KR20220161836A - An energy complex production system - Google Patents

An energy complex production system Download PDF

Info

Publication number
KR20220161836A
KR20220161836A KR1020210070078A KR20210070078A KR20220161836A KR 20220161836 A KR20220161836 A KR 20220161836A KR 1020210070078 A KR1020210070078 A KR 1020210070078A KR 20210070078 A KR20210070078 A KR 20210070078A KR 20220161836 A KR20220161836 A KR 20220161836A
Authority
KR
South Korea
Prior art keywords
power generation
generation system
water
hydrogen
fuel cell
Prior art date
Application number
KR1020210070078A
Other languages
Korean (ko)
Inventor
하희운
박성태
송영진
김준호
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020210070078A priority Critical patent/KR20220161836A/en
Publication of KR20220161836A publication Critical patent/KR20220161836A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/61Application for hydrogen and/or oxygen production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/407Combination of fuel cells with mechanical energy generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

The present invention relates to an energy complex production system and, more specifically, to a complex production system which links solar power generation with fuel cell power generation to save energy required to reversely rotate hydraulic turbines in a pumped storage power generation system, thereby minimizing internal power leakage and utilizing high-temperature steam generated during a fuel cell power generation process as an energy source. The energy complex production system comprises: a pumped storage power generation system which produces electricity by rotating hydraulic turbines using hydropower falling from an upper reservoir to a lower reservoir; a solar power generation system which produces electricity using light coming from the sun; a hydrogen/oxygen production device which produces hydrogen and oxygen by using electricity generated from the solar power generation system; and a fuel cell power generation system which produces electricity by using the hydrogen produced from the hydrogen/oxygen production device, and reversely rotates the hydraulic turbines by using the produced electricity to pump up water from the lower reservoir to the upper reservoir.

Description

에너지 복합생산 시스템{An energy complex production system}An energy complex production system}

본 발명은 에너지 복합생산 시스템에 관한 것으로서, 더욱 상세하게는 태양광 발전과 연료전지 발전을 연계하여 소내전력 누수를 최소화하고, 부가 에너지 생산을 통해 에너지 생산 효율성을 높일 수 있도록 한 에너지 복합생산 시스템에 관한 것이다.The present invention relates to an energy complex production system, and more particularly, to an energy complex production system that minimizes power leakage by linking photovoltaic power generation with fuel cell power generation and increases energy production efficiency through additional energy production. it's about

일반적으로 전력생산방법으로는 화력발전, 원자력발전, 수력발전, 태양열 발전, 풍력발전, 조력발전 등이 있으며, 화력발전, 원자력 발전은 열에 의해 발생된 증기로 발전기의 터빈(turbine)을 회전시켜 전기를 발생시키고, 수력발전은 댐에 물의 낙차에 의해 터빈을 회전시켜 전기를 발생시킨다. 그러나 화력발전은 점차 고갈되어 가는 화석연료를 에너지원(energy source)로 사용하는 점과 공해유발로 환경을 오염시키는 문제점이 있으며, 원자력 발전은 발전용량이 크지만 핵연료의 사용에 따른 방사능오염의 우려와 안전성 및 원자력 폐기물 처리 등의 여러 문제점을 가지고 있다.In general, there are thermal power generation, nuclear power generation, hydroelectric power generation, solar power generation, wind power generation, and tidal power generation as power generation methods. and hydroelectric power generation generates electricity by rotating a turbine by the fall of water on a dam. However, thermal power generation has problems in that it uses fossil fuels, which are gradually depleted, as an energy source and pollutes the environment by causing pollution. It has several problems such as safety and nuclear waste disposal.

그리고 수력발전은 댐이나 보를 막아 수력 또는 소수력발전하거나 양수에 의해 수력발전하여 전기를 생산하는 것으로써, 발전원가가 낮은 이점이 있으며, 상기 소수력 발전 및 양수 발전에 대한 연구가 활발히 이루어지고 있다.In addition, hydroelectric power generation produces electricity by blocking dams or weirs to generate hydroelectric power or small hydroelectric power, or by hydroelectric power generation by pumping water.

이중 양수발전은 수력발전의 한 형태로서, 발전소의 아래와 위에 저수지를 만들고 발전과 양수를 반복하는 수력발전이다. 여름처럼 물이 많을 때나 야간에 풍부하게 남는 전력으로 펌프를 가동하여 아래쪽 저수지의 물을 위쪽 저수지로 퍼 올린다. 그리고 물이 부족해지는 시기나 주간처럼 전력이 많이 필요할 때 방수하여 발전한다. 일반적인 수력발전소의 연간 발전전력량은 연간 강수량과 자연유량(自然流量)에 제한을 받는다. 하지만 양수방식을 사용하면 더 많은 전력을 생산할 수 있다. 이러한 양수 발전은 기동성이 우수하고 잉여전력을 저장할 수 있는 합리적이고 유리한 발전시스템이다.Among them, pumped-storage power generation is a form of hydroelectric power generation, which creates a reservoir below and above the power plant and repeats power generation and pumping. When there is a lot of water, such as in summer, or at night, the pump operates with the abundant power to pump water from the lower reservoir to the upper reservoir. And when a lot of power is needed, such as when water is scarce or during the day, it is waterproof and generates electricity. The annual amount of electricity generated by a typical hydroelectric power plant is limited by the amount of annual precipitation and natural flow. However, more electricity can be produced by using the pumped-up method. Such pumped-storage power generation is a reasonable and advantageous power generation system that has excellent mobility and can store surplus power.

하지만, 상기한 양수 발전 시스템은 물을 하부 저수지에서 상부 저수지로 퍼 올리는 과정에서, 터빈 등의 펌핑수단을 구동해야 하고 터빈이 구동되는 과정에서 소요되는 소내전력의 누수로 인해 발전 효율성이 떨어지는 문제가 있다.However, in the pumped-storage power generation system described above, in the process of pumping water from the lower reservoir to the upper reservoir, a pumping means such as a turbine must be driven, and power generation efficiency is lowered due to leakage of power consumed in the process of driving the turbine. have.

대한민국 공개번호 제10-2020-0002084호Republic of Korea Publication No. 10-2020-0002084

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 태양광 발전과 연료전지 발전을 연계하여 소내전력 누수를 최소화하고, 잉여 에너지를 재활용하거나 열교환을 통해 저수지에 회수시킬 수 있도록 한 에너지 복합생산 시스템을 제공하고자 한 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to minimize power leakage by linking solar power generation and fuel cell power generation, and to recycle surplus energy or recover it to a reservoir through heat exchange It is intended to provide an energy complex production system.

본 발명은 상기한 목적을 달성하기 위하여, 상부저수지로부터 하부저수지로 낙하되는 수력을 이용해 수력 터빈을 회전시켜 전기를 생산하는 양수발전 시스템; 태양으로부터 오는 빛을 이용해 전기를 생산하는 태양광 발전 시스템; 상기 태양광 발전 시스템으로부터 생산된 전기를 이용해 수소 및 산소를 생산하는 수소/산소 생산장치; 및 상기 수소/산소 생산장치로부터 생산된 수소를 이용하여 전기를 생산하고, 생산된 전기를 이용해 수력 터빈을 역회전하여 하부저수지의 물을 상부저수지로 퍼올릴 수 있게 한 연료전지 발전 시스템을 포함하는 에너지 복합생산 시스템을 제공한다.In order to achieve the above object, the present invention provides a pumped-storage system for generating electricity by rotating a water turbine using water power falling from an upper reservoir to a lower reservoir; A photovoltaic power generation system that generates electricity using light from the sun; a hydrogen/oxygen production device for producing hydrogen and oxygen using electricity generated from the photovoltaic power generation system; And a fuel cell power generation system that generates electricity using the hydrogen produced from the hydrogen / oxygen production device and uses the generated electricity to rotate the water turbine in reverse to pump water from the lower reservoir to the upper reservoir. Provides an energy complex production system.

이때, 상기 수소/산소 생산장치는 순수생성장치와, 수전해장치와, 수소저장탱크 및 산소저장탱크를 포함하는 것이 바람직하다.At this time, the hydrogen / oxygen production device preferably includes a pure water generator, a water electrolysis device, a hydrogen storage tank and an oxygen storage tank.

또한, 상기 연료전지 발전 시스템으로부터 발생되는 고온의 증기를 열교환하여 응축수가 생산되도록 한 열교환기; 상기 응축수가 상부저수지 또는 하부저수지로 회수될 수 있도록 한 응축수 배수유로를 포함하는 것이 바람직하다.In addition, a heat exchanger for producing condensed water by heat-exchanging high-temperature steam generated from the fuel cell power generation system; It is preferable to include a condensed water drainage passage through which the condensed water can be recovered to an upper reservoir or a lower reservoir.

또한, 상기 연료전지 발전 시스템의 잉여 전력을 수요처로 송전시킬 수 있도록 제공된 송전수단; 상기 연료전지 발전시스템으로부터 발생되는 고온의 증기를 열에너지로써 수요처에 공급할 수 있도록 한 이송배관을 포함하는 것이 바람직하다.In addition, a transmission means provided to transmit surplus power of the fuel cell power generation system to a consumer; It is preferable to include a transfer pipe capable of supplying high-temperature steam generated from the fuel cell power generation system to a customer as thermal energy.

본 발명에 따른 에너지 복합생산 시스템은 다음과 같은 효과가 있다.The energy complex production system according to the present invention has the following effects.

첫째, 에너지 복합생산 시스템은 연료전지 발전을 이용해 수력터빈을 역회전하여 하부저수지의 물을 상부저수지로 퍼 올릴 수 있도록 하되, 연료전지 발전을 위한 에너지원으로써, 하부저수지에 태양광 발전 시스템을 설치하여 활용할 수 있도록 함으로써, 소내전력 누수를 최소화할 수 있는 효과가 있다.First, the energy complex production system reversely rotates the hydro turbine using fuel cell power generation to pump water from the lower reservoir to the upper reservoir, but as an energy source for fuel cell power generation, a photovoltaic power generation system is installed in the lower reservoir By making it available for use, there is an effect of minimizing the leakage of small power consumption.

둘째, 에너지 복합생산 시스템은 송전수단을 이용해 연료전지 발전 시스템으로부터 생산된 전기를 수요처로 공급할 수 있으므로, 양수 발전과 함께 전력 생산량을 늘릴 수 있는 효과가 있다.Second, since the energy complex production system can supply the electricity generated from the fuel cell power generation system to a consumer using a transmission means, there is an effect of increasing power production along with pumped-storage power generation.

셋째, 에너지 복합생산 시스템은 연료전지 발전시 발생한 고온의 증기를 이송배관을 통해 수요처에 열에너지로 공급할 수 있으며, 열교환기를 통해 고온의 증기를 열교환하여 생성된 응축수를 저수지에 회수시킴으로써 갈수기에 연료전지 작동을 위한 저수지의 저수량 부족을 방지할 수 있는 효과가 있다.Third, the energy complex production system can supply high-temperature steam generated during fuel cell power generation as heat energy to consumers through transfer pipes, and heat exchange of high-temperature steam through a heat exchanger to recover the generated condensate to the reservoir to operate the fuel cell in dry season. There is an effect of preventing the lack of water storage in the reservoir for

도 1은 본 발명의 바람직한 실시예에 따른 에너지 복합생산 시스템을 나타낸 도면이다.1 is a view showing an energy complex production system according to a preferred embodiment of the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not limited to the usual or dictionary meanings, and the inventor can properly define the concept of the term in order to explain his or her invention in the best way. Based on this, it should be interpreted as a meaning and concept consistent with the technical spirit of the present invention.

이하, 첨부된 도 1을 참조하여 본 발명의 바람직한 실시예에 따른 에너지 복합생산 시스템에 대하여 설명하도록 한다.Hereinafter, an energy complex production system according to a preferred embodiment of the present invention will be described with reference to attached FIG. 1 .

에너지 복합생산 시스템은 태양광 발전 및 연료전지 발전과 연료전지 발전을 연계하여 태양광 발전 및 연료전지 발전을 통해 생산된 전기를 이용해 하부저수지의 물을 상부저수지로 퍼 올리는데 소요되는 소내전력 누수를 최소화하고, 연료전지 발전을 통해 발생된 고온의 증기를 수요처로 공급하거나 응축하여 저수지에 회수시킬 수 있도록 하여 잉여 에너지 사용에 대한 효율성을 높일 수 있도록 하였다.The energy complex production system connects solar power generation and fuel cell power generation with fuel cell power generation to minimize power leakage required to pump water from the lower reservoir to the upper reservoir using electricity generated through solar power generation and fuel cell power generation. In addition, the high-temperature steam generated through fuel cell power generation can be supplied to the consumer or condensed and returned to the reservoir to increase the efficiency of surplus energy use.

에너지 복합생산 시스템은 도 1에 도시된 바와 같이 양수 발전 시스템(100)과, 태양광 발전 시스템(200)과, 수소/산소 생산 장치(300)와, 연료전지 발전 시스템(400)과, 열교환기(500)를 포함한다.As shown in FIG. 1, the combined energy production system includes a pumped storage power generation system 100, a photovoltaic power generation system 200, a hydrogen/oxygen production device 300, a fuel cell power generation system 400, and a heat exchanger. Includes (500).

양수 발전 시스템(100)은 상부저수지(110)에 저수된 물을 하부저수지(120)로 낙하시켜, 낙하되는 수력에 의해 수력 터빈(130)을 회전시킴으로써 전기를 생산한다. 상부저수지(110)와 하부저수지(120) 사이에는 정,역 회전될 수 있는 수력 터빈(130)이 설치되고, 상부저수지(110)로부터 수력 터빈(130)을 거쳐 하부저수지(120)에 이르는 수로(140)가 마련된다.The pumped storage power generation system 100 drops water stored in the upper reservoir 110 to the lower reservoir 120 and rotates the water turbine 130 by the falling water power to produce electricity. A water turbine 130 capable of forward and reverse rotation is installed between the upper reservoir 110 and the lower reservoir 120, and a waterway from the upper reservoir 110 through the water turbine 130 to the lower reservoir 120 (140) is provided.

태양광 발전 시스템(200)은 태양으로부터 오는 빛을 전기에너지로 변화하여 전기를 생산하며, 태양광 발전 모듈(210)을 포함한다. 태양광 발전 모듈(210)은 하부저수지(120)에 설치됨이 바람직하며, 태양광 발전 시스템(200)으로부터 생산된 전기를 송전하기 위한 전력선(220)을 포함한다.The photovoltaic power generation system 200 generates electricity by converting light from the sun into electrical energy, and includes a photovoltaic power generation module 210 . The solar power generation module 210 is preferably installed in the lower reservoir 120, and includes a power line 220 for transmitting electricity generated from the solar power generation system 200.

수소/산소 생산장치(300)는 태양광 발전 시스템(200)을 통해 생산된 전기를 이용해 수소와 산소를 생산하며, 육상에 설치된다. 수소/산소 생산장치(300)는 순수를 얻는데 필요한 장치로써 저수지물을 청정수로 변환하는 순수생성장치(310)와, 순수생성장치(310)를 통해 생성된 순수에 전기 화학 반응시켜 수소를 생산하기 위한 수전해장치(320)와, 수전해장치(320)를 통해 생성된 산소 및 수소를 저장하기 위한 산소저장탱크(330) 및 수소저장탱크(340)를 포함한다.The hydrogen/oxygen production device 300 produces hydrogen and oxygen using electricity generated through the photovoltaic power generation system 200 and is installed on land. The hydrogen/oxygen production device 300 is a device necessary for obtaining pure water, and the pure water generator 310 converts reservoir water into clean water and electrochemically reacts the pure water generated through the pure water generator 310 to produce hydrogen. It includes a water electrolyzer 320 for water electrolysis, and an oxygen storage tank 330 and a hydrogen storage tank 340 for storing oxygen and hydrogen generated through the water electrolysis device 320.

