KR20220162884A - Method for producing cyclobutane tetracarboxylic acid derivative - Google Patents

Method for producing cyclobutane tetracarboxylic acid derivative Download PDF

Info

Publication number
KR20220162884A
KR20220162884A KR1020227041597A KR20227041597A KR20220162884A KR 20220162884 A KR20220162884 A KR 20220162884A KR 1020227041597 A KR1020227041597 A KR 1020227041597A KR 20227041597 A KR20227041597 A KR 20227041597A KR 20220162884 A KR20220162884 A KR 20220162884A
Authority
KR
South Korea
Prior art keywords
anhydride
cbda
maleic anhydride
reaction
formula
Prior art date
Application number
KR1020227041597A
Other languages
Korean (ko)
Inventor
준페이 시마다
미츠마사 곤도
Original Assignee
닛산 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 가가쿠 가부시키가이샤 filed Critical 닛산 가가쿠 가부시키가이샤
Publication of KR20220162884A publication Critical patent/KR20220162884A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Abstract

폴리이미드 등의 원료로서 유용한, 1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 유도체의 효율적 제조 방법의 제공. 하기 식 (1) 로 나타내는 무수 말레산 화합물을, 탄산디에스테르 용매 중에서 광 2 량화 반응시키는 것에 의한, 식 (2) 로 나타내는 1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 유도체의 제조 방법.
[화학식 1]

Figure pat00011

(식 중, R 은 탄소수 1 ∼ 20 의 알킬기를 나타낸다.)Provision of an efficient production method for a 1,2,3,4-cyclobutanetetracarboxylic acid-1,2:3,4-2 anhydride derivative useful as a raw material for polyimide or the like. 1,2,3,4-cyclobutanetetracarboxylic acid-1,2 represented by formula (2) by photodimerization of the maleic anhydride compound represented by formula (1) below in a diester carbonate solvent : Method for preparing 3,4-2 anhydride derivatives.
[Formula 1]
Figure pat00011

(In the formula, R represents an alkyl group having 1 to 20 carbon atoms.)

Description

시클로부탄테트라카르복실산 유도체의 제조 방법 {METHOD FOR PRODUCING CYCLOBUTANE TETRACARBOXYLIC ACID DERIVATIVE}Method for producing cyclobutane tetracarboxylic acid derivative {METHOD FOR PRODUCING CYCLOBUTANE TETRACARBOXYLIC ACID DERIVATIVE}

본 발명은, 광학 재료용의 폴리아믹산, 폴리이미드 등의 원료 모노머가 될 수 있는 지환식 테트라카르복실산 2 무수물의 제조법에 관한 것이다.The present invention relates to a method for producing an alicyclic tetracarboxylic dianhydride that can serve as a raw material monomer for polyamic acid and polyimide for optical materials.

일반적으로, 폴리이미드 수지는, 그 특징인, 높은 기계적 강도, 내열성, 절연성, 내용제성 등에 의해, 액정 표시 소자나 반도체에 있어서의 보호 재료, 절연 재료 등의 전자 재료로서 널리 사용되고 있다. 또한, 최근에는 광 도파로용 재료 등의 광 통신용 재료로서의 용도도 기대되고 있다.In general, polyimide resins are widely used as electronic materials such as protective materials and insulating materials in liquid crystal display elements and semiconductors due to their characteristics such as high mechanical strength, heat resistance, insulation, and solvent resistance. In recent years, use as a material for optical communication, such as a material for an optical waveguide, is also expected.

최근, 이 분야의 발전은 눈부시고, 그에 대응하여, 사용되는 재료에 대해서도 점점 더 고도의 특성이 요구되게 되어 있다. 즉, 단순히 내열성, 내용제성이 우수할 뿐만 아니라, 용도에 따른 성능을 다수 겸비하는 것이 기대되고 있다.In recent years, the development in this field has been remarkable, and correspondingly, more and more advanced properties are required for the materials used. That is, it is expected to not only be excellent in heat resistance and solvent resistance, but also to combine a number of performances according to the application.

그러나, 특히, 전체 방향족 폴리이미드 수지에 있어서는, 진한 호박색을 나타내어 착색되기 때문에, 높은 투명성이 요구되는 용도에 있어서, 문제를 가지고 있다.However, in particular, wholly aromatic polyimide resins have a problem in applications requiring high transparency because they exhibit a deep amber color and are colored.

한편, 투명성을 실현하는 하나의 방법으로는, 지환식 테트라카르복실산 2 무수물과 방향족 디아민의 중축합 반응에 의해 폴리이미드 전구체를 형성하고, 당해 전구체를 이미드화하여 폴리이미드를 제조하면, 비교적 착색이 적고, 고투명성의 폴리이미드가 얻어지는 것은 알려져 있다 (특허문헌 1 및 2 참조).On the other hand, as one method of realizing transparency, a polyimide precursor is formed by a polycondensation reaction of alicyclic tetracarboxylic dianhydride and aromatic diamine, and the precursor is imidized to produce a polyimide, which is relatively colored. It is known that a highly transparent polyimide can be obtained with a small amount (see Patent Documents 1 and 2).

종래, 알킬시클로부탄산 2 무수물의 합성에 있어서는, 하기의 스킴으로 나타내는 바와 같이, 시트라콘산 무수물 (MMA 라고 약기한다) 의 광 2 량화 반응에 의해, 1,3-디메틸시클로부탄-1,2,3,4-테트라카르복실산-1,2 : 3,4-2 무수물 (1,3-DM-CBDA 라고 약기한다) 과 1,2-디메틸시클로부탄-1,2,3,4-테트라카르복실산-1,2 : 3,4-2 무수물 (1,2-DM-CBDA 라고 약기한다) 의 혼합물이 얻어진다 (특허문헌 3 참조).Conventionally, in the synthesis of alkylcyclobutanoic dianhydride, 1,3-dimethylcyclobutane-1,2 is obtained by a photodimerization reaction of citraconic acid anhydride (abbreviated as MMA) as shown in the following scheme. ,3,4-tetracarboxylic acid-1,2: 3,4-2 anhydride (abbreviated as 1,3-DM-CBDA) and 1,2-dimethylcyclobutane-1,2,3,4-tetra A mixture of carboxylic acid-1,2:3,4-di anhydride (abbreviated as 1,2-DM-CBDA) is obtained (see Patent Document 3).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

한편, 1,3-DMCBDA 와 1,2-DMCBDA 를 대비한 경우, 대칭성이 높은 구조를 갖는 전자의 1,3-DMCBDA 가, 후자의 1,2-DMCBDA 보다 분자량이 높은 폴리이미드를 제조할 수 있어, 보다 유용성이 높은 것이 알려져 있다.On the other hand, when 1,3-DMCBDA and 1,2-DMCBDA are compared, the former 1,3-DMCBDA having a highly symmetric structure can produce a polyimide having a higher molecular weight than the latter 1,2-DMCBDA. , and it is known that the usefulness is higher.

그러나, 특허문헌 3 에는, 1,3-DMCBDA 와 1,2-DMCBDA 의 혼합물이 얻어지는 것은 기재되어 있지만, 유용성이 높은 이성체인, 전자의 1,3-DMCBDA 를 선택적으로, 또한 고수율로 제조하는 것에 대한 기재는 없다.However, although it is described in Patent Document 3 that a mixture of 1,3-DMCBDA and 1,2-DMCBDA is obtained, the former 1,3-DMCBDA, which is an isomer with high usefulness, is produced selectively and in high yield. There is no record of what

일본 특허공보 평2-24294호Japanese Patent Publication No. 2-24294 일본 공개특허공보 소58-208322호Japanese Unexamined Patent Publication No. 58-208322 일본 공개특허공보 평4-106127호Japanese Unexamined Patent Publication No. 4-106127

본 발명의 목적은, 하기 식 (1) 로 나타내는 무수 말레산 화합물을 광 2 량화 반응시켜, 고광 반응 효율로, 또한 고수율로, 대칭성이 높은 구조를 갖는 이성체인, 1,3-디알킬-1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 (이하, 1,3-DACBDA 라고도 한다) 유도체를 제조할 수 있는 방법을 제공하는 것에 있다.An object of the present invention is to photodimerize a maleic anhydride compound represented by the following formula (1) to obtain 1,3-dialkyl- which is an isomer having a highly symmetric structure with high photoreaction efficiency and high yield. It is to provide a method capable of producing a 1,2,3,4-cyclobutanetetracarboxylic acid-1,2:3,4-2 anhydride (hereinafter, also referred to as 1,3-DACBDA) derivative.

본 발명자들은, 상기의 과제를 해결하기 위해서 예의 연구를 진행시킨 결과, 특정한 용매를 사용한 경우, 대칭성이 높은 구조를 갖는 이성체인, 1,3-DACBDA 유도체의 선택성이 향상되고, 고수율로 제조할 수 있는 것을 알아냈다.As a result of intensive research in order to solve the above problems, the inventors of the present invention have found that when a specific solvent is used, the selectivity of 1,3-DACBDA derivatives, which are isomers having a structure with high symmetry, is improved and can be produced in high yield. found out what could be

본 발명은, 이러한 신규의 지견에 기초하는 것으로서, 하기의 요지를 갖는다.The present invention is based on these novel findings and has the following summary.

