KR20220157047A - 연속 줌 액추에이터 - Google Patents

연속 줌 액추에이터 Download PDF

Info

Publication number
KR20220157047A
KR20220157047A KR1020210064593A KR20210064593A KR20220157047A KR 20220157047 A KR20220157047 A KR 20220157047A KR 1020210064593 A KR1020210064593 A KR 1020210064593A KR 20210064593 A KR20210064593 A KR 20210064593A KR 20220157047 A KR20220157047 A KR 20220157047A
Authority
KR
South Korea
Prior art keywords
magnet
carrier
optical axis
coil
axis direction
Prior art date
Application number
KR1020210064593A
Other languages
English (en)
Inventor
김희승
이규민
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Priority to KR1020210064593A priority Critical patent/KR20220157047A/ko
Publication of KR20220157047A publication Critical patent/KR20220157047A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • H04N5/2253
    • H04N5/2254
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명의 일 실시예에 의한 연속 줌 액추에이터는 렌즈가 탑재되며 광축방향으로 이동하는 캐리어; 상기 캐리어를 수용하는 하우징; 상기 캐리어에 구비되며 n(n은 3이상의 자연수)개 자극을 가지는 마그네트; 상기 마그네트와 대면하며 광축 방향을 기준으로 상하로 배열되는 k(k는 3이상의 자연수)개 코일을 포함하는 코일부; 상기 마그네트의 위치를 감지하는 홀센서; 및 상기 마그네트의 위치에 따라 상기 k개 코일 각각에 인가되는 전류를 차등적으로 제어하는 구동드라이버를 포함하는 것을 특징으로 한다.

Description

연속 줌 액추에이터{ACTUATOR FOR CONSECUTIVE ZOOM}
본 발명은 카메라용 액추에이터에 관한 것으로서, 마그네트의 가변 위치를 반영하여 구동 코일을 차등적으로 제어함으로써 연속 줌의 구동 성능을 향상시킨 연속 줌 액추에이터에 관한 것이다.
영상 처리에 대한 하드웨어 기술이 발전하고 영상 촬영 등에 대한 사용자 니즈가 높아짐에 따라, 독립된 카메라 장치는 물론, 휴대폰, 스마트폰 등과 같은 모바일 단말에 장착된 카메라 모듈 등에 오토포커스(AF, Auto Focus), 손떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현되고 있다.
또한 최근에는 줌인(Zoom-in) 및 줌아웃(Zoom-out) 기능 등을 통하여 초점 거리를 조정함으로써 피사체의 크기 등을 다양하게 가변시킬 수 있는 줌렌즈용 액추에이터도 개시되고 있으며, 실시형태에 따라서 복수 개 렌즈(렌즈조립체)의 상호 위치 관계를 조합적으로 적용함으로써 줌 기능을 더욱 다양하게 구현하는 액추에이터도 개시되고 있다.
이러한 줌렌즈의 경우 렌즈 자체의 고유한 광학적 특성에 의하여 렌즈와 이미지센서 사이에 충분한 거리가 확보되어야 하며, 나아가 렌즈(렌즈가 장착된 캐리어)를 선형 이동시켜 자동초점이나 줌을 구현하기 위하여 렌즈가 선형 이동할 수 있는 더욱 확장된 거리(스트로크(stroke)라고도 지칭된다) 또한 확보되도록 설계되어야 한다.
종래에는 이러한 광학적 특성을 구현하기 위하여 상대적으로 큰 크기의 마그네트와 코일을 상호 대면시키거나 코일의 개수를 증가시키는 방법이 적용되고 있다.
그러나 이러한 방법의 경우, 마그네트가 장착된 캐리어의 이동 범위가 줌렌즈와 같이 커지게 되면, 마그네트의 자극(N극 및 S극) 및 자극 경계가 코일의 실효영역에서 쉽게 벗어나게 되므로 구동력 저하 문제가 쉽게 발생될 수 있다.
또한, 종래기술의 경우 인접한 코일과 마그네트의 복수 개 자극들 사이에서 자기력의 교란 현상이 발생하여 의도된 방향과 역행하는 방향으로 캐리어가 이동하는 등 캐리어의 광축 방향 이동을 선형적으로 구동시키는 정밀한 제어가 어려워지는 문제가 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 액추에이터의 공간적 활용이 더욱 효과적으로 구현될 수 있음은 물론, 복수 개 코일과 복수 개 마그네트 자극 사이의 위치별 관계에 따라 차등적 제어를 적용함으로써 렌즈가 탑재되는 캐리어의 선형적 이동을 더욱 정밀하게 구현할 수 있는 연속 줌 액추에이터를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 연속 줌 액추에이터는 렌즈가 탑재되며 광축방향으로 이동하는 캐리어; 상기 캐리어를 수용하는 하우징; 상기 캐리어에 구비되며 n(n은 3이상의 자연수)개 자극을 가지는 마그네트; 상기 마그네트와 대면하며 광축 방향을 기준으로 상하로 배열되는 k(k는 3이상의 자연수)개 코일을 포함하는 코일부; 상기 마그네트의 위치를 감지하는 홀센서; 및 상기 마그네트의 위치에 따라 상기 k개 코일 각각에 인가되는 전류를 차등적으로 제어하는 구동드라이버를 포함하여 구성될 수 있다.
여기에서 본 발명의 상기 홀센서는 광축방향을 기준으로 상하로 배열되며 제1간격으로 이격되어 배치되는 m(m은 2이상의 자연수)개로 이루어질 수 있다.
이 경우 본 발명의 상기 구동드라이버는 상기 m개 홀센서 각각의 신호를 이용하여 상기 k개 코일 각각에 인가되는 전류를 차등적으로 제어하도록 구성될 수 있으며 바람직하게 상기 구동드라이버는 상기 k개 코일 각각의 전류 순환 방향 또는 전류 인가의 온오프(on/off)를 차등적으로 제어하도록 구성될 수 있다.
또한, 상하로 배열되는 상기 홀센서 사이의 상기 제1간격은 상기 마그네트의 n개 자극 각각의 광축 방향 길이보다 크도록 구성될 수 있으며, 상기 m개 홀센서는 상기 k개 코일 각각의 가운데 공간 중 m개의 공간에 각각 배치될 수 있다.
나아가 본 발명의 상기 구동드라이버는 k개 코일 중 상기 마그네트의 자극 경계를 감지한 홀센서에 대응되는 위치에 구비된 코일인 대면코일의 전류 인가를 차단하고, 광축방향을 기준으로 상기 대면코일의 전방 또는/및 후방에 위치한 코일에 전류가 인가되도록 제어할 수 있다.
본 발명의 바람직한 일 실시예에 의할 때, 확장된 거리를 이동하는 캐리어의 정밀한 위치 감지 및 해당 위치와 복수 개 코일 사이의 관계를 유기적으로 접목시켜 복수 개 코일을 차등적으로 구동 제어함으로써 연속 줌 등과 같은, 확장된 이동거리를 가지며 그 이동이 연속적으로 이루어지는 액추에이터의 구동 성능을 더욱 정밀하게 구현할 수 있다.
또한, 본 발명의 바람직한 다른 실시예에 의할 때, 마그네트의 자극 경계와 코일의 상호 대면 관계를 이용하여 구동되는 코일이 선택적으로 적용되도록 함으로써 의도된 방향에 역행하여 캐리어가 이동하는 현상을 원천적으로 방지할 수 있다.
나아가, 캐리어 등의 물리적 구조를 개선시킴으로써, 복수 개 캐리어가 구비되는 실시형태에서도 복수 개 캐리어 각각의 독립된 이동을 효과적으로 확보할 수 있음은 물론, 장치 전체의 구조와 형상을 더욱 공간 집약된 형태로 구현할 수 있어 전체적인 공간의 최소화와 이를 통한 모바일 단말의 소형화 등에 더욱 최적화될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 바람직한 일 실시예에 의한 연속 줌 액추에이터 및 카메라 모듈의 전체적인 구성을 도시한 도면,
도 2는 본 발명의 바람직한 일 실시예에 의한 연속 줌 액추에이터의 전체적인 구성을 도시한 도면,
도 3은 본 발명의 일 실시예에 의한 제1캐리어 등의 상세 구성을 도시한 도면,
도 4는 본 발명의 일 실시예에 의한 제2캐리어 등의 상세 구성을 도시한 도면,
도 5 및 도 6은 복수 개 자극을 가지는 마그네트와 복수 개 코일로 이루어지는 코일부에 대한 상세 구성을 도시한 도면,