연료전지 발전 시스템(400)은 수소/산소 생산장치(300)를 통해 생산된 수소를 이용하여 전기에너지를 생산하며, 연료전지 발전 시스템(400)으로부터 생산된 전기는 수력 터빈(130)을 역회전시키는 전력으로 제공되거나 수요처에 공급된다. 연료전지 발전 시스템(400)과 수력 터빈(130) 사이에 전력선(410)이 설치되고, 잉여 전기는 송전수단(420)을 통해 수요처로 공급된다.The fuel cell power generation system 400 produces electric energy using hydrogen produced through the hydrogen/oxygen production device 300, and the electricity generated from the fuel cell power generation system 400 reversely rotates the water turbine 130. It is provided as power for demand or supplied to demand. A power line 410 is installed between the fuel cell power generation system 400 and the water turbine 130, and surplus electricity is supplied to a consumer through a transmission means 420.

열교환기(500)는 연료전지 발전 시스템(400)으로부터 전기에너지가 생산되는 과정에서 발생하는 고온의 증기를 열교환하여 응축수를 생산하는 역할을 한다. 즉, 열교환기(500)는 응축수를 생산하여 저수지로 회수되도록 하여 갈수기 때 저수지의 연료전지 작동에 의한 저수량 부족을 방지하기 위한 것이다. 열교환기(500)와 연료전지 발전 시스템(400) 사이에는 고온의 증기가 열교환기(500)로 공급되는 공급관(510)이 설치되고, 열교환기(500)와 수로(140) 사이에는 응축수가 배수되는 응축수 배수유로(520)가 설치된다. 한편, 연료전지 발전 시스템(400)에서 발생한 고온의 증기가 반드시 열교환기(500)를 통해 응축수로 변환되는 것은 아니며, 고온의 증기 자체를 열에너지로써 사용될 수 있다. 이를 위해 연료전지 발전 시스템(400)에는 고온의 증기가 인근 주거단지나 산업단지로 이송될 수 있도록 이송배관(530)이 설치된다.The heat exchanger 500 serves to produce condensed water by exchanging heat with high-temperature steam generated in the process of producing electrical energy from the fuel cell power generation system 400 . That is, the heat exchanger 500 produces condensed water and returns it to the reservoir to prevent a lack of stored water due to the operation of the fuel cell in the reservoir during the dry season. A supply pipe 510 through which high-temperature steam is supplied to the heat exchanger 500 is installed between the heat exchanger 500 and the fuel cell power generation system 400, and condensate is drained between the heat exchanger 500 and the water conduit 140. A condensate drainage passage 520 is installed. Meanwhile, high-temperature steam generated in the fuel cell power generation system 400 is not necessarily converted into condensate through the heat exchanger 500, and the high-temperature steam itself can be used as thermal energy. To this end, a transfer pipe 530 is installed in the fuel cell power generation system 400 so that high-temperature steam can be transferred to a nearby residential or industrial complex.

이하, 상기한 구성으로 이루어진 에너지 복합생산 시스템의 작용에 대하여 설명하도록 한다.Hereinafter, the operation of the energy complex production system having the above configuration will be described.

상부저수지(110)로부터 물이 하부저수지(120)로 낙하되면서 수력 터빈(130)을 정회전시키고, 수력 터빈(130)의 회전에 의해 전기가 생산된다. 이후, 상부저수지(110)의 수위가 낮아짐에 따라, 관리자는 하부저수지(120)의 물을 상부저수지(110)로 퍼 올리는 작업을 수행한다. 이를 위해, 관리자는 수력 터빈(130)을 역회전시키는 작업을 수행하며, 수력 터빈(130)을 역회전시키기 위해 소요되는 전기에너지 생산은 다음과 같다.As water falls from the upper reservoir 110 to the lower reservoir 120, the water turbine 130 rotates forward, and electricity is produced by the rotation of the water turbine 130. Thereafter, as the water level of the upper reservoir 110 is lowered, the manager performs an operation of pumping water from the lower reservoir 120 to the upper reservoir 110 . To this end, the manager performs a reverse rotation of the water turbine 130, and the production of electrical energy required to reverse rotate the water turbine 130 is as follows.

하부저수지(120)에 설치된 태양광 발전 시스템(200)으로부터 전기가 생산되고, 그 전기는 전력선(220)을 통해 산소/수소 생산장치(300)로 공급되어 순수생성장치(310)와 수전해장치(320)를 가동시킨다. 이때, 수전해장치(320)를 통해 생산된 수소는 연료전지 발전을 위한 에너지원으로 공급되어 연료전지 발전시스템(400)을 통해 전기를 생산하도록 한다. 연료전지 발전시스템(400)을 통해 생산된 전기는 수력 터빈(130)을 역회전시키기 위한 에너지로 제공되어 수력 터빈(130)을 역회전시킴으로써 하부저수지(120)의 물을 상부저수지(110)로 퍼올린다. 이에 따라, 본 발명은 수력 터빈(130)을 이용해 물을 퍼올리기 위한 에너지로써 양수 발전을 통해 생산된 전기에너지가 사용되는 것이 아니기 때문에 소내전력 누수를 최소화할 수 있다. Electricity is produced from the photovoltaic power generation system 200 installed in the lower reservoir 120, and the electricity is supplied to the oxygen/hydrogen production device 300 through the power line 220, and the pure water generator 310 and the water electrolyzer 320 is activated. At this time, hydrogen produced through the water electrolyzer 320 is supplied as an energy source for fuel cell power generation, and generates electricity through the fuel cell power generation system 400 . The electricity produced through the fuel cell power generation system 400 is provided as energy for reverse rotation of the water turbine 130, and reverse rotation of the water turbine 130, thereby transferring water from the lower reservoir 120 to the upper reservoir 110. Scoop up. Accordingly, since the present invention does not use electrical energy produced through pumped-storage power generation as energy for pumping water by using the water turbine 130, leakage of electric power from the plant can be minimized.

한편, 관리자는 수력 터빈(130)을 역회전시키는데 사용되고 남은 잉여 전기를 송전수단(420)을 통해 수요처로 공급하며, 연료전지 발전 시스템(400)으로부터 발생한 고온의 증기는 열교환기(500)를 통해 열교환시켜 응축수로 변환시킨다. 이때, 응축수는 응축수 배수유로(520)를 통해 수로(140)로 이송되어 하부저수지(120) 또는 상부저수지(110)로 배수될 수 있으므로 갈수기를 대비할 수 있다. 또한, 관리자는 연료전지 발전 시스템(400)으로부터 발생된 고온의 증기를 이송배관(530)을 통해 인근 산업단지 또는 주거단지로 공급함으로써, 산업단지 또는 주거단지의 에너지 소비 효율성을 높일 수 있다.On the other hand, the manager supplies surplus electricity used for reverse rotation of the water turbine 130 to a consumer through the transmission means 420, and the high-temperature steam generated from the fuel cell power generation system 400 passes through the heat exchanger 500. It is converted into condensate by heat exchange. At this time, the condensed water may be transferred to the water channel 140 through the condensed water drainage channel 520 and drained to the lower reservoir 120 or the upper reservoir 110, so that the dry season can be prepared. In addition, the manager can increase energy consumption efficiency of the industrial or residential complex by supplying the high-temperature steam generated from the fuel cell power generation system 400 to a nearby industrial or residential complex through the transfer pipe 530 .

지금까지 설명한 바와 같이 본 발명에 따른 에너지 복합생산 시스템은 태양광 발전과 연료전지 발전을 연계하여 양수 발전의 소내전력 누수를 최소화하고, 에너지 생산량을 증대시켰으며, 연료전지 발전과정에서 생산된 고온의 증기를 에너지원으로 활용하거나 열교환하여 저수지물로 재사용할 수 있도록 하였다. 이에 따라, 본 발명은 에너지 생산 효율성을 높일 수 있다.As described so far, the energy complex production system according to the present invention minimizes the leakage of power generation of the pumped-storage power plant by linking solar power generation and fuel cell power generation, increases energy production, and generates high-temperature energy produced in the fuel cell power generation process. Steam can be used as an energy source or heat exchanged to be reused as reservoir water. Accordingly, the present invention can increase energy production efficiency.

이상에서 본 발명은 기재된 구체예에 대하여 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정은 첨부된 특허 청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail with respect to the described embodiments, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical spirit of the present invention, and these changes and modifications belong to the appended claims.

100 : 양수 발전 시스템 110 : 상부저수지
120 : 하부저수지 130 : 수직 터빈
140 : 수로 200 : 태양광 발전 시스템
210 : 태양광 발전 모듈 220,410 : 전력선
300 : 수소/산소 생산장치 310 : 순수생성장치
320 : 수전해장치 330 : 산소저장탱크
340 : 수소저장탱크 400 : 연료전지 발전 시스템
420 : 송전수단 500 : 열교환기
510 : 공급관 520 : 응축수 배수유로
530 : 이송배관
100: pumped storage system 110: upper reservoir
120: lower reservoir 130: vertical turbine
140: waterway 200: solar power generation system
210: solar power module 220,410: power line
300: hydrogen / oxygen production device 310: pure water production device
320: water electrolyzer 330: oxygen storage tank
340: hydrogen storage tank 400: fuel cell power generation system
420: transmission means 500: heat exchanger
510: supply pipe 520: condensate drainage channel
530: transfer pipe

Claims (4)

상부저수지로부터 하부저수지로 낙하되는 수력을 이용해 수력 터빈을 회전시켜 전기를 생산하는 양수발전 시스템;
태양으로부터 오는 빛을 이용해 전기를 생산하는 태양광 발전 시스템;
상기 태양광 발전 시스템으로부터 생산된 전기를 이용해 수소 및 산소를 생산하는 수소/산소 생산장치; 및
상기 수소/산소 생산장치로부터 생산된 수소를 이용하여 전기를 생산하고, 생산된 전기를 이용해 수력 터빈을 역회전하여 하부저수지의 물을 상부저수지로 퍼올릴 수 있게 한 연료전지 발전 시스템을 포함하는 에너지 복합생산 시스템.
A pumped-storage power generation system that produces electricity by rotating a water turbine using water power falling from an upper reservoir to a lower reservoir;
A photovoltaic power generation system that generates electricity using light from the sun;
a hydrogen/oxygen production device for producing hydrogen and oxygen using electricity generated from the photovoltaic power generation system; and
Energy including a fuel cell power generation system that generates electricity using the hydrogen produced from the hydrogen/oxygen production device and pumps water from the lower reservoir to the upper reservoir by using the generated electricity to rotate the water turbine in reverse. complex production system.
제1항에 있어서,
상기 수소/산소 생산장치는 순수생성장치와, 수전해장치와, 수소저장탱크 및 산소저장탱크를 포함하는 것을 특징으로 하는 에너지 복합생산 시스템.
According to claim 1,
The hydrogen / oxygen production device is an energy complex production system, characterized in that it comprises a pure water generator, a water electrolysis device, a hydrogen storage tank and an oxygen storage tank.
제1항 또는 제2항에 있어서,
상기 연료전지 발전 시스템으로부터 발생되는 고온의 증기를 열교환하여 응축수가 생산되도록 한 열교환기;
상기 응축수가 상부저수지 또는 하부저수지로 회수될 수 있도록 한 응축수 배수유로를 포함하는 것을 특징으로 하는 에너지 복합생산 시스템.
According to claim 1 or 2,
a heat exchanger for producing condensed water by exchanging heat with high-temperature steam generated from the fuel cell power generation system;
The energy complex production system, characterized in that it comprises a condensed water drainage channel to allow the condensed water to be recovered to the upper reservoir or the lower reservoir.
제1항 또는 제2항에 있어서,
상기 연료전지 발전 시스템의 잉여 전력을 수요처로 송전시킬 수 있도록 제공된 송전수단;
상기 연료전지 발전시스템으로부터 발생되는 고온의 증기를 열에너지로써 수요처에 공급할 수 있도록 한 이송배관을 포함하는 것을 특징으로 하는 에너지 복합생산 시스템.




According to claim 1 or 2,
a transmission means provided to transmit surplus power of the fuel cell power generation system to a consumer;
An energy complex production system comprising a transfer pipe capable of supplying high-temperature steam generated from the fuel cell power generation system to a customer as thermal energy.




KR1020210070078A 2021-05-31 2021-05-31 An energy complex production system KR20220161836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210070078A KR20220161836A (en) 2021-05-31 2021-05-31 An energy complex production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210070078A KR20220161836A (en) 2021-05-31 2021-05-31 An energy complex production system

Publications (1)

Publication Number Publication Date
KR20220161836A true KR20220161836A (en) 2022-12-07

Family

ID=84441009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210070078A KR20220161836A (en) 2021-05-31 2021-05-31 An energy complex production system

Country Status (1)

Country Link
KR (1) KR20220161836A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002084A (en) 2018-06-29 2020-01-08 김형주 The non-power eletric pumping water and small hydropower system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002084A (en) 2018-06-29 2020-01-08 김형주 The non-power eletric pumping water and small hydropower system

Similar Documents

Publication Publication Date Title
US10340693B2 (en) Systems and methods for generating energy using a hydrogen cycle
CN101649813B (en) Integrated system for generating electricity by current, sea wave as well as tide kinetic energy and wind and solar energy
US6420794B1 (en) Hydropower conversion system
KR20050083728A (en) Hydrogen production from hydro power
JP2016502635A (en) Thermal energy storage system with combined heating and cooling machine and method of using the thermal energy storage system
KR20100131078A (en) Float type hydraulic power generater
CN109867313B (en) Steam power generation seawater desalination system
CN201526405U (en) Vacuum siphon water-passing power generation device
GB2505415A (en) Pumped storage system using tide to maintain water level in lower reservoir
CN210887155U (en) Ocean reservoir for realizing photoelectric complementary development of ocean water
US8272211B2 (en) Tide operated energy system
KR101130671B1 (en) Hybrid power generation system using hydraulic turbine and fuel cell
Kumar et al. Hydro Power Plant
CN109869208A (en) Steam generating system and the seawater desalination system for using the steam generating system
KR20220161836A (en) An energy complex production system
CN104819102A (en) Wind wave integration generating device
CN109970119B (en) Clean energy storage and seawater desalination co-production system and method
Kao et al. Renewable and clean energy for data centers
Yadav Recent developments of ocean energy in India–an overview
KR20190045615A (en) Complex generating system using low temperature sea water
Sikder et al. Feasibility assessment of distributed generation systems in Sagar Island, West Bengal, India
CN220622064U (en) Power generation system
Bhanuprakasha et al. Need to shift towards clean, reliable, accessible and affordable renewable energy resources for a sustainable future
CN210599279U (en) Offshore wind power and ocean current power generation device
RU83076U1 (en) HYDRO POWER PLANT

Legal Events

Date Code Title Description
E601 Decision to refuse application