1. 하기 식 (1) 로 나타내는 무수 말레산 화합물을, 탄산디에스테르 용매 중에서 광 2 량화 반응시키는 것을 특징으로 하는, 식 (2) 로 나타내는 1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 유도체의 제조 방법.1. 1,2,3,4-cyclobutanetetracarboxylic acid represented by formula (2), characterized by carrying out a photodimerization reaction of a maleic anhydride compound represented by formula (1) below in a diester carbonate solvent. -1,2: Method for preparing 3,4-2 anhydride derivatives.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

(식 중, R 은 탄소수 1 ∼ 20 의 알킬기를 나타낸다.)(In the formula, R represents an alkyl group having 1 to 20 carbon atoms.)

2. R 이 탄소수 1 ∼ 4 의 알킬기인, 상기 1 에 기재된 제조 방법.2. The production method described in 1 above, wherein R is an alkyl group having 1 to 4 carbon atoms.

3. 탄산디에스테르가, 탄산의 탄소수 1 ∼ 4 의 알킬의 디에스테르인, 상기 1 또는 2 에 기재된 제조 방법.3. The production method described in the above 1 or 2, wherein the diester carbonate is a diester of an alkyl having 1 to 4 carbon atoms of carbonic acid.

4. 탄산디에스테르가, 탄산디메틸 또는 탄산디에틸인, 상기 1 ∼ 3 중 어느 하나에 기재된 제조 방법.4. The manufacturing method in any one of said 1-3 whose diester carbonate is dimethyl carbonate or diethyl carbonate.

5. 용매가, 포름산메틸, 포름산에틸, 아세트산메틸, 아세트산에틸, 아세트산 n-프로필, 아세트산 i-프로필, 프로피온산메틸, 프로피온산에틸, 프로피온산 n-프로필, 프로피온산 i-프로필, 에틸렌글리콜디포르메이트, 또는 에틸렌글리콜디아세테이트인 탄산디에스테르 이외의 용매를 함유하는, 상기 4 에 기재된 제조 방법.5. The solvent is methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, ethylene glycol diformate, or The production method according to 4 above, comprising a solvent other than diester carbonate which is ethylene glycol diacetate.

6. 반응에 사용하는 전체 용매의 사용량이, 무수 말레산 화합물에 대하여 3 ∼ 300 질량 배인, 상기 1 ∼ 5 중 어느 하나에 기재된 제조 방법.6. The manufacturing method in any one of said 1-5 whose usage-amount of all the solvents used for reaction is 3-300 mass times the maleic anhydride compound.

7. 반응에 사용하는 전체 용매의 사용량이, 무수 말레산 화합물에 대하여 3 ∼ 10 질량 배인, 상기 1 ∼ 5 중 어느 하나에 기재된 제조 방법.7. The manufacturing method in any one of said 1-5 whose usage-amount of all the solvents used for reaction is 3-10 mass times with respect to maleic anhydride compound.

8. 증감제를 사용하는, 상기 1 ∼ 7 중 어느 하나에 기재된 제조 방법.8. The manufacturing method in any one of said 1-7 using a sensitizer.

9. 증감제가, 벤조페논, 벤즈알데하이드, 전자 구인성기가 치환한 벤조페논, 전자 구인성기가 치환한 아세토페논, 전자 구인성기가 치환한 벤즈알데하이드 또는 안트라퀴논인, 상기 8 에 기재된 제조 방법.9. The production method described in 8 above, wherein the sensitizer is benzophenone, benzaldehyde, benzophenone substituted with an electron withdrawing group, acetophenone substituted with an electron withdrawing group, benzaldehyde substituted with an electron withdrawing group, or anthraquinone.

10. 상기 전자 구인성기가, 플루오로기, 클로로기, 브로모기, 요오드기, 니트로기, 시아노기, 및 트리플루오로메틸기로 이루어지는 군에서 선택되는 적어도 1 종인, 상기 9 에 기재된 제조 방법.10. The production method according to 9 above, wherein the electron withdrawing group is at least one selected from the group consisting of a fluoro group, a chloro group, a bromo group, an iodine group, a nitro group, a cyano group, and a trifluoromethyl group.

11. 전자 구인성기의 수가 1 ∼ 5 인, 상기 9 또는 10 에 기재된 제조 방법.11. The manufacturing method described in 9 or 10 above, wherein the number of electron withdrawing groups is 1 to 5.

12. 증감제의 사용량이, 무수 말레산 화합물에 대하여 0.1 ∼ 20 몰% 인, 상기 8 ∼ 11 중 어느 하나에 기재된 제조 방법.12. The manufacturing method in any one of said 8-11 whose usage-amount of a sensitizer is 0.1-20 mol% with respect to the maleic anhydride compound.

13. 반응 온도가, 0 ∼ 20 ℃ 인, 상기 1 ∼ 12 중 어느 하나에 기재된 제조 방법.13. The production method according to any one of 1 to 12, wherein the reaction temperature is 0 to 20°C.

본 발명의 제조 방법에 의하면, 무수 말레산 화합물의 광 2 량화 반응에 의한 1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 유도체의 제조에 있어서, 1,3-디알킬시클로부탄-1,2,3,4-테트라카르복실산-1,2 : 3,4-2 무수물의 선택성을 향상시킬 수 있다.According to the production method of the present invention, in the production of a 1,2,3,4-cyclobutanetetracarboxylic acid-1,2:3,4-2 anhydride derivative by photodimerization of a maleic anhydride compound, The selectivity of 1,3-dialkylcyclobutane-1,2,3,4-tetracarboxylic acid-1,2:3,4-2 anhydride can be improved.

이하, 본 발명에 대하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

식 (1) 로 나타내는 무수 말레산 화합물의 광 2 량화 반응에 의한 식 (2) 로 나타내는 1,2,3,4-시클로부탄테트라카르복실산-1,2 : 3,4-2 무수물 유도체의 제조 방법은, 하기의 반응 스킴으로 나타낸다.Of the 1,2,3,4-cyclobutanetetracarboxylic acid-1,2:3,4-2 anhydride derivative represented by the formula (2) by the photodimerization reaction of the maleic anhydride compound represented by the formula (1) The manufacturing method is represented by the following reaction scheme.

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

식 중, R 은, 탄소수가 1 ∼ 20, 보다 바람직하게는 1 ∼ 12, 특히 바람직하게는 1 ∼ 6 인 알킬기를 나타낸다.In the formula, R represents an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 6 carbon atoms.

탄소수 1 ∼ 20 의 알킬기로는, 직사슬 혹은 분기형의 포화 알킬기, 또는 직사슬형 또는 분기형의 불포화 알킬기의 어느 것이어도 된다.As the C1-C20 alkyl group, any of a linear or branched saturated alkyl group or a linear or branched unsaturated alkyl group may be used.

그 구체예로는, 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, 1-메틸-n-부틸, 2-메틸-n-부틸, 3-메틸-n-부틸, 1,1-디메틸-n-프로필, n-헥실, 1-메틸-n-펜틸, 2-메틸-n-펜틸, 1,1-디메틸-n-부틸, 1-에틸-n-부틸, 1,1,2-트리메틸-n-프로필, n-헵틸, n-옥틸, n-노닐, n-데실, n-도데실, n-에이코실 등의 포화 알킬기, 1-메틸비닐, 2-알릴, 1-에틸비닐, 2-메틸알릴, 2-부테닐, 2-메틸-2-부테닐, 3-메틸-2-부테닐, 3-메틸-3-부테닐, 2-헥세닐, 4-메틸-3-펜테닐, 4-메틸-4-펜테닐, 2,3-디메틸-2-부테닐, 1-에틸-2-펜테닐, 3-도데세닐, 프로파르길, 3-부티닐, 3-메틸-2-프로피닐, 9-데시닐 등의 불포화 알킬기를 들 수 있다.Specific examples thereof include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl- n-Butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n- Saturation of butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n-propyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-dodecyl, n-eicosyl, etc. Alkyl group, 1-methylvinyl, 2-allyl, 1-ethylvinyl, 2-methylallyl, 2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 3-methyl-3- Butenyl, 2-hexenyl, 4-methyl-3-pentenyl, 4-methyl-4-pentenyl, 2,3-dimethyl-2-butenyl, 1-ethyl-2-pentenyl, 3-dodecenyl , unsaturated alkyl groups such as propargyl, 3-butynyl, 3-methyl-2-propynyl, and 9-decynyl.

또한, n 은 노르말을, i 는 이소를, s 는 세컨더리를, t 는 터셔리를, 각각 나타낸다.In addition, n represents normal, i represents iso, s represents secondary, and t represents tertiary, respectively.

식 (1) 로 나타내는 무수 말레산 화합물의 일례로는, 무수 시트라콘산, 2-에틸 무수 말레산, 2-이소프로필 무수 말레산, 2-n-부틸 무수 말레산, 2-t-부틸 무수 말레산, 2-n-펜틸말레산 무수물, 2-n-헥실말레산 무수물, 2-n-헵틸말레산 무수물, 2-n-옥틸말레산 무수물, 2-n-노닐말레산 무수물, 2-n-데실말레산 무수물, 2-n-도데실말레산 무수물, 2-n-에이코실말레산 무수물, 2-(1-메틸비닐)말레산 무수물, 2-(2-알릴)말레산 무수물, 2-(1-에틸비닐)말레산 무수물, 2-(2-메틸알릴)말레산 무수물, 2-(2-부테닐)말레산 무수물, 2-(2-헥세닐)말레산 무수물, 2-(1-에틸-2-펜테닐)말레산 무수물, 2-(3-도데세닐)말레산 무수물, 2-프로파르길말레산 무수물, 2-(3-부티닐)말레산 무수물, 2-(3-메틸-2-프로피닐)말레산 무수물, 2-(9-데시닐)말레산 무수물 등을 들 수 있다.As an example of the maleic anhydride compound represented by Formula (1), citraconic acid anhydride, 2-ethyl maleic anhydride, 2-isopropyl maleic anhydride, 2-n-butyl maleic anhydride, 2-t-butyl maleic anhydride Maleic acid, 2-n-pentylmaleic anhydride, 2-n-hexylmaleic anhydride, 2-n-heptylmaleic anhydride, 2-n-octylmaleic anhydride, 2-n-nonylmaleic anhydride, 2- n-decylmaleic anhydride, 2-n-dodecylmaleic anhydride, 2-n-eicosylmaleic anhydride, 2-(1-methylvinyl)maleic anhydride, 2-(2-allyl)maleic anhydride, 2-(1-ethylvinyl)maleic anhydride, 2-(2-methylallyl)maleic anhydride, 2-(2-butenyl)maleic anhydride, 2-(2-hexenyl)maleic anhydride, 2- (1-Ethyl-2-pentenyl)maleic anhydride, 2-(3-dodecenyl)maleic anhydride, 2-propargylmaleic anhydride, 2-(3-butynyl)maleic anhydride, 2-( 3-methyl-2-propynyl) maleic anhydride and 2-(9-decynyl) maleic anhydride.

광 반응이 효율적으로 진행되는 점에서, 이들 중에서는 무수 시트라콘산, 2-에틸 무수 말레산, 2-이소프로필 무수 말레산, 2-n-부틸 무수 말레산, 2-t-부틸 무수 말레산, 2-n-펜틸말레산 무수물, 2-n-헥실말레산 무수물, 2-n-헵틸말레산 무수물, 2-n-옥틸말레산 무수물, 2-n-노닐말레산 무수물, 2-n-데실말레산 무수물, 또는 2-n-도데실말레산 무수물 등이 바람직하고, 무수 시트라콘산, 2-에틸 무수 말레산, 2-이소프로필 무수 말레산, 2-n-부틸 무수 말레산, 2-t-부틸 무수 말레산, 2-n-펜틸말레산 무수물, 또는 2-n-헥실말레산 무수물 등이 보다 바람직하다.Since the photoreaction proceeds efficiently, among these, citraconic anhydride, 2-ethyl maleic anhydride, 2-isopropyl maleic anhydride, 2-n-butyl maleic anhydride, 2-t-butyl maleic anhydride , 2-n-pentylmaleic anhydride, 2-n-hexylmaleic anhydride, 2-n-heptylmaleic anhydride, 2-n-octylmaleic anhydride, 2-n-nonylmaleic anhydride, 2-n- Decylmaleic anhydride or 2-n-dodecylmaleic anhydride is preferable, and citraconic acid anhydride, 2-ethyl maleic anhydride, 2-isopropyl maleic anhydride, 2-n-butyl maleic anhydride, 2 - t-butyl maleic anhydride, 2-n-pentyl maleic anhydride, or 2-n-hexyl maleic anhydride, etc. are more preferable.

본 광 반응에서 중요한 역할을 하고 있는 것이 반응 용매인데, 반응 용매는, 탄산디에스테르이다. 탄산디에스테르로는, 그 중에서도, 탄산의 탄소수가 바람직하게는 1 ∼ 4, 보다 바람직하게는 1 ∼ 3, 특히 바람직하게는 1 또는 2 인 알킬디에스테르가 바람직하다. 구체적으로는, 탄산디메틸 또는 탄산디에틸이 바람직하고, 탄산디메틸이 특히 바람직하다.Although it is the reaction solvent which plays an important role in this photoreaction, the reaction solvent is diester carbonate. As diester carbonate, among these, an alkyl diester whose carbonic acid carbon number is preferably 1 to 4, more preferably 1 to 3, and particularly preferably 1 or 2 is preferable. Specifically, dimethyl carbonate or diethyl carbonate is preferable, and dimethyl carbonate is particularly preferable.

본 발명에서는, 탄산디에스테르와, 탄산디에스테르 이외의 부용매를 병용할 수도 있다. 그러한 용매로는, 포름산메틸, 포름산에틸, 포름산 n-프로필, 포름산 i-프로필, 포름산 n-부틸, 포름산 i-부틸, 아세트산메틸, 아세트산에틸, 아세트산 n-프로필, 아세트산 i-프로필, 아세트산 n-부틸, 아세트산 i-부틸, 프로피온산메틸, 프로피온산에틸, 프로피온산 n-프로필, 프로피온산 i-프로필, 프로피온산 n-부틸, 프로피온산 i-부틸, 에틸렌글리콜디포르메이트, 에틸렌글리콜디아세테이트, 에틸렌글리콜디프로피오네이트 등을 들 수 있다.In the present invention, diester carbonate and a sub-solvent other than diester carbonate can also be used in combination. Such solvents include methyl formate, ethyl formate, n-propyl formate, i-propyl formate, n-butyl formate, i-butyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-acetate Butyl, i-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, n-butyl propionate, i-butyl propionate, ethylene glycol diformate, ethylene glycol diacetate, ethylene glycol dipropionate etc. can be mentioned.

이들 중에서, 보다 바람직한 용매는, 포름산메틸, 포름산에틸, 아세트산메틸, 아세트산에틸, 아세트산 n-프로필, 아세트산 i-프로필, 프로피온산메틸, 프로피온산에틸, 프로피온산 n-프로필, 프로피온산 i-프로필, 에틸렌글리콜디포르메이트, 에틸렌글리콜디아세테이트 등이고, 가장 바람직한 용매는, 아세트산에틸이다.Among these, more preferable solvents are methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, and ethylene glycol dipole. Mate, ethylene glycol diacetate, etc., and the most preferable solvent is ethyl acetate.

탄산디에스테르를 용매로서 사용하는, DACBDA 유도체의 제조 방법의 우수한 특징은, 원료인 무수 말레산 화합물의 용해도가 높음에도 불구하고, 생성된 CBDA 화합물의 용해도가 낮고, 결정으로서 석출되기 때문에, DACBDA 화합물로부터의 무수 말레산 화합물에 대한 역반응이나 올리고머 생성 등의 부반응을 억제할 수 있는 것이다.The excellent feature of the method for producing a DACBDA derivative using a diester carbonate as a solvent is that despite the high solubility of the maleic anhydride compound as a raw material, the solubility of the resulting CBDA compound is low and precipitates as crystals, so that the DACBDA compound It is possible to suppress side reactions such as reverse reactions to maleic anhydride compounds from or formation of oligomers.

용매의 사용량은, 무수 말레산 화합물에 대하여 3 ∼ 300 질량 배, 보다 바람직하게는 3 ∼ 250 질량 배이다.The amount of the solvent used is 3 to 300 times by mass, more preferably 3 to 250 times by mass relative to the maleic anhydride compound.

또한, 반응 용매의 사용량은 반응을 빠르게 하고자 하는 경우나, 생성물의 수량을 많게 하고자 하는 경우에는 적은 것이 바람직하고, 예를 들어, 무수 말레산 화합물의 농도가 진해지면, 반응이 빨라져, 얻어지는 생성물의 수량이 많아진다. 따라서, 반응을 빠르게 하고자 하는 경우나, 생성물의 수량을 많게 하고자 하는 경우에는, 용매의 사용량은 무수 말레산 화합물에 대하여 3 ∼ 10 질량 배가 바람직하다.In addition, the amount of the reaction solvent used is preferably small when the reaction is to be accelerated or when the yield of the product is to be increased. For example, when the concentration of the maleic anhydride compound is increased, the reaction is accelerated and quantity increases Therefore, when the reaction is to be accelerated or when the yield of the product is to be increased, the amount of the solvent used is preferably 3 to 10 times by mass relative to the maleic anhydride compound.

