KR20220170019A - Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same - Google Patents

Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same Download PDF

Info

Publication number
KR20220170019A
KR20220170019A KR1020210080529A KR20210080529A KR20220170019A KR 20220170019 A KR20220170019 A KR 20220170019A KR 1020210080529 A KR1020210080529 A KR 1020210080529A KR 20210080529 A KR20210080529 A KR 20210080529A KR 20220170019 A KR20220170019 A KR 20220170019A
Authority
KR
South Korea
Prior art keywords
sweet potato
extract
prebiotics
peel
composition
Prior art date
Application number
KR1020210080529A
Other languages
Korean (ko)
Inventor
오덕환
박아름
셀리아 라마찬드란
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020210080529A priority Critical patent/KR20220170019A/en
Publication of KR20220170019A publication Critical patent/KR20220170019A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/302Foods, ingredients or supplements having a functional effect on health having a modulating effect on age
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/502Gums
    • A23V2250/5062Inulin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/41Pediococcus
    • A23V2400/427Pentosaceus
    • A23Y2280/55

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a prebiotics composition for alleaviating intestinal microflora comprising a sweet potato peel oligosaccharide extract as an active ingredient containing 1-kestose (GF_2) as a key component, and to a functional food that can improve the intestinal microflora by promoting the growth of probiotics including the same.

Description

고구마 껍질 추출물을 포함하는 장내균총 개선용 프리바이오틱스 조성물 및 이를 포함하는 식품 조성물{Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same}Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same}

본 발명은 고구마 껍질 추출물을 포함하는 장내균총 개선용 프리바이오틱스 조성물 및 이를 포함하는 기능성 식품에 관한 것으로, 보다 상세하게는 1-kestose(GF2)를 핵심성분으로 함유하는 고구마 껍질 추출물을 유효성분으로 포함하는 장내균총 개선용 프리바이오틱스 조성물 및 이를 포함함으로써 프로바이오틱스의 생육을 촉진시켜 장내균총을 개선시킬 수 있는 기능성 식품에 관한 것이다.The present invention relates to a prebiotics composition for improving the intestinal microflora containing a sweet potato peel extract and a functional food containing the same, and more particularly, to a sweet potato peel extract containing 1-kestose (GF 2 ) as a key ingredient as an active ingredient It relates to a prebiotics composition for improving the intestinal flora and a functional food capable of improving the intestinal flora by promoting the growth of probiotics by including the same.

프로바이오틱스는 인체에 유익한 균으로 적정량 섭취되었을 때 숙주의 건강유지에 기여할 수 있는 생균이다. 프로바이오틱스는 일종의 장벽을 제공하여 병원성 세균의 장내 정착을 억제하고, 장 점막을 강화하여 항균물질, 리소자임 등을 생산하여 면역활성을 증진 시키는 효능을 지닌다.Probiotics are microorganisms that are beneficial to the human body and can contribute to the maintenance of the health of the host when ingested in an appropriate amount. Probiotics provide a kind of barrier to suppress the establishment of pathogenic bacteria in the intestine, and strengthen the intestinal mucosa to produce antibacterial substances, lysozyme, etc., and have the effect of enhancing immune activity.

프리바이오틱스는 장내에서 유익한 박테리아(프로바이오틱스)의 생장을 돕는 난소화성 성분으로서, 프로바이오틱스의 영양원이 되어 장내 환경을 개선하는 데 도움을 주는 물질이다.Prebiotics are indigestible ingredients that help the growth of beneficial bacteria (probiotics) in the intestine, and are substances that help improve the intestinal environment by becoming a nutrient source for probiotics.

농산물이나 식품으로부터 프리바이오틱스를 분리한 종래기술로는 바나나 껍질 추출물을 포함하는 장내균총 개선용 프리바이오틱스 조성물 및 이를 포함하는 기능성 식품(특허문헌 0001), 마늘 껍질 추출물을 포함하는 장내균총 개선용 프리바이오틱스 조성물 및 이를 포함하는 기능성 식품 (특허문헌 0002), 더덕 추출물을 함유하는 장 건강 개선용 조성물(특허문헌 0003), 홍국 추출물을 포함하는 장 건강 개선용 조성물(특허문헌 0004) 등이 개시되어 있다.Conventional techniques for isolating prebiotics from agricultural products or foods include a prebiotics composition for improving the intestinal flora containing a banana peel extract and a functional food containing the same (Patent Document 0001), and a garlic peel extract for improving the intestinal flora. Prebiotics composition and functional food containing the same (Patent Document 0002), composition for improving intestinal health containing deodeok extract (Patent Document 0003), composition for improving intestinal health containing red yeast rice extract (Patent Document 0004) etc. are disclosed.

현재 고구마는 괴근 뿐 아니라 고구마 껍질, 지상부 모두 식용으로 등재 되었으나, 지상부 중 잎자루는 소량만 채소용으로 이용되고, 껍질과 지상부 대부분이 수확 시 농산물 부산물로 취급되어 폐기되는 실정이다. 또한 한국산 고구마의 품종 및 부위별로 프리바이오틱스 효능 확인된 연구는 알려지지 않았다.Currently, not only the tuber, but also the sweet potato skin and aboveground parts are all listed as edible, but only a small amount of the petiole of the aboveground parts is used for vegetables, and most of the peel and aboveground parts are treated as agricultural by-products during harvest and are discarded. In addition, there are no studies that have confirmed the efficacy of prebiotics for each variety and part of Korean sweet potato.

프리바이오틱스를 고구마 껍질 등과 같은 농업 부산물에서 분리할 수 있다면 부산물 처리는 물론 경제적 부가가치를 높일 수 있는 바, 고구마 껍질 등과 같은 농업 부산물을 프리바이오틱스 소재로 활용하기 위한 연구개발이 절실히 요구되고 있다.If prebiotics can be separated from agricultural by-products such as sweet potato skins, it is possible to process the by-products as well as increase economic added value. Research and development for using agricultural by-products such as sweet potato skins as prebiotics materials is urgently required.

따라서, 본 발명자들은 고구마 껍질 추출물이 프리바이오틱스 조성물로서 프로바이오틱스와 함께 기능성 식품에 이용 가능성을 확인하고 본 발명을 완성하였다. Therefore, the present inventors confirmed the applicability of sweet potato peel extract to functional food together with probiotics as a prebiotics composition and completed the present invention.

대한민국공개특허공보 제10-2020-0112147호Korean Patent Publication No. 10-2020-0112147 대한민국공개특허공보 제10-2020-0112148호Korean Patent Publication No. 10-2020-0112148 대한민국공개특허공보 제10-2017-0135520호Korean Patent Publication No. 10-2017-0135520 대한민국공개특허공보 제10-2018-0041104호Korean Patent Publication No. 10-2018-0041104

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 부산물인 고구마 껍질로부터 얻은 추출물을 프리바이오틱스 소재로 활용하기 위한 프리바이오틱스 조성물을 제공하는 것이다.The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a prebiotics composition for utilizing an extract obtained from sweet potato peel, which is a by-product, as a prebiotics material.

본 발명의 다른 목적은 상기 프리바이오틱스 조성물을 활용하여 프로바이오틱스의 성장을 촉진시킴으로써 장내균총을 개선시킬 수 있는 기능성 식품을 제공하는 것이다.Another object of the present invention is to provide a functional food capable of improving intestinal flora by promoting the growth of probiotics using the prebiotics composition.

본 발명은 고구마 껍질 추출물을 유효성분으로 포함하는 장내균총 개선용 프리바이오틱스 조성물을 제공한다.The present invention provides a prebiotics composition for improving the intestinal microflora containing sweet potato peel extract as an active ingredient.

또한, 본 발명은 상기 프리바이오틱스 조성물을 포함하는 기능성 식품을 제공한다.In addition, the present invention provides a functional food containing the prebiotics composition.

본 발명의 일 구현 예는 마늘 껍질 추출물을 유효성분으로 포함하는 장내균총 개선용 프리바이오틱스 조성물에 관한 것이다.One embodiment of the present invention relates to a prebiotics composition for improving the intestinal flora comprising garlic peel extract as an active ingredient.

본 발명에서, "장내균총 개선용"이라 함은, 장내 유익균의 증식 또는 생장은 촉진하고 장내 유해균의 증식 또는 생장은 억제하되, 장내 유익균과 유해균의 균형을 유지하는 것을 의미한다. In the present invention, "for improving the intestinal flora" means promoting the growth or growth of beneficial bacteria in the intestine and inhibiting the growth or growth of harmful bacteria in the intestine, but maintaining the balance between beneficial bacteria and harmful bacteria in the intestine.

"항산화 활성용"이라 함은 노화 및 만성질환을 예방하는 것을 의미한다.“For antioxidant activity” means preventing aging and chronic diseases.

본 발명은 고구마껍질의 올리고당 추출물 및 고구마 껍질의 에탄올 추출물에 항산화 활성이 있음을 발견하여 이러한 성분이 포함된 항산화용 조성물 및 항산화용 조성물이 포함된 식품 조성물에 관한 것이다. The present invention finds that an oligosaccharide extract of sweet potato peel and an ethanol extract of sweet potato peel have antioxidant activity, and thus relates to an antioxidant composition containing these components and a food composition containing the antioxidant composition.

상기 "장내 유익균"이라 함은, 장내에 서식하고 있으면서 인체에 유익한 효능을 미치는 미생물을 총칭할 수 있다. 예컨대, 장내 유익균은 프로바이오틱스를 포함할 수 있다. The term "intestinal beneficial bacteria" may refer to microorganisms living in the intestines and exerting beneficial effects on the human body. For example, intestinal beneficial bacteria may include probiotics.

상기 "장내 유해균"이라 함은, 장내에서 서식하고 있으면서 장염 등과 같이 인체에 해로운 효과를 미치는 미생 물을 총칭할 수 있는데, 대장균(Escherichia coli), 클로스트리듐 속(Clostridium sp.), 스타필로코쿠스 속 (Staphylococcus sp.) 등을 예로 들 수 있다. 또한 본 발명에서, "프로바이오틱스"라 함은, 체내에서 건강에 좋은 영향을 미치는 미생물을 의미할 수 있는데, 락토바실러스 속(Lactobacillus sp.), 락토코커스 속(Lactococcus sp.), 스트렙토코커스 속(Streptococcus sp.), 엔테로코커스 속(Enterococcus sp.), 페디오코커스 속(Pediococcus sp.), 비피도박테리움 비피둠 속 (Bifidobacterium sp.) 등을 예로 들 수 있다. The term "intestinal harmful bacteria" may refer to microorganisms that live in the intestines and have harmful effects on the human body, such as enteritis, such as Escherichia coli, Clostridium sp., and Staphylococcus. Examples include Staphylococcus sp. In addition, in the present invention, "probiotics" may mean microorganisms that have a good effect on health in the body, such as Lactobacillus sp., Lactococcus sp., Streptococcus sp.), Enterococcus sp., Pediococcus sp., and Bifidobacterium bifidum sp.

본 발명에서, "프리바이오틱스"라 함은, 유익균을 포함하는 미생물에 의해 이용되어 미생물의 생육이나 활성을 촉진시킴으로써, 숙주의 건강에 좋은 효과를 나타내게 하는 성분을 의미할 수 있다.In the present invention, "prebiotics" may mean a component that is used by microorganisms, including beneficial bacteria, to promote the growth or activity of microorganisms, thereby exhibiting beneficial effects on the health of the host.

본 발명의 상기 프리바이오틱스 조성물에서, 상기 고구마 껍질 추출물은 극성 용매 또는 유기 용매를 사용하여 추출할 수 있으며, 극성 용매는 탄소수 1 내지 4의 저급 알코올중 선택되는 어느 하나 일 수 있고, 바람직하게는 에탄올을 용매로 하여 추출할 수 있다. 에탄올을 용매로 사용하여 추출하는 경우, 50 내지 99%(w/v), 바람직하게는 70%(w/v) 에탄올을 사용할 수 있다. In the prebiotics composition of the present invention, the sweet potato peel extract may be extracted using a polar solvent or an organic solvent, and the polar solvent may be any one selected from lower alcohols having 1 to 4 carbon atoms, preferably It can be extracted using ethanol as a solvent. In the case of extraction using ethanol as a solvent, 50 to 99% (w/v), preferably 70% (w/v) ethanol may be used.

본 발명의 상기 프리바이오틱스 조성물에서, 상기 고구마 껍질 추출물은 올리고당 추출물일 수 있다. In the prebiotics composition of the present invention, the sweet potato peel extract may be an oligosaccharide extract.

본 발명의 상기 프리바이오틱스 조성물에 포함되는 상기 고구마 껍질 추출물은 1-kestose(GF2)를 유효성분으로 포함할 수 있다. The sweet potato peel extract included in the prebiotics composition of the present invention may contain 1-kestose (GF2) as an active ingredient.

본 발명의 상기 프리바이오틱스 조성물은 1-kestose(GF2)를 더 포함할 수 있는데, 고구마 껍질 추출물과 상기 1-kestose(GF2)를 포함할 경우, 프로바이오틱스균의 생육을 촉진시킬 수 있다.The prebiotics composition of the present invention may further include 1-kestose (GF2), and when the sweet potato peel extract and the 1-kestose (GF2) are included, the growth of probiotic bacteria can be promoted.

본 발명의 상기 고구마는 풍원미 고구마 또는 호감미 고구마를 포함할 수 있으며 바람직하게는 풍원미 고구마를 이용하여 추출할 수 있다.The sweet potato of the present invention may include Pungwonmi sweet potato or Pungwonmi sweet potato, and may be preferably extracted using Pungwonmi sweet potato.

현재 대부분의 프리바이오틱스는 화학적으로 합성되고 있는데, 본 발명에 의하면 식품 부산물인 고구마 껍질로부터 프리바이오틱스를 추출하여 사용할 수 있기 때문에, 새로운 프리바이오틱스 소재를 제공할 수 있다. 또한 부산물 처리에 소요되는 비용이 절감될 수 있으며 부산물을 활용하여 기능성 식품 소재로도 활용할 수 있는 장점이 있다.Currently, most prebiotics are chemically synthesized, but according to the present invention, since prebiotics can be extracted and used from sweet potato skins, which are food by-products, a new prebiotics material can be provided. In addition, the cost required for processing by-products can be reduced, and there is an advantage that by-products can be used as functional food materials.

도 1은 고구마로부터 올리고당을 추출하는 과정을 도식화 한 것이다.
도 2는 타닌산의 표준곡선을 나타낸 것이다.
도 3은 루틴의 표준곡선을 나타낸 것이다.
도 4는 Cyanidine 3-O-Glucoside chloride의 표준곡선을 나타낸 것이다.
도 5는 실험동물의 도표디자인을 나타낸 것이다.
도 6은 primers L50을 이용한 qPCR 분석결과를 표준곡선으로 나타낸 것이다.
도 7은 고구마 품종 및 부위별 에탄올 추출물의 총 폴리페놀 함량을 측정한 결과이다.
도 8은 고구마 품종 및 부위별 에탄올 추출물의 총 플라보노이드 함량을 측정한 결과이다.
도 9는 고구마 품종 및 부위별 에탄올 추출물의 총 안토시아닌 함량을 측정한 결과이다.
도 10은 풍원미 고구마 껍질 올리고당 추출물의 성장률을 나타낸 것이다.
도 11은 호감미 고구가 껍질 올리고당 추출물의 성장률을 나타낸 것이다.
도 12는 프럭토올리고당 표준품과 이눌린 표준품을 이용하여 SPPOE의 올리고당을 HPLC-RID로 분석한 결과를 나타낸 것이다.
도 13은 자일로올리고당 표준품을 이용하여 SPPOE의 올리고당을 HPLC-RID로 분석한 결과를 나타낸 것이다.
도 14는 케스토스의 세포독성실험 결과를 나타낸 것이다.
도 15는 대조군을 G1,G2로 분류하고, 실험군을 G3,G4로 분류하여 Pediocine L50 gene을 타겟으로 P. pentosaceus의 함량을 분석한 결과를 나타낸 것이다.
도 16은 투과전자현미경을 이용하여 그룹별마우스의 신장, 간, 비장, 장의 조직세포를 관찰한 결과를 나타낸 것이다.
1 is a schematic diagram of the process of extracting oligosaccharides from sweet potatoes.
Figure 2 shows the standard curve of tannic acid.
Figure 3 shows the standard curve of the routine.
Figure 4 shows the standard curve of Cyanidine 3-O-Glucoside chloride.
Figure 5 shows the graphic design of the experimental animals.
Figure 6 shows the results of qPCR analysis using primers L50 as a standard curve.
7 is a result of measuring the total polyphenol content of the ethanol extract for each sweet potato variety and part.
8 is a result of measuring the total flavonoid content of the ethanol extract for each sweet potato variety and part.
9 is a result of measuring the total anthocyanin content of the ethanol extract for each sweet potato variety and part.
Figure 10 shows the growth rate of Poongwonmi sweet potato skin oligosaccharide extract.
Figure 11 shows the growth rate of the sweet potato skin oligosaccharide extract.
12 shows the results of HPLC-RID analysis of SPPOE oligosaccharides using fructooligosaccharide standards and inulin standards.
13 shows the results of HPLC-RID analysis of SPPOE oligosaccharides using xylooligosaccharide standards.
14 shows the results of the cytotoxicity test of kestose.
Figure 15 shows the results of analyzing the content of P. pentosaceus targeting the Pediocine L50 gene by classifying the control group into G1 and G2 and classifying the experimental group into G3 and G4.
Figure 16 shows the results of observing the tissue cells of the kidney, liver, spleen, and intestines of each group of mice using a transmission electron microscope.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following Examples and Experimental Examples.

<실시예 1> 고구마 품종 및 부위별 올리고당 추출물 제조<Example 1> Preparation of oligosaccharide extracts by sweet potato varieties and parts

고구마 품종 및 부위별 올리고당 추출물 제조를 위해 품종으로는 풍원미, 호감미를 사용하였으며, 부위로는 고구마 껍질, 고구마 괴근, 지상부 사용하였다. 고구마의 지상부는 2019년 9월 강원도 강릉에 위치한 강원도농업기술원 감자연구소 시험포장에서 수확하여 세척 후 냉풍제습건조기(TJHP-1003, Jungang, Korea)를 이용하여 40℃에서 72시간 건조 후 분쇄기(Daesung Artlon, DA280-S, Korea)를 이용하여 분쇄한 후, -20℃ 냉동고에 보관하면서 실험에 사용하였다. 고구마는 2020년 2월 국립식량과학원 바이오에너지작물연구소에서 분양 받아 세척 후 껍질을 깎은 후 괴근과 껍질을 분리하여, 괴근은 0.5 cm 두께로 슬라이스하여 냉풍건조 후 분쇄기로 분말화 하였고 괴근과 분리한 껍질 또한 냉풍건조 후 분쇄기(Daesung Artlon, DA280-S, Korea)로 분말화 하여 시료로 사용하였다. 시료는 Soxhlet 방법으로 탈지하였다. 건조된 시료 g당 5배의 석유엑테르(Daejung, cas 8032-32-4)를 넣어 혼합 후 원심분리기(Hanil, SUPRA 22K, Korea)에 넣고 원심분리(15℃, 3,000rpm, 20분) 하였다. 위 과정을 2번 반복하였으며, 유지 제거가 완료된 시료를 트레이에 넓게 펼친 후 후드 내에서 잔량의 석유에테르를 휘발하여 제거하였다. 탈지된 시료 50 g에 아세트산 나트륨 완충액(0.1 M, pH 4.5) 100 mL, 1 mg의 α-amylase(Sigma A31765, 1000U)를 첨가한 후 95℃ 진탕항온수조(37L, BS-21, Korea)에서 12시간 가열한 후 실온에서 냉각하였다. 이후, 100 mg의 glucoamylase (Sigma, 9032-08-0, 6000U)를 혼합하여 55℃ 진탕항온수조에서 48시간 동안 가열한 후 실온에서 냉각하였다. 3차 효소처리로 xylanase(Sigma, 31278-89-0, 125U)를 100mg 첨가한 후 50℃ 진탕항온수조에서 7시간 가열하였다. 시료는 원심분리기로 3000 rpm에서 20분 동안 원심 분리하여 전분이 제거된 상층액에 1,000 mL의 distilled water(D.W)를 혼합하여 실온에서 2시간 동안 정치하였다. 정치한 용액을 3000rpm에서 20분간 원심 분리하여 상등액을 수집 한 후 99%(w/v) 에탄올을 3배로 넣어 혼합 하여 8시간 동안 침전 시켰다. 추출된 시료는 감압농축으로 에탄올을 증발시킨 뒤 추출물을 얻었다. 추출물은 5m Torr, -40℃ 조건의 동결건조기(PVFD 20RS, Ilshin, Korea)를 이용하여 동결건조 후 -20℃ 냉동고에서 보관하면서 실험에 사용하였다(도 1). 또한 대조군으로 사용한 표준물질은 치커리에서 유래한 프락토올리고당(Sigma, F8052)를 사용하였다. For the preparation of oligosaccharide extracts for each sweet potato variety and part, Poongwonmi and Favorable rice were used as varieties, and sweet potato peel, sweet potato tuber, and above-ground parts were used as parts. The above-ground part of the sweet potato was harvested from the test field of the Potato Research Institute of the Gangwon-do Agricultural Research and Extension Services located in Gangneung, Gangwon-do in September 2019, washed, dried at 40 ° C for 72 hours using a cold wind dehumidifying dryer (TJHP-1003, Jungang, Korea), and then a grinder (Daesung Artlon , DA280-S, Korea), and then used for experiments while stored in a -20 ° C freezer. Sweet potatoes were sold at the Bioenergy Crop Research Institute of the National Institute of Food Science in February 2020, washed, peeled, and separated from the tuber root and skin. In addition, after drying in cold air, it was powdered with a grinder (Daesung Artlon, DA280-S, Korea) and used as a sample. Samples were degreased by the Soxhlet method. After mixing, 5 times petroleum ether (Daejung, cas 8032-32-4) was added per g of the dried sample, put into a centrifuge (Hanil, SUPRA 22K, Korea), and centrifuged (15 ° C, 3,000 rpm, 20 minutes). . The above process was repeated twice, and the oil-removed sample was spread widely on a tray, and then the remaining amount of petroleum ether was volatilized and removed in a hood. After adding 100 mL of sodium acetate buffer (0.1 M, pH 4.5) and 1 mg of α -amylase (Sigma A31765, 1000U) to 50 g of the degreased sample, the mixture was stirred in a 95°C shaking constant temperature water bath (37L, BS-21, Korea). After heating for 12 hours, it was cooled at room temperature. Thereafter, 100 mg of glucoamylase (Sigma, 9032-08-0, 6000U) was mixed and heated in a 55° C. shaking water bath for 48 hours, followed by cooling at room temperature. After adding 100mg of xylanase (Sigma, 31278-89-0, 125U) as a third enzyme treatment, the mixture was heated for 7 hours in a 50°C shaking constant temperature water bath. The sample was centrifuged at 3000 rpm for 20 minutes using a centrifuge, and the supernatant from which starch was removed was mixed with 1,000 mL of distilled water (DW) and allowed to stand at room temperature for 2 hours. After collecting the supernatant by centrifuging the settled solution at 3000 rpm for 20 minutes, 99% (w / v) ethanol was added three times and mixed to precipitate for 8 hours. The extracted sample was concentrated under reduced pressure to obtain an extract after evaporating ethanol. The extract was lyophilized using a lyophilizer (PVFD 20RS, Ilshin, Korea) under conditions of 5 m Torr and -40 ° C, and then stored in a -20 ° C freezer and used in the experiment (Fig. 1). In addition, as a standard material used as a control, fructooligosaccharide (Sigma, F8052) derived from chicory was used.

<실시예 2> 고구마 품종 및 부위별 에탄올 추출물 제조<Example 2> Preparation of ethanol extracts by sweet potato varieties and parts

실시예 1과 같이 시료는 수집하여 냉풍 건조한 분말을 사용하였으며 각각의 처리별 시료는 30g의 시료에 70%(w/v) 에탄올 300 mL을 첨가하여 120rpm의 진탕기에서 상온교반하여 12시간동안 2회 반복 추출하였다. 각 추출액은 감압여과(Whatman 2# filter paper)한 후 rotary vacuum evaporator(N-21NS, EYELA, Japan)로 완전농축 하여 동결건조 후 -20℃ 냉동고에서 보관하면서 사용하였다. As in Example 1, the samples were collected and cold air dried powder was used, and the samples for each treatment were 70% (w / v) in 30 g of the sample. After adding 300 mL of ethanol, the mixture was extracted twice for 12 hours by stirring at room temperature in a shaker at 120 rpm. Each extract was filtered under reduced pressure (Whatman 2# filter paper), then completely concentrated with a rotary vacuum evaporator (N-21NS, EYELA, Japan), freeze-dried, and stored in a -20°C freezer for use.

<실험예 1> 고구마 품종 및 부위별 에탄올 추출물의 총폴리페놀 함량<Experimental Example 1> Total polyphenol content of sweet potato varieties and ethanol extracts by region

고구마 품종(풍원미, 호감미) 및 부위별(괴근껍질, 괴근, 지상부) 70%(w/v) 에탄올 추출물의 총폴리페놀 함량은 시료 내 폴리페놀성 화합물에 의하여 Folin-Ciocalteu reagent가 환원되어 몰리브덴 청색으로 발색되는 원리를 이용하여 측정하였다. 시료 용액 0.2 mL에 증류수 1.8 mL를 첨가하고 Folin-ciocalteu's phenol reagent (Sigma Co., St. Louis, MO, USA)시약을 0.2 mL 첨가하여 3분간 반응시키고, Na2CO3 포화용액 0.4 mL와 증류수 1.4 mL를 첨가하고 혼합하여 1시간 동안 실온에서 반응시킨 후 분광광도계(Evolution 201, Thermo, Waltham, MA, USA)를 사용하여 반응액의 흡광도를 760 nm에서 측정하였다. 표준물질로 tannic acid (Sigma Co., St. Louis, MO, USA)를 사용하여 검량선을 작성하고 각 추출물의 총폴리페놀 함량을 정량하였다. The total polyphenol content of the 70% (w/v) ethanol extract by sweet potato variety (rich taste, pleasant taste) and part (tubercle skin, tuber root, aerial part) was determined by reducing the Folin-Ciocalteu reagent by polyphenolic compounds in the sample. It was measured using the principle of developing a molybdenum blue color. 1.8 mL of distilled water was added to 0.2 mL of the sample solution, and 0.2 mL of Folin-ciocalteu's phenol reagent (Sigma Co., St. Louis, MO, USA) was added and reacted for 3 minutes, followed by 0.4 mL of Na 2 CO 3 saturated solution and distilled water. After adding 1.4 mL of the mixture and reacting at room temperature for 1 hour, the absorbance of the reaction solution was measured at 760 nm using a spectrophotometer (Evolution 201, Thermo, Waltham, MA, USA). A calibration curve was prepared using tannic acid (Sigma Co., St. Louis, MO, USA) as a standard material, and the total polyphenol content of each extract was quantified.

<실험예 2> 고구마 품종 및 부위별 에탄올 추출물의 플라보노이드 함량<Experimental Example 2> Flavonoid content of sweet potato varieties and ethanol extracts by region

고구마 품종(풍원미, 호감미) 및 부위별(지상부, 괴근껍질, 괴근) 70%에탄올 추출물의 총플라보노이드 함량을 측정하였다. 시료 용액 1 mL에 증류수 4 mL 첨가하고 5% NaNO2 0.3 mL 첨가, 혼합하여 5분간 실온방치 한 다음, 10% AlCl3 0.3 mL 첨가하고 혼합하여 5분간 실온방치 하였다. 반응 후 1 M NaOH 2 mL를 첨가하여 1분간 반응시킨 후 분광광도계(Evolution 201, Thermo, Waltham, MA, USA)를 사용하여 반응액의 흡광도를 510 nm에서 측정하였다. 표준물질로 rutin (Sigma Co., St. Louis, MO, USA)을 사용하여 검량선을 작성하고 각 추출물의 총 플라보노이드 함량을 정량하였다. The total flavonoid content of the 70% ethanol extract of sweet potato varieties (rich taste, favorable taste) and parts (top part, tuber skin, tuber root) was measured. 4 mL of distilled water was added to 1 mL of the sample solution, 0.3 mL of 5% NaNO 2 was added, mixed, and left at room temperature for 5 minutes, and then 0.3 mL of 10% AlCl 3 was added, mixed, and left at room temperature for 5 minutes. After the reaction, 2 mL of 1 M NaOH was added, reacted for 1 minute, and the absorbance of the reaction solution was measured at 510 nm using a spectrophotometer (Evolution 201, Thermo, Waltham, MA, USA). A calibration curve was prepared using rutin (Sigma Co., St. Louis, MO, USA) as a standard material, and the total flavonoid content of each extract was quantified.

<실험예 3> 고구마 품종 및 부위별 에탄올 추출물의 총안토시아닌 함량<Experimental Example 3> Total anthocyanin content of sweet potato varieties and ethanol extracts by region

고구마 품종(풍원미, 호감미) 및 부위별(지상부, 괴근껍질, 괴근) 70%(w/v) 에탄올 추출물의 총안토시아닌 함량은 Ryu 등의 방법을 변형하여 측정하였다. 시료 0.1 g을 칭량하여 1% citric acid가 포함된 60% ethanol 10 mL을 넣고 12시간동안 교반하여 2회 반복 추출하였다. 추출액을 0.45 ㎛ membrane filter에 통과시킨 후 분광광도계(Evolution 201, Thermo, Waltham, MA, USA)를 사용하여 535 nm에서 흡광도를 측정하였으며, 표준물질로는 Cyanidine 3-O-Glucoside chloride(Sigma Co., St. Louis, MO, USA)를 사용하여 검량선을 작성하고 총 안토시아닌 함량을 측정하였다.The total anthocyanin content of 70% (w/v) ethanol extracts of sweet potato varieties (rich taste, favorable taste) and parts (top part, tuber skin, tuber root) was measured by modifying the method of Ryu et al. 0.1 g of the sample was weighed, 10 mL of 60% ethanol containing 1% citric acid was added, and the mixture was stirred for 12 hours and extracted twice. After passing the extract through a 0.45 ㎛ membrane filter, the absorbance was measured at 535 nm using a spectrophotometer (Evolution 201, Thermo, Waltham, MA, USA). Cyanidine 3-O-Glucoside chloride (Sigma Co. , St. Louis, MO, USA) was used to prepare a calibration curve and measure the total anthocyanin content.

<실험예 4> 고구마 품종 및 부위별 에탄올 추출물의 항산화활성 측정<Experimental Example 4> Measurement of antioxidant activity of ethanol extracts by sweet potato varieties and parts

1. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical 소거능1. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity

DPPH radical에 대한 소거능은 Okawa 등의 방법을 변형하여 측정하였다. 각 추출물 시료 0.2 mL에 0.2 mM DPPH(1,1-diphenyl-2-picryl- hydrazyl) 용액 0.8 mL을 가하여 혼합한 뒤 상온에서 30분간 반응 시킨 후 ELISA reader(FLUOstar Omega, BGM LABTECH, Germany)를 사용하여 517nm에서 흡광도를 측정하였다. DPPH radical 소거능은 시료 용액의 첨가군과 무첨가군 사이의 흡광도 차이를 백분율로 나타내었고, 모든 추출물은 3반복으로 측정하였다. 또한 추출물의 DPPH radical 소거능을 inhibition concentration 50%(IC50) 값으로 나타냈으며, 양성대조군으로 ascorbic acid(Sigma, St, Louis, MO, USA)의 IC50 값을 계산하여 고구마 품종 및 부위별 에탄올 추출물과 비교하였다.The scavenging ability for DPPH radical was measured by modifying the method of Okawa et al. 0.8 mL of 0.2 mM DPPH (1,1-diphenyl-2-picryl-hydrazyl) solution was added to 0.2 mL of each extract sample, mixed, reacted at room temperature for 30 minutes, and then ELISA reader (FLUOstar Omega, BGM LABTECH, Germany) was used. The absorbance was measured at 517 nm. The DPPH radical scavenging ability was expressed as a percentage of the difference in absorbance between the group with and without the addition of the sample solution, and all extracts were measured in triplicate. In addition, the DPPH radical scavenging ability of the extract was shown as inhibition concentration 50% (IC 50) value, and as a positive control, the IC 50 value of ascorbic acid (Sigma, St, Louis, MO, USA) was calculated to ethanol extract for each sweet potato variety and region. compared with

2. 2,2'-Azino-bis〔3-ethylbenzothiazoline-6-sulfonic acid〕(ABTS) radical 소거능2. 2,2'-Azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] (ABTS) radical scavenging activity

ABTS radical 소거능은 Pellegrin 등의 방법을 사용하여 측정하였다. 7.4 mM ABTS (2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid]) 용액과 2.6 mM potassium persulfate 를 혼합하여 실온 암소에서 15시간동안 반응시켜 radical을 형성시킨 다음 실험 직전에 ABTS 용액의 흡광도가 734 nm 에서 0.70이 되도록 에탄올로 희석하였다. 각각의 추출물 20μL에 ABTS 용액 300μL씩 가하여 혼합한 뒤 상온에서 20분간 반응시킨 후 ELISA reader(FLUOstar Omega, BGM LABTECH, Germany)를 사용하여 734nm에서 흡광도를 측정하였다. ABTS radical 소거능은 시료 용액의 첨가군과 무첨가군 사이의 흡광도 차이를 백분율로 나타내었고, 모든 추출물은 3반복으로 측정하였다. 또한 추출물의 DPPH radical 소거능을 inhibition concentration 50%(IC50) 값으로 나타냈으며, 양성대조군으로 ascorbic acid(Sigma, St, Louis, MO, USA)의 IC50 값을 계산하여 고구마 품종 및 부위별 에탄올 추출물과 비교하였다. ABTS radical scavenging ability was measured using the method of Pellegrin et al. A mixture of 7.4 mM ABTS (2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid]) solution and 2.6 mM potassium persulfate was reacted for 15 hours in the dark at room temperature to form radicals, and the ABTS solution immediately before the experiment It was diluted with ethanol so that the absorbance of was 0.70 at 734 nm. 300 μL of ABTS solution was added to 20 μL of each extract, mixed, reacted at room temperature for 20 minutes, and then absorbance was measured at 734 nm using an ELISA reader (FLUOstar Omega, BGM LABTECH, Germany). ABTS radical scavenging ability was expressed as a percentage of the difference in absorbance between the group with and without the addition of the sample solution, and all extracts were measured in triplicate. In addition, the DPPH radical scavenging ability of the extract was shown as inhibition concentration 50% (IC 50) value, and as a positive control, the IC 50 value of ascorbic acid (Sigma, St, Louis, MO, USA) was calculated to ethanol extract for each sweet potato variety and region. compared with

<실험예 5> 고구마 품종 및 부위별 에탄올, 올리고당 추출물의 생육증진 효능<Experimental Example 5> Growth promoting efficacy of ethanol and oligosaccharide extracts by sweet potato varieties and parts

1. 프로바이오틱스의 균주 및 사용 배지1. Strains of probiotics and media used

본 연구에서는 총 7개의 유산균(Lactobacillus rhamnosus KACC11953, Lactobacillus brevis ATCC8787, Lactobacillus plantarum ATCC8787, Pediococcus acidilactici KACC12307, Pediococcus pentosaceus OHF23, Enterococcus faecium KACC11953, Streptococcus thermophilus SCML300)과 1개의 효모(Saccharomyces boulardii KT000032)를 사용하였으며, 실험 전 3회 이상 계대 배양하여 활성화 시킨 후 사용하였다. 균주의 생육배지로는 MRS broth(Difco Detroir, MI, USA)배지를 사용하였으며, 배지 조성은 표1과 같다.본 연구에서는 총 7개의 유산균( Lactobacillus rhamnosus KACC11953 , Lactobacillus brevis ATCC8787, Lactobacillus plantarum ATCC8787, Pediococcus acidilactici KACC12307, Pediococcus pentosaceus OHF23, Enterococcus faecium KACC11953, Streptococcus thermophilus SCML300)과 1개의 효모( Saccharomyces boulardii KT000032 ) 를 사용하였으며, 실험 It was used after activation by subculturing three or more times. As the growth medium of the strain, MRS broth (Difco Detroir, MI, USA) medium was used, and the composition of the medium is shown in Table 1.

IngredientIngredient Amount(g/L)Amount (g/L) Proteose peptone NO. 3Proteose peptone NO. 3 1010 Beef extractBeef extract 1010 Yeast extractYeast extract 55 Dextrose Dextrose 2020 Polysorbate 80Polysorbate 80 1One Ammonium CitrateAmmonium Citrate 22 Sodium AcetateSodium Acetate 55 Magnesium SulfateMagnesium Sulfate 0.10.1 Manganese SulfateManganese Sulfate 0.050.05 Dipotassium PhosphateDipotassium Phosphate 22

2. 프로바이오틱스 생육 증진 효능2. Probiotics Growth Promoting Efficacy

프로바이오틱스 생육 증진 효능을 보기 위해 고구마 품종 및 부위별 에탄올, 올리고당 추출물을 10, 30, 50 mg/mL의 농도로 희석한 후 사용하였다. In order to see the growth enhancing effect of probiotics, ethanol and oligosaccharide extracts for each sweet potato variety and site were diluted at concentrations of 10, 30, and 50 mg/mL and then used.

12 well plate에 균주 배양액 1 mL, MRS 배지 1 mL, 각 추출물 용액 1 mL씩 넣었다. 또한 추출물 처리 실험과 같이 양성대조군으로 프락토올리고당(Sigma, St, Louis, MO, USA) 수용액(2.5, 5, 10 mg/mL)을 사용하였고, 음성대조군으로는 MRS 배지 2 mL와 균주 배양액 1 mL를 넣어 사용하였으며, blank로는 멸균 증류수(DW) 3 mL를 넣어 사용하였다. 흡광도 측정을 위해 분광 광도계(SpectraMax i3, Molecular Devices, Busan, South Korea)를 사용하여 600 nm에서의 초기 흡광도 값을 측정한 뒤 24시간 동안 37℃의 배양기에 보관하면서 3시간마다 균 증식도를 흡광도 측정하였다.1 mL of strain culture medium, 1 mL of MRS medium, and 1 mL of each extract solution were put into a 12-well plate. In addition, as in the extract treatment experiment, fructooligosaccharide (Sigma, St, Louis, MO, USA) aqueous solution (2.5, 5, 10 mg/mL) was used as a positive control group, and as a negative control group, 2 mL of MRS medium and 1 strain culture medium were used. mL was used, and 3 mL of sterile distilled water (DW) was used as a blank. For absorbance measurement, the initial absorbance value at 600 nm was measured using a spectrophotometer (SpectraMax i3, Molecular Devices, Busan, South Korea), and the bacterial growth was measured every 3 hours while stored in an incubator at 37 ° C for 24 hours. measured.

<실험예 6> 고구마 껍질 올리고당 추출물(SPPOE)의 HPLC 분석<Experimental Example 6> HPLC analysis of sweet potato peel oligosaccharide extract (SPPOE)

고구마 부위별(지상부, 괴근, 껍질) 에탄올 추출물 및 올리고당 추출물에서의 생육증진효능을 분석한 결과 고구마 껍질 올리고당 추출물(SPPOE, Sweeet Potato Peel Oligosaccharide Extract)의 효능이 가장 우수하여 SPPOE만을 이용하여 HPLC 분석 및 추후의 실험을 진행하였다.As a result of analyzing the growth promoting effect in ethanol extract and oligosaccharide extract for each part of sweet potato (top part, tuber root, peel), sweet potato peel oligosaccharide extract (SPPOE, Sweeet Potato Peel Oligosaccharide Extract) was the most effective, and HPLC analysis and Further experiments were conducted.

1. 표준품 및 시약 1. Standards and reagents

올리고당 표준품은 프락토올리고당 5종(1-kestose, 1,1-kestotetraose, 1,1,1-kestopentaose, levanbiose, levantriose), 이눌린(inulin) 1종, 자일로올리고당 3종(xylobiose, xylopentaose, xylohexaose)을 선정하여 Megazyme (Bray, Ireland)으로부터 구입하여 사용하였고, 시료에 사용한 증류수는 Samchun Pure Chemical Co.(Pyeongtaek, Korea)에서 acetonitrile(HPLC Grade)은 Fisher Scientific Co.(Fairlawn, seoul, Korea)에서 구매하여 사용하였다.Oligosaccharide standards include 5 fructooligosaccharides (1-kestose, 1,1-kestotetraose, 1,1,1-kestopentaose, levanbiose, levantriose), 1 inulin, and 3 xylo-oligosaccharides (xylobiose, xylopentaose, xylohexaose). ) was selected and purchased from Megazyme (Bray, Ireland), distilled water used for the sample was Samchun Pure Chemical Co. (Pyeongtaek, Korea), and acetonitrile (HPLC Grade) was purchased from Fisher Scientific Co. (Fairlawn, seoul, Korea). purchased and used.

2. 표준용액 및 시험용액의 제조2. Preparation of standard solution and test solution

올리고당 표준품 9종을 각각 1 mg을 정량하여 Distilled water로 50 mL 볼륨플라스크에 정용한 후 각각 0.5, 1, 2.5 mg/mL의 농도로 표준용액을 조제하였다. 시험용액은 균질화한 2품종(풍원미, 호감미)의 SPPOE 시료 0.5 g을 정밀히 측정 후 Distilled water 10 mL를 첨가하고 85℃ 온도에서 1시간 동안 초음파 추출 후 0.45 μm membrane filter(Millex, Merck Millipore Ltd., Darmstadt, Germany)로 여과하여 사용하였다. After quantifying 1 mg of each of the 9 oligosaccharide standards and dissolving them in a 50 mL volumetric flask with distilled water, standard solutions were prepared at concentrations of 0.5, 1, and 2.5 mg/mL, respectively. For the test solution, after precisely measuring 0.5 g of SPPOE samples of two types of homogenization (Pungwon-mi, Pleasant-mi), 10 mL of distilled water was added, and after ultrasonic extraction at 85 ° C for 1 hour, 0.45 μm membrane filter (Millex, Merck Millipore Ltd. ., Darmstadt, Germany) was filtered and used.

3. HPLC 기기조건3. HPLC instrument conditions

분석기기는 HPLC (Agilent 1260, Palo Alto, CA, USA)를 사용하였으며, 검출기는 RI(Refractive Index) detector(Agilent Technology, Germany)를 사용하였다. 분석용 column은 Carbohydrate(SUPELCOSIL LC-NH2, 25cm x 4.6mm)를 이용하였고, 이동상은 acetonitrile distilled water를 80:20(v:v)의 비율로 조제 하였으며, column 온도는 35℃, 시료주입량은 10 μL, 유속은 1 mL/min으로 분석하였다(표 2).HPLC (Agilent 1260, Palo Alto, CA, USA) was used as the analytical instrument, and RI (Refractive Index) detector (Agilent Technology, Germany) was used as the detector. Carbohydrate (SUPELCOSIL LC-NH2, 25cm x 4.6mm) was used as the analytical column, and the mobile phase was prepared with acetonitrile distilled water at a ratio of 80:20 (v:v), the column temperature was 35℃, and the sample injection amount was 10 μL, the flow rate was analyzed at 1 mL/min (Table 2).

ItemsItems HPLC conditionHPLC condition ColumnColumn SUPELCOSIL LC-NH2, 25cm x 4.6mmSUPELCOSIL LC-NH2, 25cm x 4.6mm Mobile phageMobile phages ACN : d-Water = 80 : 20ACN:d-Water = 80:20 DetectorDetector RIDRID Flow rateFlow rate 1mL/min1mL/min Injection volumeInjection volume 10㎕10 μl Column temp.Column temp. 35℃35℃ Run timeRun time 15min15min

<실험예 7> 풍원미 고구마 껍질 올리고당 추출물(PSPPOE)의 세포 독성 평가<Experimental Example 7> Cytotoxicity evaluation of Poongwonmi sweet potato skin oligosaccharide extract (PSPPOE)

1. 세포 배양 및 LPS 처리 방법1. Cell culture and LPS treatment method

고구마껍질 올리고당 추출물(SPPOE)과 치커리 유래 프락토올리고당(FOS)의 세포 독성 유무를 확인하기 위해 실험을 진행하였다. 실험에 사용된 마우스 대식세포 세포주인 Raw 264.7 세포는 한국 세포주 은행에서 분양 받아 사용하였다. Raw 264.7 세포의 배양은 10% Fetal Bovine Serum(FBS)와 1% penicilin-streptomycin solution(Sigma Co., St. Louis, MO, USA)을 첨가한 DMEM(Hyclone, Loganm, UT, USA) 배지를 사용하였으며, 37℃, 5% CO2 incubator에서 계대배양 하였다. Lipopolysaccharide (LPS) 1 mg을 1X PBS 1 ml에 녹여서 필터링 후 사용하였고, 각 실험에서 세포를 24시간 배양한 다음 1 ㎍/ml 농도로 LPS를 처리하여 실험을 진행하였다.An experiment was conducted to confirm the cytotoxicity of sweet potato peel oligosaccharide extract (SPPOE) and chicory-derived fructooligosaccharide (FOS). Raw 264.7 cells, a mouse macrophage cell line used in the experiment, were purchased from the Korea Cell Line Bank and used. Raw 264.7 cells were cultured in DMEM (Hyclone, Loganm, UT, USA) medium supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicilin-streptomycin solution (Sigma Co., St. Louis, MO, USA). and subcultured in a 37℃, 5% CO 2 incubator. 1 mg of Lipopolysaccharide (LPS) was dissolved in 1 ml of 1X PBS and used after filtering. In each experiment, the cells were cultured for 24 hours and then treated with LPS at a concentration of 1 μg/ml to conduct the experiment.

2. 세포독성평가(EZ-Cytox)2. Cytotoxicity evaluation (EZ-Cytox)

세포 독성은 EZ-Cytox assay kit(DAEILLAB SERVICE Co., Ltd., Seoul, Korea)를 사용하였다. 세포 배양액을 96-well plate에 1 × 105 cell/well의 농도로 100 μL씩 분주하여 37℃, 5% CO2 incubator에서 24시간 배양 후 시료를 농도 별로 조제하여 각 well에 10 μL씩 첨가하고 24시간 배양하였다. 배양한 다음 EZ-cytox reagent 10 μL를 각 well에 첨가하고 4시간 반응시킨 후 ELISA reader (FLUOstar Omega, BGM LABTECH, Ortenberg, Germany)를 사용하여 450 nm에서 흡광도를 측정하였다. For cytotoxicity, EZ-Cytox assay kit (DAEILLAB SERVICE Co., Ltd., Seoul, Korea) was used. After dispensing 100 μL of the cell culture solution to a 96-well plate at a concentration of 1 × 10 5 cell/well and incubating for 24 hours in an incubator at 37 ° C, 5% CO 2 , samples were prepared by concentration and added to each well by 10 μL. Incubated for 24 hours. After culturing, 10 μL of EZ-cytox reagent was added to each well, reacted for 4 hours, and absorbance was measured at 450 nm using an ELISA reader (FLUOstar Omega, BGM LABTECH, Ortenberg, Germany).

<실험예 8> In vivo 모델에서의 프리바이오틱스 효능 평가<Experimental Example 8> Evaluation of prebiotics efficacy in in vivo model

1. 실험동물 및 실험설계1. Experimental animals and experimental design

본 실험에서 생후 5주령의 평균체중 30 g ± 2 g인 수컷 ICR mouse를 (주)오리엔트바이오 (Sung-nam, Gyeonggi-do, Korea)에서 구입하였으며, 강원대학교 BT특성화학부(대학)의 동물 사육실에서 5일의 순화 기간을 거친 후 21일 동안 실험을 진행하였고, 동물 사육실 실험조건은 온도 23 ± 1 ℃), 습도 60 ± 10 %로 유지 시켰으며, 조명은 오전 7시에 자동 점등하고 오후 7시에 자동 소등하여 12시간 간격으로 조명을 조절하였다. 사료는 (주)삼양유지사료의 마우스용 배합사료 (조단백질 22.1%, 조지방 3.5%, 조섬유 5.0%, 회분 8.0%, 칼슘 0.6%, 인 0.4%)를 사용하였고, 사료와 물을 제한 없이 공급하였다. 본 실험은 강원대학교 동물윤리위원회의 승인(KW-201113-3)을 받아 진행되었고, 실험동물은 군당 10마리씩 4그룹으로 구분하였다. 대조군인 G1 = Control(PBS), G2 = PBS + Lactic acid bacteria, 실험군인 G3 = PBS + LAB + SPPOE, G4 = PBS + LAB + Kestose으로 분류하였고, 도5와 같이 실험설계를 하였다. 식이조성은 유산균(P. pentosaceus OHF23) 의 균수를 1×108 CFU/300 μL로 제조하여 G2, G3, G4 그룹에 7일간 경구투여 하였으며, 그 후 G3, G4 그룹은 14일간 각각 SPPOE와 kestose(GF2)를 경구투여 하였다.In this experiment, 5-week-old male ICR mice with an average weight of 30 g ± 2 g were purchased from Orient Bio Co., Ltd. (Sung-nam, Gyeonggi-do, Korea). After a 5-day acclimatization period, the experiment was conducted for 21 days, and the experimental conditions in the animal breeding room were maintained at a temperature of 23 ± 1 ℃) and humidity of 60 ± 10%, and the lighting was automatically turned on at 7 am and turned on at 7 pm. The lights were automatically turned off at the time of day and the lighting was adjusted at 12-hour intervals. For the feed, a compound feed for mice (crude protein 22.1%, crude fat 3.5%, crude fiber 5.0%, ash 8.0%, calcium 0.6%, phosphorus 0.4%) of Samyang Oil Feed Co., Ltd. was used, and feed and water were supplied without restriction. . This experiment was conducted with the approval of the Animal Ethics Committee of Kangwon National University (KW-201113-3), and the experimental animals were divided into 4 groups of 10 animals per group. The control group, G1 = Control (PBS), G2 = PBS + Lactic acid bacteria, the experimental group, G3 = PBS + LAB + SPPOE, and G4 = PBS + LAB + Kestose, were designed as shown in FIG. 5. As for the composition of the diet, the number of lactic acid bacteria ( P. pentosaceus OHF23) was prepared at 1×10 8 CFU/300 μL and orally administered to the G2, G3, and G4 groups for 7 days. After that, the G3 and G4 groups were treated with SPPOE and kestose for 14 days, respectively. (GF 2 ) was orally administered.

GroupGroup Number of miceNumber of mice PBS(μL/mice)PBS (μL/mice) Bacterial (P.pentosaceus OHF 23 strain) Supplementation
(Log CFU/mL)
Bacterial ( P.pentosaceus OHF 23 strain) Supplementation
(Log CFU/mL)
Treatment
(mg/g)
Treatment
(mg/g)
G1G1 1010 300300 -- -- G2G2 1010 300300 1 × 108 1 × 10 8 -- G3G3 1010 300300 1 × 108 1 × 10 8 5050 G4G4 1010 300300 1 × 108 1 × 10 8 5050

G1 : Negative Control, G2 : Positive control(P.pentosaceus OHF 23), G3 : SPPOE, G4 : Kestose(GF2) G1: Negative Control, G2: Positive Control ( P.pentosaceus OHF 23), G3: SPPOE, G4: Kestose (GF 2)

2. 분변 수집 및 DNA 추출2. Fecal collection and DNA extraction

마우스의 장내 미생물 균총 변화를 확인하기 위하여 21일간 사육한 마우스를 실험 종료일로부터 12시간을 절식 후 ethyl ether 마취하였다. 그 후 개복하여 맹장 분리 후 분변을 채취하여 -80℃에 보관 후 분석하였다. 분변 DNA 추출은 AllPrep® PowerFecal®DNA/RNA Kit (Qiagen, Valencia, CA, USA)를 이용하여 추출하였다. 분변 시료 200 mg 을 kit에서 제공하는 lysis tube에 담은 후 1 M DDT(dithiothreitol) 용액과 kit에서 제공되는 PM1 용액 650 μL를 첨가하여 볼텍싱 후 18,000 × g 로 1분 간 원심분리 하였다. 그리고 상층액은 새로운 1.5 ml 튜브에 옮겨서 IRS 용액 150 μL 첨가하여 볼텍싱 한 후 4℃에서 냉장고에서 5분간 보관한 다음, 13,000 × g에서 1분간 실온에서 원심분리 하였다. 그 후 2 mL tube에 AllPrep DNA MinElute Spin column을 넣고, 상층액 300 μL과 C4 용액 400 μL 첨가한 다음 실온에서 13,000 × g에서 30초간 실온에서 원심분리 하였다. 새로운 2mL tube에 AllPrep DNA MinElute Spin column을 옮긴 후 AW1 buffer 500 μl 를 넣은 다음 1분 동안 3,000 × g에서 원심분리를 하여 빠져나온 액상을 제거하고, AW2 buffer 500 μl를 첨가하여 2분 동안 18,000 × g에서 원심분리를 하였다. 빠져나온 액상은 제거하고 1분 동안 다시 원심분리 하여 column내의 액상을 모두 제거해 주었다. 새로운 1.5 ml tube에 AllPrep DNA MinElute Spin column를 아래에 끼운 상태에서 column membrane에 바로 EB buffer 300 μl를 첨가하였다. 이후 1분 동안 실온에 방치 후 8,000 × g에서 1분 동안 원심분리하여 DNA를 추출하고 NanoDrop 2000 UV-Vis Spectorophotometer (Thermo Fisher Scientific, Massachusetts, USA)를 사용하여 최종 농도를 설정하였다. 추출된 DNA는 정량분석을 위해 Quantification Real-Time PCR의 template DNA로 활용하였다.In order to confirm changes in the intestinal microbiota of mice, mice reared for 21 days were fasted for 12 hours from the end of the experiment, and then anesthetized with ethyl ether. Thereafter, feces were collected by laparotomy and the cecum was separated, stored at -80 ° C, and then analyzed. Fecal DNA was extracted using the AllPrep® PowerFecal® DNA/RNA Kit (Qiagen, Valencia, CA, USA). After putting 200 mg of fecal sample in a lysis tube provided by the kit, 1 M DDT (dithiothreitol) solution and 650 μL of PM1 solution provided by the kit were added, vortexed, and centrifuged at 18,000 × g for 1 minute. Then, the supernatant was transferred to a new 1.5 ml tube, vortexed by adding 150 μL of IRS solution, stored in a refrigerator at 4° C. for 5 minutes, and then centrifuged at 13,000 × g for 1 minute at room temperature. After that, AllPrep DNA MinElute Spin column was placed in a 2 mL tube, 300 μL of supernatant and 400 μL of C4 solution were added, and centrifugation was performed at room temperature at 13,000 × g for 30 seconds. After transferring the AllPrep DNA MinElute Spin column to a new 2mL tube, add 500 μl of AW1 buffer, centrifuge at 3,000 × g for 1 minute to remove the liquid phase, add 500 μl of AW2 buffer, and spin at 18,000 × g for 2 minutes. was centrifuged. The liquid phase that escaped was removed and centrifuged again for 1 minute to remove all the liquid phase in the column. 300 μl of EB buffer was added directly to the column membrane while the AllPrep DNA MinElute Spin column was inserted into a new 1.5 ml tube. After leaving at room temperature for 1 minute, DNA was extracted by centrifugation at 8,000 × g for 1 minute, and the final concentration was set using a NanoDrop 2000 UV-Vis Spectorophotometer (Thermo Fisher Scientific, Massachusetts, USA). The extracted DNA was used as template DNA for Quantification Real-Time PCR for quantitative analysis.

3. qPCR을 이용한 P. pentosaceus의 정량 분석3. Quantitative analysis of P. pentosaceus using qPCR

마우스의 대조군과 실험군간의 P. pentosaceus OHF 23의 증가량 차이의 비교분석하였다. 우선 Standard curve를 확보하기 위한 DNA는 P. pentosaceus OHF 23을 MRS 선택배지에 배양 후 추출하여 얻었다. Standard curve는 P. pentosaceus OHF 23의 16s rRNA gene을 이용하여 10 ng/μL에서 1 ng/μL로 순차적으로 10배 희석하여 사용하였다(도 6). qPCR 분석은 ABI StepOne™ Real-time PCR system (Applied Biosystems)로 분석하였다. PCR은 95℃(10분), 95℃(15초), 50℃(2분), 60℃(1분)조건으로 45 cycle 동안 반응시켰고, 반응액은 10 μL MeltDoctor™ HRM master mix, 7 μL의 멸균된 3차증류수, forward primer 0.5 μL, reverse primer 0.5 μL, 2 ul의 template DNA (박테리아 genomic DNA 또는 마우스 분변 DNA)로 혼합하여 total volume 20 μL가 되도록 하였다. 이와 같은 방법으로 분변에서 추출한 genomic DNA를 이용하여 real time PCR을 수행하여 각각의 대조군과 실험군에서의 P. pentosaceus의 양을 정량분석 하였다. 사용한 프라이머는 표 4와 같다. Differences in the increase in P. pentosaceus OHF 23 between the control group and the experimental group of mice were compared and analyzed. First of all, the DNA to secure the standard curve is MRS P. pentosaceus OHF 23 It was obtained by extraction after culturing in a selective medium. The standard curve was used by sequentially diluting 10-fold from 10 ng/μL to 1 ng/μL using the 16s rRNA gene of P. pentosaceus OHF 23 (FIG. 6). qPCR analysis was performed with ABI StepOne™ Real-time PCR system (Applied Biosystems). PCR was reacted for 45 cycles under conditions of 95℃ (10 minutes), 95℃ (15 seconds), 50℃ (2 minutes), and 60℃ (1 minute), and the reaction solution was 10 μL MeltDoctor™ HRM master mix, 7 μL of sterilized tertiary distilled water, 0.5 μL of forward primer, 0.5 μL of reverse primer, and 2 ul of template DNA (bacterial genomic DNA or mouse fecal DNA) were mixed to make a total volume of 20 μL. In this way, real-time PCR was performed using genomic DNA extracted from feces, and the amount of P. pentosaceus in each control and experimental group was quantitatively analyzed. The primers used are shown in Table 4.

Target GeneTarget Gene PrimerPrimer UniversalUniversal Foward Forward 5’ AGAGTTTGATCMTGGCTCAG 3’(서열번호1)5' AGATTTGATCMTGGCTCAG 3' (SEQ ID NO: 1) ReverseReverse 5’ GGTTACCTTGTTACGACT 3’(서열번호2)5' GGTTACCTTGTTACGACT 3' (SEQ ID NO: 2) Novel Pediocin L50Novel Pediocin L50 Foward Forward 5’ GGAGCAATCGCAAAATTAG 3’(서열번호3)5' GGAGCAATCGCAAAATTAG 3' (SEQ ID NO: 3) ReverseReverse 5’ ATTGCCCATCCTTCTCCAAT 3’(서열번호4)5' ATTGCCCATCCTTCTCCAAT 3' (SEQ ID NO: 4)

4. 전자현미경 분석4. Electron Microscopy Analysis

SPPOE 및 kestose를 섭취한 마우스의 신장, 간, 비장, 대장 조직의 염증 유무를 확인하기 위해 투과전자현미경(transmission electon microscopy: TEM)으로 관찰 하였다. 마우스를 희생하여 적출한 신장, 간, 비장, 대장의 조직을 각각 2% glutaraldehyde, 2% paraformaldehyde를 혼합한 0.1 M carcodylate buffer로 고정시켰다. 0.1 M carcodylate buffer로 3회 세척한 후, 조직을 에탄올 50, 60, 70, 80, 90% 농도 상승 순으로 20분씩 탈수하고, 100%의 농도에서는 2회를 탈수하였다. 탈수한 조직은 propylene oxide (Acros, USA)에 10분씩 2회 치환하였다. 그 후 조직에 eponate 812를 농도 점진적으로 조직에 침투 시킨 후 새로운 eponate 812로 60℃ 오븐에서 2일 간 중합반응시켜 포매하였다. 제작된 블록은 Ultra microtome (Ultracut UCT, Leica)을 사용하여 시료를 절단하고 uranyl acetate와 lead citrate을 이용하여 염색한 후, 강원대학교 기초과학 연구센터의 TEM(JEM100F, JEOL, Japan)을 이용하여 분석을 하였다.The kidney, liver, spleen, and colon tissues of the mice ingested SPPOE and kestose were observed by transmission electron microscopy (TEM) to confirm the presence or absence of inflammation. The tissues of kidney, liver, spleen, and colon excised from mice were fixed with 0.1 M carcodylate buffer containing 2% glutaraldehyde and 2% paraformaldehyde, respectively. After washing three times with 0.1 M carcodylate buffer, the tissue was dehydrated for 20 minutes in increasing concentrations of ethanol 50, 60, 70, 80, and 90%, and then dehydrated twice at 100% concentration. Dehydrated tissues were substituted twice for 10 minutes each in propylene oxide (Acros, USA). Thereafter, eponate 812 was gradually infiltrated into the tissue, followed by polymerization and embedding with new eponate 812 in an oven at 60°C for 2 days. The fabricated block is analyzed using TEM (JEM100F, JEOL, Japan) of Kangwon National University Basic Science Research Center after cutting the sample using an Ultra microtome (Ultracut UCT, Leica), staining it using uranyl acetate and lead citrate did

5. 통계 분석 5. Statistical analysis

통계분석은 SPSS Statistics(ver. 12.0, SPSS Inc., Chicago, IL, USA)을 이용하여 분산분석(ANOVA)을 실시하였으며, 유의적 차이 검증을 위해 Scheffe’s multiple range test(p<0.05)를 이용하여 분석하였다. 모든 시험분석은 평균과 표준편차를 산출하기 위해 3회 이상 반복 실험 하였다. For statistical analysis, analysis of variance (ANOVA) was performed using SPSS Statistics (ver. 12.0, SPSS Inc., Chicago, IL, USA), and Scheffe's multiple range test ( p <0.05) was used to verify significant differences. analyzed. All test analyzes were repeated three times or more to calculate the mean and standard deviation.

<실험 결과><Experiment result>

1. 고구마 품종 및 부위별 추출물 제조1. Manufacture of extracts by sweet potato varieties and parts

건조분말 시료를 이용하여 70%에탄올 추출물과 올리고당 추출물을 제조하였으며, 이때 각 추출물의 수율은 표 5와 같다. 에탄올 추출물의 수율을 품종 및 부위별로 살펴보면 풍원미는 지상부의 에탄올 추출물 수율이 28%로 가장 높았으며, 괴근은 27.4%, 껍질은 25.9%로 가장 낮았다. 호감미 에탄올 추출물은 부위별로 수율의 차이는 크지 않았으며, 괴근의 수율이 30.6% 가장 높았다. 올리고당 추출물의 수율을 조사한 결과 풍원미, 호감미 모두 괴근에서 수율이 28.4 - 44.9% 수준으로 다른 부위보다 높게 나타났으며, 특히 호감미 괴근은 44.9%로 높은 수율을 보였다. 지상부는 풍원미 22.3%, 호감미 14.9%로 품종별 차이가 있는 것으로 나타났으며, 껍질은 22.3-23.5% 수준을 나타내 두 품종이 비슷한 수율을 보였다. A 70% ethanol extract and an oligosaccharide extract were prepared using the dry powder sample, and the yields of each extract are shown in Table 5. Looking at the yield of ethanol extract by variety and part, Poongwonmi had the highest ethanol extract yield of 28% in the above-ground part, tuber root 27.4%, and rind the lowest with 25.9%. Hogammi ethanol extract did not have a large difference in yield by part, and the yield of tuber root was the highest at 30.6%. As a result of examining the yield of oligosaccharide extracts, the yields of both Pungwonmi and Hogammi tubers were 28.4 - 44.9%, higher than other parts, and particularly, Hogammi tubers showed a high yield of 44.9%. The above-ground part showed 22.3% of rich rice and 14.9% of favorable taste, showing differences among varieties, and the peel showed a similar yield of 22.3-23.5%.

VarietyVariety PartPart Yield(%)Yield (%) 70% EtOH70% EtOH OligosaccharideOligosaccharides PungwonmiPungwonmi PeelPeel 25.925.9 23.123.1 TuberTuber 27.427.4 28.428.4 Aerial partAerial part 28.028.0 22.322.3 HogammiHogammi PeelPeel 29.929.9 23.523.5 TuberTuber 30.630.6 44.944.9 Aerial partAerial part 29.229.2 14.914.9

2. 고구마 추출물의 기능성 물질 함량2. Functional substance content of sweet potato extract

본 연구에서는 고구마 품종 및 부위별로 에탄올 추출물을 제조하여 비탄수화물 성분의 프리바이오틱스 효능과 대표적인 난소화성 당류인 올리고당의 프리바이오틱스 효능을 나뉘어 연구를 진행하였다. In this study, ethanol extracts were prepared for each sweet potato variety and part, and the prebiotics efficacy of non-carbohydrate components and the prebiotics efficacy of oligosaccharides, which are representative indigestible saccharides, were divided into studies.

껍질을 이용한 핵심 이유는 껍질을 제외한 다른 부위에서는 프로바이오틱스의 생육을 촉진하는 프리바이오틱스 효능이 없었기 때문이다. 고구마껍질 올리고당추출물은 프리바이오틱스 기능이 뚜렷하지만 일부 폴리페놀 성분이 프리바이오틱스 기능을 나타낸다는 보고가 있어 본 연구에서도 에탄올추출물과 올리고당 추출물을 동시에 분리해서 프리바이오틱스 효능을 분석하였다.The key reason for using the peel is that there was no prebiotics effect that promotes the growth of probiotics in other parts except the peel. Sweet potato peel oligosaccharide extract has a clear prebiotics function, but it has been reported that some polyphenols exhibit a prebiotics function, so in this study, the ethanol extract and the oligosaccharide extract were simultaneously separated and the prebiotics efficacy was analyzed.

3. 고구마 품종 및 부위별 에탄올 추출물의 총 폴리페놀 함량3. Total polyphenol content of ethanol extracts by sweet potato varieties and parts

폴리페놀은 과일과 채소 등의 항산화 활성에 주된 영향을 미치는 물질로써, 고구마 품종 및 부위별 에탄올 추출물의 총 폴리페놀 함량을 측정한 결과는 도 7과 같다. 품종 간의 총 폴리페놀 함량의 유의적 차이는 없었으나, 부위별로는 상당한 차이가 있었다. 지상부 에탄올 추출물의 총 폴리페놀 함량은 41.87 - 42.13 mg TAE/g 수준으로 세 부위 중 가장 함량이 높은 것으로 나타났으며, 이는 건풍미 등 총 10 품종의 고구마 잎과 줄기의 총 폴리페놀 함량 평균이 46.47 mg GAE/g으로 보고한 Li(고구마 잎과 잎자루의 이화학적 특성 및 유용성분 추출조건 최적화, 충북대학교 대학원 석사학위논문, 2013년8월, Li Meishan)의 결과와 유사하게 나타났다. 괴근과 껍질의 에탄올 추출물의 총 폴리페놀 함량은 각각 28.55 - 26.55 mg TAE/g, 11.67 - 12.56 mg TAE/g 나타나, 지상부 에탄올 추출물 보다 낮은 수준의 함량을 보였다. Truong 등은 고구마 3품종에 대하여 뿌리와 잎의 페놀화합물의 함량을 측정한 결과 껍질을 포함 고구마 괴근은 60.4~90.3 mg chlorogenic acid/100 g, 껍질 제거 고구마 괴근은 57.1~78.6 mg chlorogenic acid/100 g이었던 반면, 고구마 잎의 페놀화합물 함량은 1,223.6~1,298.1 mg chlorogenic acid/100 g으로 나타났다고 하였다. 또한 Ishida 등은 일본에서 재배되는 2종의 고구마의 괴근, 잎, 줄기의 폴리페놀 함량을 측정한 결과 각각 154 - 180 mg/100 g, 90 - 356 mg/100 g, 45 - 126 mg/100 g이었다고 보고하였다. 이와 같은 연구결과는 일반적으로 고구마 잎은 고구마 뿌리나 다른 잎 채소들과 비교해서 폴리페놀 함량이 높은 것으로 알려져 있다고 보고한 Islam 등의 연구와 일치하였다. Polyphenol is a substance that has a major effect on the antioxidant activity of fruits and vegetables, and the results of measuring the total polyphenol content of the ethanol extract for each sweet potato variety and part are shown in FIG. 7. There was no significant difference in total polyphenol content between varieties, but there were significant differences by part. The total polyphenol content of the ethanol extract of aboveground parts was 41.87 - 42.13 mg TAE/g, which was the highest among the three parts, and the average total polyphenol content of sweet potato leaves and stems of 10 varieties including dry flavor was 46.47 It was similar to the results of Li (physicochemical properties of sweet potato leaves and petioles and optimization of useful component extraction conditions, Chungbuk National University master's thesis, August 2013, Li Meishan) reported as mg GAE/g. The total polyphenol contents of the ethanol extracts of tubers and skins were 28.55 - 26.55 mg TAE/g and 11.67 - 12.56 mg TAE/g, respectively, which were lower than those of the above-ground ethanol extracts. Truong et al. measured the content of phenolic compounds in the roots and leaves of three varieties of sweet potato, and as a result, the sweet potato tuber including the peel was 60.4∼90.3 mg chlorogenic acid/100 g, and the peeled sweet potato tuber was 57.1∼78.6 mg chlorogenic acid/100 g. On the other hand, the content of phenolic compounds in sweet potato leaves was 1,223.6∼1,298.1 mg chlorogenic acid/100 g. In addition, Ishida et al. measured the polyphenol content of the tuber, leaf, and stem of two kinds of sweet potatoes cultivated in Japan. reported that it was This research result coincided with the study of Islam et al., who reported that sweet potato leaves are generally known to have a higher polyphenol content than sweet potato roots or other leafy vegetables.

4. 고구마 품종 및 부위별 에탄올 추출물의 총 플라보노이드 함량4. Total flavonoid content of ethanol extracts by sweet potato varieties and parts

플라보노이드와 폴리페놀은 일반적으로 항산화활성을 나타내는 물질로 잘 알려져 있다. 고구마 품종 및 부위별 에탄올 추출물의 총 플라보노이드 함량을 측정한 결과는 도 8과 같다. 부위별로는 지상부(119.24 - 148.47 mg RUE/g), 껍질(71.14 - 83.33 mg RUE/g), 괴근(2.03 - 3.05 mg RUE/g) 추출물 순으로 함량이 높은 것으로 나타났다. 품종 간 차이는 괴근 추출물에서는 유의적인 차이가 없었으나, 지상부와 껍질 추출물은 풍원미가 호감미 보다 플라보노이드 함량이 높은 것으로 나타났다. Li의 연구에서 보고한 고구마 10품종의 잎, 잎자루 추출물에서 총 플라보노이드 함량 평균이 33.63 mg CE/g으로 보고하여 본 연구와 추출물의 총 플라보노이드 함량과 많은 차이를 보이는데, 이는 품종 및 재배 환경 등의 차이와 추출물 제조 과정의 차이, 표준시약의 차이 등에 의한 것으로 사료된다.Flavonoids and polyphenols are generally well known as substances exhibiting antioxidant activity. The results of measuring the total flavonoid content of the ethanol extract for each sweet potato variety and region are shown in FIG. 8. By part, the highest content was found in the order of aerial part (119.24 - 148.47 mg RUE/g), skin (71.14 - 83.33 mg RUE/g), and tuber root (2.03 - 3.05 mg RUE/g). There was no significant difference between varieties in the tuber root extract, but the above-ground parts and peel extracts showed that the flavonoid content was higher in rich taste than in favorable taste. The average total flavonoid content in the leaf and petiole extracts of 10 varieties of sweet potato reported in Li's study was reported to be 33.63 mg CE/g, showing a large difference from the total flavonoid content of this study and the extract, which is due to differences in varieties and cultivation environments. It is thought to be due to the difference in the manufacturing process of the extract and the difference in standard reagents.

5. 고구마 품종 및 부위별 에탄올 추출물의 총 안토시아닌 함량5. Total Anthocyanin Content of Ethanol Extracts by Varieties and Parts of Sweet Potatoes

안토시아닌은 플라보노이드계 화합물의 한 부류로서 채소 및 과일에 주로 존재하는 수용성 천연색소이고 본 실험에서는 항산화제로 사용되는 안토시아닌의 함량을 분석하였다. 품종별 안토시아닌의 함량은 괴근 추출물(0.59 - 0.73 mg C3G/g)은 차이가 없었으며, 지상부와 껍질 추출물은 품종 간 차이가 있는 것으로 나타났다. 풍원미는 껍질(16.26 mg C3G/g) > 지상부(12.38 mg C3G/g) > 괴근(0.59 mg C3G/g) 순으로 안토시아닌 함량이 높게 나타났으며, 호감미는 지상부(21.02 mg C3G/g) > 껍질(10.40 mg C3G/g)> 괴근(0.73 mg C3G/g) 순으로 나타났다(도 9). 두 품종 모두 괴근 추출물의 안토시아닌 함량이 가장 낮은 것으로 나타났다. Park의 자색고구마 품종별 안토시아닌의 함량을 분석한 결과, 신자미 등 5품종의 자색고구마 괴근의 안토시아닌의 함량을 3.8-4.7 mg/g 수준으로 보고한 결과와 상이하였다. 이는 본 실험의 괴근 추출물과의 안토시아닌 함량차이가 약 10배정도 차이가 났으나, 본 실험에 사용된 고구마 품종은 자색 계열이 아닌 주황색 과육의 색을 띄는 품종이므로 안토시아닌의 함량이 높지 않은 것으로 사료된다.Anthocyanin is a water-soluble natural pigment mainly present in vegetables and fruits as a class of flavonoid compounds. In this experiment, the content of anthocyanin used as an antioxidant was analyzed. There was no difference in the content of anthocyanin by cultivar in the tuber root extract (0.59 - 0.73 mg C3G/g), but there was a difference between the cultivars in the above-ground part and peel extract. Anthocyanin content was high in the order of rich taste peel (16.26 mg C3G/g) > aerial part (12.38 mg C3G/g) > tuber root (0.59 mg C3G/g), and favorable aerial part (21.02 mg C3G/g) > peel (10.40 mg C3G/g) > root (0.73 mg C3G/g) in the order (FIG. 9). Both varieties showed the lowest anthocyanin content in tuber extract. As a result of analyzing the content of anthocyanin by cultivar of Park's purple sweet potato, the anthocyanin content of tubers of five varieties of purple sweet potato including Shinmi was 3.8-4.7 mg/g, which was different from the reported result. Although the difference in anthocyanin content from the tuber root extract of this experiment was about 10 times, it is considered that the content of anthocyanin was not high because the sweet potato variety used in this experiment was a variety with orange flesh color rather than purple.

6. 고구마 추출물의 기능적 특성6. Functional properties of sweet potato extract

1) 고구마 품종 및 부위별 에탄올 추출물의 항산화활성 측정1) Measurement of antioxidant activity of ethanol extracts by sweet potato varieties and parts

고구마 품종 및 부위별 에탄올 추출물의 DPPH 및 ABTS radical 소거능은 표 6과 같다. 고구마 품종 및 부위별 시료의 DPPH 및 ABTS radical 효과에 큰 차이가 있어 시료의 처리농도 범위를 다르게 처리하여 radical 소거능이 50% 저해되는 농도인 IC50을 구하였다. 양성대조시약으로 Ascorbic acid를 사용하였으며, 각 추출물과 비교하여 IC50 값으로 나타냈다.(표 6) DPPH radical 소거능은 풍원미, 호감미 지상부 추출물의 IC50 값이 0.62, 0.90 mg/mL로 각각 나타나 부위별 추출물 중 가장 항산화능이 높은 것으로 나타났으며, 품종 간의 차이는 보이지 않았다. 이는 고구마 부위별 항산화 활성 측정 결과 잎과 끝 순에서 항산화 활성이 가장 좋았다는 Lee 등의 연구결과와 비슷한 경향을 나타내었다. 식물에서 잎은 에너지를 생산하며, 그 활성이 매우 높은 중요한 기관으로 여러 가지 유효성분들이 존재하며, 각종물질들이 생합성 되는 장소이다. 이 때문에 지상부에 포함되어 있는 각종 항산화성을 지니는 기능성 물질 중 폴리페놀 물질의 함량이 높아, DPPH radical 소거능이 높은 물질이 많이 함유되어 있는 것으로 사료된다. 그 다음으로는 껍질(1.34 - 1.37 mg/mL), 괴근(6.19 - 6.26 mg/mL) 추출물 순으로 DPPH radical 소거능이 높게 나타났다. 재배 조건에 따른 고구마 메탄올 추출물의 항산화 활성 중 과피 추출물 (958.81 mg TE/100g)이 과육 추출물(132.01 - 189.93 mg TE/100g)보다 DPPH- radical 소거능이 높은 활성을 보였다는 결과와 비슷한 경향을 띄었다. ABTS radical 소거능은 또한 DPPH radical 소거능과 비슷한 경향을 보였으며, 지상부 추출물이 6.63 - 7.15 mg/mL으로 수준으로 부위 중 가장 활성이 높았으나, 품종 간의 차이는 나타나지 않았다. 그 다음으로 껍질(10.91-10.97 mg/mL), 괴근(16.08-22.84 mg/mL) 순으로 ABTS radical 소거능이 높게 나타났다. 총폴리페놀과 총 플라보노이드의 함량이 많았던 지상부 부위에서 항산화 활성도 높은 것을 알 수 있었다. 또한 같은 시료를 대상으로 2종류의 radical 소거능을 측정한 결과, ABTS radical 소거능 보다 DPPH radical 소거능이 더 우수하게 나타났다.Table 6 shows the DPPH and ABTS radical scavenging abilities of the ethanol extracts for each sweet potato variety and region. Since there was a big difference in the DPPH and ABTS radical effects of the samples by variety and part of sweet potato, the treatment concentration range of the samples was treated differently to obtain the IC 50 , which is the concentration at which the radical scavenging activity is inhibited by 50%. Ascorbic acid was used as a positive control reagent, and the IC 50 value was shown in comparison with each extract. (Table 6) As for the DPPH radical scavenging ability, the IC 50 values of the extracts from the aerial parts of Pungwonmi and Hogammi were 0.62 and 0.90 mg/mL, respectively. It was found to have the highest antioxidant activity among the extracts by part, and no difference was seen between the varieties. As a result of measuring antioxidant activity by part of sweet potato, this showed a similar trend to the results of a study by Lee et al. In plants, the leaf produces energy, is an important organ with a very high activity, contains various active ingredients, and is a place where various substances are biosynthesized. For this reason, among the various antioxidant functional substances included in the aerial part, the content of polyphenol substances is high, and it is considered that a lot of substances with high DPPH radical scavenging activity are contained. Next, DPPH radical scavenging activity was shown to be high in the order of peel (1.34 - 1.37 mg/mL) and tuber root (6.19 - 6.26 mg/mL) extract. Among the antioxidant activities of the sweet potato methanol extract according to the cultivation conditions, the peel extract (958.81 mg TE/100g) showed a higher DPPH-radical scavenging activity than the fruit pulp extract (132.01 - 189.93 mg TE/100g), which showed a similar trend. ABTS radical scavenging activity also showed a similar tendency to DPPH radical scavenging activity, and the aerial part extract had the highest activity at the level of 6.63 - 7.15 mg/mL, but there was no difference between varieties. Next, ABTS radical scavenging activity was high in the order of skin (10.91-10.97 mg/mL) and tuberous root (16.08-22.84 mg/mL). It was found that the antioxidant activity was also high in the aerial part, which had a high content of total polyphenols and total flavonoids. In addition, as a result of measuring the two types of radical scavenging activity for the same sample, the DPPH radical scavenging activity was better than the ABTS radical scavenging activity.

Variety Variety PartPart IC50 1) IC 50 1) DPPH radical scavening(mg/mL)DPPH radical scavenging (mg/mL) ABTS radical scavening(mg/mL)ABTS radical scavenging (mg/mL) PungwonmiPungwonmi PeelPeel 1.371.37 10.9710.97 TuberTuber 6.266.26 22.8422.84 Aerial partAerial part 0.620.62 6.636.63 HogammiHogammi PeelPeel 1.341.34 10.9410.94 TuberTuber 6.196.19 16.0816.08 Aerial partAerial part 0.900.90 7.157.15 Ascorbic acid2) Ascorbic acid 2) 0.0340.034 0.350.35

1) Concentration of ethanol extract of samples reducing DPPH radical by 50% 1) Concentration of ethanol extract of samples reducing DPPH radical by 50%

2) Positive control 2) Positive control

2) 고구마 품종 및 부위별 에탄올, 올리고당 추출물의 생육 증진 효능2) Growth enhancement efficacy of ethanol and oligosaccharide extracts by sweet potato varieties and parts

고구마 품종 및 부위별 에탄올, 올리고당 추출물의 생육 증진 효능은 표 7, 8 과 같다. 8종의 프로바이오틱스 균주에 대한 품종 및 부위별 에탄올 추출물의 생육 증진 효능을 분석한 결과 에탄올 추출물은 품종 및 부위 모두 상관없이 8종의 프로바이오틱스 균주에서 생육 증진 효능이 나타나지 않았다(표 9). 또한 고구마 품종 및 부위별 올리고당 추출물은 프로바이오틱스 균주에 대해 품종 및 부위에 따라 각각 생육 활성이 다르게 나타났다(표 10). 두 품종의 괴근, 지상부 올리고당 추출물에서 프로바이오틱스 생육 증진 효능은 나타나지 않았으나, 껍질 올리고당 추출물에서 풍원미는 실험에 사용한 8종 모두의 균주에서 생육 증진 효능이 있는 것으로 나타났으며, 호감미는 2종의 균주(S. thermophillus SCML300, S. boulardii KT000032)에서 생육증진 효능이 나타났다. 실험에 사용한 8종의 균주 중 Latic Acid Bacteria(LAB)에서 S. thermophillus SCML300 와 Yeast 인 S. boulardii KT000032 는 두 품종의 껍질 올리고당 추출물에서 모두 생육 증진 효능을 보였다. S. thermophillus는 주로 우유, 요구르트 등을 제조하는데 사용되어 온 균주로 메치니코프 박사가 불가리아 주민들의 식품인 요거트에 들어있는 균을 장수의 원인으로 제안하며 건강에 유익한 균으로 대두 되었으며, S. boulardii 는 Yeast 중 가장 연구가 많이 된 프로바이오틱스 균주로 다양한 위장 질병 및 설사 진정, 염증성 장질환, 궤양성 대장염 치료와 예방에서 효능을 보여주었다는 보고가 있다. 두 품종의 세 가지 부위 중 프로바이오틱스에 대해 가장 생육 증진 효능이 높은 고구마 껍질 올리고당 추출물(SPPOE)에 대한 8종의 프로바이오틱스 균주 생육 곡선은 도 9,10과 같다. SPPOE를 10, 30, 50 mg/ml 농도로 처리한 시험처리군, 10 mg/ml 농도로 제조한 kestose(GF2)는 양성대조군, 무첨가군인 Control로 나누어 생육 증진 효능을 비교하였다. 풍원미 고구마 껍질 올리고당 추출물(PSPPOE)은 8종의 모든 균주에서 Control 대비하여 높은 흡광도 값을 나타내 높은 성장률을 나타냈다(도 10). L. rhanmnosus KACC11953은 시료와 대조군들 모두 9시간동안 생육이 급격하게 촉진 되었고, PSPPOE는 kestose(GF2)와 control에 비해 농도 의존적으로 높은 흡광도 값을 나타내었다. L. brevis ATCC 8787은 PSPPOE 50 mg/ml의 농도에서 15시간 째 가장 높은 흡광도 값을 나타내 대조군(양성, 음성)들과의 확연한 차이를 나타냈고, 그 외 농도(10, 30 mg/ml)에서는 대조군들과 비슷한 성장을 보였다. L. plantarum JDFM 44는 배양 초기부터 대조군 보다 높은 증가를 나타냈으며 농도 의존적으로 생육이 증진 되는 것으로 나타났다. P. acidilactici KACC12307은 PSPPOE의 모든 농도 처리군과 kestose(GF2)처리군은 control보다 높은 흡광도 값을 보였으며, P. pentosaceus OHF23은 8종의 균주 중 PSPPOE 50 mg/ml의 농도에서 12시간째 가장 높은 흡광도 값을 나타냈으며, 모든 처리농도에서 control 값에 비해 일정 수준의 높은 수치를 나타냈다. 50mg/ml가 넘는 경우 추출물의 색깔이 짙어져 흡광도 측정에 영향을 주어 50mg/ml를 임계점으로 사용하였다.The growth enhancing effects of ethanol and oligosaccharide extracts for each sweet potato variety and part are shown in Tables 7 and 8. As a result of analyzing the growth promoting efficacy of the ethanol extract for each variety and site on eight probiotics strains, the ethanol extract did not show a growth promoting effect in all eight probiotic strains regardless of breed and site (Table 9). In addition, oligosaccharide extracts for each sweet potato variety and site showed different growth activities for probiotic strains depending on the variety and site (Table 10). The tuber root and above-ground oligosaccharide extracts of the two varieties did not show probiotics growth promoting effects, but the skin oligosaccharide extracts showed a growth promoting effect in all 8 strains used in the experiment. .thermophillus SCML300, S. boulardii KT000032) showed growth enhancing effect. Among the 8 strains used in the experiment, S. thermophillus SCML300 from Latic Acid Bacteria (LAB) and S. boulardii KT000032, a yeast, showed growth-enhancing effects in both strains of peel oligosaccharide extracts. S. thermophilus is a strain that has been mainly used to manufacture milk and yogurt. Dr. Mechnikoff proposed bacteria in yogurt, a food of Bulgarian residents, as the cause of longevity, and it emerged as a beneficial bacteria for health. There is a report that showed efficacy in the treatment and prevention of intestinal disease and ulcerative colitis. The growth curves of eight probiotic strains for the sweet potato skin oligosaccharide extract (SPPOE), which has the highest growth promoting effect on probiotics among the three parts of the two varieties, are shown in FIGS. 9 and 10 . The test treatment group treated with SPPOE at 10, 30, and 50 mg/ml concentration, and the kestose (GF 2 ) prepared at 10 mg/ml concentration were divided into a positive control group and a control group without additives, and the growth enhancing efficacy was compared. Poongwonmi sweet potato peel oligosaccharide extract (PSPPOE) showed high absorbance values compared to the control in all eight strains, indicating a high growth rate (FIG. 10). The growth of L. rhanmnosus KACC11953 was rapidly accelerated for 9 hours in both samples and controls, and PSPPOE showed higher absorbance values in a concentration-dependent manner than kestose (GF 2 ) and control. L. brevis ATCC 8787 showed the highest absorbance value at 15 hours at the concentration of PSPPOE 50 mg/ml, showing a clear difference from the control group (positive, negative), and at other concentrations (10, 30 mg/ml) showed growth similar to that of the control group. L. plantarum JDFM 44 showed a higher increase than the control group from the beginning of culture, and growth was shown to be enhanced in a concentration-dependent manner. P. acidilactici KACC12307 showed higher absorbance values than control in all concentrations of PSPPOE and kestose (GF 2 ) treatment groups, and P. pentosaceus OHF23 showed a higher absorbance value than the control at 50 mg/ml of PSPPOE at 12 hours among 8 strains. It showed the highest absorbance value, and showed a certain level higher than the control value at all treatment concentrations . If the concentration exceeds 50 mg/ml, the color of the extract becomes dark and affects the absorbance measurement, so 50 mg/ml was used as the critical point.

E. faecium KACC11953은 배양 6시간까지 대조군과 SPPOE 처리에서 비슷한 생장을 보였으나, 9시간 이후부터 SPPOE 처리 모든 농도에서 균주의 생육이 더 증가되었다. 이는 6시간까지는 배지 내의 포도당을 주로 사용하다가 영양원이 소모된 후에 SPPOE의 올리고당 성분을 이용함으로써 생육이 증진된 것으로 판단된다. S. thermophillus SCML300와 S. bouladii KT000032에서도 전반적으로 PSPPOE가 control 값 이상의 값을 보였으나, 처리 농도 간의 차이는 없었다. 호감미 껍질 올리고당 추출물(HSPPOE)은 8종의 프로바이오틱스 중 Lactobacillus 3종, Pediococcus 2종, Enterococcus 1종에서는 kestose(GF2)의 흡광도 값이 가장 높게 나타났으며, HSPPOE 농도별 처리군은 control과 크게 차이가 나타나지 않아 생육 증진 효능이 없는 것으로 나타났다(도 11). S. thermophilus SCML300에서는 50 mg/ml 처리농도에서 control 보다 흡광도 값이 높게 나타났고 10, 30 mg/ml의 농도에서는 효과가 없었다. S. bouladii KT000032는 생육초기에는 시험처리군과 control의 흡광도 차이는 나타나지 않았으나, 배양 6시간 이후부터 30, 50 mg/ml의 농도에서 Control 값과 확연히 다른 성장을 보여 생육 증진 효능을 나타냈다. 이와 같은 결과로 본 연구에서는 고구마 껍질, 괴근, 지상부 부위 중 생육 증진 효능이 뛰어난 껍질 부위(SPPOE)를 선발하여 다음 실험을 진행하였으며, 8종의 균주 중 가장 높은 흡광도 값을 나타낸 P. pentosaceus OHF23로 In- vivo 실험을 진행하였다. E. faecium KACC11953 showed similar growth in the control and SPPOE treatments until 6 hours of incubation, but the growth of the strain increased more at all concentrations after 9 hours of SPPOE treatment. It is judged that the growth was enhanced by using the oligosaccharide component of SPPOE after the nutrient source was consumed mainly using glucose in the medium until 6 hours. In S. thermophillus SCML300 and S. bouladii KT000032, PSPPOE was generally higher than the control value, but there was no difference between treatment concentrations. Hogammi Peel Oligosaccharide Extract (HSPPOE) showed the highest absorbance value of kestose (GF 2 ) in 3 types of Lactobacillus , 2 types of Pediococcus , and 1 type of Enterococcus among 8 types of probiotics, and the treatment group by HSPPOE concentration was significantly different from the control group. No difference was found, indicating that there was no growth promoting effect (FIG. 11). In S. thermophilus SCML300, the absorbance value was higher than the control at 50 mg/ml treatment concentration, and there was no effect at concentrations of 10 and 30 mg/ml. S. bouladii KT000032 did not show a difference in absorbance between the test treatment group and the control at the beginning of growth, but after 6 hours of cultivation, it showed a growth enhancement effect that was significantly different from the control value at concentrations of 30 and 50 mg/ml. As a result, in this study, the following experiment was carried out by selecting the skin part (SPPOE) with excellent growth promoting effect among the sweet potato peel, tuber root, and aboveground parts, and P. pentosaceus OHF23, which showed the highest absorbance value among 8 strains, was selected. In-vivo experiments were conducted.

Variety Variety PartPart Strainsstrains AA BB CC DD EE FF GG HH PungwonmiPungwonmi PeelPeel -- -- -- -- -- -- -- -- TuberTuber -- -- -- -- -- -- -- -- Aerial partAerial part -- -- -- -- -- -- -- -- HogammiHogammi PeelPeel -- -- -- -- -- -- -- -- TuberTuber -- -- -- -- -- -- -- -- Aerial partAerial part -- -- -- -- -- -- -- --

A, Lactobacillus Rhamnosus KACC11953 ; B, Lactobacillus brevis ATCC8787; C, Lactobacillus plantarum JDFM 44; D, Pediococcus acidilactici KACC12307; E, Pediococcus pentosaceus OHF23; F, Enterococcus faecium KACC11953; G, Streptococcus thermophillus SCML300; H, Saccharomyces bouladii KT000032A, Lactobacillus Rhamnosus KACC11953 ; B, Lactobacillus brevis ATCC8787; C, Lactobacillus plantarum JDFM 44 ; D, Pediococcus acidilactici KACC12307; E, Pediococcus pentosaceus OHF23; F, Enterococcus faecium KACC11953; G, Streptococcus thermophillus SCML300; H, Saccharomyces bouladii KT000032

Sample Sample PartPart Strainsstrains AA BB CC DD EE FF GG HH PungwonmiPungwonmi PeelPeel ++ ++ ++ ++ ++ ++ ++ ++ TuberTuber -- -- -- -- -- -- -- -- Aerial partAerial part -- -- -- -- -- -- -- -- HogammiHogammi PeelPeel -- -- -- -- -- -- ++ ++ TuberTuber -- -- -- -- -- -- -- -- Aerial partAerial part -- -- -- -- -- -- -- --

A, Lactobacillus Rhamnosus KACC11953 ; B, Lactobacillus brevis ATCC 8787; C, Lactobacillus plantarum JDFM 44; D, Pediococcus acidilactici KACC12307; E, Pediococcus pentosaceuss OHF23; F, Enterococcus faecium KACC11953; G, Streptococcus thermophillus SCML300; H, Saccharomyces bouladii KT000032A, Lactobacillus Rhamnosus KACC11953 ; B, Lactobacillus brevis ATCC 8787; C, Lactobacillus plantarum JDFM 44 ; D, Pediococcus acidilactici KACC12307; E, Pediococcus pentosaceuss OHF23; F, Enterococcus faecium KACC11953; G, Streptococcus thermophillus SCML300; H, Saccharomyces bouladii KT000032

3) 고구마 껍질 올리고당 추출물(SPPOE)의 올리고당의 확인 및 함량 분석3) Identification and content analysis of oligosaccharides in sweet potato skin oligosaccharide extract (SPPOE)

SPPOE의 올리고당을 분석하기 위해 프럭토올리고당 표준품 6종, 이눌린 표준품 1종, 자일로올리고당 표준품 3종을 이용하여 SPPOE의 올리고당을 HPLC-RID로 분석하였다. 도 12,13과 같이 고구마 2품종의 껍질의 올리고당의 성분을 확인한 결과, 두 품종 모두 프락토올리고당 중 1-kestose, levanbiose 2종의 프럭토올리고당 성분과 이눌린이 검출 되었으며, 자일로올리고당 성분은 두 품종 모두 검출되지 않았다. 프락토올리고당 성분 중 1-kestose의 함량이 133.50 - 421.75 mg/g 수준으로 가장 높게 나타나 SPPOE의 주요 성분 인 것을 알 수 있었으며, 품종으로는 풍원미 껍질 올리고당 추출물(PSPPOE)가 월등이 높게 나타났다. levanbiose의 함량은 33.77 - 46.37 mg/g을 수준 이였고, inulin의 함량은 83.09 - 105.12 mg/g의 수준을 나타냈다(표 9). 검출된 모든 올리고당 성분은 호감미 고구마 껍질 올리고당 추출물(HSPPOE)에 비해 풍원미 고구마 껍질 올리고당 추출물(PSPPOE)의 함량이 월등히 높았다. 이는 프로바이오틱스 생육 증진 효능 실험에서 PSPPOE의 생육 증진 효능이 가장 우수하게 나타난 결과와 유사하였다. 이러한 결과를 바탕으로 본 연구에서는 최종 물질로 PSPPOE를 선정하여 추후 실험을 진행하였다. In order to analyze the oligosaccharide of SPPOE, the oligosaccharide of SPPOE was analyzed by HPLC-RID using 6 kinds of fructooligosaccharide standard, 1 kind of inulin standard, and 3 kinds of xylooligosaccharide standard. As shown in FIGS. 12 and 13, as a result of confirming the components of the oligosaccharide of the peel of the two varieties of sweet potato, both varieties were found to have 1-kestose and levanbiose fructooligosaccharide components and inulin among the fructooligosaccharides, and the xylo-oligosaccharide component was two None of the cultivars were detected. Among the fructooligosaccharide components, the content of 1-kestose was the highest at 133.50 - 421.75 mg/g, indicating that it was the main component of SPPOE, and the Poongwonmi Peel Oligosaccharide Extract (PSPPOE) was superior. The content of levanbiose was 33.77 - 46.37 mg/g, and the content of inulin was 83.09 - 105.12 mg/g (Table 9). For all oligosaccharide components detected, the content of Poongwonmi Sweet Potato Peel Oligosaccharide Extract (PSPPOE) was significantly higher than that of Hogammi Sweet Potato Peel Oligosaccharide Extract (HSPPOE). This was similar to the results in which the growth promoting efficacy of PSPPOE was most excellent in the probiotics growth enhancing efficacy test. Based on these results, in this study, PSPPOE was selected as the final material and further experiments were conducted.

Oligosaccharides1) Oligosaccharides 1) Contents (mg/g)Contents (mg/g) PungwonmiPungwonmi HogammiHogammi FOS2) FOS 2) 1-Kestose1-Kestose 421.75±5.08 421.75 ± 5.08 133.50±1.68 133.50 ± 1.68 1,1-Kestotetraose1,1-Kestotetraose NDND NDND 1,1-Kestopentaose1,1-Kestopentaose NDND NDND LevanbioseLevanbiose 46.37±0.85 46.37 ± 0.85 33.77±1.07 33.77 ± 1.07 LevantrioseLevantriose NDND NDND Sum of FOSSum of FOS 467.42±4.79 467.42 ± 4.79 167.26±2.70 167.26 ± 2.70 InulinInulin 105.12±3.98 105.12 ± 3.98 83.09±1.68 83.09 ± 1.68 XOS3) XOS 3) XylobioseXylobiose NDND NDND XylotrioseXylotriose NDND NDND XylopentaoseXylopentaose NDND NDND XylohexaoseXylohexaose NDND NDND

1) Mean ± standard deviation (n=3) 1) Mean ± standard deviation (n=3)

2) Fructooligosacchraide 2) Fructooligosaccharides

3) Xylooligosacchraide 3) Xylooligosacchraide

4) 풍원미 고구마 껍질 올리고당 추출물의(PSPPOE)의 세포 독성 평가(EZ-Cytox)4) Cytotoxicity evaluation of Poongwonmi sweet potato skin oligosaccharide extract (PSPPOE) (EZ-Cytox)

PSPPOE와 kestose(GF2)의 Raw264.7 macrophage의 세포독성에 미치는 영향을 분석하였다(도 14). kestose(GF2)와 PSPPOE를 농도별(10, 30, 50 mg/ml)로 24시간 처리한 결과, 모든 농도에서 90% 이상의 세포생존율을 보여 독성을 나타내지 않았다. The effects of PSPPOE and kestose (GF 2 ) on the cytotoxicity of Raw264.7 macrophage were analyzed (FIG. 14). As a result of treatment with kestose (GF 2 ) and PSPPOE at different concentrations (10, 30, and 50 mg/ml) for 24 hours, cell viability was higher than 90% at all concentrations, showing no toxicity.

5) In vivo 모델에서의 프리바이오틱스 효능 평가5) Evaluation of prebiotics efficacy in in vivo models

(1) qPCR을 이용한 Pediococcus pentosaceus의 정량분석(1) Quantitative analysis of Pediococcus pentosaceus using qPCR

대조군인 G1 = Control(PBS), G2 = PBS + Lactic acid bacteria, 실험군인 G3 = PBS + LAB + SPPOE, G4 = PBS + LAB + Kestose으로 분류하여 급여한 마우스의 분변 DNA를 추출하여 Pediocine L50 gene을 타겟으로 P. pentosaceus의 함량을 분석하였다(도15). G1 그룹은 P. pentosaceus를 급여하지 않았으므로 정상적으로 검출되지 않았고, P. pentosaceus와 함께 SPPOE와 kestose를 각각 급여한 G3, G4 그룹에서 P. pentosaceus만 급여한 G2 그룹에 비해 미생물의 수가 유의적으로 증가하였다. 이는 아토피성 피부염 생쥐모델에서 프리바이오틱스 급여 시 Lactobacillus sakei, Leuconostoc citreum, Weissella cibaria Weissella koreensis가 유의적으로 증가했다는 연구결과와 유산균과 다시마 혼합한 synbiotics 급여 시 체중 감소 관련 미생물인 Bacteroidetes가 증가되었다는 보고와 유사하였다. G3, G4 그룹간의 P. pentosaceus 함량은 수치상의 큰 차이를 나타내지 않았다. 이와 같은 결과로 PSPPOE는 프로바이오틱스와 함께 급여 시 장내 유익균의 수를 증가시켜 프리바이오틱스 효과가 있는 것으로 사료된다. The control group, G1 = Control (PBS), G2 = PBS + Lactic acid bacteria, the experimental group, G3 = PBS + LAB + SPPOE, G4 = PBS + LAB + Kestose, were extracted from the fecal DNA of fed mice to identify the Pediocine L50 gene. The content of P. pentosaceus as a target was analyzed (FIG. 15). In the G1 group, P. pentosaceus was not fed, so it was not normally detected, and P. pentosaceus and In the G3 and G4 groups fed SPPOE and kestose respectively, the number of microorganisms increased significantly compared to the G2 group fed only P. pentosaceus . This is based on the research result that Lactobacillus sakei , Leuconostoc citreum , and Weissella cibaria Weissella koreensis were significantly increased when feeding prebiotics in atopic dermatitis mouse model, and the report that Bacteroidetes, a microorganism related to weight loss, increased when synbiotics mixed with lactic acid bacteria and kelp were fed. similar The content of P. pentosaceus between the G3 and G4 groups did not show a significant numerical difference. As a result, PSPPOE is considered to have a prebiotics effect by increasing the number of beneficial bacteria in the intestine when fed together with probiotics.

(2) 전자현미경 분석(TEM)(2) electron microscopic analysis (TEM)

그룹별 마우스의 신장, 간, 비장, 장의 조직이 염증 유발되었는지 확인하기 위해 투과전자현미경을 이용하여 신장, 간, 비장, 장의 조직 세포를 관찰하였다. 그 결과 PSPPOE와 kestose(GF2) 각각 급여한 G3, G4 그룹의 신장, 간, 비장, 장의 조직에서 대조군인 G1, G2 그룹과 비교 시 모든 조직의 괴사가 나타나지 않아 PSPPOE와 kestose(GF2) 시료의 독성이 없는 것으로 나타났다(도 16). 이는 in vitro 세포독성평가에서 PSPPOE와 kestose의 시료에서 독성이 나타나지 않은 결과와 일치하는 것을 보여주었다. Kidney, liver, spleen, and intestinal tissue cells of each group of mice were observed using a transmission electron microscope to confirm whether inflammation was induced in the tissue of the kidney, liver, spleen, and intestine. As a result, in the kidney, liver, spleen, and intestine tissues of the G3 and G4 groups fed with PSPPOE and kestose (GF 2 ), necrosis of all tissues was not observed compared to the control groups G1 and G2, respectively, and the PSPPOE and kestose (GF 2 ) samples showed no toxicity (FIG. 16). This was consistent with the results of no toxicity in the samples of PSPPOE and kestose in the in vitro cytotoxicity evaluation.

<110> KNU-Industry Cooperation Foundation <120> Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same <130> 21-11977 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Universal Foward Primer <400> 1 agagtttgat cmtggctcag 20 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Universal Reverse Primer <400> 2 ggttaccttg ttacgact 18 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Novel Pediocin L50 Foward Primer <400> 3 ggagcaatcg caaaattag 19 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Novel Pediocin L50 Reverse Primer <400> 4 attgcccatc cttctccaat 20 <110> KNU-Industry Cooperation Foundation <120> Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food including the same <130> 21-11977 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> artificial sequence <220> <223> Universal Forward Primer <400> 1 agagtttgat cmtggctcag 20 <210> 2 <211> 18 <212> DNA <213> artificial sequence <220> <223> Universal Reverse Primer <400> 2 ggttaccttg ttacgact 18 <210> 3 <211> 19 <212> DNA <213> artificial sequence <220> <223> Novel Pediocin L50 Forward Primer <400> 3 ggagcaatcg caaaattag 19 <210> 4 <211> 20 <212> DNA <213> artificial sequence <220> <223> Novel Pediocin L50 Reverse Primer <400> 4 attgcccatc cttctccaat 20

Claims (9)

고구마 껍질 올리고당 추출물을 유효성분으로 포함하는 장내균총 개선용 프리바이오틱스 조성물.A prebiotics composition for improving intestinal flora comprising sweet potato peel oligosaccharide extract as an active ingredient. 제1항에 있어서,
페디오코쿠스 펜토사세우스(Pediococcus pentosaceus) 를 더 포함하는 것을 특징으로 하는 장내균총 개선용 프리바이오틱스 조성물.
According to claim 1,
A prebiotics composition for improving intestinal flora, further comprising Pediococcus pentosaceus .
제1항에 있어서, 상기 고구마 껍질 올리고당 추출물은 1-kestose(GF2) 또는 inulin을 더 포함하는 것을 특징으로 하는 장내균총 개선용 프리바이오틱스 조성물.The prebiotics composition for improving intestinal flora according to claim 1, wherein the sweet potato peel oligosaccharide extract further contains 1-kestose (GF 2 ) or inulin. 제1항에 있어서, 상기 프리바이오틱스 조성물은 1-kestose(GF2) 또는 inulin을 더 포함하는 것을 특징으로 하는 장내균총 개선용 프리바이오틱스 조성물.The prebiotics composition for improving intestinal flora according to claim 1, wherein the prebiotics composition further comprises 1-kestose (GF 2 ) or inulin. 제1항 내지 제4항 중 어느 한 항의 프리바이오틱스 조성물을 포함하는 식품 조성물.A food composition comprising the prebiotics composition of any one of claims 1 to 4. 제5항에 있어서, 장내균총 개선용인 것을 특징으로 하는 식품 조성물.The food composition according to claim 5, which is for improving intestinal flora. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 고구마 껍질 올리고당 추출물은 풍원미 고구마 껍질 올리고당 추출물 또는 호감미 고구마 껍질 올리고당 추출물인 것을 특징으로 하는 프리바이오틱스 조성물.The prebiotics composition according to any one of claims 1 to 4, wherein the sweet potato skin oligosaccharide extract is rich-wonmi sweet potato skin oligosaccharide extract or favorable sweet potato skin oligosaccharide extract. 고구마 껍질 올리고당 추출물 또는 고구마 껍질 에탄올 추출물을 유효성분으로 포함하는 항산화용 조성물.An antioxidant composition comprising sweet potato peel oligosaccharide extract or sweet potato peel ethanol extract as an active ingredient. 제8항의 항산화용 조성물을 포함하는 식품 조성물.A food composition comprising the antioxidant composition of claim 8.
KR1020210080529A 2021-06-22 2021-06-22 Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same KR20220170019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210080529A KR20220170019A (en) 2021-06-22 2021-06-22 Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210080529A KR20220170019A (en) 2021-06-22 2021-06-22 Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same

Publications (1)

Publication Number Publication Date
KR20220170019A true KR20220170019A (en) 2022-12-29

Family

ID=84539741

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210080529A KR20220170019A (en) 2021-06-22 2021-06-22 Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same

Country Status (1)

Country Link
KR (1) KR20220170019A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170135520A (en) 2016-05-31 2017-12-08 한국과학기술연구원 Composition for improving intestinal health containing Codonopsis lanceolata
KR20180041104A (en) 2018-04-12 2018-04-23 한국과학기술연구원 Composition for improving intestinal health comprising red yeast rice
KR20200112147A (en) 2019-03-21 2020-10-05 강원대학교산학협력단 Prebiotics composition for improving intestinal microflora comprising banana peel extract and funtional food comprising the same
KR20200112148A (en) 2019-03-21 2020-10-05 강원대학교산학협력단 Prebiotics composition for improving intestinal microflora comprising garlic peel extract and funtional food comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170135520A (en) 2016-05-31 2017-12-08 한국과학기술연구원 Composition for improving intestinal health containing Codonopsis lanceolata
KR20180041104A (en) 2018-04-12 2018-04-23 한국과학기술연구원 Composition for improving intestinal health comprising red yeast rice
KR20200112147A (en) 2019-03-21 2020-10-05 강원대학교산학협력단 Prebiotics composition for improving intestinal microflora comprising banana peel extract and funtional food comprising the same
KR20200112148A (en) 2019-03-21 2020-10-05 강원대학교산학협력단 Prebiotics composition for improving intestinal microflora comprising garlic peel extract and funtional food comprising the same

Similar Documents

Publication Publication Date Title
CN111436203B (en) Fermented lactobacillus plantarum and application thereof
Agil et al. Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products
KR101832387B1 (en) Method for producing fermented korean cultivated wild ginseng with enhanced specific ginsenoside content using lactic acid bacteria
Al-Thubiani et al. The Prebiotic Properties of Date Palm (Phoenix dactylifera L.) Seeds in Stimulating Probiotic Lactobacillus.
Jambi Evaluation of physio-chemical and sensory properties of yogurt prepared with date pits powder
Bouaziz et al. Techno-functional characterization and biological potential of Agave americana leaves: impact on yoghurt qualities
KR101381547B1 (en) Novel Leuconostoc mesenteroides from kimchi with inhibiting activities on pathogenic microorganism and use thereof
Cho et al. Immunostimulatory activity of Lactococcus lactis LM1185 isolated from Hydrangea macrophylla
KR101836365B1 (en) Kimchi seasoning containing Leuconostoc mesenteroides WiKim32 and kimchi prepared by using the same
KR20170050527A (en) Vegetable Lactobacillus plantarum DSR KF15 having Activities on Antimicrobial And Antifungal for keeping freshness and Use Thereof
Elsayed et al. Preparation and evaluation of microencapsulated fig leaves extract for production novel processed cheese sauce
KR102178556B1 (en) Prebiotics composition for improving intestinal microflora comprising garlic peel extract and funtional food comprising the same
KR101697535B1 (en) Lactobacillus plantarum strain isolated by Rubus occidentalis and food composition comprising the same
KR20220170019A (en) Prebiotics composition for improving intestinal microflora comprising sweet potato peel extract and functional food comprising the same
CN115119915A (en) Fermented fruit and vegetable juice for improving inflammatory degree of inflammatory bowel disease and composite fermentation bacteria thereof
KR102189342B1 (en) Bacillus subtilis SRCM103716 strain having excellent β-glucosidase and antioxidant activity and uses thereof
Khider et al. Development of Functional Synbiotic Flavored Fermented Skim Milk Drinks Supplemented with Doum (Hyphaene thebaica L.) and Carob (Ceratonia siliqua) Fruits Powder for Nutritional, Antimicrobial and High Antioxidant Activities
do Nascimento et al. Bioactive properties and evaluation of the prebiotic potential of cashew apple fiber using Bifidobacterium Lactis Propriedades bioativas e avaliação do potencial prebiótico da fibra do pedúnculo de caju utilizando Bifidobacterium Lactis
KR102197145B1 (en) Mixed culture strains (no. kctc13836bp or no. kctc13837bp) and synbiotics capable of enhancing beneficial microbes and supressing hazardous microbes in human gut
Allameh et al. In vitro anti-mycotoxigenic and anti-aflatoxigenic properties of probiotic bacteria; Lactobacillus plantarum and L. paracasei
KR100482309B1 (en) Process of manufacturing a yogurt comprising Saururus chinensis
Abdelshafy et al. Promotion of antioxidant and antibacterial activities of fermented oat products
KR101179175B1 (en) Beverage fermented by lactic acid bacteria using Aralia elata Seemann, Kalopanax septemlobus Thunb. ex Murray Koidz, or Panax ginseng C.A.Mey, and manufacturing method thereof
Rajput Preparation of Probiotic Shrikhand using selected Lactobacillus strains and evaluating effects of different botanicals on its viability
Abdelshafy et al. The effect of oat products fermented by probiotic bacteria on the blood biochemical parameters in experimental rats

Legal Events

Date Code Title Description
E902 Notification of reason for refusal