도 7은 캐리어의 각 이동에 따른 코일의 차등 제어를 설명하는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 일 실시예에 의한 연속 줌 액추에이터(이하 '액추에이터'라 지칭한다)(100) 및 카메라 모듈(1000)의 전체적인 구성을 도시한 도면이다.
본 발명의 액추에이터(100)는 자체로서 단일의 장치로 구현될 수 있음은 물론이며, 도 1에 도시된 바와 같이 반사계 모듈(200) 등과 함께 카메라 모듈(1000)로도 구현될 수 있다.
본 발명의 액추에이터(100)는 후술되는 바와 같이 렌즈(렌즈조립체)가 탑재된 하나 이상의 캐리어 각각을 광축 방향으로 선형 이동시켜 자동초점(AF, Auto Focus) 또는 줌(Zoom)을 구현하는 액추에이터에 해당한다.
액추에이터(100)의 전방 내지 상부(광축 방향 기준)에 구비될 수 있는 반사계 모듈(200)은 피사체의 빛(light) 경로(Z1)를 렌즈 방향의 경로(Z)로 반사 내지 굴절시키는 기능을 수행한다. 이와 같이 광축 방향으로 반사 내지 굴절된 빛은 캐리어에 구비되는 렌즈(렌즈조립체)를 거쳐 CMOS, CCD 등과 같은 이미지센서로 유입된다.
빛의 경로를 변경시키는 반사계 모듈(200)은 미러(mirror) 또는 프리즘(prism) 중 선택된 하나 또는 이들의 조합으로 이루어질 수 있는 반사계(210)를 포함할 수 있다. 이 반사계(210)는 외계에서 유입되는 빛을 광축 방향으로 변경시킬 수 있는 다양한 부재에 의하여 구현될 수 있으나, 광학적 성능을 향상시키기 위하여 유리(glass) 재질로 구현하는 것이 바람직하다.
반사계 모듈(200) 등이 함께 포함되는 본 발명의 카메라 모듈(1000)은 빛의 경로를 굴절시켜 빛이 렌즈 방향으로 유입되도록 구성되므로 장치 자체를 휴대 단말의 두께 방향으로 설치하지 않고 길이 방향으로 설치할 수 있어 휴대 단말의 두께를 증가시키지 않아 휴대 단말의 소형화 내지 슬림화 등에 최적화될 수 있다.
실시형태에 따라서, 반사계(210)는 마그네트 및 코일과 같은 자기력을 발생시키는 구동수단 등에 의하여 회전 이동되도록 구성될 수도 있다. 이와 같이 반사계(210)가 이동 또는 회전 이동하면, 반사계(210)를 통하여 반사(굴절)되는 피사체의 빛이 ±Y 방향 및/또는 ±X 방향으로 이동하여 렌즈 및 촬상소자로 입사하게 되므로 손떨림에 의한 X축 및/또는 Y축 방향 보정이 구현될 수 있다.
반사계 모듈(200)을 통하여 반사된 피사체의 빛은 액추에이터(100) 내부에 구비되는 제1렌즈조립체(60) 또는/및 제2렌즈조립체(70) 등으로 입사되며, 이 과정에서 제1렌즈조립체(60)와 제2렌즈조립체(70) 각각의 위치(광축 방향 기준)가 조합적으로 조정됨으로써 줌 또는 AF 등의 기능이 구현된다.
실시형태에 따라서 줌 배율 등과 같은 광학적 성능을 향상시키기 위하여 도 1에 예시된 바와 같이 액추에이터(100)의 전방(광축 방향 기준)에 고정렌즈조립체(50)가 구비될 수도 있다.
이하 본 발명의 설명에 있어, 제1렌즈(60) 등으로 빛이 유입되는 경로에 대응되는 방향축을 광축(Z축)으로 정의하며, 이 광축(Z축)과 수직한 평면상의 두 축을 X축 및 Y축으로 정의한다.
고정렌즈조립체(50), 제1렌즈조립체(60), 제2렌즈조립체(70)는 하나 이상의 렌즈 또는 광학유닛과 하우징 등으로 이루어질 수 있으나 도면에는 내부 구성이 좀 더 명확히 현출되도록 렌즈 등이 탑재되지 않은 고정렌즈조립체(50), 제1렌즈조립체(60), 제2렌즈조립체(70)가 도시되어 있다.
도 2는 본 발명의 바람직한 일 실시예에 의한 액추에이터(100)의 전체적인 구성을 도시한 도면이다.
본 발명의 액추에이터(100)는 액추에이터(100)의 기본적인 프레임 구조에 해당하며 내부 구성을 수용하는 하우징(110), 이 하우징(110)에 결합되며 쉴드캔으로 기능할 수 있는 케이스(190), 제1캐리어(120) 및 제2캐리어(130)를 포함한다.
본 발명의 액추에이터(100)는 단일의 캐리어를 이동시키는 형태 또는 복수 개 캐리어를 각각 이동시키는 형태로 구현될 수 있음은 물론이다. 이하 설명에서는 첨부된 도면과 같이 복수 개 캐리어의 상호 이동에 따른 조합적 적용을 통하여 줌 등을 효과적으로 구현하는 실시예를 기준으로 본 발명의 기술사상을 기술하도록 한다.
제1렌즈조립체(60)가 탑재되는 제1캐리어(120) 및 제2렌즈조립체(70)가 탑재되는 제2캐리어(130)는 각각 광축 방향(Z축 방향)으로 선형 이동하는 이동체에 해당하며, 이에 상응하는 상대적 관점에서 하우징(110)은 고정체에 해당한다.
도 2 등에 도시된 실시예에서는 제2렌즈조립체(70)가 제2캐리어(130)에 탑재되되, 제2렌즈조립체(70)가 광축 방향을 기준으로 제1렌즈조립체(60)보다 상부 또는 하부에 위치하도록 제2캐리어(130)에 탑재되며, 이 상태에서 제2캐리어(130)가 광축 방향으로 선형 이동한다.
후술되는 바와 같이 제1캐리어(120)에는 제1마그네트(M1)가 구비되며 하우징(110) 측에는 상기 제1마그네트(M1)와 대면하며 제1마그네트(M1)에 구동력을 제공하는 제1코일부(C1)가 구비된다.
제1구동드라이버의 제어에 의하여 적절한 크기와 방향의 전원이 제1코일부(C1)로 인가되면 제1코일부(C1)와 제1마그네트(M1) 사이에 전자기력이 발생하고 이 발생된 전자기력에 의하여 제1캐리어(120)가 광축 방향으로 진퇴 이동하게 된다. 상기 제1코일부(C1) 등은 제1회로기판(170-1)에 실장되는 형태로 하우징(110)의 개방된 면부에 구비될 수 있다.
제1구동드라이버는 독립된 전자 부품, 소자 등으로 구현될 수도 있음은 물론이나 SOC(System On Chip) 등을 통하여 후술되는 홀센서와 통합된 단일 전자부품(chip)의 형태로 구현되는 것이 일반적이므로 도면에는 따로 도시하지 않았다.
또한, 구동드라이버(제1구동드라이버 또는/ 및 후술되는 제2구동드라이버)는 개별 홀센서와 동수(同數)로 구비되어 개별 홀센서와 단일 칩으로 구현될 수 있다. 실시형태에 따라서 홀센서와의 전기적 연결을 위한 채널 개수의 조정 등을 통하여 개별 홀센서와 동수로 구비되지 않을 수 있으며 개별 홀센서 중 일부와 단일 칩으로 구현될 수도 있다.
유사한 관점에서, 제2구동드라이버(미도시)가 적절한 크기와 방향의 전원이 제2코일부(C2)로 인가되도록 제어하면 제2캐리어(130)에 구비된 제2마그네트(M2)와 제2코일부(C2) 사이에 발생된 전자기력에 의하여 제2캐리어(130)가 광축 방향으로 선형 이동하게 된다.
도면에는 제1렌즈조립체(60)가 탑재된 제1캐리어(120) 및 제2렌즈조립체(70)가 탑재된 제2캐리어(130)를 도시하고 있으나, 이는 하나의 실시예로서 실시형태에 따라서 단일 개수 또는 더 많은 개수의 렌즈조립체와 캐리어가 구비될 수 있음은 물론이다.
이하 설명에서는 설명의 효율성을 위하여 액추에이터(100)에 구비되는 캐리어를 2개로 예시하며, 도 2의 광축 방향을 기준으로 상부(전방)에 위치한 캐리어를 제1캐리어(120)로, 하부(후방)에 위치한 캐리어를 제2캐리어(130)로 지칭한다.
이와 같이 제1캐리어(120) 및 제2캐리어(130)가 각각 광축 방향으로 선형 이동하면, 각 캐리어에 탑재된 렌즈(렌즈조립체) 또한, 광축 방향으로 선형 이동하게 되며 이들 렌즈들의 상대적인 위치 관계에 의하여 AF 또는 줌 기능이 구현된다.
한편, 제1캐리어(120)와 제2캐리어(130)가, 최소화된 마찰력으로 더욱 유연하게 선형 이동할 수 있도록 제1캐리어(120)와 하우징(110) 사이 그리고 제2캐리어(130)와 하우징(110) 사이에는 볼이 배치되도록 구성되는 것이 바람직하다.
하우징(110)의 하부면(YZ 평면)에는 제1마그네트(M1)와 제2마그네트(M2)와 인력을 발생시켜, 제1캐리어(120)와 제2캐리어(130)가 볼을 사이에 두고 하우징(110) 방향으로 밀착되도록 유도하는 금속재질의 요크(180)가 구비될 수 있다.
도 3 및 도 4는 본 발명의 일 실시예에 의한 제1캐리어(120), 제2캐리어(130) 및 하우징(110) 등의 상세 구성과 상호 관계를 도시한 도면이다.
앞서 기술된 바와 같이 제1렌즈조립체(60)가 탑재되는 제1캐리어(120)는 광축 방향으로 선형 이동하는 이동체로서, 구체적으로 제1렌즈(60)가 탑재되는 제1마운터(121), 제1마그네트(M1)가 탑재되는 제1지지부(123) 및 제1가이더(125)를 포함한다.
제1마운터(121)는 도면에 예시된 바와 같이 제1렌즈(제1렌즈조립체)(60)가 탑재되도록 제1렌즈조립체(60)의 형상에 대응되는 공간이 마련되며, 실시형태에 따라서 제1렌즈조립체(60)가 X축 방향 등으로 이탈되는 것을 방지하기 위한 케이스 내지 스토퍼(stopper)(미도시)가 제1마운터(121)의 상부에 구비될 수 있다.
제1마그네트(M1)가 탑재되는 제1지지부(123)는 제1마운터(121)의 좌측 또는 우측 중 일측에 구비되며, 도면에 도시된 바와 같이 광축 방향을 기준으로 제1마운터(121)의 광축 방향 길이보다 연장된 형상을 가진다.
제1지지부(123)는 제1마운터(121)와 일체형으로 이루어질 수 있으며, 후술되는 제2캐리어(130)의 제2지지부(135)와 상호 대칭되는 물리적 구조를 구현하기 위하여 광축 방향(Z축 방향) 중 어느 한 방향으로 연장된 형상을 가지도록 구성되는 것이 바람직하다.
이와 같이 본 발명의 제1지지부(123)는 광축 방향으로 연장된 형상을 가지도록 구성되므로 그 확장된 영역에 대응되는 크기의 제1마그네트(M1)가 탑재될 수 있어 제1캐리어(120)의 구동력을 더욱 증강시킬 수 있다.
또한, 제1지지부(123)에는 하우징(110)에 형성된 제1가이드레일과 대면하는 제1레일(128)이 형성될 수 있다. 이 경우 볼은 제1가이드레일과 제1레일(128) 사이에 그 일부가 수용되는 형태로 배치된다.
제1가이더(125)는 제1마운터(121)의 좌측 또는 우측 중 상기 제1지지부(123)가 구비되지 않는 반대측에 구비되며 도면에 예시된 바와 같이 제1지지부(123)보다 낮은 높이(X축 기준)를 가지며 제1마운터(121)의 광축 방향 길이보다 더 연장된 바(bar) 형상으로 이루어질 수 있다.
이 제1가이더(125)에는 하우징(110)에 형성된 제2가이드레일과 대면하는 제2레일(129)이 형성되며, 볼은 제2가이드레일과 제2레일(129) 사이에 그 일부가 수용되는 형태로 배치된다.
이와 같이 제1캐리어(120)는 제1마운터(121)를 기준으로 좌측과 우측 각각에 위치하며 광축 방향을 기준으로 제1마운터(121)보다 연장된 형상을 가지는 제1지지부(123)와 제1가이더(125)에 의하여 제1렌즈조립체(60)의 광축 방향 이동을 더욱 안정적으로 지지할 수 있다.
제1캐리어(120)의 제1가이더(125)에는 요크(180)와 인력을 발생시키는 제1밸런스마그네트(BM1)가 구비되며, 앞서 설명된 바와 같이 제1캐리어(120)의 제1지지부(123)에 구비되는 제1마그네트(M1)는 하우징(110)에 구비되는 요크(180)와 인력이 발생된다.
그러므로 본 발명의 제1캐리어(120)는 제1마그네트(M1)와 요크(180) 사이 그리고 제1밸런스마그네트(BM1)와 요크(180) 사이의 인력에 의하여 전체적으로 평형을 유지하면서 하우징(110) 방향으로 밀착되므로 볼에 의한 물리적 가이딩이 더욱 안정적으로 구현될 수 있다.
제2캐리어(130)는 상술된 제1캐리어(120)와 상응하는 물리적 구조를 가지되, 도면에 도시된 바와 같이 상반되는 방향에서 제1캐리어(120)와 상호 대칭되는 구조로 이루어진다.
구체적으로 제2캐리어(130)는 제2렌즈조립체(70)가 탑재되는 제2마운터(131), 제2마그네트(M2)가 탑재되는 제2지지부(133) 및 제2가이더(135)를 포함한다.
제2캐리어(130)의 제2지지부(133)는 제2마운터(131)의 좌측 또는 우측 중 일측에 구비되되, 앞서 기술된 제1캐리어(120)의 제1지지부(123)가 구비된 방향과 반대되는 방향에 구비되며, 광축 방향으로 상기 제2마운터(131)의 길이보다 연장된 형상을 가지되, 제1캐리어(120)의 제1지지부(123)가 연장된 방향과 반대되는 방향으로 연장된 형상을 가진다.
이와 같이 제1캐리어(120)와 제2캐리어(130)는 전체적으로 유사한 물리적 구조를 가지되, 가운데 부분에서 제1렌즈조립체(60)가 탑재되는 제1마운터(121)와 제2렌즈조립체(70)가 탑재되는 제2마운터(131)가 위치하도록 함으로써 제1 및 제2렌즈조립체(60, 70)의 충분한 이동거리가 확보될 수 있다.
이와 동시에, 제1캐리어(120)의 구동을 위한 제1마그네트(M1) 및 제2캐리어(130)의 구동을 위한 제2마그네트(M2)는 제1지지부(123)와 제2지지부(133)를 통하여 상대적으로 더 큰 크기로 설치 가능하므로 구동력 증강을 효과적으로 도모할 수 있다.
나아가 제1마그네트(M1)와 제2마그네트(M2)는 각각 좌측과 우측(Y축 기준)으로 서로 이격되어 있고 이에 대응되도록 제1마그네트(M1)와 대면하는 제1코일부(C1)와 제2마그네트(M2)와 대면하는 제2코일부(C2) 또한, 이격된다.
이와 같이, 제1마그네트(M1)와 제1코일부(C1), 제2마그네트(M2)와 제2코일부(C2)가 서로 원거리로 이격되므로 각 캐리어의 구동을 위한 전자기력의 상호 간섭이나 영향을 최소화할 수 있어 제1캐리어(120) 및 제2캐리어(130)의 독립된 구동을 더욱 정밀하게 구현할 수 있다.
제2지지부(133)에는 하우징(110)에 형성된 제3가이드레일과 대면하는 제3레일(138)이 형성될 수 있으며, 이 경우 볼은 제3가이드레일과 제3레일(138) 사이에 그 일부가 수용되는 형태로 배치된다.
제2가이더(135)는 제2마운터(131)의 좌측 또는 우측 중 상기 제2지지부(133)가 구비되지 않는 반대측에 구비되며 도면에 예시된 바와 같이 제2지지부(133)보다 낮은 높이(X축 기준)를 가지며 제2마운터(131)의 광축 방향 길이보다 더 연장된 바(bar) 형상으로 이루어질 수 있다.
이 제2가이더(135)에는 하우징(110)에 형성된 제4가이드레일과 대면하는 제4레일(139)이 형성되며, 볼은 제4가이드레일과 제4레일(139) 사이에 그 일부가 수용되는 형태로 배치된다.
이와 같이 제2캐리어(130)는, 제2마운터(131)를 기준으로 좌측과 우측 각각에 위치하며 광축 방향을 기준으로 제2마운터(131)보다 연장된 형상을 가지는 제2지지부(133)와 제2가이더(135)에 의하여 제2렌즈조립체(70)의 광축 방향 이동을 더욱 안정적으로 지지할 수 있다.
제2캐리어(130)의 제2가이더(135)에는 요크(180)와 인력을 발생시키는 제2밸런스마그네트(BM2)가 구비되며, 제2캐리어(130)의 제2지지부(133)에 구비되는 제2마그네트(M2)는 하우징(110)에 구비되는 요크(180)와 인력이 발생된다.
그러므로 본 발명의 제2캐리어(120)는 제2마그네트(M2)와 요크(180) 사이 그리고 제2밸런스마그네트(BM2)와 요크(180) 사이의 인력에 의하여 전체적으로 평형을 유지하면서 하우징(110) 방향으로 밀착되므로 볼에 의한 물리적 가이딩이 더욱 안정적으로 구현될 수 있다.
제1캐리어(120)는 제2캐리어(130)의 제2가이더(135)가 이동 가능하도록 광축 방향으로 연장된 형상의 통로를 가지는 제1공간(127)을 포함한다.
이에 상응하도록 제2캐리어(130)는 제1캐리어(120)의 제1가이더(125)가 이동 가능하도록 광축 방향으로 연장된 형상의 통로를 가지는 제2공간(137)을 포함한다.
이러한 제1캐리어(120)의 제1공간(127) 및 제2캐리어(130)의 제2공간(137)의 물리적 구조를 통하여, 제1캐리어(120)의 제1가이더(125)는 제2캐리어(130)의 제2공간(137)으로 유입되고, 제2캐리어(130)의 제2가이더(135)는 제1캐리어(120)의 제1공간(127)으로 유입된다.
그러므로 본 발명의 제1캐리어(120)와 제2캐리어(130)는 각각 독립적으로 이동할 수 있음은 물론, 각각의 일부 구성이 상호 교차 내지 적층되는 형태의 물리적 구조로 구현될 수 있어 공간 활용성을 더욱 높일 수 있게 된다.
도 5 및 도 6은 복수 개 자극(P1~P4)을 가지는 제2마그네트(M2)와 복수 개 코일(C2-1, C2-2, C2-3, C2-4)로 이루어지는 제2코일부(C2)에 대한 상세 구성을 도시한 도면이며, 도 7은 캐리어(마그네트)의 각 이동에 따른 코일의 차등 제어를 설명하는 도면이다.
마그네트, 코일, 홀센서 및 구동드라이버에 대한 설명은 도면에 예시된 제2마그네트(M2), 제2코일(C2-1, C2-2, C2-3, C2-4), 제2홀센서(H2-1, H2-2, H2-3, H2-4) 및 제2구동드라이버를 기준으로 설명한다.
본 발명의 제2코일부(C2)는 제2캐리어(130)에 설치되며 n(n은 3이상의 자연수)개의 자극을 가지는 제2마그네트(M2)와 대면한다. 또한, 제2코일부(C2)는 확장된 이동 구간 내 구동력이 제공될 수 있도록 도 5 등에 도시된 바와 같이 광축 방향(Z축 방향)을 기준으로 상하로 배열되는 k개 제2코일(C2-1, C2-2, C2-3, C2-4)을 포함한다.
여기서 n과 k는 3이상의 자연수이며, 도면에는 이에 대한 하나의 예로 4개의 코일과(C2-1, C2-2, C2-3, C2-4) 4개의 자극(P1~P4)을 가지는 제2마그네트(M2)가 도시되어 있다.
한편, 도 5에 도시된 바와 같이, 제2마그네트(M2)의 각 자극(P1, P2, P3, P4) 사이의 경계 라인이 자극 경계(S)가 된다.
제2홀센서(H2)는 홀효과(hall effect)를 이용하여 감지 영역 내에 존재하는 마그네트의 자기장 크기 및 방향의 변화를 감지하고 그에 따른 전기적 신호를 출력한다.
제2마그네트(M2) 즉, 제2캐리어(130)의 이동에 따른 위치 정밀성이 향상될 수 있도록 상기 제2홀센서는 광축 방향을 기준으로 상하로 배열되며 제1간격으로 상호 이격 배치되는 m(m은 2 이상의 자연수)개(H2-1, H2-2, H2-3, H2-4)로 이루어지는 것이 바람직하다.
본 발명의 제2구동드라이버는 m개로 이루어지는 제2홀센서(H2)를 구성하는 개별 홀센서(H2-1, H2-2, H2-3, H2-4) 각각의 신호를 종합적으로 이용하여 제2마그네트(M2) 즉, 제2캐리어(130)의 현재 위치를 정밀하게 감지하고 감지된 위치와 진행 방향(AF 또는 zoom 구동에 따른 방향)에 따른 정보를 이용하여 k개 제2코일(C2-1, C2-2, C2-3, C2-4) 각각에 인가되는 전류의 크기와 방향을 차등적으로 제어한다.
이와 같이 본 발명의 액추에이터(100)는 복수 개 홀센서(제2홀센서 또는 제1홀센서) 각각의 신호 체계를 이용하므로 마그네트가 장착된 이동체인 캐리어의 정확한 현재 위치를 정밀하게 감지할 수 있고, 나아가 각 홀센서 각각에 대응하는 개별 코일의 그룹핑 제어를 통하여 개별 코일의 구동 제어를 더욱 정밀하게 구현할 수 있다.
홀센서 또한, 도 6 등에 도시된 바와 같이 광축 방향을 기준으로 상하로 배열되는 것이 바람직하며 나아가 위치 감지 및 구동 제어의 정밀성을 높이기 위하여 홀센서 사이의 제1간격(D1, 도 6참조)은 마그네트(도면 기준 제2마그네트(M2))의 자극(P1, P2, P3, P4)의 광축 방향 길이(D2, 도 6참조)보다 크도록 구성하는 것이 바람직하다.
마그네트의 선형 이동에 따른 마그네트의 위치 감지를 더욱 정밀하게구현하고 공간적 활용도를 향상시키기 위하여 본 발명의 홀센서(도면 기준 제2홀센서(H2))는 상기 k개 코일 각각의 가운데 공간 중 m개의 공간에 각각 배치되는 것이 바람직하다.
도 6에 도시된 바와 같이 마그네트를 구성하는 개별 자극의 광축 방향 길이(D2)는 각 제2코일(C2-1, C2-2, C2-3, C2-4)의 광축 방향 길이(D3) 보다는 작고 D3/2보다는 크도록 구성하는 것이 바람직하다.
이와 같이 구성하는 경우, 마그네트의 선형 이동에 따른, 마그네트와 코일 사이의 가변되는 대면 관계를 코일 제어에 유기적으로 접목할 수 있으며 나아가 인접한 마그네트 자극에 대하여 발생되는 각 코일의 자기력이 서로 중첩되어 교란되는 현상을 억제할 수 있어 구동 정밀성을 더욱 향상시킬 수 있다.
본 발명의 구동드라이버(제2구동드라이버)는 상기 k개 코일 각각에서 전류가 순환하는 방향을 차등적으로 제어하여 AF 또는 연속 줌에 따른 캐리어의 이동에 순응하는 자기력이 각 코일에서 발생되도록 할 수 있다.
또한, 마그네트 자극의 위치에 따라 자기력 교란이 발생될 수 있는 경우, 해당 위치에 대응되는 코일에 전류 인가를 차단하는 등 k개 코일 각각에 대한 전류 인가의 온오프(ON/OFF)를 차등적으로 제어할 수 있다.
구체적으로 도 7에 도시된 바와 같이, 제2캐리어(130), 구체적으로 제2마그네트(M2)가 광축 방향을 기준으로 선형 이동함에 따라 제2마그네트(M2)의 자극 경계(S) 또한, 광축 방향으로 이동하게 된다.
제2마그네트(M2)가 광축 방향으로 이동하는 경우 도 7의 가운데 도면과 같이 제2마그네트(M2)의 자극(P1, P2) 사이의 자극 경계(S)가 제2-3홀센서(C2-3) 즉, 제2-3코일(C2-3)의 가운데(광축 방향 기준) 부분과 정합하게 된다.
설명의 효율성을 위하여 이와 같이 제2마그네트(M2)의 자극 경계(S)와 대면하는 코일을 ‘대면코일’이라 지칭한다. 도 7의 가운데 도면의 경우 제2코일 중 제2-3코일(C2-3)이 대면코일이 된다.
이와 같이 대면코일과 제2마그네트(M2)의 자극 경계(S)가 정합된 순간이 지나면 대면코일에 의하여 발생된 자기력 중 일부가 제2마그네트(M2)의 자극(P1, P2)과의 관계에서 제2마그네트(M2)의 진행 방향에 역행하는 방향의 성분으로 기능하여 자기력 교란이 발생하게 되므로 구동 효율성이 저하될 수 있다.
이 경우 본 발명의 제2구동드라이버는 대면코일의 전류 인가를 차단하고, 이 대면코일의 전방 또는/및 후방에 위치한 제2코일에 전류가 인가되도록 제어하여 구동원으로 사용되는 제2코일이 적응적으로 전환되도록 한다.
전류 인가가 차단되어 자기력이 발생되지 않도록 제어되는 대상인 대면코일은 제2마그네트(M2)의 선형 이동 내지 위치에 따라 가변됨은 물론이다.
도 7의 가운데 도면의 경우, 제2-3코일(C2-3)코일의 전류 인가가 오프(OFF)되도록 제어되며 제2-3코일(C2-3)의 전방 및 후방에 위치한 제2-2코일(C2-2) 또는 제2-4코일(C2-4) 중 하나 이상이 구동원으로 이용된다.
도 7의 하단 도면의 경우, 제2마그네트(M2)의 자극 경계(S)를 감지하는 홀센서가 제2-2홀센서(H2-2)이므로 이에 대응되는 코일인 제2-2코일(C2-2)이 대면코일에 해당하므로 본 발명의 제2구동드라이버는 제2-2코일에 대한 전류 인가가 오프(OFF)되도록 제어한다.
또한, 이 경우 제2구동드라이버는 제2-2코일(C2-2)의 전방 및 후방에 위치한 제2-1코일(C2-1) 또는 제2-3코일(C2-3) 중 하나 이상에 적절한 크기와 방향의 전류가 인가되도록 제어한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1 및 제2 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.
100 : 액추에이터 110 : 하우징
120 : 제1캐리어 121 : 제1마운터
123 : 제1지지부 125 : 제1가이더
128 : 제1레일 129 : 제2레일
BM1 : 제1밸런스마그네트 BM2 : 제2밸런스마그네트
130 : 제2캐리어 131 : 제2마운터
133 : 제2지지부 135 : 제2가이더
138 : 제3레일 139 : 제4레일
C1 : 제1코일부 C2 : 제2코일부
C2-1, C2-2, C2-3, C2-4 : 제2코일
H2-1, H2-2, H2-3, H2-4 : 제2홀센서

Claims (6)

  1. 렌즈가 탑재되며 광축방향으로 이동하는 캐리어;
    상기 캐리어를 수용하는 하우징;
    상기 캐리어에 구비되며 n(n은 3이상의 자연수)개 자극을 가지는 마그네트;
    상기 마그네트와 대면하며 광축 방향을 기준으로 상하로 배열되는 k(k는 3이상의 자연수)개 코일을 포함하는 코일부;
    상기 마그네트의 위치를 감지하는 홀센서; 및
    상기 마그네트의 위치에 따라 상기 k개 코일 각각에 인가되는 전류를 차등적으로 제어하는 구동드라이버를 포함하는 것을 특징으로 하는 연속 줌 액추에이터.
  2. 제1항에 있어서, 상기 홀센서는,
    광축방향을 기준으로 상하로 배열되며 제1간격으로 이격되어 배치되는 m(m은 2이상의 자연수)개로 이루어지며,
    상기 구동드라이버는 상기 m개 홀센서 각각의 신호를 이용하여 상기 k개 코일 각각에 인가되는 전류를 차등적으로 제어하는 것을 특징으로 하는 연속 줌 액추에이터.
  3. 제2항에 있어서, 상기 제1간격은,
    상기 마그네트의 n개 자극 각각의 광축 방향 길이보다 큰 것을 특징으로 하는 연속 줌 액추에이터.
  4. 제1항에 있어서, 상기 구동드라이버는,
    상기 k개 코일 각각의 전류 순환 방향 또는 전류 인가의 온오프(on/off)를 차등적으로 제어하는 것을 특징으로 하는 연속 줌 액추에이터.
  5. 제2항에 있어서, 상기 m개 홀센서는,
    상기 k개 코일 각각의 가운데 공간 중 선택된 m개의 공간에 각각 배치되는 것을 특징으로 하는 연속 줌 액추에이터.
  6. 제5항에 있어서, 상기 구동드라이버는,
    k개 코일 중 상기 마그네트의 자극 경계를 감지한 홀센서에 대응되는 위치에 구비된 코일인 대면코일의 전류 인가를 차단하고, 광축방향을 기준으로 상기 대면코일의 전방 또는/및 후방에 위치한 코일에 전류가 인가되도록 제어하는 것을 특징으로 하는 연속 줌 액추에이터.
KR1020210064593A 2021-05-20 2021-05-20 연속 줌 액추에이터 KR20220157047A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210064593A KR20220157047A (ko) 2021-05-20 2021-05-20 연속 줌 액추에이터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210064593A KR20220157047A (ko) 2021-05-20 2021-05-20 연속 줌 액추에이터

Publications (1)

Publication Number Publication Date
KR20220157047A true KR20220157047A (ko) 2022-11-29

Family

ID=84234917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210064593A KR20220157047A (ko) 2021-05-20 2021-05-20 연속 줌 액추에이터

Country Status (1)

Country Link
KR (1) KR20220157047A (ko)

Similar Documents

Publication Publication Date Title
KR102090625B1 (ko) 자동초점 조절장치 및 이를 포함하는 카메라 모듈
US10564442B2 (en) Apparatus for driving optical-reflector for OIS with multi-axial structure
KR102423363B1 (ko) 줌 카메라용 액추에이터
KR20180120894A (ko) 다축 구조의 반사계 구동장치
EP3584624B1 (en) Reflection system driving device having multi-axis structure
US11824417B2 (en) Actuator with multipolar magnet structure
KR20200012421A (ko) 모듈 결합형 카메라용 액추에이터
KR102334584B1 (ko) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
US20230341745A1 (en) Zoom drive actuator
KR102467587B1 (ko) 줌 구동 액추에이터
KR20200035522A (ko) 렌즈 구동장치
US11543675B2 (en) Actuator for optical image stabilization with reflector
KR102351233B1 (ko) Af용 액추에이터 및 이를 구동 제어하는 구동드라이버
KR20220157047A (ko) 연속 줌 액추에이터
KR102565566B1 (ko) 이원구조의 줌 구동 액추에이터
KR20220104345A (ko) 카메라용 액추에이터
KR20230030167A (ko) 카메라용 액추에이터
US20230296964A1 (en) Zoom driving actuator and position control method for zoom driving
US20220317412A1 (en) Actuator for driving zoom
KR20230140031A (ko) 카메라용 액추에이터
KR20240043246A (ko) 카메라용 액추에이터
KR20230025979A (ko) 하이브리드 줌 구동 액추에이터
KR20210156424A (ko) 반사계 액추에이터 및 카메라 모듈
KR20230026717A (ko) 연속줌 액추에이터
KR20240050264A (ko) 반사계 액추에이터