본 광 반응에서는, 광의 파장이 200 ∼ 400 ㎚, 보다 바람직하게는 250 ∼ 350 ㎚, 특히 바람직하게는 280 ∼ 330 ㎚ 이다. 광원으로는, 저압 수은등, 중압 수은등, 고압 수은등, 초고압 수은등, 크세논 램프, 무전극 램프, 발광 다이오드 등이, 특이적으로 고수율로 CBDA 유도체 화합물을 부여하는 점에서 바람직하다. 그 중에서도, 고압 수은등, 초고압 수은등, 또는 발광 다이오드가 바람직하다.In this photoreaction, the wavelength of light is 200 to 400 nm, more preferably 250 to 350 nm, and particularly preferably 280 to 330 nm. As the light source, a low-pressure mercury-vapor lamp, a medium-pressure mercury-vapor lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, an electrodeless lamp, a light emitting diode, and the like are preferable in terms of providing a CBDA derivative compound in a specific high yield. Especially, a high-pressure mercury-vapor lamp, an ultra-high-pressure mercury-vapor lamp, or a light emitting diode is preferable.

또한, 광 화학 반응 장치로서, 광원 냉각관을 석영 유리로부터 파이렉스 (등록상표) 유리로 바꿈으로써, 광원 냉각관에 대한 착색 폴리머 부착이나 불순물이 감소하고, CBDA 유도체 화합물의 수율 개선을 볼 수 있기 때문에 바람직하다.In addition, as a photochemical reaction device, by changing the light source cooling tube from quartz glass to Pyrex (registered trademark) glass, the adhesion of colored polymers to the light source cooling tube and impurities is reduced, and the yield of CBDA derivative compounds can be improved. desirable.

반응 온도는, 고온이 되면 중합물이 부생하고, 또한 저온이 되면 무수 말레산 화합물의 용해도가 저하하여 생산 효율이 감소하는 점에서, -20 ∼ 80 ℃ 에서 실시하는 것이 바람직하고, 더욱 바람직하게는 -10 ∼ 50 ℃ 이다. 특히, 0 ∼ 20 ℃ 의 온도 범위에서는, 부생물의 생성이 대폭 억제되어, 높은 선택률 및 수율로 CBDA 유도체 화합물이 얻어진다.The reaction temperature is preferably -20 to 80 ° C., and more preferably - from the viewpoint that when the reaction temperature is high, a polymer is produced as a by-product, and when the temperature is low, the solubility of the maleic anhydride compound decreases and the production efficiency decreases. It is 10-50 degreeC. In particular, in the temperature range of 0 to 20°C, generation of by-products is significantly suppressed, and CBDA derivative compounds are obtained with high selectivity and yield.

반응 시간은, 무수 말레산 화합물의 양, 광원의 종류, 조사량 등에 따라서도 바뀌지만, 미반응의 무수 말레산 화합물이 0 ∼ 40 %, 바람직하게는 0 ∼ 10 % 에 이를 때까지의 시간 동안 실시할 수 있다.The reaction time varies depending on the amount of maleic anhydride compound, the type of light source, the amount of irradiation, etc., but is carried out for a period of time until the unreacted maleic anhydride compound reaches 0 to 40%, preferably 0 to 10% can do.

반응 시간은, 구체적으로는, 광원으로서 고압 수은등 또는 발광 다이오드를 이용하고, 반응 용매로서 탄산디메틸 또는 아세트산에틸을 이용하고, 증감제로서 4,4'-디플루오로벤조페논 또는 4,4'-디클로로벤조페논을 이용하여, 0 ∼ 20 ℃ 의 반응 온도 범위의 조건하에서는, 통상적으로, 1 ∼ 200 시간, 바람직하게는 1 ∼ 100 시간, 더욱 바람직하게는, 1 ∼ 60 시간이다.The reaction time is specifically, using a high pressure mercury lamp or light emitting diode as a light source, using dimethyl carbonate or ethyl acetate as a reaction solvent, and using 4,4'-difluorobenzophenone or 4,4'- as a sensitizer. Using dichlorobenzophenone, it is usually 1 to 200 hours, preferably 1 to 100 hours, and more preferably 1 to 60 hours under conditions of a reaction temperature range of 0 to 20°C.

또한, 전화율은 가스 크로마토그래피 등으로 반응액을 분석함으로써, 구할 수 있다.In addition, conversion rate can be calculated|required by analyzing a reaction liquid by gas chromatography etc.

반응 시간이 길어져, 무수 말레산 화합물의 전화율이 높아지고, CBDA 유도체 화합물의 석출량이 많아지면, 생성된 CBDA 유도체 화합물이, 광원 냉각관의 외벽 (반응액측) 에 부착되기 시작하고, 분해 반응의 병발에 의한 결정의 착색화, 광 효율 (단위 전력 x 시간 당의 수율) 의 저하가 보인다. 따라서, 무수 말레산 화합물의 전화율을 높이기 위해서, 1 배치로 장시간 가하는 것은, 실용상, 생산 효율의 저하를 수반하여 바람직하지 않다.When the reaction time becomes longer, the conversion rate of the maleic anhydride compound increases, and the amount of the CBDA derivative compound precipitated increases, the produced CBDA derivative compound begins to adhere to the outer wall (reaction liquid side) of the light source cooling pipe, resulting in concurrent decomposition reaction. Coloration of the crystal by the crystal, decrease in light efficiency (yield per unit power x time) is observed. Therefore, in order to raise the conversion rate of a maleic anhydride compound, it is unpreferable to apply in 1 batch for a long time with the fall of production efficiency practically.

또한, 반응은 배치식 또는 유통식으로 실시하는 것이 가능하지만, 배치식이 바람직하게 사용된다.In addition, although it is possible to carry out a reaction by a batch type or a flow type, a batch type is preferably used.

또한, 반응시의 압력은, 상압이어도 되고 가압이어도 되고, 어느 것이어도 상관없다. 바람직하게는, 상압이다.In addition, the pressure at the time of reaction may be normal pressure or pressurized pressure, and it does not matter which one. Preferably, it is normal pressure.

또한, 본 발명의 제조 방법은, 증감제를 첨가하여 실시할 수도 있다. 증감제로는, 벤조페논, 벤즈알데하이드, 안트라퀴논, 전자 구인성기가 치환한 벤조페논, 전자 구인성기가 치환한 아세토페논, 전자 구인성기가 치환한 벤즈알데하이드 등을 들 수 있다.Moreover, the manufacturing method of this invention can also be implemented by adding a sensitizer. Examples of the sensitizer include benzophenone, benzaldehyde, anthraquinone, benzophenone substituted with an electron withdrawing group, acetophenone substituted with an electron withdrawing group, and benzaldehyde substituted with an electron withdrawing group.

전자 구인성기로는, 플루오로기, 클로로기, 브로모기, 요오드기, 니트로기, 시아노기, 및 트리플루오로메틸기로 이루어지는 군에서 선택되는 적어도 1 종을 들 수 있고, 플루오로기, 클로로기, 브로모기, 시아노기, 및 트리플루오로메틸기 등이 바람직하다. 특히 바람직한 전자 구인성기로는, 플루오로기 또는 클로로기이다.Examples of the electron withdrawing group include at least one selected from the group consisting of a fluoro group, a chloro group, a bromo group, an iodine group, a nitro group, a cyano group, and a trifluoromethyl group, and a fluoro group, a chloro group , a bromo group, a cyano group, and a trifluoromethyl group are preferred. A particularly preferable electron withdrawing group is a fluoro group or a chloro group.

전자 구인성기의 수로는, 1 ∼ 10 개이지만, 1 ∼ 5 개가 바람직하고, 본 발명의 효과의 점에서, 1 ∼ 3 개가 바람직하다.Although the number of electron withdrawing groups is 1-10, 1-5 are preferable, and 1-3 are preferable from the point of the effect of this invention.

전자 구인성기의 치환 위치로는, 카르보닐기에 대하여 오르토 위치, 메타 위치, 파라 위치를 들 수 있지만, 오르토 위치 또는 파라 위치가 바람직하다.Examples of the substitution position of the electron withdrawing group include an ortho position, a meta position and a para position with respect to the carbonyl group, but an ortho position or a para position is preferable.

전자 구인성기의 수가 2 이상인 경우에는, 전자 구인성기는 동일해도 되고, 각각 상이한 것이어도 된다. 또한, 오르토 위치에 치환한 2 개의 전자 구인성기가 하나가 되어 카르보닐기를 형성하는 경우 (안트라퀴논) 여도 된다.When the number of electron withdrawing groups is two or more, the electron withdrawing groups may be the same or different. Alternatively, it may be a case where two electron withdrawing groups substituted at ortho positions combine to form a carbonyl group (anthraquinone).

