KR20220154418A - Method for preparation of biodegradable copolymer - Google Patents

Method for preparation of biodegradable copolymer Download PDF

Info

Publication number
KR20220154418A
KR20220154418A KR1020210061943A KR20210061943A KR20220154418A KR 20220154418 A KR20220154418 A KR 20220154418A KR 1020210061943 A KR1020210061943 A KR 1020210061943A KR 20210061943 A KR20210061943 A KR 20210061943A KR 20220154418 A KR20220154418 A KR 20220154418A
Authority
KR
South Korea
Prior art keywords
lactic acid
acid
copolymer
based catalyst
producing
Prior art date
Application number
KR1020210061943A
Other languages
Korean (ko)
Inventor
이연주
최정윤
강동균
최형삼
김철웅
조수현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020210061943A priority Critical patent/KR20220154418A/en
Publication of KR20220154418A publication Critical patent/KR20220154418A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A manufacturing method of a biodegradable copolymer according to the present invention, by adding 3-hydroxypropionic acid at a specific point in a lactic acid polymerization reaction, can efficiently manufacture a poly(lactic acid-3-hydroxypropionic acid) copolymer in one reactor.

Description

생분해성 공중합체의 제조 방법{Method for preparation of biodegradable copolymer}Method for preparing biodegradable copolymer {Method for preparation of biodegradable copolymer}

본 발명은 폴리(락트산-3-하이드록시프로피온산) 공중합체를 간단한 공정으로 제조할 수 있는 생분해성 공중합체의 제조 방법에 관한 것이다.The present invention relates to a method for preparing a biodegradable copolymer capable of preparing a poly(lactic acid-3-hydroxypropionic acid) copolymer by a simple process.

폴리락트산(PLA; polylactic acid)은 옥수수 등의 식물로부터 얻어지는 식물 유래의 수지로서, 생분해성 특성을 갖는 동시에 인장강도 및 탄성률 또한 우수한 친환경 소재로 주목을 받고 있다. Polylactic acid (PLA) is a plant-derived resin obtained from plants such as corn, and has attracted attention as an eco-friendly material having excellent tensile strength and elastic modulus while having biodegradable properties.

기존에 사용되고 있는 폴리스티렌 수지, 폴리염화비닐 수지, 폴리에틸렌 등의 석유계 수지와는 달리, 석유 자원 고갈 방지, 탄산가스 배출 억제 등의 효과가 있기 때문에, 석유계 플라스틱 제품의 단점인 환경 오염을 줄일 수 있다. 따라서, 폐플라스틱 등에 따른 환경오염 문제가 사회 문제로 대두됨에 따라, 식품 포장재 및 용기, 전자제품 케이스 등 일반 플라스틱(석유계 수지)이 사용되었던 제품 분야까지 적용 범위를 확대하고자 노력하고 있다. Unlike petroleum-based resins such as polystyrene resin, polyvinyl chloride resin, and polyethylene, which are used in the past, it has effects such as preventing petroleum resource depletion and suppressing carbon dioxide emission, so it can reduce environmental pollution, which is a disadvantage of petroleum-based plastic products. have. Therefore, as the environmental pollution problem due to waste plastics has emerged as a social problem, efforts are being made to expand the scope of application to product fields where general plastics (petroleum-based resins) were used, such as food packaging materials and containers, and electronic product cases.

그러나, 폴리락트산은 기존의 석유계 수지와 비교하여, 내충격성 및 내열성이 떨어져 적용 범위에 제한이 있다. 또한, 신율(Elongation to break) 특성이 나빠 쉽게 깨지는 특성(Brittleness)을 보여 범용 수지로서 한계가 있는 상황이다.However, compared to conventional petroleum-based resins, polylactic acid has poor impact resistance and heat resistance, and its application range is limited. In addition, it has poor elongation to break characteristics and is easily broken (brittleness), so there is a limit as a general-purpose resin.

상기와 같은 단점을 개선하기 위하여, 폴리락트산에 다른 반복단위를 포함한 공중합체에 관한 연구가 진행되고 있으며, 특히 신율의 개선을 위하여 3-하이드록시프로피온산(3HP; 3-hydroxypropionic acid)이 공단량체로 주목 받고 있다. 특히, 락트산-3HP 블록 공중합체가 주목 받고 있는데, 상기 공중합체는 폴리락트산 고유의 특성을 유지하면서도 신율 특성이 개선되는 효과가 있다. In order to improve the above disadvantages, research on copolymers containing other repeating units in polylactic acid is being conducted, and in particular, 3-hydroxypropionic acid (3HP) is used as a comonomer to improve elongation. is getting attention In particular, a lactic acid-3HP block copolymer is attracting attention, and the copolymer has an effect of improving elongation characteristics while maintaining the inherent characteristics of polylactic acid.

그러나, 종래 락트산-3HP 블록 공중합체는 몇 가지 단점을 가지고 있다. 먼저 P3HP를 합성하고, 여기에 락타이드를 투입하여 개환 중합을 수행하거나, 각각 PLA와 P3HP를 각각 별도로 중합한 뒤 이를 어닐링하는 다단계 반응이 적용되어 공정 효율이 저하되는 문제가 있었다.However, conventional lactic acid-3HP block copolymers have several disadvantages. First, P3HP is synthesized, and lactide is added thereto to perform ring-opening polymerization, or PLA and P3HP are separately polymerized and then annealed, thereby reducing process efficiency.

본 발명은 락트산 중합 반응의 특정 시점에서 3-하이드록시프로피온산을 투입함으로써, 하나의 반응기 내에서 폴리(락트산-3-하이드록시프로피온산) 공중합체를 효과적으로 제조하는 방법을 제공하기 위한 것이다. The present invention is to provide a method for effectively producing a poly(lactic acid-3-hydroxypropionic acid) copolymer in one reactor by introducing 3-hydroxypropionic acid at a specific point in the lactic acid polymerization reaction.

상기 과제를 해결하기 위하여, 본 발명은 하기의 단계를 포함하는 생분해성 공중합체의 제조 방법을 제공한다.In order to solve the above problems, the present invention provides a method for preparing a biodegradable copolymer comprising the following steps.

먼저, 락트산을 중합하여 락트산 올리고머를 제조하는 하는 제1 단계; 및First, a first step of preparing a lactic acid oligomer by polymerizing lactic acid; and

상기 락트산 올리고머의 수평균분자량이 5,000 내지 100,000이 되는 시점에서, 3-하이드록시프로피온산을 첨가하여 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조하는 제2 단계를 포함한다.A second step of preparing a poly(lactic acid-3-hydroxypropionic acid) copolymer by adding 3-hydroxypropionic acid when the number average molecular weight of the lactic acid oligomer reaches 5,000 to 100,000.

종래 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조하기 위해서는, 폴리(3-하이드록시프로피온산)(P3HP)을 생합성하고, 여기에 락타이드(Lactide)를 투입하여 개환 중합을 수행하거나, PLA(lactic acid)와 P3HP를 각각 별도로 중합한 뒤 이를 어닐링하는 다단계 반응으로 수행되었는데, 이러한 다단계 반응은 공정 효율이 저하될 뿐 아니라, 반응 과정 중에 부산물이 발행하고, 고분자량의 공중합체를 제조하기 어려운 문제가 있었다. 구체적으로, 다단계 반응 과정 중 저분자량의 부산물인 고리형의 올리고머가 생성되기 쉬운데, 이러한 고리형의 올리고머는 더 이상 축중합이 진행되지 않기 때문에 반응 수율을 저하시키며, 상기 부산물의 분리를 의하 추가적인 정제 공정이 요구되어 반응 효율 또한 저하되는 문제가 있었다.In order to prepare a conventional poly(lactic acid-3-hydroxypropionic acid) copolymer, poly(3-hydroxypropionic acid) (P3HP) is biosynthesized, and lactide is added thereto to perform ring-opening polymerization, or PLA It was carried out in a multi-step reaction in which lactic acid and P3HP were separately polymerized and then annealed. This multi-step reaction not only reduces process efficiency, but also generates by-products during the reaction process, making it difficult to prepare a high molecular weight copolymer. There was a problem. Specifically, cyclic oligomers, which are low molecular weight by-products, are easily produced during the multi-step reaction process. Since these cyclic oligomers do not undergo further polycondensation, the reaction yield is reduced, and additional purification by separation of the by-products There was a problem that the reaction efficiency was also lowered because the process was required.

이에 본 발명자들은 락트산(LA)의 중합 반응의 특정 시점에서 3-하이드록시프로피온산(3HP)을 투입함으로써, 하나의 반응기 내에서 폴리(락트산-3-하이드록시프로피온산) 공중합체를 효과적으로 제조할 수 있으며, 이에 따라, 폴리락트산의 고유의 물성을 유지하면서도, 신율, 인장강도 등의 물성이 개선된 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조할 수 있음을 발견하고 본 발명을 완성하였다. Therefore, the present inventors can effectively prepare a poly(lactic acid-3-hydroxypropionic acid) copolymer in one reactor by adding 3-hydroxypropionic acid (3HP) at a specific point in the polymerization reaction of lactic acid (LA), Accordingly, the present invention was completed by discovering that a poly(lactic acid-3-hydroxypropionic acid) copolymer with improved physical properties such as elongation and tensile strength could be prepared while maintaining the inherent physical properties of polylactic acid.

이하, 각 단계 별로 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail for each step.

(제1 단계)(First step)

본 발명의 일 구현예에 따르면, 락트산을 중합하여 락트산 올리고머를 제조하는 하는 제1 단계를 포함한다. 상기 제1 단계는 락트산의 단독 축합 중합(condensation polymerization) 단계로, 3-하이드록시프로피온산이 첨가되기 전의 단계를 의미하며, 생성되는 락트산 올리고머는 락트산 호모 중합체에 해당한다. According to one embodiment of the present invention, a first step of preparing a lactic acid oligomer by polymerizing lactic acid is included. The first step is a condensation polymerization step of lactic acid, which means a step before 3-hydroxypropionic acid is added, and the resulting lactic acid oligomer corresponds to a lactic acid homopolymer.

또한, 후술하는 바와 같이, 상기 락트산 올리고머의 수평균분자량이 5,000 내지 100,000이 되는 시점에서 3-하이드록시프로피온산이 첨가되며, 간단한 공정으로 부산물 발생 없이 폴리(락트산-3-하이드록시프로피온산) 공중합체가 제조될 수 있다. In addition, as described later, 3-hydroxypropionic acid is added when the number average molecular weight of the lactic acid oligomer reaches 5,000 to 100,000, and poly(lactic acid-3-hydroxypropionic acid) copolymer is obtained by a simple process without generation of by-products. can be manufactured.

한편, 본 발명에서 사용하는 '락트산'은 L-락트산, D-락트산, 또는 이의 혼합물을 지칭한다.Meanwhile, 'lactic acid' used in the present invention refers to L-lactic acid, D-lactic acid, or a mixture thereof.

상기 상기 제1 단계는, 80℃ 내지 120℃ 및 8mbar 내지 12mbar에서 110분 내지 130분 동안 반응을 수행한 뒤, 120℃ 내지 180℃로 승온하여 10-2 torr의 진공 조건 하에서 17시간 내지 19시간 동안 반응을 수행되며, 상기 조건 하에서 중합되는 경우, 올리고머의 수평균분자량을 목적하는 범위로 조절하기에 적합하며, 부반응의 생성물 발생을 효과적으로 억제할 수 있어 바람직하다. In the first step, the reaction is performed at 80 ° C to 120 ° C and 8 mbar to 12 mbar for 110 minutes to 130 minutes, and then the temperature is raised to 120 ° C to 180 ° C for 17 hours to 19 hours under vacuum conditions of 10 -2 torr. The reaction is carried out during, and when polymerized under the above conditions, it is suitable for adjusting the number average molecular weight of the oligomer to a desired range, and it is preferable because it can effectively suppress the generation of products of side reactions.

더욱 바람직하게는, 상기 제1 단계는, 90℃ 내지 110℃ 및 9mbar 내지 10mbar에서 115분 내지 125분 동안 반응을 수행한 뒤, 140℃ 내지 160℃로 승온하여 10-2 torr의 진공 조건 하에서 18시간±10분 동안 반응을 수행할 수 있다.More preferably, in the first step, the reaction is performed at 90 ° C to 110 ° C and 9 mbar to 10 mbar for 115 minutes to 125 minutes, and then the temperature is raised to 140 ° C to 160 ° C under a vacuum condition of 10 -2 torr 18 The reaction can be carried out for a time ± 10 minutes.

상기 제1 단계는 술폰산계 촉매 및 주석계 촉매의 존재 하에 수행될 수 있다. 상기 촉매는 락트산 중합을 촉진함과 동시에 중합되는 과정에서 고리형의 올리고머의 생성을 억제하는 효과가 있다. The first step may be performed in the presence of a sulfonic acid-based catalyst and a tin-based catalyst. The catalyst has an effect of promoting lactic acid polymerization and at the same time suppressing the production of cyclic oligomers during polymerization.

바람직하게는, 상기 술폰산계 촉매는 p-톨루엔술폰산, m-자일렌-4-술폰산, 2-메시틸렌술폰산, 또는 p-자일렌-2-술폰산이다. 또한 바람직하게는, 상기 주석계 촉매는 SnCl2이다. Preferably, the sulfonic acid-based catalyst is p-toluenesulfonic acid, m-xylene-4-sulfonic acid, 2-mesitylenesulfonic acid, or p-xylene-2-sulfonic acid. Also preferably, the tin-based catalyst is SnCl 2 .

바람직하게는, 상기 술폰산계 촉매는 락트산 대비 0.1 mol% 내지 1.0 mol%로 포함된다. 상기의 범위에서 락트산의 중합을 촉진함과 동시에 고리형의 올리고머 생성을 억제할 수 있다. 보다 바람직하게는, 상기 술폰산계 촉매는 락트산 대비 0.2 mol% 내지 0.5mol%로 포함된다.Preferably, the sulfonic acid-based catalyst is included in an amount of 0.1 mol% to 1.0 mol% based on lactic acid. Within the above range, polymerization of lactic acid may be promoted and generation of cyclic oligomers may be suppressed. More preferably, the sulfonic acid-based catalyst is included in an amount of 0.2 mol% to 0.5 mol% relative to lactic acid.

바람직하게는, 상기 주석계 촉매는 락트산 대비 0.025mol% 내지 0.5mol%로 포함된다. 상기의 범위에서 락트산의 중합을 촉진함과 동시에 고리형의 올리고머 생성을 억제할 수 있다. 보다 바람직하게는, 상기 술폰산계 촉매는 락트산 대비 0.05mol% 내지 0.3mol%로 포함된다.Preferably, the tin-based catalyst is included in an amount of 0.025 mol% to 0.5 mol% relative to lactic acid. Within the above range, polymerization of lactic acid may be promoted and generation of cyclic oligomers may be suppressed. More preferably, the sulfonic acid-based catalyst is included in an amount of 0.05 mol% to 0.3 mol% relative to lactic acid.

한편, 필요에 따라 상기 제1 단계 중합 전에 락트산을, 50℃ 내지 70℃, 30mbar 내지 80mbar에서 전처리하는 단계를 수행할 수 있다. 상기 전처리 단계를 통해 락트산 내부의 수분을 제거할 수 있다.Meanwhile, if necessary, a step of pre-treating lactic acid at 50° C. to 70° C. and 30 mbar to 80 mbar may be performed prior to the first-stage polymerization. Through the pretreatment step, moisture inside the lactic acid may be removed.

(제2 단계)(Step 2)

본 발명의 일 구현예에 따르면, 락트산을 중합하여 락트산 올리고머를 제조하는 제1 단계의 반응 도중 생성된 락트산 올리고머의 수평균분자량이 5,000 내지 100,000이 되는 시점에서, 3-하이드록시프로피온산을 첨가하여 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조하는 제2 단계를 포함한다. 상기 제2 단계는, 상기 제1 단계에서 미반응 락트산 단량체, 생성된 락트산 올리고머와 3-하이드록시프로피온산이 축합 중합(condensation polymerization)되어, 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조하는 단계이다. According to one embodiment of the present invention, 3-hydroxypropionic acid is added at the time when the number average molecular weight of the lactic acid oligomer produced during the first step of preparing lactic acid oligomer by polymerization of lactic acid reaches 5,000 to 100,000, (lactic acid-3-hydroxypropionic acid) a second step of preparing the copolymer. In the second step, the unreacted lactic acid monomer in the first step, the produced lactic acid oligomer and 3-hydroxypropionic acid are subjected to condensation polymerization to prepare a poly(lactic acid-3-hydroxypropionic acid) copolymer. It is a step.

여기서, 상기 제1 단계와 제2 단계는 동일한 반응기 내에서 수행되며, 반응 효율이 뛰어나며, 3-하이드록시프로피온산의 투입 시점이 전술한 범위로 조절됨으로써, 부반응 생성물 없이 효과적으로 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조할 수 있어 바람직하다.Here, the first step and the second step are performed in the same reactor, the reaction efficiency is excellent, and the input time of 3-hydroxypropionic acid is adjusted within the above-mentioned range, effectively poly(lactic acid-3-hydride) without side reaction products. hydroxypropionic acid) copolymer can be prepared, which is preferable.

상기 제2 단계는, 락트산 올리고머의 수평균분자량이 5,000 내지 100,000이 되는 시점에서 락트산 첨가되는 경우, 단일 반응기 내에서 목적하는 폴리(락트산-3-하이드록시프로피온산) 공중합체를 우수한 수율로 제조할 수 있어, 공정 효율이 뛰어나다. 한편, 락트산 올리고머의 수평균분자량 5,000 미만인 시점에서 3-하이드록시프로피온산이 투입될 경우, 최종 공중합체의 LA 블록이 너무 짧아져, LA 블록 공중합체의 결정을 이루기 어려울 수 있으며, 100,000이 초과되는 시점에서 3-하이드록시프로피온산이 투입될 경우 상대적으로 PLA 블록이 커져 3HP 블록의 물성을 효과적으로 구현하기 어려울 수 있다. 바람직하게는, 락트산 올리고머의 수평균분자량이 10,000 내지 90,000인 시점에서 3-하이드록시프로피온산이 추가 투입될 수 있다. In the second step, when lactic acid is added at the time when the number average molecular weight of the lactic acid oligomer is 5,000 to 100,000, the desired poly(lactic acid-3-hydroxypropionic acid) copolymer can be produced in excellent yield in a single reactor. Yes, the process efficiency is excellent. On the other hand, when 3-hydroxypropionic acid is added at the time when the number average molecular weight of the lactic acid oligomer is less than 5,000, the LA block of the final copolymer becomes too short, making it difficult to form the LA block copolymer, and at the time when the number average molecular weight exceeds 100,000 When 3-hydroxypropionic acid is added in, the PLA block becomes relatively large, making it difficult to effectively implement the physical properties of the 3HP block. Preferably, 3-hydroxypropionic acid may be additionally added when the number average molecular weight of the lactic acid oligomer is 10,000 to 90,000.

상기 제1 단계에 투입되는 락트산과 제2 단계에 투입되는 3-하이드록시프로피온산은 1:0.1 내지 1:1.2의 몰비로 포함될 수 있으며, 상기 범위로 포함되는 경우, 최종 제조되는 폴리(락트산-3-하이드록시프로피온산) 공중합체가 폴리락트산의 고유의 물성을 유지하면서도, 신율, 인장강도 등의 물성이 개선될 수 있어 바람직하다. 바람직하게는, 1:0.25 내지 1:1의 몰비로 포함될 수 있다.The lactic acid introduced in the first step and the 3-hydroxypropionic acid introduced in the second step may be included in a molar ratio of 1:0.1 to 1:1.2, and when included within the above range, the finally produced poly(lactic acid-3) -Hydroxypropionic acid) copolymer is preferred because it can improve physical properties such as elongation and tensile strength while maintaining the inherent physical properties of polylactic acid. Preferably, it may be included in a molar ratio of 1:0.25 to 1:1.

상기 상기 제2 단계는, 80℃ 내지 120℃ 및 8mbar 내지 30mbar에서 110분 내지 130분 동안 반응을 수행한 뒤, 120℃ 내지 180℃로 승온하여 10-2 torr의 진공 조건 하에서 22시간 내지 26시간 동안 반응을 수행되며, 상기 조건 하에서 중합되는 경우, 올리고머의 수평균분자량을 목적하는 범위로 조절하기에 적합하며, 부반응의 생성물 발생을 효과적으로 억제할 수 있어 바람직하다. In the second step, the reaction is performed at 80 ° C to 120 ° C and 8 mbar to 30 mbar for 110 minutes to 130 minutes, and then the temperature is raised to 120 ° C to 180 ° C for 22 hours to 26 hours under vacuum conditions of 10 -2 torr. The reaction is carried out during, and when polymerized under the above conditions, it is suitable for adjusting the number average molecular weight of the oligomer to a desired range, and it is preferable because it can effectively suppress the generation of products of side reactions.

더욱 바람직하게는, 상기 제2 단계는, 90℃ 내지 110℃ 및 9mbar 내지 10mbar에서 115분 내지 125분 동안 반응을 수행한 뒤, 140℃ 내지 160℃로 승온하여 10-2 torr의 진공 조건 하에서 24시간±10분 동안 반응을 수행할 수 있다.More preferably, in the second step, the reaction is performed at 90 ° C to 110 ° C and 9 mbar to 10 mbar for 115 minutes to 125 minutes, and then the temperature is raised to 140 ° C to 160 ° C under vacuum conditions of 10 -2 torr. The reaction can be carried out for a time ± 10 minutes.

한편, 상기 제1 단계 이후에 동일한 반응기 내에서 이어서 상기 제2 단계를 수행하므로, 상기 단계 1에서 첨가된 촉매가 제2 단계에서도 반응에 참여하게 된다. 추가로, 상기 제2 단계는 술폰산계 촉매 및 주석계 촉매를 더 투입하여 수행될 수 있다.Meanwhile, since the second step is performed in the same reactor after the first step, the catalyst added in step 1 also participates in the reaction in the second step. Additionally, the second step may be performed by further introducing a sulfonic acid-based catalyst and a tin-based catalyst.

상기 촉매는 제1 단계에서 미반응 락트산 단량체, 생성된 락트산 올리고머와 함께 3-하이드록시프로피온산의 추가 중합을 촉진함과 동시에 중합되는 과정에서 부산물의 생성을 억제하는 효과가 있다. The catalyst promotes the additional polymerization of 3-hydroxypropionic acid together with the unreacted lactic acid monomer and the produced lactic acid oligomer in the first step, and at the same time has an effect of suppressing the generation of by-products during the polymerization process.

바람직하게는, 상기 술폰산계 촉매는 p-톨루엔술폰산, m-자일렌-4-술폰산, 2-메시틸렌술폰산, 또는 p-자일렌-2-술폰산이다. 또한 바람직하게는, 상기 주석계 촉매는 SnCl2이다. Preferably, the sulfonic acid-based catalyst is p-toluenesulfonic acid, m-xylene-4-sulfonic acid, 2-mesitylenesulfonic acid, or p-xylene-2-sulfonic acid. Also preferably, the tin-based catalyst is SnCl 2 .

바람직하게는, 상기 술폰산계 촉매는 제2 단계에서 추가되는 3-하이드록시프로피온산 대비 0.1 mol% 내지 1.0 mol%로 추가되며, 상기의 범위에서 부산물의 생성을 억제하고, 최종 공중합체의 수율을 향상시킬 수 있다. 보다 바람직하게는, 상기 술폰산계 촉매는 3-하이드록시프로피온산 대비 0.2 mol% 내지 0.5 mol%로 추가된다.Preferably, the sulfonic acid-based catalyst is added in an amount of 0.1 mol% to 1.0 mol% relative to 3-hydroxypropionic acid added in the second step, suppressing the production of by-products within the above range, and improving the yield of the final copolymer can make it More preferably, the sulfonic acid-based catalyst is added in an amount of 0.2 mol% to 0.5 mol% relative to 3-hydroxypropionic acid.

바람직하게는, 상기 주석계 촉매는 3-하이드록시프로피온산 대비 0.025 mol% 내지 0.5 mol%로 추가되며, 상기의 범위에서 부산물의 생성을 억제하고, 최종 공중합체의 수율을 향상시킬 수 있다. 보다 바람직하게는, 상기 주석계 촉매는 3-하이드록시프로피온산 대비 0.05 mol% 내지 0.3 mol%로 추가된다.Preferably, the tin-based catalyst is added in an amount of 0.025 mol% to 0.5 mol% relative to 3-hydroxypropionic acid, suppressing the production of by-products within the above range, and improving the yield of the final copolymer. More preferably, the tin-based catalyst is added in an amount of 0.05 mol% to 0.3 mol% relative to 3-hydroxypropionic acid.

한편, 필요에 따라 상기 제2 단계 중합 전에 3-하이드록시프로피온산을 50℃ 내지 70℃, 30mbar 내지 80mbar에서 전처리하는 단계를 수행할 수 있다. 상기 전처리 단계를 통해 3-하이드록시프로피온산 내부의 수분을 제거할 수 있다.On the other hand, if necessary, a step of pre-treating 3-hydroxypropionic acid at 50 °C to 70 °C and 30 mbar to 80 mbar may be performed prior to the second-stage polymerization. Through the pretreatment step, moisture inside 3-hydroxypropionic acid may be removed.

발명의 일 구현예에 따라 제조되는 폴리(락트산-3-하이드록시프로피온산) 공중합체의 중량평균분자량은 50,000 내지 200,000이고, 보다 바람직하게는, 50,000 내지 100,000이다. 상기 중량평균분자량의 측정 방법은 후술하는 실험예 내용에서 상세하게 설명하기로 한다.The poly(lactic acid-3-hydroxypropionic acid) copolymer prepared according to one embodiment of the present invention has a weight average molecular weight of 50,000 to 200,000, more preferably 50,000 to 100,000. The method for measuring the weight average molecular weight will be described in detail in the experimental examples to be described later.

또한, 본 발명의 다른 일 구현예에 따르면, 상기 폴리(락트산-3-하이드록시프로피온산) 공중합체를 포함하는 물품을 제공한다.In addition, according to another embodiment of the present invention, an article including the poly(lactic acid-3-hydroxypropionic acid) copolymer is provided.

상기 물품은 포장재, 필름, 부직포 등을 들 수 있으며, 해당 물품에 적용되어 신율 특성이 우수하면서도 동시에 취성이 보완될 수 있다.The article may include a packaging material, a film, a nonwoven fabric, and the like, and when applied to the article, elongation characteristics may be excellent and brittleness may be supplemented at the same time.

상술한 바와 같이, 본 발명에 따른 생분해성 공중합체의 제조 방법은 제조 방법은, 락트산 중합 반응의 특정 시점에서 3-하이드록시프로피온산을 투입함으로써, 하나의 반응기 내에서 폴리(락트산-3-하이드록시프로피온산) 공중합체를 효과적으로 제조할 수 있다.As described above, the production method of the biodegradable copolymer according to the present invention is a poly(lactic acid-3-hydroxy acid in one reactor by introducing 3-hydroxypropionic acid at a specific point in the lactic acid polymerization reaction. propionic acid) copolymer can be effectively prepared.

이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in more detail in the following examples. However, the following examples are merely illustrative of embodiments of the present invention, and the content of the present invention is not limited by the following examples.

<실시예 및 비교예><Examples and Comparative Examples>

실시예 1 Example 1

(1 단계) 반응기에 락트산(LA) 40g(0.44mol)과 SnCl2 100 mg(LA 대비 0.1 mol%), p-TSA 333 mg(LA 대비 0.4mol)을 넣고 110℃ 에서 10 mbar로 2시간 동안 반응하였다. 온도를 160℃로 올리고 10-2 torr의 진공도에서 18 시간 동안 반응을 진행하였다. 상기 반응을 거쳐 얻어진 락트산 올리고머의 수평균분자량은 88,200이었다.(Step 1) Add 40 g (0.44 mol) of lactic acid (LA), 100 mg of SnCl 2 (0.1 mol% compared to LA), and 333 mg (0.4 mol) of p-TSA (0.4 mol compared to LA) to the reactor, and heat at 110°C and 10 mbar for 2 hours. reacted. The temperature was raised to 160 °C and the reaction was carried out for 18 hours in a vacuum of 10 -2 torr. The number average molecular weight of the lactic acid oligomer obtained through the above reaction was 88,200.

(2 단계) 상기 올리고머가 포함된 반응기에 3-하이드록시프로피온산(3HP) 10g(0.11mol)와 SnCl2 25 mg(3HP 대비 0.1 mol%), p-TSA 83 mg(3HP 대비 mol% 0.4 mol%)를 넣고 110℃ 에서 10 mbar로 2h 반응하였다. 온도를 140℃로 올리고 10-2 torr의 진공도에서 24시간 동안 반응을 진행하여 공중합체를 수득하였다.(Step 2) In the reactor containing the oligomer, 10 g (0.11 mol) of 3-hydroxypropionic acid (3HP), 25 mg of SnCl 2 (0.1 mol% compared to 3HP), and 83 mg of p-TSA (0.4 mol% 0.4 mol% compared to 3HP) ) was added and reacted for 2 h at 110 ° C and 10 mbar. A copolymer was obtained by raising the temperature to 140° C. and performing the reaction in a vacuum of 10 −2 torr for 24 hours.

실시예 2Example 2

(1 단계) 반응기에 락트산(LA) 30g(0.33mol)과 SnCl2 75 mg(LA 대비 0.1 mol%), p-TSA 250 mg(LA 대비 0.4mol)을 넣고 110℃ 에서 10 mbar로 2시간 동안 반응하였다. 온도를 160℃로 올리고 10-2 torr의 진공도에서 18 시간 동안 반응을 진행하였다. 상기 반응을 거쳐 얻어진 락트산 올리고머의 수평균분자량은 78,900이었다.(Step 1) Add 30 g (0.33 mol) of lactic acid (LA), 75 mg of SnCl 2 (0.1 mol% compared to LA), and 250 mg (0.4 mol) of p-TSA (0.4 mol compared to LA) to the reactor, and heat at 110°C and 10 mbar for 2 hours. reacted. The temperature was raised to 160 °C and the reaction was carried out for 18 hours in a vacuum of 10 -2 torr. The number average molecular weight of the lactic acid oligomer obtained through the above reaction was 78,900.

(2 단계) 상기 올리고머가 포함된 반응기에 3-하이드록시프로피온산(3HP) 30g(0.33mol)와 SnCl2 75 mg(3HP 대비 0.1 mol%), p-TSA 250 mg(3HP 대비 mol% 0.4 mol%)를 넣고 110℃ 에서 10 mbar로 2h 반응하였다. 온도를 140℃로 올리고 10-2 torr의 진공도에서 24시간 동안 반응을 진행하여 공중합체를 수득하였다.(Step 2) In the reactor containing the oligomer, 30 g (0.33 mol) of 3-hydroxypropionic acid (3HP), 75 mg of SnCl 2 (0.1 mol% compared to 3HP), and 250 mg of p-TSA (0.4 mol% 0.4 mol% compared to 3HP) ) was added and reacted for 2 h at 110 ° C and 10 mbar. A copolymer was obtained by raising the temperature to 140° C. and performing the reaction in a vacuum of 10 −2 torr for 24 hours.

비교예 1 Comparative Example 1

(1 단계) 반응기에 락트산(LA) 40 g과 SnCl2 100 mg, p-TSA 333 mg을 넣고 110℃ 에서 10 mbar로 2시간 동안 반응하였다. 온도를 160℃로 올리고 10-2 torr의 진공도에서 6 시간 동안 반응을 진행하였다. 상기 반응을 거쳐 얻어진 락트산 올리고머의 수평균분자량은 2,700 이었다.(Step 1) 40 g of lactic acid (LA), 100 mg of SnCl 2 , and 333 mg of p-TSA were added to the reactor and reacted at 110° C. and 10 mbar for 2 hours. The temperature was raised to 160 °C and the reaction was carried out for 6 hours under a vacuum of 10 -2 torr. The number average molecular weight of the lactic acid oligomer obtained through the above reaction was 2,700.

(2 단계) 상기 반응기에 3-하이드록시프로피온산(3HP) 10 g 와 SnCl2 25 mg, p-TSA 83 mg를 넣고 110℃ 에서 10 mbar로 2h 반응하였다. 온도를 140℃로 올리고 10-2 torr의 진공도에서 24시간 동안 반응을 진행하여 공중합체를 수득하였다.(Step 2) 10 g of 3-hydroxypropionic acid (3HP), 25 mg of SnCl 2 , and 83 mg of p-TSA were added to the reactor and reacted at 110° C. and 10 mbar for 2 h. A copolymer was obtained by raising the temperature to 140° C. and performing the reaction in a vacuum of 10 −2 torr for 24 hours.

<실험예><Experimental example>

상기 실시예 및 비교예에서 제조한 공중합체에 대하여 하기와 같이 그 특성을 평가하였다. The properties of the copolymers prepared in Examples and Comparative Examples were evaluated as follows.

1) 분자량 특성 평가1) Evaluation of molecular weight characteristics

상기 실시예 및 비교예에서 제조되는 각 단계별 공중합체에 대하여, 겔 투과 크로마토그래피(GPC: gel permeation chromatography, Tosoh ECO SEC Elite)로 중량평균분자량, 수평균분자량, 다분산 지수를 측정하고, 그 결과를 표 1에 나타내었다.For each step of the copolymer prepared in the above Examples and Comparative Examples, the weight average molecular weight, number average molecular weight, and polydispersity index were measured by gel permeation chromatography (GPC: Tosoh ECO SEC Elite), and the results are shown in Table 1.

용매: chloroform (eluent)Solvent: chloroform (eluent)

유속: 1.0 ml/minFlow rate: 1.0 ml/min

컬럼온도: 40℃Column temperature: 40 ℃

Standard: Polystyrene (3차 함수로 보정)Standard: Polystyrene (corrected with a cubic function)

2) 신율(Elongation, %) 특성 평가2) Evaluation of Elongation (%) characteristics

상기 실시예 및 비교예에서 제조되는 공중합체에 대하여, 신율를 측정하고 그 결과를 표 1에 나타내었다.For the copolymers prepared in Examples and Comparative Examples, elongation was measured and the results are shown in Table 1.

구체적으로, 상기 실시예 및 비교예에서 제조되는 공중합체에 대하여, Hot-press 기기(Limotem QM900S)를 사용하여, ASTM D536에 따른 V Type 시편 제작하였다. 제조된 시편에 대하여 Instron 5982를 사용하여, 10mm/s, 60 kg/f 하중 하에서 신율을 측정하였다.Specifically, with respect to the copolymers prepared in the above Examples and Comparative Examples, V Type specimens were prepared according to ASTM D536 using a hot-press machine (Limotem QM900S). The elongation of the prepared specimen was measured using an Instron 5982 under a load of 10 mm/s and 60 kg/f.

3) 융점(Melting temperature, Tm(℃))의 평가3) Evaluation of melting temperature (Tm (℃))

상기 실시예 및 비교예에서 제조되는 공중합체에 대하여, 융점을 측정하고 그 결과를 표 1에 나타내었다.For the copolymers prepared in Examples and Comparative Examples, melting points were measured and the results are shown in Table 1.

구체적으로, 상기 실시예 및 비교예에서 제조되는 공중합체에 대하여, Mettler Toledo DSC(N2 50 mL/min)를 사용하여, 대상 온도 범위 (-70℃ 내지 220℃), 1st heating (+10℃/min), 1st cooling (-10℃/min), 2nd heating (+10℃/min)의 측정 데이터를 바탕으로 융점을 측정하였다.Specifically, for the copolymers prepared in the above Examples and Comparative Examples, using Mettler Toledo DSC (N 2 50 mL / min), target temperature range (-70 ℃ to 220 ℃), 1st heating (+10 ℃ /min), 1st cooling (-10 ℃ / min), 2nd heating (+10 ℃ / min) based on the measurement data was measured melting point.

구분division 1단계 분자량Step 1 Molecular Weight 최종 분자량 final molecular weight 열특성thermal properties 기계적 물성mechanical properties MnMn MwMw PDIPDI MnMn MwMw PDIPDI Tm(℃)Tm(℃) 신율(%)Elongation (%) 실시예 1Example 1 88,20088,200 146,900146,900 1.671.67 110,200110,200 195,054195,054 1.771.77 170170 110110 실시예 2Example 2 78,90078,900 158,589158,589 2.012.01 100,700100,700 214,500214,500 2.132.13 170170 106106 비교예 1Comparative Example 1 2,7002,700 4,6004,600 1.721.72 21,30021,300 38,80038,800 1.821.82 N.AN.A. N.AN.A.

상기 표 1에서 확인할 수 있 듯이, 하나의 반응기 내에서 락트산 중합 반응의 특정 시점에서 3-하이드록시프로피온산을 투입하여, 제조된 폴리(락트산-3-하이드록시프로피온산) 공중합체는 공정 효율이 뛰어날 뿐 아니라, 우수한 열특성과 기계적 물성을 구현함을 확인할 수 있었다.As can be seen in Table 1 above, the poly(lactic acid-3-hydroxypropionic acid) copolymer prepared by adding 3-hydroxypropionic acid at a specific point in the lactic acid polymerization reaction in one reactor has excellent process efficiency In addition, it was confirmed that excellent thermal properties and mechanical properties were realized.

비교예 1의 경우, 단일 반응기 내에서 공중합체를 형성하나, 3-하이드록시프로피온산의 투입 시점이 본원발명의 범위를 벗어나며, 이에 따라, PLA와 P3HP 각각의 블록 공중합체를 형성하기 보다는 랜덤한 공중합체를 형성하게 된다. 이러한 랜덤 공중합체의 경우, 융점 측정이 어려우며, 상온에서 gum과 같은 형태로 시편 제작이 어려워 신율 역시 측정하기 어려운 것을 확인할 수 있었다.In the case of Comparative Example 1, a copolymer is formed in a single reactor, but the timing of adding 3-hydroxypropionic acid is out of the scope of the present invention. Accordingly, rather than forming a block copolymer of PLA and P3HP, a random airborne copolymer is formed. to form a composite. In the case of such a random copolymer, it was confirmed that it was difficult to measure the melting point and the elongation was also difficult to measure because it was difficult to manufacture a specimen in the form of a gum at room temperature.

Claims (11)

락트산을 중합하여 락트산 올리고머를 제조하는 하는 제1 단계; 및
상기 락트산 올리고머의 수평균분자량이 5,000 내지 100,000이 되는 시점에서, 3-하이드록시프로피온산을 첨가하여 폴리(락트산-3-하이드록시프로피온산) 공중합체를 제조하는 제2 단계;를 포함하는,
생분해성 공중합체의 제조 방법.
A first step of polymerizing lactic acid to prepare a lactic acid oligomer; and
A second step of preparing a poly(lactic acid-3-hydroxypropionic acid) copolymer by adding 3-hydroxypropionic acid when the number average molecular weight of the lactic acid oligomer reaches 5,000 to 100,000;
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 락트산 올리고머의 수평균분자량이 10,000 내지 90,000이 되는 시점에서, 3-하이드록시프로피온산이 첨가되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
When the number average molecular weight of the lactic acid oligomer is 10,000 to 90,000, 3-hydroxypropionic acid is added,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제1 단계 및 제2 단계는 동일 반응기 내에서 수행되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The first step and the second step are carried out in the same reactor,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 락트산과 3-하이드록시프로피온산은 1:0.1 내지 1:1.2의 몰비로 사용되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The lactic acid and 3-hydroxypropionic acid are used in a molar ratio of 1:0.1 to 1:1.2,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제1 단계는, 80℃ 내지 120℃ 및 8mbar 내지 12mbar에서 110분 내지 130분 동안 반응을 수행한 뒤,
120℃ 내지 180℃로 승온하여 10-2 torr의 진공 조건 하에서 17시간 내지 19시간 동안 반응을 수행하는,
생분해성 공중합체의 제조 방법.
According to claim 1,
In the first step, after performing the reaction at 80 ° C. to 120 ° C. and 8 mbar to 12 mbar for 110 minutes to 130 minutes,
The temperature is raised to 120 ° C to 180 ° C and the reaction is carried out for 17 hours to 19 hours under a vacuum condition of 10 -2 torr,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제2 단계는, 80℃ 내지 120℃ 및 8mbar 내지 30mbar에서 110분 내지 130분 동안 반응을 수행한 뒤,
120℃ 내지 180℃에서 10-2 torr의 진공 조건 하에서 22시간 내지 26시간 동안 반응을 수행하는,
생분해성 공중합체의 제조 방법.
According to claim 1,
In the second step, after performing the reaction at 80 ° C. to 120 ° C. and 8 mbar to 30 mbar for 110 minutes to 130 minutes,
Carrying out the reaction for 22 hours to 26 hours under a vacuum condition of 10 -2 torr at 120 ℃ to 180 ℃,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제1 단계 및 제2 단계는, 술폰산계 촉매 및 주석계 촉매의 존재 하에 수행되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The first step and the second step are performed in the presence of a sulfonic acid-based catalyst and a tin-based catalyst,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제1 단계는, 술폰산계 촉매 및 주석계 촉매의 존재 하에 수행되며,
상기 술폰산계 촉매는, 락트산에 대하여 0.1 내지 1.0 mol%로 포함되며,
상기 주석계 촉매는, 락트산에 대하여 0.025 내지 0.5 mol%로 포함되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The first step is performed in the presence of a sulfonic acid-based catalyst and a tin-based catalyst,
The sulfonic acid-based catalyst is included in an amount of 0.1 to 1.0 mol% based on lactic acid,
The tin-based catalyst is contained in 0.025 to 0.5 mol% with respect to lactic acid,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제2 단계는, 술폰산계 촉매 및 주석계 촉매의 존재 하에 수행되며,
상기 술폰산계 촉매는, 3-하이드록시프로피온산에 대하여 0.1 내지 1.0 mol%로 추가되며,
상기 주석계 촉매는, 3-하이드록시프로피온산에 대하여 0.025 내지 0.5 mol%로 추가되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The second step is performed in the presence of a sulfonic acid-based catalyst and a tin-based catalyst,
The sulfonic acid-based catalyst is added in an amount of 0.1 to 1.0 mol% based on 3-hydroxypropionic acid,
The tin-based catalyst is 0.025 to 0.5 with respect to 3-hydroxypropionic acid added as mol%,
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 락트산 및 3-하이드록시프로피온산은, 각각 독립적으로 중합 전에 50℃ 내지 70℃, 30mbar 내지 80mbar에서 전처리되는,
생분해성 공중합체의 제조 방법.
According to claim 1,
The lactic acid and 3-hydroxypropionic acid are each independently pretreated at 50 ° C to 70 ° C and 30 mbar to 80 mbar before polymerization.
A method for producing a biodegradable copolymer.
제1항에 있어서,
상기 제조되는 폴리(락트산-3-하이드록시프로피온산) 공중합체의 중량평균분자량은 50,000 내지 200,000 인,
생분해성 공중합체의 제조 방법.
According to claim 1,
The poly(lactic acid-3-hydroxypropionic acid) copolymer prepared above has a weight average molecular weight of 50,000 to 200,000,
A method for producing a biodegradable copolymer.
KR1020210061943A 2021-05-13 2021-05-13 Method for preparation of biodegradable copolymer KR20220154418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210061943A KR20220154418A (en) 2021-05-13 2021-05-13 Method for preparation of biodegradable copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210061943A KR20220154418A (en) 2021-05-13 2021-05-13 Method for preparation of biodegradable copolymer

Publications (1)

Publication Number Publication Date
KR20220154418A true KR20220154418A (en) 2022-11-22

Family

ID=84236236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210061943A KR20220154418A (en) 2021-05-13 2021-05-13 Method for preparation of biodegradable copolymer

Country Status (1)

Country Link
KR (1) KR20220154418A (en)

Similar Documents

Publication Publication Date Title
KR20200115165A (en) Process for preparation of block copolymer
CN111777750A (en) Preparation method of polyethylene glycol-polylactic acid block copolymer and method for regulating and controlling crystallization behavior of polylactic acid
KR20240141680A (en) Process for preparation of block copolymer
KR20220154418A (en) Method for preparation of biodegradable copolymer
KR20220154417A (en) Method for preparation of biodegradable copolymer
KR102598027B1 (en) Copolymer and method for preparation thereof
KR20230022134A (en) Method for preparation of biodegradable copolymer
KR100656986B1 (en) Manufacturing method for novel polylactide/clay nanocomposite with improved shear thinning and toughness
KR102605337B1 (en) Polylactate stereocomplex and preparation method thereof
KR100683941B1 (en) Preparation of novel polylactide/clay nanocomposite with improved shear thinning and toughness
KR102425418B1 (en) Block copolymer and preparing methode thereof
KR20230020925A (en) Poly(3-hydroxypropionic acid) block copolymer, manufacturing method thereof and products containing the same
EP4357386A1 (en) Poly(3-hydroxypropionic acid) block copolymer, preparation method therefor and product comprising same
KR20230022136A (en) POLY(LACTIC ACID-β-4-HYDROXYBUTYRATE) BLOCK COPOLYMER AND PRODUCTS CONTAINING THE SAME
KR20240158823A (en) Poly(lactic acid-3-hydroxypropionic acid) copolymer and method for preparing the same
KR20230029566A (en) Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer and method for preparation thereof
KR20220150121A (en) Method for preparation of polylactide-poly(3-hydroxypropionate) block copolymer
EP4108702B1 (en) Polylactide stereocomplex and preparation method therefor
Baimark et al. Study of Thermal, Phase Morphological and Mechanical Properties of Poly (L-lactide)-b-Poly (ethylene glycol)-b-Poly (L-lactide)/Poly (ethylene glycol) Blend Bioplastics
KR20230022127A (en) Method for preparation of biodegradable copolymer
JP7486609B2 (en) Copolymer and method for producing same
KR20240048865A (en) Method for preparation of poly(3-hydroxypropionate-b-lactate) block copolymer
KR20230029565A (en) Process for preparation of block copolymer
KR20240010974A (en) Electronic cigarette material and preparation method thereof
KR20240158822A (en) Poly(3-hydroxypropionic acid) polymer and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination