sequence <220> <223> BsiWI- TOM20-SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI <400> 9 cgtacgatgg tgggtcggaa cagcgccatc gccgccggtg tatgcggggc ccttttcatt 60 gggtactgca tctacttcga ccgcaaaaga cgaagtgacc ccaacttcaa gaacaggctt 120 cgagaacgaa gaaagaaaca gaagcttgcc aaggagagag ctgggctttc caagttacct 180 gaccttaaag atgctgaagc tgttcagaag ttcttccttg aagaaataca gcttggtgaa 240 gagttactag ctcaaggtga atatgagaag ggcgtagacc atctgacaaa tgcaattgct 300 gtgtgtggac agccacagca gttactgcag gtcttacagc aaactcttcc accaccagtg 360 ttccagatgc ttctgactaa gctcccaaca attagtcaga g aattgtaag tgctcagagc 420 ttggctgaag atgatgtgga agaacaaaaa ctcatctcag aagaggatct gatggtttcc 480 ctgtataata acaacttgaa cggaatctta gccgatgaaa tggggcttgg aaagaccata 540 cagaccattg cactcatcac ttatctgatg gagcacaaaa gactcaatgg cccctatctc 600 atcattgttc ccctttcgac tctatctaac tggacatatg aatttgacaa atgggctcct 660 tctgtggtga agatttctta caagggtact cctgccatgc gtcgctccct tgtcccccag 720 ctacggagtg gcaaattcaa tgtcctcttg actacttatg agtatattat aaaagacaag 780 cacattcttg caaagattcg gtggaaatac atgatagtgg acgaaggcca ccgaatgaag 840 aatcaccact gcaagctgac tcaggtcttg aacactcact atgtggcccc cagaaggatc 900 ctcttgactg ggaccccgct gcagaataag ctccctgaac tctgggccct cctcaacttc 960 ctcctcccaa cataccctta cgatgtaccg gattacgcat gataaaccca gctttcttgt 1020 acaaagtggt accggt 1036 <210> 10 <211> 571 <212> DNA <213> Artificial Sequence <220> <223> BsiWI -SMARCA2 Helicase ATP binding domain-HA- Stop-AgeI <400> 10 cgtacgatgg tttccctgta taataacaac ttgaacggaa tcttagccga tgaaatgggg 60 cttggaaaga ccatacagac cattgcactc atcacttatc tgatgg agca caaaagactc 120 aatggcccct atctcatcat tgttcccctt tcgactctat ctaactggac atatgaattt 180 gacaaatggg ctccttctgt ggtgaagatt tcttacaagg gtactcctgc catgcgtcgc 240 tcccttgtcc cccagctacg gagtggcaaa ttcaatgtcc tcttgactac ttatgagtat 300 attataaaag acaagcacat tcttgcaaag attcggtgga aatacatgat agtggacgaa 360 ggccaccgaa tgaagaatca ccactgcaag ctgactcagg tcttgaacac tcactatgtg 420 gcccccagaa ggatcctctt gactgggacc ccgctgcaga ataagctccc tgaactctgg 480 gccctcctca acttcctcct cccaacatac ccttacgatg taccggatta cgcatgataa 540acccagcttt cttgtacaaa gtggtaccgg t 571

Claims (13)

택 단백질에 바이오틴 라이게이즈 효소단백질인 TurbID가 결합되어 있는 융합단백질.
A fusion protein in which TurbID, a biotin ligase enzyme protein, is linked to a tag protein.
제1항에 있어서, 상기 택 단백질은 할로택, 스냅택, 클립택 또는 아비딘인 것을 특징으로 하는, 융합 단백질.
The fusion protein according to claim 1, wherein the tag protein is halotak, snaptac, cliptac or avidin.
제1항의 융합 단백질을 암호화하는 핵산.
A nucleic acid encoding the fusion protein of claim 1.
제3항의 핵산 또는 상기 핵산을 포함하는 벡터가 도입되어 있는 세포.
A cell into which the nucleic acid of claim 3 or a vector containing the nucleic acid has been introduced.
다음 단계를 포함하는 약물 표적 단백질 동정 방법:
(a) 제4항의 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합되어 있는 약물을 처리하는 단계:
(b) 상기 세포를 용해시키는 단계; 및
(c) 상기 용해된 세포에서 바이오틴화 된 단백질을 약물 표적 단백질로 식별하는 단계.
A method for identifying a drug target protein comprising the following steps:
(a) treating the cells of claim 4 with a drug to which a ligand specifically binding to the tag protein is bound:
(b) lysing the cells; and
(c) identifying biotinylated proteins in the lysed cells as drug target proteins.
제5항에 있어서,
상기 (a) 단계의 세포는 살아있는 세포인 것을 특징으로 하는, 방법.
According to claim 5,
Characterized in that the cells of step (a) are living cells.
제6항에 있어서,
상기 (a) 단계에서, 상기 약물 표적 단백질은 in cellulo 바이오틴화 되는 것을 특징으로 하는, 방법.
According to claim 6,
In the step (a), the drug target protein is characterized in that in cellulo biotinylation, the method.
제5항에 있어서,
상기 (b) 단계 후, (b') 상기 용해된 세포에서 바이오틴화된 단백질을 분리하는 단계를 더 포함하는 것을 특징으로 하는, 방법.
According to claim 5,
After step (b), (b') isolating biotinylated proteins from the lysed cells.
제8항에 있어서,
상기 (b') 단계 후, (b'') 상기 분리된 단백질을 가수분해 효소로 분해(digestion)시키는 단계를 더 포함하는 것을 특징으로 하는, 방법.
According to claim 8,
After the step (b'), (b'') characterized in that it further comprises the step of digesting the separated protein with a hydrolytic enzyme.
제5항에 있어서,
상기 (c) 단계에서 바이오틴화된 단백질은 질량분석법에 의해 식별되는 것을 특징으로 하는 방법.
According to claim 5,
The method characterized in that the biotinylated protein in step (c) is identified by mass spectrometry.
제5항에 있어서,
상기 (c) 단계에서 상기 융합 단백질이 발현되는 세포에 택 단백질에 특이적으로 결합하는 리간드가 결합된 약물을 처리하지 않은 상태에서 바이오틴화 되는 단백질은 약물 표적 단백질에서 제외시키는 것을 특징으로 하는 방법.
According to claim 5,
In the step (c), the cell expressing the fusion protein is excluded from the drug target protein in a state in which the drug to which the ligand specifically binding to the tag protein is not treated is not treated.
제3항의 핵산을 포함하는 벡터 및 상기 택 단백질에 특이적으로 결합하는 리간드를 포함하는 약물 표적 단백질 동정용 키트.
A kit for identifying a drug target protein comprising a vector comprising the nucleic acid of claim 3 and a ligand specifically binding to the tag protein.
제12항에 있어서, 상기 키트는 바이오틴, 스트렙타비딘 비드, 키트 사용 지침서로 구성된 군에서 선택되는 하나 이상을 추가로 포함하는 키트.
The kit according to claim 12, wherein the kit further comprises at least one selected from the group consisting of biotin, streptavidin beads, and instructions for use of the kit.
KR1020220072973A 2021-06-28 2022-06-15 Identification of novel drug-binding protein using proximity labeling KR20230001519A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210084273 2021-06-28
KR20210084273 2021-06-28

Publications (1)

Publication Number Publication Date
KR20230001519A true KR20230001519A (en) 2023-01-04

Family

ID=84925368

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072973A KR20230001519A (en) 2021-06-28 2022-06-15 Identification of novel drug-binding protein using proximity labeling

Country Status (1)

Country Link
KR (1) KR20230001519A (en)

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Branon, T.C. et al., (2018), Nature Biotechnology 36, 880-887;
Diether, M et al., (2017), Curr Opin Microbiol 39, 16-23;
Ha, J. et al., (2021), Cell Chemical Biology 28, 394-423;
Hill, Z.B. et al., (2016), J Am Chem Soc 138, 13123-13126;
Jost, M. et al., (2018), Acs Chemical Biology 13, 366-37;
Lee, S.-Y. et al., (2016), Acs Central Sci 2, 506-516;
Lomenick, B. et al, (2009), Proceedings of the National Academy of Sciences of the United States of America 106, 21984-21989;
Molina, D.M. et al, (2013), Science 341, 84-87;
Zhuang, M. et al., (2013), Mol Cell 49, 273-282.

Similar Documents

Publication Publication Date Title
Kleiner et al. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response
Teo et al. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay
Chitwood et al. An intramembrane chaperone complex facilitates membrane protein biogenesis
CN110709412B (en) Protein and peptide tags with increased spontaneous isopeptide bond formation rates and uses thereof
Zhang et al. Site-specific characterization of the Asp-and Glu-ADP-ribosylated proteome
Kaddoum et al. One-step split GFP staining for sensitive protein detection and localization in mammalian cells
Volkov et al. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules
Bashore et al. Targeted degradation via direct 26S proteasome recruitment
US20220135628A1 (en) Polypeptide with enhanced rate of spontaneous isopeptide bond formation with its peptide tag partner and uses thereof
Gao et al. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins
Deyle et al. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1
Zhai et al. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling
CN112352055A (en) Bioluminescent biosensors for detecting and quantifying biomolecules or ligands in solution
John et al. Yeast-and antibody-based tools for studying tryptophan C-mannosylation
Gorasia et al. In situ structure and organisation of the type IX secretion system
Rathore et al. Basigin interacts with Plasmodium vivax tryptophan-rich antigen PvTRAg38 as a second erythrocyte receptor to promote parasite growth
Kwak et al. Identification of proteomic landscape of drug-binding proteins in live cells by proximity-dependent target ID
US20220107327A1 (en) Multi-target crosslinkers and uses thereof
Camarda et al. Regulated oligomerisation and molecular interactions of the early gametocyte protein Pfg27 in Plasmodium falciparum sexual differentiation
Shinde et al. The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia
Yamamoto et al. Asymmetry in the function and dynamics of the cytosolic group II chaperonin CCT/TRiC
US20230176070A1 (en) Compositions and methods for identifying nanobodies and nanobody affinities
KR101738137B1 (en) Method for providing information of protein location using peroxidase
Yue et al. PUP-IT2 as an alternative strategy for PUP-IT proximity labeling
KR20230001519A (en) Identification of novel drug-binding protein using proximity labeling