벤조페논 및 전자 구인성기가 치환한 벤조페논의 구체예로는, 벤조페논, 2-플루오로벤조페논, 3-플루오로벤조페논, 4-플루오로벤조페논, 2-클로로벤조페논, 3-클로로벤조페논, 4-클로로벤조페논, 2-시아노벤조페논, 3-시아노벤조페논, 4-시아노벤조페논, 2-니트로벤조페논, 3-니트로벤조페논, 4-니트로벤조페논, 2,4'-디클로로벤조페논, 4,4'-디플루오로벤조페논, 4,4'-디클로로벤조페논, 4,4'-디브로모벤조페논, 3,3'-비스(트리플루오로메틸)벤조페논, 3,4'-디니트로벤조페논, 3,3'-디니트로벤조페논, 4,4'-디니트로벤조페논, 2-클로로-5-니트로벤조페논, 1,3-비스(4-플루오로벤조일)벤젠, 1,3-비스(4-클로로벤조일)벤젠, 2,6-디벤조일벤조니트릴, 1,3-디벤조일-4,6-디니트로벤젠, 안트라퀴논 등을 들 수 있다.Specific examples of benzophenone and benzophenone substituted with an electron withdrawing group include benzophenone, 2-fluorobenzophenone, 3-fluorobenzophenone, 4-fluorobenzophenone, 2-chlorobenzophenone, and 3-chloro. Benzophenone, 4-chlorobenzophenone, 2-cyanobenzophenone, 3-cyanobenzophenone, 4-cyanobenzophenone, 2-nitrobenzophenone, 3-nitrobenzophenone, 4-nitrobenzophenone, 2, 4'-dichlorobenzophenone, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, 3,3'-bis(trifluoromethyl) Benzophenone, 3,4'-dinitrobenzophenone, 3,3'-dinitrobenzophenone, 4,4'-dinitrobenzophenone, 2-chloro-5-nitrobenzophenone, 1,3-bis(4 -Fluorobenzoyl)benzene, 1,3-bis(4-chlorobenzoyl)benzene, 2,6-dibenzoylbenzonitrile, 1,3-dibenzoyl-4,6-dinitrobenzene, anthraquinone, and the like. have.

이들 중에서는, 4,4'-디플루오로벤조페논, 또는 4,4'-디클로로벤조페논 등이 바람직하다.Among these, 4,4'-difluorobenzophenone or 4,4'-dichlorobenzophenone is preferable.

아세토페논 및 전자 구인성기가 치환한 아세토페논의 구체예로는, 아세토페논, 2'-플루오로아세토페논, 3'-플루오로아세토페논, 4'-플루오로아세토페논, 2'-클로로아세토페논, 3'-클로로아세토페논, 4'-클로로아세토페논, 2'-시아노아세토페논, 3'-시아노아세토페논, 4'-시아노아세토페논, 2'-니트로아세토페논, 3'-니트로아세토페논, 4'-니트로아세토페논, 2',4'-디플루오로아세토페논, 3',4'-디플루오로아세토페논, 2',4'-디클로로아세토페논, 3',4'-디클로로아세토페논, 4'-클로로-3'-니트로아세토페논, 4'-브로모-3'-니트로아세토페논, 4'-플루오로-3'-니트로아세토페논 등을 들 수 있다.Specific examples of acetophenone and acetophenone substituted with an electron withdrawing group include acetophenone, 2'-fluoroacetophenone, 3'-fluoroacetophenone, 4'-fluoroacetophenone, and 2'-chloroacetophenone. , 3'-chloroacetophenone, 4'-chloroacetophenone, 2'-cyanoacetophenone, 3'-cyanoacetophenone, 4'-cyanoacetophenone, 2'-nitroacetophenone, 3'-nitro Acetophenone, 4'-nitroacetophenone, 2',4'-difluoroacetophenone, 3',4'-difluoroacetophenone, 2',4'-dichloroacetophenone, 3',4'- dichloroacetophenone, 4'-chloro-3'-nitroacetophenone, 4'-bromo-3'-nitroacetophenone, 4'-fluoro-3'-nitroacetophenone, and the like.

이들 중에서는, 4'-플루오로아세토페논, 4'-클로로아세토페논, 2',4'-디플루오로아세토페논, 3',4'-디플루오로아세토페논, 2',4'-디클로로아세토페논, 또는 3',4'-디클로로아세토페논 등이 바람직하다.Among these, 4'-fluoroacetophenone, 4'-chloroacetophenone, 2',4'-difluoroacetophenone, 3',4'-difluoroacetophenone, 2',4'-dichloro Acetophenone or 3',4'-dichloroacetophenone is preferable.

벤즈알데하이드 및 전자 구인성기가 치환한 벤즈알데하이드로는, 벤즈알데하이드, 2-플루오로벤즈알데하이드, 3-플루오로벤즈알데하이드, 4-플루오로벤즈알데하이드, 2-클로로벤즈알데하이드, 3-클로로벤즈알데하이드, 4-클로로벤즈알데하이드, 2-시아노벤즈알데하이드, 3-시아노벤즈알데하이드, 4-시아노벤즈알데하이드, 2-니트로벤즈알데하이드, 3-니트로벤즈알데하이드, 4-니트로벤즈알데하이드, 2,4-디플루오로벤즈알데하이드, 3,4-디플루오로벤즈알데하이드, 2,4-디클로로벤즈알데하이드, 3,4-디클로로벤즈알데하이드, 2-클로로-5-니트로벤즈알데하이드, 4-클로로-2-니트로벤즈알데하이드, 4-클로로-3-니트로벤즈알데하이드, 5-클로로-2-니트로벤즈알데하이드, 2-플루오로-5-니트로벤즈알데하이드, 4-플루오로-3-니트로벤즈알데하이드, 5-플루오로-2-니트로벤즈알데하이드 등을 들 수 있다.Benzaldehyde and benzaldehyde substituted with an electron withdrawing group include benzaldehyde, 2-fluorobenzaldehyde, 3-fluorobenzaldehyde, 4-fluorobenzaldehyde, 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, 4-chlorobenzaldehyde, 2-cyanobenzaldehyde, 3-cyanobenzaldehyde, 4-cyanobenzaldehyde, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde, 2,4-di Fluorobenzaldehyde, 3,4-difluorobenzaldehyde, 2,4-dichlorobenzaldehyde, 3,4-dichlorobenzaldehyde, 2-chloro-5-nitrobenzaldehyde, 4-chloro-2-nitrobenzaldehyde , 4-chloro-3-nitrobenzaldehyde, 5-chloro-2-nitrobenzaldehyde, 2-fluoro-5-nitrobenzaldehyde, 4-fluoro-3-nitrobenzaldehyde, 5-fluoro-2- Nitrobenzaldehyde etc. are mentioned.

이들 중에서는, 4-플루오로벤즈알데하이드, 4-클로로벤즈알데하이드, 2,4-디플루오로벤즈알데하이드, 3,4-디플루오로벤즈알데하이드, 2,4-디클로로벤즈알데하이드, 또는 3,4-디클로로벤즈알데하이드 등이 바람직하다.Among these, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 2,4-difluorobenzaldehyde, 3,4-difluorobenzaldehyde, 2,4-dichlorobenzaldehyde, or 3,4- Dichlorobenzaldehyde and the like are preferred.

사용하는 증감제의 양은, 광 반응 속도가 가속하는 양이면 되고, 특별히 한정되지 않지만, 바람직하게는, 무수 말레산 화합물에 대하여 0.1 ∼ 20 몰%, 보다 바람직하게는 0.1 ∼ 5 몰% 이다.The amount of the sensitizer to be used may be any amount that accelerates the photoreaction rate, and is not particularly limited, but is preferably 0.1 to 20 mol%, more preferably 0.1 to 5 mol% based on the maleic anhydride compound.

증감제는, 상기의 벤조페논 유도체, 아세토페논 유도체, 또는 벤즈알데하이드 유도체를 각각 단독으로, 혹은, 이들의 1 종 이상을 공존시켜 사용해도 되지만, 반응 후의 처리의 용이함으로부터는, 단독으로의 사용이 바람직하다.As the sensitizer, the above benzophenone derivatives, acetophenone derivatives, or benzaldehyde derivatives may be used independently, or one or more of them may be used in coexistence. desirable.

목적 화합물은, 광 반응 후, 반응액 중의 석출물을 여과하고, 여과 채취물을 유기 용매에서 세정한 후, 감압 건조시킴으로써 얻어진다.The target compound is obtained by filtering the precipitate in the reaction solution after photoreaction, washing the filtrate with an organic solvent, and drying under reduced pressure.

여과 채취물의 세정에 사용하는 유기 용매의 양은, 반응조 내에 잔존한 석출물을 여과기에 이송할 수 있는 양이면 되는데, 유기 용매의 양이 많은 경우에는 목적물이 여과액으로 이행하게 되어 회수율이 저하한다. 이 때문에, 여과 채취물의 세정에 사용하는 유기 용매의 양은, 반응에 사용한 무수 말레산 화합물에 대하여, 0.5 ∼ 10 중량 배가 바람직하고, 보다 바람직하게는 1 ∼ 2 중량 배이다.The amount of the organic solvent used for washing the filtering product may be an amount sufficient to transfer the precipitate remaining in the reaction tank to the filter, but when the amount of the organic solvent is large, the target substance migrates to the filtrate and the recovery rate decreases. For this reason, the amount of the organic solvent used for washing the filtrate is preferably 0.5 to 10 times the weight of the maleic anhydride compound used in the reaction, and more preferably 1 to 2 times the weight.

여과 채취물의 세정에 사용하는 유기 용매로는, 특별히 한정되지 않지만, 생성물의 용해도가 높은 용매의 사용은, 목적 화합물이 여과액으로 이행하게 되어 회수율이 저하하기 때문에 바람직하지 않다. 이 때문에, 여과 채취물의 세정에 사용하는 유기 용매로는, 광 2 량화 반응에 사용하는 반응 용매인, 포름산메틸, 포름산에틸, 포름산 n-프로필, 포름산 i-프로필, 포름산 n-부틸, 포름산 i-부틸, 아세트산메틸, 아세트산에틸, 아세트산 n-프로필, 아세트산 i-프로필, 아세트산 n-부틸, 아세트산 i-부틸, 프로피온산메틸, 프로피온산에틸, 프로피온산 n-프로필, 프로피온산 i-프로필, 프로피온산 n-부틸, 프로피온산 i-부틸, 에틸렌글리콜디포르메이트, 에틸렌글리콜디아세테이트, 에틸렌글리콜디프로피오네이트, 탄산디메틸, 탄산디에틸 등이나 생성물을 용해시키지 않고, 생성물과 반응하지 않는 용매, 예를 들어, 톨루엔, 헥산, 헵탄, 아세토니트릴, 아세톤, 클로로포름, 무수 아세트산이나 이들의 혼합 용매 등을 들 수 있다. 그 중에서도 아세트산에틸, 탄산디메틸, 무수 아세트산 등이 바람직하고, 보다 바람직하게는 아세트산에틸 또는 탄산디메틸이다.The organic solvent used for washing the filtrate is not particularly limited, but the use of a solvent with high product solubility is not preferable because the target compound migrates to the filtrate and the recovery rate decreases. For this reason, as the organic solvent used for washing the filtrate, methyl formate, ethyl formate, n-propyl formate, i-propyl formate, n-butyl formate, i- formate, which are reaction solvents used for photodimerization reaction, are used. Butyl, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, n-butyl propionate, propionic acid i-butyl, ethylene glycol diformate, ethylene glycol diacetate, ethylene glycol dipropionate, dimethyl carbonate, diethyl carbonate, etc., or a solvent that does not dissolve or react with the product, such as toluene, hexane , heptane, acetonitrile, acetone, chloroform, acetic anhydride, these mixed solvents, etc. are mentioned. Among them, ethyl acetate, dimethyl carbonate, acetic anhydride and the like are preferable, and ethyl acetate or dimethyl carbonate is more preferable.

실시예Example

이하에 실시예를 들어, 본 발명을 구체적으로 설명하지만, 본 발명은 이들에 한정되는 것은 아니다.Examples will be given below to specifically explain the present invention, but the present invention is not limited thereto.

또한, 실시예에서 사용한 분석법은 이하와 같다.In addition, the analysis method used in the Example is as follows.

<GC 분석 조건><GC analysis conditions>

장치 : GC-2010 Plus (SHIMADZU 사 제조),Device: GC-2010 Plus (manufactured by SHIMADZU),

칼럼 : DB-1 (지엘 사이언스사 제조) 0.25 ㎜ × 30 m, 막 두께 0.25 um,Column: DB-1 (manufactured by GL Sciences) 0.25 mm × 30 m, film thickness 0.25 um,

캐리어 가스 : He, 검출기 : FID, 시료 주입량 : 1 um, 주입구 온도 : 160 ℃, 검출기 온도 : 220 ℃, 칼럼 온도 : 70 ℃ (20 min) - 40 ℃/min - 220 ℃ (15 min), 스플릿비 : 1 : 50, 내부 표준 물질 : 락트산부틸.Carrier gas: He, detector: FID, sample injection amount: 1 um, inlet temperature: 160 °C, detector temperature: 220 °C, column temperature: 70 °C (20 min) - 40 °C/min - 220 °C (15 min), split Ratio: 1:50, internal standard: butyl lactate.

1H NMR 분석 조건>< 1H NMR analysis conditions>

장치 : 푸리에 변감형 초전도 핵자기 공명 장치 (FT-NMR) INOVA-400 (Varian 사 제조) 400 ㎒,Device: Fourier transform superconducting nuclear magnetic resonance (FT-NMR) INOVA-400 (manufactured by Varian) 400 MHz,

용매 : DMSO-d6, 내표준 물질 : 테트라메틸실란 (TMS).Solvent: DMSO-d6, Inner standard: tetramethylsilane (TMS).

<융점 분석 조건><Melting point analysis conditions>

장치 : DSC1 (메틀러·톨레도사 제조),Apparatus: DSC1 (manufactured by Mettler-Toledo),

온도 : 35 ℃ - 5 ℃/min - 400 ℃, 팬 : Au (밀폐).Temperature: 35 °C - 5 °C/min - 400 °C, Pan: Au (closed).

비교예 1Comparative Example 1

[화학식 4][Formula 4]

Figure pat00004
Figure pat00004

질소 분위기하, 30 ㎖ 파이렉스 (등록상표) 유리제 시험관에, 시트라콘산 무수물 (CA) 0.10 g (0.89 m㏖), 및 아세트산메틸 20 g (270 m㏖, 시트라콘산 무수물 (CA) 에 대하여 200 wt 배) 을 주입하고, 마그네틱 스터러로 교반시켜 용해시켰다. 그 후, 5 - 10 ℃ 에서 교반하면서, 100 W 고압 수은등을 4 시간 조사하였다. 조사 후에 반응액을 가스 크로마토그래피로 정량 분석한 결과, 시트라콘산 무수물 (CA) 의 잔존율은 29.9 % 였다. 또한, 반응기 중의 반응액을 2 g 채취하고, 이배퍼레이터로 70 - 80 Torr 에서 용매 증류 제거하였다. 얻어진 미정제물은, 1H NMR 해석에 의해, 1,3-DM-CBDA 와 1,2-DM-CBDA 를 포함하는 혼합물 (1,3-DM-CBDA : 1,2-DM-CBDA = 42.6 : 57.4) 인 것을 확인하였다.Under a nitrogen atmosphere, in a 30 ml Pyrex (registered trademark) glass test tube, citraconic anhydride (CA) 0.10 g (0.89 mmol), and methyl acetate 20 g (270 mmol, 200 wt pear) was injected and dissolved by stirring with a magnetic stirrer. Thereafter, the mixture was irradiated with a 100 W high-pressure mercury vapor lamp for 4 hours while stirring at 5 to 10°C. As a result of quantitative analysis of the reaction solution by gas chromatography after irradiation, the residual rate of citraconic acid anhydride (CA) was 29.9%. Further, 2 g of the reaction liquid in the reactor was sampled, and the solvent was distilled off at 70 to 80 Torr with an evaporator. The obtained crude product was a mixture containing 1,3 -DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA = 42.6: 57.4) was confirmed.

1H NMR (DMSO-d6, δ ppm) (1,3-DM-CBDA) : 1.38 (s, 6H), 3.89 (s, 2H). 1 H NMR (DMSO-d6, δ ppm) (1,3-DM-CBDA): 1.38 (s, 6H), 3.89 (s, 2H).

1H NMR (DMSO-d6, δ ppm) (1,2-DM-CBDA) : 1.37 (s, 6H), 3.72 (s, 2H). 1 H NMR (DMSO-d6, δ ppm) (1,2-DM-CBDA): 1.37 (s, 6H), 3.72 (s, 2H).

실시예 1Example 1

[화학식 5][Formula 5]

Figure pat00005
Figure pat00005

질소 분위기하, 30 ㎖ 파이렉스 (등록상표) 유리제 시험관에, 시트라콘산 무수물 (CA) 0.10 g (0.89 m㏖), 및 탄산디메틸 20 g (222 m㏖, 시트라콘산 무수물 (CA) 에 대하여 200 wt 배) 을 주입하고, 마그네틱 스터러로 교반시켜 용해시켰다. 그 후, 15 - 20 ℃ 에서 교반하면서, 100 W 고압 수은등을 4 시간 조사하였다. 조사 후에 반응액을 가스 크로마토그래피로 정량 분석한 결과, 시트라콘산 무수물 (CA) 의 잔존율은 26.2 % 였다. 또한, 반응기 중의 반응액을 2 g 채취하고, 이배퍼레이터로 70 - 80 Torr 에서 용매 증류 제거하였다. 얻어진 미정제물은, 1H NMR 해석에 의해, 1,3-DM-CBDA 와 1,2-DM-CBDA 를 포함하는 혼합물 (1,3-DM-CBDA : 1,2-DM-CBDA = 48.3 : 51.7) 인 것을 확인하였다.In a nitrogen atmosphere, in a 30 ml Pyrex (registered trademark) glass test tube, 0.10 g (0.89 mmol) of citraconic acid anhydride (CA), and 20 g (222 mmol) of citraconic acid anhydride (CA), 200 wt pear) was injected and dissolved by stirring with a magnetic stirrer. Thereafter, the mixture was irradiated with a 100 W high-pressure mercury vapor lamp for 4 hours while stirring at 15 - 20°C. As a result of quantitative analysis of the reaction solution by gas chromatography after irradiation, the residual rate of citraconic acid anhydride (CA) was 26.2%. Further, 2 g of the reaction liquid in the reactor was sampled, and the solvent was distilled off at 70 to 80 Torr with an evaporator. The obtained crude product was a mixture containing 1,3 -DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA = 48.3: 51.7) was confirmed.

비교예 2 ∼ 28, 및 실시예 2Comparative Examples 2 to 28 and Example 2

일련의 조작은 비교예 1 과 동일하게, 각 용매를 시트라콘산 무수물 (CA) 에 대하여 200 wt 배 첨가하여 실시하고, 비교예 1 과 동일한 방법으로, 시트라콘산 무수물 (CA) 의 잔존율, 및 1,3-DM-CBDA 와 1,2-DM-CBDA 의 생성비 (1,3-DM-CBDA : 1,2-DM-CBDA) 를 산출하였다.A series of operations were carried out in the same manner as in Comparative Example 1 by adding 200 wt times of each solvent relative to citraconic acid anhydride (CA), and in the same manner as in Comparative Example 1, the remaining ratio of citraconic acid anhydride (CA), And the production ratio of 1,3-DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA) was calculated.

용매, 온도, 부생물량 및 결과를 이하의 표에 나타낸다. 또한, 여기서 얻어진 반응액의 시트라콘산 무수물의 잔존율, 및 1,3-DM-CBDA 와 1,2-DM-CBDA 의 생성비를 산출하고, 비교예 1 및 실시예 1 에서 얻어진 결과와 함께 표에 나타낸다. 또한, 표 중의 반응 속도는, 사용한 시트라콘산의 몰수와, 4 시간 반응시킨 시점에서의 시트라콘산의 잔존율로부터 계산하였다.The solvent, temperature, by-product amount and result are shown in the table below. In addition, the residual ratio of citraconic acid anhydride and the production ratio of 1,3-DM-CBDA and 1,2-DM-CBDA in the reaction solution obtained here were calculated, together with the results obtained in Comparative Example 1 and Example 1. shown in the table. In addition, the reaction rate in the table|surface was calculated from the number of moles of citraconic acid used, and the residual rate of citraconic acid at the time of reaction for 4 hours.

Figure pat00006
Figure pat00006

실시예 3Example 3

[화학식 6][Formula 6]

Figure pat00007
Figure pat00007

질소 분위기하, 300 ㎖ 파이렉스 (등록상표) 유리제 5 구 플라스크에, 시트라콘산 무수물 (CA) 35.0 g (312 m㏖), 및 탄산디메틸 152 g (1682 m㏖, 시트라콘산 무수물 (CA) 에 대하여 4.33 wt 배) 을 주입하고, 마그네틱 스터러로 교반시켜 용해시켰다. 그 후, 10 - 15 ℃ 에서 교반하면서, 100 W 고압 수은등을 48 시간 조사하였다. 반응액은 가스 크로마토그래피 분석에 의해, 원료 잔존율이 23.7 % 인 것을 확인하였다. 이어서, 석출된 백색 결정을 10 - 15 ℃ 에서 여과에 의해 취출하고, 이 결정을 아세트산에틸 43.8 g (497 m㏖, 시트라콘산 무수물 (CA) 에 대하여 1.25 wt 배) 으로 2 회 세정하였다. 이것을 감압 건조시킴으로써, 백색 결정 8.1 g (수율 23.1 %) 을 얻었다. 이 결정은, 1H NMR 해석에 의해, 1,3-DM-CBDA 와 1,2-DM-CBDA 를 포함하는 혼합물 (1,3-DM-CBDA : 1,2-DM-CBDA = 90.3 : 9.7) 인 것을 확인하였다. 또한, 얻어진 결정, 여과액, 세정액을 각각 1H NMR 해석 및 가스 크로마토그래피로 정량 분석하고, 주입량에 대한 매스 밸런스는 88.9 % 였다.Under a nitrogen atmosphere, in a 300 ml Pyrex (registered trademark) glass five-neck flask, 35.0 g (312 mmol) of citraconic acid anhydride (CA), and 152 g (1682 mmol) of citraconic acid anhydride (CA) 4.33 wt times) was injected and dissolved by stirring with a magnetic stirrer. Thereafter, the mixture was irradiated with a 100 W high-pressure mercury lamp for 48 hours while stirring at 10 - 15°C. The reaction liquid was confirmed to have a raw material residual rate of 23.7% by gas chromatography analysis. Then, the precipitated white crystals were taken out by filtration at 10 - 15°C, and these crystals were washed twice with 43.8 g of ethyl acetate (497 mmol, 1.25 wt times citraconic anhydride (CA)). By drying this under reduced pressure, 8.1 g of white crystals (23.1% yield) were obtained. This crystal was determined by 1 H NMR analysis to be a mixture containing 1,3-DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA = 90.3: 9.7 ) was confirmed. In addition, the obtained crystals, filtrate, and washing liquid were quantitatively analyzed by 1 H NMR analysis and gas chromatography, respectively, and the mass balance with respect to the injected amount was 88.9%.

실시예 4Example 4

[화학식 7][Formula 7]

Figure pat00008
Figure pat00008

질소 분위기하, 30 ㎖ 파이렉스 (등록상표) 유리제 시험관에, 시트라콘산 무수물 (CA) 0.10 g (0.89 m㏖), 벤조페논 (BP) 0.020 g (0.11 m㏖, 시트라콘산 무수물 (CA) 에 대하여 20 질량%), 및 탄산디메틸 20 g (222 m㏖, 시트라콘산 무수물 (CA) 에 대하여 200 질량 배) 을 주입하고, 마그네틱 스터러로 교반시켜 용해시켰다. 그 후, 10 - 15 ℃ 에서 교반하면서, 100 W 고압 수은등을 4 시간 조사하였다. 조사 후에 반응액을 가스 크로마토그래피로 정량 분석한 결과, 시트라콘산 무수물 (CA) 의 잔존율은 3.9 % 였다. 또한, 반응기 중의 반응액을 2 g 채취하고, 이배퍼레이터로 70 - 80 Torr 에서 용매 증류 제거하였다. 얻어진 미정제물은, 1H NMR 해석에 의해 1,3-DM-CBDA 와 1,2-DM-CBDA 를 포함하는 혼합물 (1,3-DM-CBDA : 1,2-DM-CBDA = 48.3 : 51.7) 인 것을 확인하였다.In a nitrogen atmosphere, in a 30 ml Pyrex (registered trademark) glass test tube, citraconic anhydride (CA) 0.10 g (0.89 mmol), benzophenone (BP) 0.020 g (0.11 mmol, citraconic anhydride (CA) 20% by mass) and 20 g (222 mmol, 200 times by mass relative to citraconic acid anhydride (CA)), and stirred with a magnetic stirrer to dissolve. Thereafter, the mixture was irradiated with a 100 W high-pressure mercury vapor lamp for 4 hours while stirring at 10 - 15°C. As a result of quantitative analysis of the reaction solution by gas chromatography after irradiation, the residual rate of citraconic acid anhydride (CA) was 3.9%. Further, 2 g of the reaction liquid in the reactor was sampled, and the solvent was distilled off at 70 to 80 Torr with an evaporator. The obtained crude product was a mixture containing 1,3-DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA = 48.3: 51.7 by 1 H NMR analysis). ) was confirmed.

실시예 5Example 5

일련의 조작은 실시예 4 와 동일하게, 증감제로서 4,4'-디클로로벤조페논 (DClBP) 을 첨가하여 실시하고, 비교예 1 과 동일한 방법으로, 시트라콘산 무수물 (CA) 의 잔존율, 및 1,3-DM-CBDA 와 1,2-DM-CBDA 의 생성비 (1,3-DM-CBDA : 1,2-DM-CBDA) 를 산출하였다.A series of operations were carried out by adding 4,4'-dichlorobenzophenone (DClBP) as a sensitizer in the same way as in Example 4, and in the same manner as in Comparative Example 1, the residual ratio of citraconic acid anhydride (CA), And the production ratio of 1,3-DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 1,2-DM-CBDA) was calculated.

용매, 온도, 증감제, 부생물량 및 결과를 이하의 표에 나타낸다. 또한, 여기서 얻어진 반응액의 시트라콘산 무수물의 잔존율, 및 1,3-DM-CBDA 와 1,2-DM-CBDA 의 생성비를 산출하고, 실시예 4 에서 얻어진 결과와 함께 표에 나타낸다. 또한, 표 중의 반응 속도는, 사용한 시트라콘산의 몰수와, 4 시간 반응시킨 시점에서의 시트라콘산의 잔존율로부터 계산하였다.The solvent, temperature, sensitizer, by-product amount and results are shown in the table below. In addition, the residual ratio of citraconic acid anhydride and the production ratio of 1,3-DM-CBDA and 1,2-DM-CBDA in the reaction solution obtained here were calculated, and the results obtained in Example 4 are shown in a table. In addition, the reaction rate in the table|surface was calculated from the number of moles of citraconic acid used, and the residual rate of citraconic acid at the time of reaction for 4 hours.

Figure pat00009
Figure pat00009

참고예 1Reference example 1

[화학식 8][Formula 8]

Figure pat00010
Figure pat00010

질소 기류하 중, 200 ㎖ 의 4 구 플라스크에, 실시예 3 과 동일한 방법으로 얻어진, 1,3-DM-CBDA 와 1,2-DM-CBDA 를 포함하는 혼합물 (1,3-DM-CBDA : 1,2-DM-CBDA = 85 : 15) 18.3 g, 및 무수 아세트산 92 g 을 주입하고, 마그네틱 스터러로 교반하, 25 ℃ 에서 현탁시켰다. 그 후, 4 시간 가열 환류 (130 ℃) 시켰다. 그 후, 내온을 25 ℃ 이하까지 냉각시키고, 1 시간 25 ℃ 이하에서 교반시켰다. 그 후, 석출된 백색 결정을 여과하고, 그 결정을 아세트산에틸 18 g 으로 2 회 세정한 후, 얻어진 백색 결정을 감압 건조시킴으로써, 고순도의 1,3-DM-CBDA 14.4 g (수율 92 %) 을 얻었다. 이 결정은, 1H NMR 해석에 의해, 1,3-DM-CBDA 와 1,2-DM-CBDA 의 비율이 1,3-DM-CBDA : 1,2-DM-CBDA = 99.5 : 0.5 인 것을 확인하였다.A mixture containing 1,3-DM-CBDA and 1,2-DM-CBDA (1,3-DM-CBDA: 18.3 g of 1,2-DM-CBDA = 85:15) and 92 g of acetic anhydride were charged, and suspended at 25°C while stirring with a magnetic stirrer. After that, it was heated to reflux (130°C) for 4 hours. Thereafter, the internal temperature was cooled to 25°C or lower, and the mixture was stirred at 25°C or lower for 1 hour. Thereafter, the precipitated white crystals were filtered, washed twice with 18 g of ethyl acetate, and then dried under reduced pressure to obtain 14.4 g of highly pure 1,3-DM-CBDA (yield: 92%). Got it. This determination was made by 1 H NMR analysis, indicating that the ratio of 1,3-DM-CBDA to 1,2-DM-CBDA was 1,3-DM-CBDA: 1,2-DM-CBDA = 99.5: 0.5. Confirmed.

1H NMR (DMSO-d6, δ ppm) (1,3-DM-CBDA) : 1.38 (s, 6H), 3.89 (s, 2H). 1 H NMR (DMSO-d6, δ ppm) (1,3-DM-CBDA): 1.38 (s, 6H), 3.89 (s, 2H).

1H NMR (DMSO-d6, δ ppm) (1,2-DM-CBDA) : 1.37 (s, 6H), 3.72 (s, 2H). 1 H NMR (DMSO-d6, δ ppm) (1,2-DM-CBDA): 1.37 (s, 6H), 3.72 (s, 2H).

mp. (1,3-DM-CBDA) : 316 - 317 ℃mp. (1,3-DM-CBDA): 316 - 317 ℃

본 발명에서 얻어지는 시클로부탄테트라카르복실산 유도체는, 폴리아믹산, 폴리이미드 등의 원료로서 유용한 화합물로, 그 폴리이미드 등은 액정 표시 소자나 반도체에 있어서의 보호 재료, 절연 재료 등의 전자 재료에 사용되는 수지 조성물로서 산업상, 널리 이용되고 있다.The cyclobutanetetracarboxylic acid derivative obtained in the present invention is a compound useful as a raw material for polyamic acid and polyimide, etc. The polyimide is used in electronic materials such as liquid crystal display elements and semiconductor protective materials and insulating materials. It is industrially and widely used as a resin composition to be.

또한, 2014년 1월 17일에 출원된 일본 특허 출원 2014-007186호의 명세서, 특허 청구의 범위, 및 요약서의 전체 내용을 여기에 인용하고, 본 발명의 명세서의 개시로서 받아들이는 것이다.In addition, all the content of the JP Patent application 2014-007186, the claim, and the abstract for which it applied on January 17, 2014 is referred here, and it takes in as an indication of the specification of this invention.

Claims (1)

본원의 명세서에 기재된 모든 발명.All inventions described in the specification herein.
KR1020227041597A 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative KR20220162884A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2014-007186 2014-01-17
JP2014007186 2014-01-17
KR1020217035096A KR20210134078A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative
PCT/JP2015/051147 WO2015108168A1 (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217035096A Division KR20210134078A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative

Publications (1)

Publication Number Publication Date
KR20220162884A true KR20220162884A (en) 2022-12-08

Family

ID=53543051

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020167018452A KR20160108336A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative
KR1020217035096A KR20210134078A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative
KR1020227041597A KR20220162884A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020167018452A KR20160108336A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative
KR1020217035096A KR20210134078A (en) 2014-01-17 2015-01-16 Method for producing cyclobutane tetracarboxylic acid derivative

Country Status (5)

Country Link
JP (1) JP6565687B2 (en)
KR (3) KR20160108336A (en)
CN (1) CN105916866B (en)
TW (1) TWI648280B (en)
WO (1) WO2015108168A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916864B (en) * 2014-01-17 2018-07-06 日产化学工业株式会社 The manufacturing method of cyclobutane tetracarboxylic acid derivatives
KR102492874B1 (en) * 2014-01-17 2023-01-27 닛산 가가쿠 가부시키가이샤 Method for producing cyclobutane tetracarboxylic acid derivative
KR20210100756A (en) * 2014-01-17 2021-08-17 닛산 가가쿠 가부시키가이샤 Method for producing cyclobutane tetracarboxylic acid derivative
JP6939263B2 (en) * 2017-08-29 2021-09-22 Jsr株式会社 Method for producing cyclobutane derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208322A (en) 1982-05-31 1983-12-05 Japan Synthetic Rubber Co Ltd Polyimide compound
JPH0224294Y2 (en) 1984-10-25 1990-07-03
JPH04106127A (en) 1990-08-28 1992-04-08 Chisso Corp Solvent-soluble polyimide, its production, and material for color filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188427A (en) 1984-03-09 1985-09-25 Nissan Chem Ind Ltd Novel polyimide resin and its production
JP4852206B2 (en) * 2001-12-26 2012-01-11 日産化学工業株式会社 Method for producing cyclobutanetetracarboxylic dianhydride compound
JP2006328027A (en) * 2005-05-30 2006-12-07 Nof Corp Method for producing cyclobutanetetracarboxylic acid dianhydrides
JP2006347931A (en) * 2005-06-15 2006-12-28 Nissan Chem Ind Ltd Dialkylcyclobutanoic acid dianhydride and method for producing the same
KR100902159B1 (en) * 2007-06-13 2009-06-10 한국화학연구원 Low temperature processable substituted alicyclic polyimide photo-alignment layers and method for preparing liquid crystal cells
CN105916864B (en) * 2014-01-17 2018-07-06 日产化学工业株式会社 The manufacturing method of cyclobutane tetracarboxylic acid derivatives
KR102492874B1 (en) * 2014-01-17 2023-01-27 닛산 가가쿠 가부시키가이샤 Method for producing cyclobutane tetracarboxylic acid derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208322A (en) 1982-05-31 1983-12-05 Japan Synthetic Rubber Co Ltd Polyimide compound
JPH0224294Y2 (en) 1984-10-25 1990-07-03
JPH04106127A (en) 1990-08-28 1992-04-08 Chisso Corp Solvent-soluble polyimide, its production, and material for color filter

Also Published As

Publication number Publication date
TWI648280B (en) 2019-01-21
JP6565687B2 (en) 2019-08-28
CN105916866B (en) 2018-08-28
JPWO2015108168A1 (en) 2017-03-23
KR20210134078A (en) 2021-11-08
TW201542560A (en) 2015-11-16
KR20160108336A (en) 2016-09-19
CN105916866A (en) 2016-08-31
WO2015108168A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
KR102254089B1 (en) Method for producing cyclobutane tetracarboxylic acid derivative
JP7021640B2 (en) Glycol, method for producing diol, method for producing di (meth) acrylate and di (meth) acrylate
JP6565687B2 (en) Method for producing cyclobutanetetracarboxylic acid derivative
JP6565686B2 (en) Method for producing cyclobutanetetracarboxylic acid derivative
KR102492874B1 (en) Method for producing cyclobutane tetracarboxylic acid derivative
KR102653978B1 (en) Method for producing cyclobutane tetracarboxylic acid derivative
JP6919745B2 (en) Method for producing high-purity 1,3-dialkylcyclobutane-1,2,3,4-tetracarboxylic acid-1,2: 3,4-dianhydride
JP2008230984A (en) NOVEL TETRAKIS(sec-BUTYLPHENOL) COMPOUND
JP2018123127A (en) Method for the synthesis and production of alkenyl compound
CN109232249A (en) A kind of preparation method of Multi substituted benzenes formic acid esters

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal