KR20220156140A - River water pollution system monitoring - Google Patents

River water pollution system monitoring Download PDF

Info

Publication number
KR20220156140A
KR20220156140A KR1020210063452A KR20210063452A KR20220156140A KR 20220156140 A KR20220156140 A KR 20220156140A KR 1020210063452 A KR1020210063452 A KR 1020210063452A KR 20210063452 A KR20210063452 A KR 20210063452A KR 20220156140 A KR20220156140 A KR 20220156140A
Authority
KR
South Korea
Prior art keywords
light source
light
module
image
acquisition module
Prior art date
Application number
KR1020210063452A
Other languages
Korean (ko)
Inventor
고윤안
Original Assignee
주식회사 시스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 시스텍 filed Critical 주식회사 시스텍
Priority to KR1020210063452A priority Critical patent/KR20220156140A/en
Publication of KR20220156140A publication Critical patent/KR20220156140A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Medicinal Chemistry (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention provides a river water pollution monitoring apparatus capable of accurately detecting pollutants discharged at night regardless of a change in water temperature and distinguishing components of pollutants even if water is not sampled. According to the present invention, the river water pollution monitoring apparatus comprises: a drone unit (110) flying in air in accordance with a received flight control signal; a ground control device (120) outputting a flight control signal to the drone unit (110) to allow the drone unit (110) to fly and move along a river; an illumination module (130) mounted on the drone unit (110) to emit illumination light toward the water surface of the river; a UV light module (140) mounted on the drone unit (110) to emit UV light toward the water surface of the river; and an image acquisition module (150) mounted on the drone unit (110), and acquiring photographing image data including a fluorescent image of pollutants excited by the UV light to emit light while aiming at the water surface to which the illumination light and the UV light are emitted to photograph an image.

Description

하천 수질오염 모니터링 장치{RIVER WATER POLLUTION SYSTEM MONITORING}River water pollution monitoring device {RIVER WATER POLLUTION SYSTEM MONITORING}

본 발명은 하천 수질오염 모니터링 장치에 관한 것으로, 보다 상세하게는 하천의 수질상태를 감시하여 야간에 방류되는 오염물질을 검출하고 검출된 오염물질의 오염경로 및 오염원을 추적할 수 있는 하천 수질오염 모니터링 장치에 관한 것이다.The present invention relates to a river water pollution monitoring device, and more particularly, river water pollution monitoring capable of monitoring the water quality of a river, detecting pollutants discharged at night, and tracing the contamination path and source of the detected pollutants. It's about the device.

일반적으로 하천에 대한 기본 수질측정은 연 12회 이루어지고 중금속측정은 연 4회 이루어지고 있다. 그러나 국내 수질 측정망은 산업단지와 같은 특정 지점오염원에 대한 감시체계로 이루어졌으며 불특정 분포된 비점오염원에 대한 감시 모니터링은 부재한 실정이다. 특히, 도로, 주차장, 농경지 및 축사 등에 쌓여 있던 오염원이 빗물 등에 의해 씻겨 하천으로 유입되나 오염된 빗물은 지표면을 따라 흐르기 때문에 발생지점이 분명하지 않아 감시 모니터링이 난해한 문제점이 있었다.In general, basic water quality measurements for rivers are made 12 times a year, and heavy metal measurements are made 4 times a year. However, the domestic water quality measurement network consists of a monitoring system for specific point pollution sources such as industrial complexes, and there is no monitoring system for non-point pollution sources distributed in an unspecified manner. In particular, pollutants piled up on roads, parking lots, farmlands, barns, etc. are washed away by rainwater and flowed into rivers, but since the contaminated rainwater flows along the surface, the point of occurrence is not clear, so monitoring is difficult.

이를 위해 종래에는 드론을 이용하여 하천의 수질오염 상태를 모니터링하고자 하는 시도가 있었다. 그러나 종래의 하천 수질오염 모니터링 시스템은 열화상카메라로 하천을 촬영하여 획득된 열화상 영상데이터의 분석을 통해 기준치 이상의 온도변화가 나타나는 경우 수질오염에 의한 온도변화로 간주하였다. 그러나, 수질이 오염되더라도 오염물질에 따라 온도변화가 크게 나타나지 않은 경우가 빈번하고 우천시나 수온이 다른 두 하천이 합쳐지는 장소에서는 온도변화만으로 수질오염 여부를 판별하기가 제한되는 문제점이 있었다.To this end, conventionally, there has been an attempt to monitor the water pollution state of a river using a drone. However, in the conventional river water pollution monitoring system, when a temperature change of more than a standard value is found through analysis of thermal image data obtained by photographing a river with a thermal imaging camera, it is regarded as a temperature change due to water pollution. However, even if the water quality is polluted, there are frequent cases where the temperature change does not appear significantly depending on the contaminant, and in rainy weather or in a place where two rivers with different water temperatures are merged, there is a problem in that it is limited to determine whether the water quality is contaminated only by the temperature change.

등록특허공보 제10-1866239호(2018.06.04), 드론을 활용한 수질환경 감시방법.Registered Patent Publication No. 10-1866239 (2018.06.04), Water Quality Environment Monitoring Method Using Drones.

본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 수온변화와 무관하게 야간에 방류되는 오염물질을 정확하게 검출할 수 있으며 채수하지 않더라도 오염물질의 성분을 판별할 수 있는 하천 수질오염 모니터링 장치을 제공하는 것에 있다.The present invention was created to solve the above problems, and an object of the present invention is to accurately detect pollutants discharged at night regardless of water temperature change, and to determine the quality of river water without collecting water. To provide a contamination monitoring device.

상기의 목적을 달성하기 위한 본 발명에 따른 하천 수질오염 모니터링 장치는, 수신되는 비행제어신호에 따라 공중비행하는 드론유닛(110); 상기 드론유닛(110)이 비행하며 하천을 따라 이동하도록 드론유닛(110)으로 비행제어신호를 출력하는 지상통제장치(120); 상기 드론유닛(110)에 장착되어 하천의 수면을 향해 조명광을 발산하는 조명모듈(130); 상기 드론유닛(110)에 장착되어 하천의 수면을 향해 UV광을 발산하는 UV광모듈(140); 및 상기 드론유닛(110)에 장착되며 상기 조명광과 UV광이 조사된 수면을 지향하여 영상을 촬영하면서 상기 UV광에 의해 여기되어 발광하는 오염물질의 형광이미지가 포함된 촬영영상데이터를 획득하는 영상획득모듈(150);을 포함한다.River water pollution monitoring device according to the present invention for achieving the above object, the drone unit 110 flying in the air according to the flight control signal received; a ground control device 120 outputting a flight control signal to the drone unit 110 so that the drone unit 110 flies and moves along the river; a lighting module 130 mounted on the drone unit 110 and emitting illumination light toward the surface of the river; A UV light module 140 mounted on the drone unit 110 and emitting UV light toward the surface of the river; and images for acquiring photographed image data including fluorescent images of contaminants excited by the UV light and emitting light while photographing images directed toward the water surface irradiated with the illumination light and UV light while being mounted on the drone unit 110. Acquisition module 150; includes.

여기서, 상기 UV광모듈(140)은, UV-A광을 발산하는 UVA광원(141)과, UV-B광을 발산하는 UVB광원(142) 및, UV-C광을 발산하는 UVC광원(143)을 포함할 수 있다.Here, the UV light module 140 includes a UVA light source 141 emitting UV-A light, a UVB light source 142 emitting UV-B light, and a UVC light source 143 emitting UV-C light. ) may be included.

또한, 상기 드론유닛(110)의 바디부(111)에 장착된 지그(112)에 지지되어 바디부(111)의 하부 위치에 수평배치되고 상하로 개구된 조명공(161) 및 촬영공(162)이 각각 형성되어 상기 조명공(161)을 통해 조명광을 발산하도록 조명모듈(130)이 장착되며 상기 촬영공(162)을 통해 영상을 촬영하도록 영상획득모듈(150)이 장착되는 베이스판(160); 및 상기 베이스판(160)의 하부 위치에 수평배치되고 상기 조명공(161)과 상하로 대응되는 위치에는 발산된 조명광을 하향 투과하는 조명창(171)이 형성되며 상기 촬영공(162)과 상하로 대응되는 위치에는 투명한 촬영창(172)이 형성되고 상기 UV광모듈(140)과 상하로 대응되는 위치에는 발산된 UV광을 하향 투과하는 UV투과창(173)이 형성된 커버판(170);을 더 포함할 수 있다.In addition, the lighting hole 161 and the shooting hole 162 supported by the jig 112 mounted on the body part 111 of the drone unit 110 are horizontally arranged at the lower part of the body part 111 and open up and down. ) is formed, and the lighting module 130 is mounted to emit illumination light through the lighting hole 161, and the base plate 160 to which the image acquisition module 150 is mounted so as to capture an image through the shooting hole 162 ); And a lighting window 171 is formed at a lower position of the base plate 160 and vertically corresponds to the lighting hole 161 to transmit the emitted lighting light downward, and vertically to the shooting hole 162. A cover plate 170 having a transparent photographing window 172 formed at a corresponding position and a UV transmission window 173 formed at a position vertically corresponding to the UV light module 140 to transmit the emitted UV light downward. can include more.

또한, 상기 영상획득모듈(150)은 베이스판(160)의 중앙에 형성된 촬영공(162)에 장착되고, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)은 상기 베이스판(160) 상에서 영상획득모듈(150)로부터 일정거리 이격된 원주 상에 이격 배치되며, 상기 조명모듈(130)은 상기 원주상에서 UVA광원(141)과 UVB광원(142) 사이, UVB광원(142)과 UVC광원(143) 사이 및, UVC광원(143)과 UVA광원(141) 사이에 각각 배치될 수 있다.In addition, the image acquisition module 150 is mounted on the photographing hole 162 formed in the center of the base plate 160, and the UVA light source 141, the UVB light source 142 and the UVC light source 143 are mounted on the base plate 160. It is spaced apart on a circumference spaced apart from the image acquisition module 150 on the 160, and the lighting module 130 is between the UVA light source 141 and the UVB light source 142 on the circumference, the UVB light source 142 and between the UVC light source 143 and between the UVC light source 143 and the UVA light source 141, respectively.

또한, 상기 드론유닛(110)의 현재 위치에 따른 GPS좌표신호를 획득하는 GPS획득모듈(180); 상기 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)을 구동제어하고 상기 영상획득모듈(150)의 촬영영상데이터와 상기 GPS획득모듈(180)의 GPS좌표신호를 동기화하여 위치별 영상취합 데이터를 생성하는 구동제어모듈(190); 및 상기 촬영영상데이터의 영상분석을 통해 하천 상에서 오염물질의 확산경로 및 오염원 위치를 추출하고 상기 GPS좌표신호를 이용하여 추출된 확산경로 및 오염원의 위치를 화면상에 디스플레이된 지도에 표시하는 관리자단말(210);을 더 포함할 수 있다.In addition, a GPS acquisition module 180 for acquiring a GPS coordinate signal according to the current location of the drone unit 110; The lighting module 130, the UV light module 140, and the image acquisition module 150 are driven and controlled, and the captured image data of the image acquisition module 150 and the GPS coordinate signal of the GPS acquisition module 180 are synchronized. a drive control module 190 generating image collection data for each location; And a manager terminal for extracting the pollutant diffusion path and pollutant source location on the river through image analysis of the captured image data, and displaying the extracted diffusion path and pollutant location on a map displayed on the screen using the GPS coordinate signal. (210); may further include.

또한, 상기 구동제어모듈(190)은, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)이 동시에 발광하는 전체탐색 발광모드 및, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143) 중 일부 광원은 소등하고 나머지 광원은 광출력이 증대된 상태로 발광하는 집중탐색 발광모드로 구분하여 상기 UV광모듈(140)을 구동제어할 수 있다.In addition, the drive control module 190 provides a full search light emission mode in which the UVA light source 141, the UVB light source 142, and the UVC light source 143 emit light at the same time, and the UVA light source 141 and the UVB light source 142. ) and the UVC light source 143, the UV light module 140 can be driven and controlled by dividing into a concentrated search light emission mode in which some light sources are turned off and the remaining light sources emit light with increased light output.

한편, 상기 구동제어모듈(190)은, 상기 UVA광원(141)만 발광하는 (a)상태, 상기 UVB광원(142)만 발광하는 (b)상태, 상기 UVC광원(143)만 발광하는 (c)상태, 상기 UVA광원(141)과 UVB광원(142)만 발광하는 (d)상태, 상기 UVB광원(142)과 UVC광원(143)만 발광하는 (e) 상태, 상기 UVC광원(143)과 UVA광원(141)만 발광하는 (f)상태 및, 상기 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)이 모두 발광하는 (g)상태가 순차적으로 반복하도록 UV광모듈(140)을 구동제어하며, 상기 관리자단말(210)은, 상기 (a)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (b)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)에만 반응하여 여기되는 오염물질을 검출하며, 상기 (c)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (d)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142)에 반응하여 여기되는 오염물질을 검출하며, 상기 (e)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)과 UVC광원(143)에 반응하여 여기되는 오염물질을 검출하고, 상기 (f)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)과 UVA광원(141)에 반응하여 여기되는 오염물질을 검출하며, 상기 (g)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)에 반응하여 여기되는 오염물질을 검출할 수 있다.Meanwhile, the drive control module 190 is in (a) state in which only the UVA light source 141 emits light, (b) state in which only the UVB light source 142 emits light, and (c) in which only the UVC light source 143 emits light. ) state, (d) state in which only the UVA light source 141 and the UVB light source 142 emit light, (e) state in which only the UVB light source 142 and the UVC light source 143 emit light, the UVC light source 143 and The UV light module 140 so that only the UVA light source 141 emits light (f) and the UVA light source 141, the UVB light source 142, and the UVC light source 143 emit light (g) sequentially. ), and the manager terminal 210 analyzes the image frame obtained by the image acquisition module 150 in the state of (a) to detect pollutants excited by reacting only to the UVA light source 141, In the state (b), the image frame acquired by the image acquisition module 150 is analyzed to detect contaminants that are excited by reacting only to the UVB light source 142, and acquired by the image acquisition module 150 in the state (c). The contaminants that are excited by reacting only to the UVC light source 143 are detected by analyzing the image frame, and the image frame obtained by the image acquisition module 150 is analyzed in the state (d) to determine the UVA light source 141 and the UVB light source. (142) detects pollutants that are excited, and analyzes the image frame acquired by the image acquisition module 150 in the state (e) to react to the UVB light source 142 and the UVC light source 143 to be excited. Contaminants are detected, and pollutants excited by the UVC light source 143 and UVA light source 141 are detected by analyzing the image frames acquired by the image acquisition module 150 in the state (f), and the ( g) It is possible to detect contaminants that are excited in response to the UVA light source 141, the UVB light source 142, and the UVC light source 143 by analyzing the image frames acquired by the image acquisition module 150 in the state.

본 발명에 따른 하천 수질오염 모니터링 장치에 의하면,According to the river water pollution monitoring device according to the present invention,

첫째, 드론유닛(110)은 수신되는 비행제어신호에 따라 공중비행하고, 지상통제장치(120)는 드론유닛(110)이 비행하며 하천을 따라 이동하도록 드론유닛(110)으로 비행제어신호를 출력하고, 조명모듈(130)은 드론유닛(110)에 장착되어 하천의 수면을 향해 조명광을 발산하며, UV광모듈(140)은 드론유닛(110)에 장착되어 하천의 수면을 향해 UV광을 발산하고, 영상획득모듈(150)은 드론유닛(110)에 장착되며 상기 조명광과 UV광이 조사된 수면을 지향하여 영상을 촬영하면서 상기 UV광에 의해 여기되어 발광하는 오염물질의 형광이미지가 포함된 촬영영상데이터를 획득함으로써, 수온변화와 무관하게 야간에 방류되는 오염물질을 정확하게 검출할 수 있다.First, the drone unit 110 flies in the air according to the received flight control signal, and the ground control device 120 outputs a flight control signal to the drone unit 110 so that the drone unit 110 flies and moves along the river. And, the lighting module 130 is mounted on the drone unit 110 and emits illumination light toward the surface of the river, and the UV light module 140 is mounted on the drone unit 110 and emits UV light toward the surface of the river. And, the image acquisition module 150 is mounted on the drone unit 110 and captures an image toward the water surface irradiated with the illumination light and UV light, and includes a fluorescent image of pollutants excited by the UV light and emitting light. By acquiring photographic image data, pollutants discharged at night can be accurately detected regardless of water temperature change.

둘째, 상기 UV광모듈(140)은, UV-A광을 발산하는 UVA광원(141)과, UV-B광을 발산하는 UVB광원(142) 및, UV-C광을 발산하는 UVC광원(143)을 포함함으로써 오염물질의 성분을 판별할 수 있는 기초데이터를 획득할 수 있다.Second, the UV light module 140 includes a UVA light source 141 emitting UV-A light, a UVB light source 142 emitting UV-B light, and a UVC light source 143 emitting UV-C light. ), it is possible to obtain basic data capable of determining the components of pollutants.

셋째, 베이스판(160)은 상기 드론유닛(110)의 바디부(111)에 장착된 지그(112)에 지지되어 바디부(111)의 하부 위치에 수평배치되고 상하로 개구된 조명공(161) 및 촬영공(162)이 각각 형성되어 상기 조명공(161)을 통해 조명광을 발산하도록 조명모듈(130)이 장착되며 상기 촬영공(162)을 통해 영상을 촬영하도록 영상획득모듈(150)이 장착되고, 커버판(170)은 베이스판(160)의 하부 위치에 수평배치되고 상기 조명공(161)과 상하로 대응되는 위치에는 발산된 조명광을 하향 투과하는 조명창(171)이 형성되며 상기 촬영공(162)과 상하로 대응되는 위치에는 투명한 촬영창(172)이 형성되고 상기 UV광모듈(140)과 상하로 대응되는 위치에는 발산된 UV광을 하향 투과하는 UV투과창(173)이 형성됨으로써, 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)에 수분이나 이물질이 유입되는 것을 미연에 방지할 수 있다.Third, the base plate 160 is supported by the jig 112 mounted on the body part 111 of the drone unit 110, and is horizontally disposed at the lower part of the body part 111, and the lighting ball 161 opened vertically. ) and a shooting hole 162 are formed, and the lighting module 130 is mounted to emit illumination light through the lighting hole 161, and the image acquisition module 150 captures an image through the shooting hole 162. Mounted, the cover plate 170 is horizontally disposed at a lower position of the base plate 160, and an illumination window 171 is formed at a position vertically corresponding to the lighting hole 161 to transmit the emitted illumination light downward, and the photographing A transparent photographing window 172 is formed at a position corresponding vertically to the ball 162, and a UV transmission window 173 is formed at a position corresponding vertically to the UV light module 140 to transmit the emitted UV light downward. As a result, it is possible to prevent moisture or foreign substances from entering the lighting module 130, the UV light module 140, and the image acquisition module 150 in advance.

넷째, 상기 영상획득모듈(150)은 베이스판(160)의 중앙에 형성된 촬영공(162)에 장착되고, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)은 상기 베이스판(160) 상에서 영상획득모듈(150)로부터 일정거리 이격된 원주 상에 이격 배치되며, 상기 조명모듈(130)은 상기 원주상에서 UVA광원(141)과 UVB광원(142) 사이, UVB광원(142)과 UVC광원(143) 사이 및, UVC광원(143)과 UVA광원(141) 사이에 각각 배치됨으로써, 조명광과 UV광의 광균일도를 증대시켜 영상획득모듈(150)의 영상촬영시 조명차에 의한 음영이 발생하거나 빛반사가 발생하는 것을 방지할 수 있다.Fourth, the image acquisition module 150 is mounted on the photographing hole 162 formed in the center of the base plate 160, and the UVA light source 141, the UVB light source 142 and the UVC light source 143 are mounted on the base plate 160. It is spaced apart on a circumference spaced apart from the image acquisition module 150 on the 160, and the lighting module 130 is between the UVA light source 141 and the UVB light source 142 on the circumference, the UVB light source 142 and between the UVC light source 143 and between the UVC light source 143 and the UVA light source 141, thereby increasing the uniformity of light between the illumination light and the UV light, thereby increasing the shadow due to the difference in illumination during image capture of the image acquisition module 150 It is possible to prevent this or light reflection from occurring.

다섯째, GPS획득모듈(180)은 드론유닛(110)의 현재 위치에 따른 GPS좌표신호를 획득하고, 구동제어모듈(190)은 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)을 구동제어하고 상기 영상획득모듈(150)의 촬영영상데이터와 상기 GPS획득모듈(180)의 GPS좌표신호를 동기화하여 위치별 영상취합 데이터를 생성하며, 관리자단말(210)은 촬영영상데이터의 영상분석을 통해 하천 상에서 오염물질의 확산경로 및 오염원 위치를 추출하고 상기 GPS좌표신호를 이용하여 추출된 확산경로 및 오염원의 위치를 화면상에 디스플레이된 지도에 표시함으로써 수질오염 위치 및 상태를 육안으로 정확하게 식별할 수 있으며 사용자의 편의를 도모할 수 있다.Fifth, the GPS acquisition module 180 acquires a GPS coordinate signal according to the current position of the drone unit 110, and the drive control module 190 includes the lighting module 130, the UV light module 140 and the image acquisition module ( 150) is driven and controlled, and the captured image data of the image acquisition module 150 and the GPS coordinate signal of the GPS acquisition module 180 are synchronized to generate image collection data for each location, and the manager terminal 210 generates the captured image data. By extracting the diffusion path and pollutant source location of the pollutant on the river through image analysis, and displaying the extracted diffusion path and pollutant location using the GPS coordinate signal on the map displayed on the screen, the location and condition of water pollution can be visually observed. can be accurately identified and user convenience can be promoted.

여섯째, 상기 구동제어모듈(190)은, UVA광원(141), UVB광원(142) 및 UVC광원(143)이 동시에 발광하는 전체탐색 발광모드 및, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143) 중 일부 광원은 소등하고 나머지 광원은 광출력이 증대된 상태로 발광하는 집중탐색 발광모드로 구분하여 상기 UV광모듈(140)을 구동제어함으로써, 초기의 모니터링 단계에서는 전체탐색 발광모드로 UV광을 조사하여 오염물질 여부를 감시할 수 있으며, 오염물질의 존재가 확인된 모니터링 단계에서는 집중탐색 발광모드로 해당 오염물질을 여기시키는 UV광만을 발광하도록 함으로써 오염물질의 검출성을 증대시키고 드론유닛(110)의 배터리 소모를 줄일 수 있다.Sixth, the drive control module 190 has a full search light emission mode in which the UVA light source 141, the UVB light source 142 and the UVC light source 143 emit light at the same time, and the UVA light source 141 and the UVB light source 142 and UVC light source 143 by driving and controlling the UV light module 140 in a focused search light emission mode in which some of the light sources are turned off and the remaining light sources emit light with increased light output, so that in the initial monitoring step, the entire search It is possible to monitor the presence of contaminants by irradiating UV light in emission mode, and in the monitoring step where the presence of contaminants is confirmed, detection of contaminants is improved by emitting only UV light that excites the corresponding contaminants in focused search emission mode. and reduce battery consumption of the drone unit 110.

일곱째, 상기 구동제어모듈(190)은, 상기 UVA광원(141)만 발광하는 (a)상태, 상기 UVB광원(142)만 발광하는 (b)상태, 상기 UVC광원(143)만 발광하는 (c)상태, 상기 UVA광원(141)과 UVB광원(142)만 발광하는 (d)상태, 상기 UVB광원(142)과 UVC광원(143)만 발광하는 (e) 상태, 상기 UVC광원(143)과 UVA광원(141)만 발광하는 (f)상태 및, 상기 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)이 모두 발광하는 (g)상태가 순차적으로 반복하도록 UV광모듈(140)을 구동제어하며, 상기 관리자단말(210)은, 상기 (a)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (b)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)에만 반응하여 여기되는 오염물질을 검출하며, 상기 (c)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (d)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142)에 반응하여 여기되는 오염물질을 검출하며, 상기 (e)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)과 UVC광원(143)에 반응하여 여기되는 오염물질을 검출하고, 상기 (f)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)과 UVA광원(141)에 반응하여 여기되는 오염물질을 검출하며, 상기 (g)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)에 반응하여 여기되는 오염물질을 검출함으로써 오염물질의 검출성능을 극대화하고 오염물질의 성분을 보다 정확하게 판별할 수 있다.Seventh, the drive control module 190 is in (a) state in which only the UVA light source 141 emits light, (b) state in which only the UVB light source 142 emits light, and (c) in which only the UVC light source 143 emits light ) state, (d) state in which only the UVA light source 141 and the UVB light source 142 emit light, (e) state in which only the UVB light source 142 and the UVC light source 143 emit light, the UVC light source 143 and The UV light module 140 so that only the UVA light source 141 emits light (f) and the UVA light source 141, the UVB light source 142, and the UVC light source 143 emit light (g) sequentially. ), and the manager terminal 210 analyzes the image frame obtained by the image acquisition module 150 in the state of (a) to detect pollutants excited by reacting only to the UVA light source 141, In the state (b), the image frame acquired by the image acquisition module 150 is analyzed to detect contaminants that are excited by reacting only to the UVB light source 142, and acquired by the image acquisition module 150 in the state (c). The contaminants that are excited by reacting only to the UVC light source 143 are detected by analyzing the image frame, and the image frame obtained by the image acquisition module 150 is analyzed in the state (d) to determine the UVA light source 141 and the UVB light source. (142) detects pollutants that are excited, and analyzes the image frame acquired by the image acquisition module 150 in the state (e) to react to the UVB light source 142 and the UVC light source 143 to be excited. Contaminants are detected, and pollutants excited by the UVC light source 143 and UVA light source 141 are detected by analyzing the image frames acquired by the image acquisition module 150 in the state (f), and the ( g) Detection performance of contaminants by analyzing the image frames acquired by the image acquisition module 150 in the state and detecting contaminants that are excited in response to the UVA light source 141, UVB light source 142, and UVC light source 143 can be maximized and the components of contaminants can be identified more accurately.

도 1 및 도 2는 본 발명의 바람직한 실시예에 따른 하천 수질오염 모니터링 장치의 구성을 나타낸 개략도 및 블럭도,
도 3은 본 발명의 바람직한 실시예에 따른 드론유닛이 하천을 따라 비행하는 상태를 나타낸 개략도,
도 4는 본 발명의 바람직한 실시예에 따른 드론유닛에 장착된 주요 구성품을 나타낸 사시도,
도 5는 본 발명의 바람직한 실시예에 따른 하천 수질오염 모니터링 시스템의 주요 구성품을 나타낸 사시도,
도 6은 본 발명의 바람직한 실시예에 따른 베이스판의 구성을 나타낸 저면도,
도 7은 본 발명의 바람직한 실시예에 따른 커버판의 구성을 나타낸 저면도,
도 8 및 도 9는 본 발명의 바람직한 실시예에 따른 관리자단말의 화면창에 디스플레이되는 데이터를 나타낸 화면예시도이다.
1 and 2 are schematic and block diagrams showing the configuration of a river water pollution monitoring device according to a preferred embodiment of the present invention;
3 is a schematic diagram showing a state in which a drone unit flies along a river according to a preferred embodiment of the present invention;
4 is a perspective view showing main components mounted on a drone unit according to a preferred embodiment of the present invention;
5 is a perspective view showing the main components of the river water pollution monitoring system according to a preferred embodiment of the present invention;
6 is a bottom view showing the configuration of a base plate according to a preferred embodiment of the present invention;
7 is a bottom view showing the configuration of a cover plate according to a preferred embodiment of the present invention;
8 and 9 are screen examples showing data displayed on a screen window of an administrator terminal according to a preferred embodiment of the present invention.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the usual or dictionary meaning, and the inventor appropriately uses the concept of the term in order to explain his/her invention in the best way. Based on the principle that it can be defined, it should be interpreted as meaning and concept consistent with the technical spirit of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, since the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, various alternatives may be used at the time of this application. It should be understood that there may be equivalents and variations.

본 발명의 바람직한 실시예에 따른 하천 수질오염 모니터링 시스템은, 수온변화와 무관하게 야간에 방류되는 오염물질을 정확하게 검출할 수 있으며 채수하지 않더라도 오염물질의 성분을 판별할 수 있는 시스템으로서, 도 1 및 도 2에 도시된 바와 같이 드론유닛(110), 지상통제장치(120), 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)을 포함한다.A river water pollution monitoring system according to a preferred embodiment of the present invention is a system that can accurately detect pollutants discharged at night regardless of water temperature change and can determine the components of pollutants even if water is not collected. As shown in FIG. 2, it includes a drone unit 110, a ground control device 120, a lighting module 130, a UV light module 140 and an image acquisition module 150.

먼저, 상기 드론유닛(110)은 수신되는 비행제어신호에 따라 공중비행하며, 상기 지상통제장치(120)은 도 3에 도시된 바와 같이 드론유닛(110)이 비행하며 하천을 따라 이동하도록 드론유닛(110)으로 비행제어신호를 출력한다. 이를 위해 상기 드론유닛(110)에는 통상의 드론에 구비되는 복수 개의 프로펠러, 모터, 비행제어회로, 자이로센서나 가속도 센서 등의 비행센서 등이 구비되며, 드론유닛(110)과 지상통제장치(120)는 RF나 3G, LTE 및 5G 등의 통신망을 통해 무선신호연결되어 비행제어를 위한 데이터를 송수신할 수 있다.First, the drone unit 110 flies in the air according to the received flight control signal, and the ground control device 120 controls the drone unit 110 to fly and move along the river as shown in FIG. A flight control signal is output to (110). To this end, the drone unit 110 includes a plurality of propellers, a motor, a flight control circuit, a flight sensor such as a gyro sensor or an acceleration sensor, etc. ) can transmit and receive data for flight control through wireless signal connection through communication networks such as RF, 3G, LTE, and 5G.

또한, 상기 지상통제장치(120)는 이동경로좌표 또는 목적지좌표가 포함된 비행제어신호를 드론유닛(110)로 전송하여 드론유닛(110)가 설정된 이동경로를 따라 목적지까지 자율비행 방식으로 이동할 수 있으며, 사용자의 조작으로 드론유닛(110)이 하천을 따라 목적지까지 수동비행 방식으로 이동할 수도 있다.In addition, the ground control device 120 transmits a flight control signal including movement path coordinates or destination coordinates to the drone unit 110 so that the drone unit 110 can move along the set movement route to the destination in an autonomous flight method. In addition, the drone unit 110 may move along the river to the destination in a manual flight method by user's manipulation.

상기 조명모듈(130)은 드론유닛(110)에 장착되어 하천의 수면을 향해 조명광을 발산하며 이러한 조명모듈(130)의 조명광은 촬영되는 영상데이터에 수면이나 주변물체의 이미지가 포함될 수 있도록 한다.The lighting module 130 is mounted on the drone unit 110 and emits lighting light toward the surface of the river, and the lighting light of the lighting module 130 allows images of the surface of the water or surrounding objects to be included in the captured image data.

상기 UV광모듈(140)은 드론유닛(110)에 장착되어 하천의 수면을 향해 UV광을 발산하며 이러한 UV광모듈(140)의 UV광은 하천에 포함된 오염물질이 여기되어 발광하면서 촬영되는 영상데이터에 오염물질의 이미지가 포함될 수 있도록 한다.The UV light module 140 is mounted on the drone unit 110 and emits UV light toward the surface of the river, and the UV light of the UV light module 140 is photographed while pollutants included in the river are excited and emit light. Images of contaminants can be included in image data.

상기 영상획득모듈(150)은 드론유닛(110)에 장착되며 상기 조명광과 UV광이 조사된 수면을 지향하여 영상을 촬영하면서 상기 UV광에 의해 여기되어 발광하는 오염물질의 형광이미지가 포함된 촬영영상데이터를 획득한다. 이러한 영상획득모듈(150)로서 카메라나 분자분광학(Molecular Spectroscopy)을 이용할 수 있다.The image acquisition module 150 is mounted on the drone unit 110 and captures an image toward the surface irradiated with the illumination light and UV light, including a fluorescent image of contaminants excited by the UV light and emitting light. Acquire video data. As the image acquisition module 150, a camera or molecular spectroscopy may be used.

이와 같이 오염물질에게 UV광을 조사하고 물질이 흡수 또는 방출하는 빛의 진동수를 측정하고 해석함으로써 상공에서 원격으로 오염원을 kxawl하여 저고에서 정밀한 분석이 가능하도록 할 수 있다.In this way, by irradiating UV light to the pollutant and measuring and analyzing the frequency of light absorbed or emitted by the material, it is possible to kxawl the pollutant remotely from the sky and perform precise analysis at a low altitude.

이러한 드론유닛(110), 지상통제장치(120), 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)의 조합된 구성을 통해 수온변화와 무관하게 야간에 방류되는 오염물질을 정확하게 검출할 수 있다.Pollutants discharged at night regardless of water temperature change through the combination of the drone unit 110, the ground control device 120, the lighting module 130, the UV light module 140, and the image acquisition module 150 can be accurately detected.

한편, 상기 UV광모듈(140)은, UV-A광을 발산하는 UVA광원(141)과, UV-B광을 발산하는 UVB광원(142) 및, UV-C광을 발산하는 UVC광원(143)을 포함함으로써 오염물질의 성분을 판별할 수 있는 기초데이터를 획득할 수 있다. 이와 같이 파장대가 서로 다른 복수의 UV광원을 이용함으로써 서로 다른 UV파장대에서 반응하는 각각의 오염물질을 여기시킬 수 있다.Meanwhile, the UV light module 140 includes a UVA light source 141 emitting UV-A light, a UVB light source 142 emitting UV-B light, and a UVC light source 143 emitting UV-C light. ), it is possible to obtain basic data capable of determining the components of pollutants. In this way, by using a plurality of UV light sources having different wavelength bands, it is possible to excite the respective contaminants reacting in different UV wavelength bands.

또한, 도 4 내지 도 7에 도시된 바와 같이 상기 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)이 드론유닛(110)에 장착될 수 있도록 하기 위해 베이스판(160) 및 커버판(170)을 더 포함한다.In addition, as shown in FIGS. 4 to 7, a base plate 160 is provided so that the lighting module 130, the UV light module 140, and the image acquisition module 150 can be mounted on the drone unit 110. And a cover plate 170 is further included.

상기 베이스판(160)은 드론유닛(110)의 바디부(111)에 장착된 지그(112)에 지지되어 바디부(111)의 하부 위치에 수평배치되고 상하로 개구된 조명공(161) 및 촬영공(162)이 각각 형성되어 상기 조명공(161)을 통해 조명광을 발산하도록 조명모듈(130)이 장착되며 상기 촬영공(162)을 통해 영상을 촬영하도록 영상획득모듈(150)이 장착된다.The base plate 160 is supported by a jig 112 mounted on the body part 111 of the drone unit 110, and is horizontally disposed at the lower part of the body part 111 and has a lighting ball 161 open up and down, and Each shooting hole 162 is formed, and the lighting module 130 is mounted to emit illumination light through the lighting hole 161, and the image acquisition module 150 is mounted to capture an image through the shooting hole 162. .

상기 커버판(170)은 베이스판(160)의 하부 위치에 수평배치되고 상기 조명공(161)과 상하로 대응되는 위치에는 발산된 조명광을 하향 투과하는 조명창(171)이 형성되며 상기 촬영공(162)과 상하로 대응되는 위치에는 투명한 촬영창(172)이 형성되고 상기 UV광모듈(140)과 상하로 대응되는 위치에는 발산된 UV광을 하향 투과하는 UV투과창(173)이 형성된다.The cover plate 170 is horizontally disposed at a lower position of the base plate 160, and an illumination window 171 is formed at a position vertically corresponding to the lighting hole 161 to transmit the emitted illumination light downward, and the shooting hole ( 162), a transparent photographing window 172 is formed at a position corresponding vertically to the UV light module 140, and a UV transmission window 173 for transmitting the emitted UV light downward is formed at a position corresponding vertically to the UV light module 140.

이러한 베이스판(160) 및 커버판(170)의 구성을 통해 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)를 간소한 구조로 장착시킬 수 있으며 수분이나 이물질이 유입되는 것을 미연에 방지할 수 있다. 또한, 도 4에는 베이스판(160)과 커버판(170) 사이의 측부 둘레가 노출된 것을 예시하였으나 이는 내부구성을 표시하기 위함이며 수분이나 이물질이 내부로 유입되지 않도록 측부가 케이스에 의해 커버되도록 구비되는 것이 바람직하다.Through the configuration of the base plate 160 and the cover plate 170, the lighting module 130, the UV light module 140, and the image acquisition module 150 can be mounted in a simple structure, and moisture or foreign substances are not introduced. that can be prevented. In addition, FIG. 4 illustrates that the periphery of the side between the base plate 160 and the cover plate 170 is exposed, but this is for displaying the internal configuration, and the side is covered by the case so that moisture or foreign substances do not flow into the inside. It is preferable to be provided.

더불어, 도 6에 도시된 바와 같이 상기 영상획득모듈(150)은 베이스판(160)의 중앙에 형성된 촬영공(162)에 장착되고, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)은 상기 베이스판(160) 상에서 영상획득모듈(150)로부터 일정거리 이격된 원주 상에 이격 배치되며, 상기 조명모듈(130)은 상기 원주상에서 UVA광원(141)과 UVB광원(142) 사이, UVB광원(142)과 UVC광원(143) 사이 및, UVC광원(143)과 UVA광원(141) 사이에 각각 배치됨으로써, 조명광과 UV광의 광균일도를 증대시켜 영상획득모듈(150)의 영상촬영시 조명차에 의한 음영이 발생하거나 빛반사가 발생하는 것을 방지할 수 있다.In addition, as shown in FIG. 6, the image acquisition module 150 is mounted on the photographing hole 162 formed in the center of the base plate 160, and the UVA light source 141, the UVB light source 142, and the UVC light source 143 is spaced apart on a circumference spaced apart from the image acquisition module 150 on the base plate 160, and the lighting module 130 is a UVA light source 141 and a UVB light source 142 on the circumference Between the UVB light source 142 and the UVC light source 143, and between the UVC light source 143 and the UVA light source 141, respectively, the light uniformity of the illumination light and the UV light is increased and the image of the image acquisition module 150 is increased. It is possible to prevent the occurrence of shadows or reflections of light due to differences in lighting during photographing.

그리고, GPS획득모듈(180)은 드론유닛(110)의 현재 위치에 따른 GPS좌표신호를 획득하고, 구동제어모듈(190)은 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)을 구동제어하고 상기 영상획득모듈(150)의 촬영영상데이터와 상기 GPS획득모듈(180)의 GPS좌표신호를 동기화하여 위치별 영상취합 데이터를 생성하며, 관리자단말(210)은 촬영영상데이터의 영상분석을 통해 하천 상에서 오염물질의 확산경로 및 오염원 위치를 추출하고 상기 GPS좌표신호를 이용하여 추출된 확산경로 및 오염원의 위치를 화면상에 디스플레이된 지도에 표시함으로써 수질오염 위치 및 상태를 육안으로 정확하게 식별할 수 있으며 사용자의 편의를 도모할 수 있다.In addition, the GPS acquisition module 180 acquires a GPS coordinate signal according to the current position of the drone unit 110, and the drive control module 190 includes the lighting module 130, the UV light module 140 and the image acquisition module ( 150) is driven and controlled, and the captured image data of the image acquisition module 150 and the GPS coordinate signal of the GPS acquisition module 180 are synchronized to generate image collection data for each location, and the manager terminal 210 generates the captured image data. By extracting the diffusion path and pollutant source location of the pollutant on the river through image analysis, and displaying the extracted diffusion path and pollutant location using the GPS coordinate signal on the map displayed on the screen, the location and condition of water pollution can be visually observed. can be accurately identified and user convenience can be promoted.

상기 GPS획득모듈(180)은 드론유닛(110)에 기본적으로 장착되는 GPS모듈일 수 있으며 이 GPS모듈에 수신되는 GPS신호를 전달받아 획득되는 모듈일 수 있다.The GPS acquisition module 180 may be a GPS module basically installed in the drone unit 110 and may be a module obtained by receiving a GPS signal received by the GPS module.

또한, 상기 구동제어모듈(190)은, UVA광원(141), UVB광원(142) 및 UVC광원(143)이 동시에 발광하는 전체탐색 발광모드 및, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143) 중 일부 광원은 소등하고 나머지 광원은 광출력이 증대된 상태로 발광하는 집중탐색 발광모드로 구분하여 상기 UV광모듈(140)을 구동제어할 수 있다.In addition, the driving control module 190 has a full search light emission mode in which the UVA light source 141, the UVB light source 142 and the UVC light source 143 emit light at the same time, and the UVA light source 141 and the UVB light source 142 The driving and control of the UV light module 140 may be performed by classifying the UVC light source 143 into a concentrated search light emission mode in which some light sources are turned off and the remaining light sources emit light with increased light output.

따라서, 초기의 모니터링 단계에서는 전체탐색 발광모드로 UV광을 조사하여 오염물질 여부를 감시할 수 있으며, 오염물질의 존재가 확인된 모니터링 단계에서는 집중탐색 발광모드로 해당 오염물질을 여기시키는 UV광만을 발광하도록 함으로써 오염물질의 검출성을 증대시키고 드론유닛(110)의 배터리 소모를 줄일 수 있다.Therefore, in the initial monitoring step, UV light can be irradiated in full search emission mode to monitor whether or not there is a contaminant. By emitting light, detectability of contaminants can be increased and battery consumption of the drone unit 110 can be reduced.

더불어, 상기 구동제어모듈(190)은, 상기 UVA광원(141)만 발광하는 (a)상태, 상기 UVB광원(142)만 발광하는 (b)상태, 상기 UVC광원(143)만 발광하는 (c)상태, 상기 UVA광원(141)과 UVB광원(142)만 발광하는 (d)상태, 상기 UVB광원(142)과 UVC광원(143)만 발광하는 (e) 상태, 상기 UVC광원(143)과 UVA광원(141)만 발광하는 (f)상태 및, 상기 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)이 모두 발광하는 (g)상태가 순차적으로 반복하도록 UV광모듈(140)을 구동제어할 수 있다.In addition, the drive control module 190 is in (a) state in which only the UVA light source 141 emits light, (b) state in which only the UVB light source 142 emits light, and (c) in which only the UVC light source 143 emits light. ) state, (d) state in which only the UVA light source 141 and the UVB light source 142 emit light, (e) state in which only the UVB light source 142 and the UVC light source 143 emit light, the UVC light source 143 and The UV light module 140 so that only the UVA light source 141 emits light (f) and the UVA light source 141, the UVB light source 142, and the UVC light source 143 emit light (g) sequentially. ) can be controlled.

또한, 상기 (a)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (b)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)에만 반응하여 여기되는 오염물질을 검출하며, 상기 (c)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (d)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142)에 반응하여 여기되는 오염물질을 검출하며, 상기 (e)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)과 UVC광원(143)에 반응하여 여기되는 오염물질을 검출하고, 상기 (f)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)과 UVA광원(141)에 반응하여 여기되는 오염물질을 검출하며, 상기 (g)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)에 반응하여 여기되는 오염물질을 검출함으로써 오염물질의 검출성능을 극대화하고 오염물질의 성분을 보다 정확하게 판별할 수 있다.In addition, the image frame acquired by the image acquisition module 150 in the state (a) is analyzed to detect contaminants that are excited by reacting only to the UVA light source 141, and the image acquisition module 150 in the state (b) Analyzing the image frame obtained from the UVB light source 142 to detect a contaminant that is excited, and analyzing the image frame obtained from the image acquisition module 150 in the state (c) to only the UVC light source 143 Detect pollutants excited by reaction, and detect pollutants excited by reacting to UVA light source 141 and UVB light source 142 by analyzing image frames acquired by image acquisition module 150 in the state (d). In the state (e), the image frame acquired by the image acquisition module 150 is analyzed to detect pollutants excited in response to the UVB light source 142 and the UVC light source 143, and in the state (f) The image frames obtained by the image acquisition module 150 are analyzed to detect contaminants that are excited in response to the UVC light source 143 and the UVA light source 141, and are acquired by the image acquisition module 150 in the state (g). It is possible to maximize the detection performance of contaminants and more accurately determine the components of contaminants by detecting pollutants that are excited in response to the UVA light source 141, UVB light source 142, and UVC light source 143 by analyzing the image frame. can

여기서, 각 상태((a) 내지 (g))가 순차적으로 반복되는 속도는 드론유닛(110)의 이동속도를 고려하여 조절될 수 있으며 구동제어모듈(190)은 드론유닛(110)의 이동속도가 기준속도보다 느려지면 순차 반복속도가 기준 반복속도보다 상대적으로 느려지도록 하고 드론유닛(110)의 이동속도가 빨라지면 순차 반복속도가 상대적으로 빨라지도록 영상획득모듈(150)을 구동제어하는 것이 바람직하다.Here, the speed at which each state (a) to (g) is sequentially repeated can be adjusted in consideration of the moving speed of the drone unit 110, and the driving control module 190 controls the moving speed of the drone unit 110. It is preferable to drive and control the image acquisition module 150 so that the sequential repetition speed becomes relatively slower than the reference repetition speed when is slower than the reference speed, and the sequential repetition speed becomes relatively faster when the moving speed of the drone unit 110 increases. do.

또한, 상기 관리자단말(210)은 지상통제장치(120)로부터 수신되는 위치별 영상취합 데이터를 실시간으로 분석하여 오염물질의 확산경로 및 오염원의 위치를 즉시 추출할 수 있으며, 하천의 감시영역에 대한 촬영이 완료된 후 저장된 위치별 영상취합 데이터를 지상통제장치(120)에 유무선 통신방식으로 전송하여 오염물질의 확산경로 및 오염원의 위치를 추후에 추출할 수도 있다.In addition, the manager terminal 210 can analyze the image collection data for each location received from the ground control device 120 in real time to immediately extract the diffusion path of the pollutant and the location of the pollutant, and After the photographing is completed, the stored image collection data for each location is transmitted to the ground control device 120 in a wired or wireless communication method, so that the diffusion path of the pollutant and the location of the pollutant may be extracted later.

더불어, 도 8에 도시된 바와 같이 관리자단말(210)은 구글맵과 같이 GPS신호와 연동되는 위치좌표를 이용하는 맵데이터를 화면상에 표시하고 오염물질이 검출된 위치를 맵데이터와 함께 표시함으로써 관리자가 직관적으로 오염위치를 식별할 수 있도록 하며, 각 오염위치별로 매칭되는 촬영영상데이터를 제공하여 관리자의 편의를 도모할 수 있다. 더불어, 도 9에 도시된 바와 같이 오염정도와 각 UV광원에 오염물질이 여기된 상태 데이터를 함께 제공하여 오염물질의 종류를 확인할 수 있도록 한다.In addition, as shown in FIG. 8, the manager terminal 210 displays map data using location coordinates linked to GPS signals, such as Google Maps, on the screen and displays the location where the contaminant was detected together with the map data. can intuitively identify the contamination location, and provide the photographed image data matched for each contamination location to promote the convenience of the manager. In addition, as shown in FIG. 9, the degree of contamination and data on the state in which pollutants are excited in each UV light source are provided together so that the type of pollutant can be identified.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by the limited embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following by those skilled in the art to which the present invention belongs Of course, various modifications and variations are possible within the scope of equivalents of the claims to be set forth.

110...드론유닛 120...지상통제장치
130...조명모듈 140...UV광모듈
141...UVA광원 142...UVB광원
143...UVC광원 150...영상획득모듈
160...베이스판 170..커버판
180...GPS획득모듈 210...관리자단말
110 ... drone unit 120 ... ground control device
130 ... lighting module 140 ... UV optical module
141...UVA light source 142...UVB light source
143 ... UVC light source 150 ... image acquisition module
160 ... base plate 170 ... cover plate
180 ... GPS acquisition module 210 ... manager terminal

Claims (7)

수신되는 비행제어신호에 따라 공중비행하는 드론유닛(110);
상기 드론유닛(110)이 비행하며 하천을 따라 이동하도록 드론유닛(110)으로 비행제어신호를 출력하는 지상통제장치(120);
상기 드론유닛(110)에 장착되어 하천의 수면을 향해 조명광을 발산하는 조명모듈(130);
상기 드론유닛(110)에 장착되어 하천의 수면을 향해 UV광을 발산하는 UV광모듈(140); 및
상기 드론유닛(110)에 장착되며 상기 조명광과 UV광이 조사된 수면을 지향하여 영상을 촬영하면서 상기 UV광에 의해 여기되어 발광하는 오염물질의 형광이미지가 포함된 촬영영상데이터를 획득하는 영상획득모듈(150);을 포함하는 하천 수질오염 모니터링 장치.
A drone unit 110 flying in the air according to the received flight control signal;
a ground control device 120 outputting a flight control signal to the drone unit 110 so that the drone unit 110 flies and moves along the river;
a lighting module 130 mounted on the drone unit 110 and emitting illumination light toward the surface of the river;
A UV light module 140 mounted on the drone unit 110 and emitting UV light toward the surface of the river; and
Mounted on the drone unit 110, image acquisition for acquiring photographed image data including fluorescent images of contaminants excited by the UV light and emitting light while photographing images directed toward the surface of the water irradiated with the illumination light and UV light River water pollution monitoring device comprising a; module (150).
제 1 항에 있어서,
상기 UV광모듈(140)은,
UV-A광을 발산하는 UVA광원(141)과, UV-B광을 발산하는 UVB광원(142) 및, UV-C광을 발산하는 UVC광원(143)을 포함하는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 1,
The UV light module 140,
River water pollution characterized in that it comprises a UVA light source 141 emitting UV-A light, a UVB light source 142 emitting UV-B light, and a UVC light source 143 emitting UV-C light monitoring device.
제 2 항에 있어서,
상기 드론유닛(110)의 바디부(111)에 장착된 지그(112)에 지지되어 바디부(111)의 하부 위치에 수평배치되고 상하로 개구된 조명공(161) 및 촬영공(162)이 각각 형성되어 상기 조명공(161)을 통해 조명광을 발산하도록 조명모듈(130)이 장착되며 상기 촬영공(162)을 통해 영상을 촬영하도록 영상획득모듈(150)이 장착되는 베이스판(160); 및
상기 베이스판(160)의 하부 위치에 수평배치되고 상기 조명공(161)과 상하로 대응되는 위치에는 발산된 조명광을 하향 투과하는 조명창(171)이 형성되며 상기 촬영공(162)과 상하로 대응되는 위치에는 투명한 촬영창(172)이 형성되고 상기 UV광모듈(140)과 상하로 대응되는 위치에는 발산된 UV광을 하향 투과하는 UV투과창(173)이 형성된 커버판(170);을 더 포함하는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 2,
The lighting hole 161 and the shooting hole 162 supported by the jig 112 mounted on the body part 111 of the drone unit 110 and horizontally arranged at the lower part of the body part 111 and opened up and down are base plates 160 each formed with a lighting module 130 mounted to emit illumination light through the lighting hole 161 and equipped with an image acquisition module 150 to capture an image through the photographing hole 162; and
An illumination window 171 is formed at a position horizontally disposed below the base plate 160 and vertically corresponds to the lighting hole 161 and transmits the emitted illumination light downward, and vertically corresponds to the shooting hole 162. A transparent photographing window 172 is formed at a location and a UV transmission window 173 is formed at a location corresponding to the top and bottom of the UV light module 140 to transmit the emitted UV light downward. River water pollution monitoring device comprising a.
제 3 항에 있어서,
상기 영상획득모듈(150)은 베이스판(160)의 중앙에 형성된 촬영공(162)에 장착되고,
상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)은 상기 베이스판(160) 상에서 영상획득모듈(150)로부터 일정거리 이격된 원주 상에 이격 배치되며,
상기 조명모듈(130)은 상기 원주상에서 UVA광원(141)과 UVB광원(142) 사이, UVB광원(142)과 UVC광원(143) 사이 및, UVC광원(143)과 UVA광원(141) 사이에 각각 배치되는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 3,
The image acquisition module 150 is mounted on the photographing hole 162 formed in the center of the base plate 160,
The UVA light source 141, the UVB light source 142, and the UVC light source 143 are spaced apart on a circumference spaced apart from the image acquisition module 150 on the base plate 160,
The lighting module 130 is provided between the UVA light source 141 and the UVB light source 142, between the UVB light source 142 and the UVC light source 143, and between the UVC light source 143 and the UVA light source 141 on the circumference. River water pollution monitoring device, characterized in that each disposed.
제 4 항에 있어서,
상기 드론유닛(110)의 현재 위치에 따른 GPS좌표신호를 획득하는 GPS획득모듈(180);
상기 조명모듈(130), UV광모듈(140) 및 영상획득모듈(150)을 구동제어하고 상기 영상획득모듈(150)의 촬영영상데이터와 상기 GPS획득모듈(180)의 GPS좌표신호를 동기화하여 위치별 영상취합 데이터를 생성하는 구동제어모듈(190); 및
상기 촬영영상데이터의 영상분석을 통해 하천 상에서 오염물질의 확산경로 및 오염원 위치를 추출하고 상기 GPS좌표신호를 이용하여 추출된 확산경로 및 오염원의 위치를 화면상에 디스플레이된 지도에 표시하는 관리자단말(210);을 더 포함하는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 4,
a GPS acquisition module 180 for acquiring a GPS coordinate signal according to the current location of the drone unit 110;
The lighting module 130, the UV light module 140, and the image acquisition module 150 are driven and controlled, and the captured image data of the image acquisition module 150 and the GPS coordinate signal of the GPS acquisition module 180 are synchronized. a drive control module 190 generating image collection data for each location; and
A manager terminal for extracting a diffusion path and source location of pollutants on a river through image analysis of the captured image data and displaying the extracted diffusion path and location of a pollutant on a map displayed on a screen using the GPS coordinate signal ( 210); river water pollution monitoring device characterized in that it further comprises.
제 5 항에 있어서,
상기 구동제어모듈(190)은,
상기 UVA광원(141), UVB광원(142) 및 UVC광원(143)이 동시에 발광하는 전체탐색 발광모드 및, 상기 UVA광원(141), UVB광원(142) 및 UVC광원(143) 중 일부 광원은 소등하고 나머지 광원은 광출력이 증대된 상태로 발광하는 집중탐색 발광모드로 구분하여 상기 UV광모듈(140)을 구동제어하는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 5,
The drive control module 190,
The entire search light emission mode in which the UVA light source 141, the UVB light source 142, and the UVC light source 143 simultaneously emit light, and some light sources among the UVA light source 141, the UVB light source 142, and the UVC light source 143 The river water pollution monitoring device, characterized in that the UV light module 140 is driven and controlled by dividing into an intensive search light emitting mode in which lights are turned off and the remaining light sources emit light with increased light output.
제 5 항에 있어서,
상기 구동제어모듈(190)은,
상기 UVA광원(141)만 발광하는 (a)상태, 상기 UVB광원(142)만 발광하는 (b)상태, 상기 UVC광원(143)만 발광하는 (c)상태, 상기 UVA광원(141)과 UVB광원(142)만 발광하는 (d)상태, 상기 UVB광원(142)과 UVC광원(143)만 발광하는 (e) 상태, 상기 UVC광원(143)과 UVA광원(141)만 발광하는 (f)상태 및, 상기 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)이 모두 발광하는 (g)상태가 순차적으로 반복하도록 UV광모듈(140)을 구동제어하며,
상기 관리자단말(210)은,
상기 (a)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (b)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)에만 반응하여 여기되는 오염물질을 검출하며, 상기 (c)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)에만 반응하여 여기되는 오염물질을 검출하고, 상기 (d)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142)에 반응하여 여기되는 오염물질을 검출하며, 상기 (e)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVB광원(142)과 UVC광원(143)에 반응하여 여기되는 오염물질을 검출하고, 상기 (f)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVC광원(143)과 UVA광원(141)에 반응하여 여기되는 오염물질을 검출하며, 상기 (g)상태시 영상획득모듈(150)에서 획득된 영상프레임을 분석하여 UVA광원(141)과 UVB광원(142) 및 UVC광원(143)에 반응하여 여기되는 오염물질을 검출하는 것을 특징으로 하는 하천 수질오염 모니터링 장치.
According to claim 5,
The drive control module 190,
(a) state in which only the UVA light source 141 emits light, (b) state in which only the UVB light source 142 emits light, (c) state in which only the UVC light source 143 emits light, and the UVA light source 141 and UVB (d) state in which only the light source 142 emits light, (e) state in which only the UVB light source 142 and UVC light source 143 emit light, (f) in which only the UVC light source 143 and the UVA light source 141 emit light driving and controlling the UV light module 140 so that the state and (g) state in which the UVA light source 141, the UVB light source 142, and the UVC light source 143 all emit light are sequentially repeated,
The manager terminal 210,
The image frame obtained by the image acquisition module 150 in the state of (a) is analyzed to detect contaminants that are excited by reacting only to the UVA light source 141, and acquired by the image acquisition module 150 in the state of (b). Analyzing the image frame to detect pollutants that are excited by reacting only to the UVB light source 142, and analyzing the image frame acquired by the image acquisition module 150 in the state (c) to react only to the UVC light source 143 Detecting pollutants that are excited, and analyzing the image frames acquired by the image acquisition module 150 in the state (d) to react to the UVA light source 141 and the UVB light source 142 to detect pollutants that are excited, In the state (e), pollutants excited in response to the UVB light source 142 and the UVC light source 143 are detected by analyzing the image frame acquired by the image acquisition module 150, and the image is acquired in the state (f). The image frame obtained by the module 150 is analyzed to detect contaminants that are excited in response to the UVC light source 143 and the UVA light source 141, and the image acquired by the image acquisition module 150 in the state (g). River water pollution monitoring device, characterized in that by analyzing the frame to detect pollutants that are excited in response to the UVA light source 141, the UVB light source 142 and the UVC light source 143.
KR1020210063452A 2021-05-17 2021-05-17 River water pollution system monitoring KR20220156140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210063452A KR20220156140A (en) 2021-05-17 2021-05-17 River water pollution system monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210063452A KR20220156140A (en) 2021-05-17 2021-05-17 River water pollution system monitoring

Publications (1)

Publication Number Publication Date
KR20220156140A true KR20220156140A (en) 2022-11-25

Family

ID=84237449

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063452A KR20220156140A (en) 2021-05-17 2021-05-17 River water pollution system monitoring

Country Status (1)

Country Link
KR (1) KR20220156140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233116A (en) * 2023-11-09 2023-12-15 江西洪城检测有限公司 Water quality analysis method and system based on machine vision

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866239B1 (en) 2017-05-30 2018-06-12 (주)이피에스이앤이 Method for Monitoring Water Quality Environment Using Drone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866239B1 (en) 2017-05-30 2018-06-12 (주)이피에스이앤이 Method for Monitoring Water Quality Environment Using Drone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233116A (en) * 2023-11-09 2023-12-15 江西洪城检测有限公司 Water quality analysis method and system based on machine vision
CN117233116B (en) * 2023-11-09 2024-02-02 江西鼎智检测有限公司 Water quality analysis method and system based on machine vision

Similar Documents

Publication Publication Date Title
US10473550B2 (en) Multi-laser gas leakage detector
US10175215B2 (en) Method and device for quantification of plant chlorophyll content
KR102399244B1 (en) River water pollution system monitoring
US7253748B2 (en) Foreign object detection system and method
US20130258108A1 (en) Road Surface Shape Recognition System and Autonomous Mobile Apparatus Using Same
KR100715140B1 (en) Visibility measuring apparatus and method
US20090219525A1 (en) System and method for portable raman spectroscopy
JP4230395B2 (en) Surveillance mobile
JP2017090130A (en) Monitoring system
CN109668853B (en) Atmospheric pollutant monitoring system
KR20220156140A (en) River water pollution system monitoring
JP6600571B2 (en) Fishery support system using unmanned aerial vehicles
WO2023028714A1 (en) Vehicle occupancy detection system
Farsund et al. Required spectral resolution for bioaerosol detection algorithms using standoff laser-induced fluorescence measurements
KR20200137549A (en) Dron for monitoring water pollution and method of monitoring water pollution using the same
CN106556579A (en) Group's mist image all-weather self-adapting detection method based on laser
JP2022003335A (en) Deterioration diagnostic device, deterioration diagnostic system, deterioration diagnostic method, and program
JP2019039913A (en) Monitoring system
CN115684155A (en) Smartphone high-throughput blood calcium concentration prediction system and method
EP3642576B1 (en) Hazardous gas detector with 1d array camera
Loquero et al. CYANanobot: Miniaturized Boat-Assisted Data Acquisition for Automated Cyanide Monitoring in Wastewater Using Optical Nano-Sensors
JP4799160B2 (en) Vehicle measurement device, vehicle measurement method, and vehicle measurement program
CN218445963U (en) Laser radar monitoring system that walks to navigate
CN217112085U (en) LIBS detection system based on unmanned aerial vehicle
RU213690U1 (en) Video detector for collecting and analyzing data on the parameters of objects and detecting events associated with the movement of objects