KR20220141918A - 고처리량 분할 위성들 - Google Patents

고처리량 분할 위성들 Download PDF

Info

Publication number
KR20220141918A
KR20220141918A KR1020227035117A KR20227035117A KR20220141918A KR 20220141918 A KR20220141918 A KR 20220141918A KR 1020227035117 A KR1020227035117 A KR 1020227035117A KR 20227035117 A KR20227035117 A KR 20227035117A KR 20220141918 A KR20220141918 A KR 20220141918A
Authority
KR
South Korea
Prior art keywords
satellite
satellites
array
remote
formation
Prior art date
Application number
KR1020227035117A
Other languages
English (en)
Inventor
아벨 아벨란
스리람 자야심하
Original Assignee
에이에스티 앤 사이언스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/359,533 external-priority patent/US10979133B2/en
Application filed by 에이에스티 앤 사이언스, 엘엘씨 filed Critical 에이에스티 앤 사이언스, 엘엘씨
Publication of KR20220141918A publication Critical patent/KR20220141918A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/76Pilot transmitters or receivers for control of transmission or for equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

본 발명은, 종래의 단일체 우주선의 기능적 능력이 많은 소형 또는 초소형 위성 및 중앙 커맨드 및 중계 위성에 분산된 고처리량 분할 위성(HTFS) 시스템 및 방법으로서, 상기 위성들은 공간에서 매우 큰 개구 또는 개구들을 생성할 수 있는 신중하게 디자인된 형성체로 분리되어 비행하여, 비용과 중량을 크게 줄이고 스펙트럼을 공간적으로 재사용하는 것에 의해 고처리량 기능을 수행할 수 있는, 고처리량 분할 위성 시스템 및 방법에 관한 것이다.

Description

고처리량 분할 위성들{HIGH THROUGHPUT FRACTIONATED SATELLITES}
본 출원은 2018년 5월 14일에 출원된 미국특허출원 제15/979,298호의 부분 연속출원이고, 상기 미국특허출원 제15/979,298호는 2017년 8월 11일에 출원되어 미국특허 제9,973,266호로 등록된, 미국특허출원 제15/675,155호의 연속출원이고, 상기 미국특허출원 제15/675,155호는 2017년 6월 12일에 출원된 인도 가특허출원 제201711020428호를 우선권으로 주장한다. 위의 출원들의 전체 내용들은 본 명세서에서 참조로서 통합된다.
본 발명은 종래의 단일체 우주선의 기능적 능력이 다수의 소형 또는 초소형 위성 및 중앙 커맨드 및 중계 위성에 걸쳐 분산된 고처리량 분할 위성(high throughput fractionated satellite: HTFS) 시스템 및 방법에 관한 것이다. 위성들은 공간에서 매우 큰 개구 또는 개구들을 생성할 수 있는 디자인 형성체로 분리되어 비행한다. 이 개구는 일반적으로 안테나의 영역을 지칭하고 신호를 수신 및 송신하는 안테나의 능력과 관련된다. 개구가 증가함에 따라, 신호의 수신, 송신 및 방향성에 있어서 안테나의 효과도 증가한다.
또한, LEO 위성들은 그들의 속도 및 반송파 주파수에 따라 그들의 시계(FOV : field-of-view)의 가장자리에서 막대한 도플러를 생성한다. 낮은-비용의 사용자 장비(UE) 및 지상국(GS)을 포함하는 통신 시스템에서, 이러한 도플러는 UE의 지리-위치, 위성의 천체력, GS의 지리-위치, UE-위성 연결을 위한 반송파 주파수 및 GS-위성 연결을 위한 반송파 주파수에 따라 위성 또는 GS 장비에서 보상될 수 있다. 도플러를 각 UE에 개별적으로보다는 빔-중심으로 정정하는 것이 유리하지만; 이는 빔-직경에 따라 차분 도플러를 초래한다. 빔이 작을수록(개구가 클수록), 차분 도플러는 더 작아진다. 따라서 개구의 크기는 또한 UE-기지국(위성의 경우, UE-GS) 통신 시스템이 견딜 수 있는 최대 차분 도플러에 의해 좌우된다.
보다 상세하게는, 본 발명은 소형 또는 초소형 위성 및 중앙 커맨드 및 중계 위성의 어레이 시스템에 관한 것이다. 소형 또는 초소형 위성 어레이는 공간에서 큰 개구로 작용하도록 조정된다. 이것은 중량과 전력 요구량을 줄이고 비용을 크게 줄이고 개구 이득과 대역폭 재사용 성능을 크게 향상시킨다. 위성들은 부분적으로 연결되거나 구조적으로 연결되지 않고, GPS 시스템 및 위치 결정에 의해 지원되는 전자기력, 태양력 및 다른 자연 궤도 관련 힘을 사용하여 근접한 거리를 유지할 수 있다.
본 안테나는 단일체이고, 포물면 반사기를 통해 전력을 공급받거나, 많은 안테나 요소의 위상 어레이를 포함한다. 이들 두 경우에서, 안테나 개구는 구조적으로 하나이고, 크기는 일반적으로 수 평방미터로 제한된다. 공간에 대형 안테나 구조물들을 전개할 때 주요 문제는 두 가지이다. 첫째, 크고 무거운 물체를 공간으로 발사하는 비용으로 인해 비용과 중량이 크기에 따라 크게 증가한다. 그리고 둘째, (전개 메커니즘 및 지지 구조물을 포함하는) 임의의 사전에 조립된 구조물은 발사 시 큰 가속을 견뎌야 하는데, 그 강도는 미세-중력 동작 환경이 아닌 이러한 힘을 고려하도록 설계되어야 한다.
우주선 구성 요소의 중량 및 비용은 특정 위성 임무의 요구되는 페이로드 전력과 관련된다. 페이로드 전력 요구량은 대부분 신호 대 잡음 비율, 동시 사용자의 수 및 채널 대역폭 요구량을 목표로 하는데 요구되는 최종 사용자 단말에 의해 결정된다. 페이로드 전력 요구량이 증가함에 따라 위성의 RF 구성 요소, 배터리, 태양 전지 패널 및 다른 전력 처리 구성 요소의 중량과 비용도 증가한다. 또한 최종 사용자 디바이스 및 단말(예를 들어, 핸드헬드 디바이스, 현대 스마트 폰과 같은 초저전력 단말, 지리적 위치 팔찌, 무선 장치, 전화기, 휴대폰, 스마트 폰, IoT 단말, 사람이나 기계 추적 디바이스를 추적하기 위한 팔찌; 본 명세서에서 이들은 통칭하여 "최종 사용자 디바이스" 또는 "최종 사용자 단말"이라고 함)이 점점 더 작아지고 가벼워짐에 따라, 이들 최종 사용자 디바이스 및 단말과 직접 연결을 수립하기 위해 전송 전력 및 방향성은 공간에서 더 큰 개구를 필요로 한다.
위성 전화 또는 저전력 IOT 디바이스와 같은 최종 사용자 디바이스에 직접 연결되도록 설계된 최신 LEO 통신 위성은 중량이 500kg 내지 1,000kg이고 구축 및 발사 비용이 많이 든다.
본 발명의 일 목적은, 25m2 내지 300,000m2의 개구 표면에 이르지만 이로 제한되지 않는 공간에 전개된 큰 또는 매우 큰 안테나의 능력을 갖는 분산 개구 시스템을 제공하는 것이다. 본 발명의 다른 목적은 사전 제조된 구조물을 최소화하거나 완전히 감소시키는 개구 시스템을 공간에 제공하는 것이다. 이들 목적 및 다른 목적에 따르면, 본 발명은 큰 개구로서 작용하도록 조정되지만 부분적으로 연결되거나 구조적으로 연결되지 않은 초소형 또는 소형 위성의 어레이를 포함한다.
이 접근법에는 몇 가지 장점이 있다. 첫째, 연결 요소들을 개재하는 질량이 제거되어 위성 발사 중량이 줄어들어 발사 비용이 절감된다. 둘째, 공간에서 매우 큰 개구가 실현될 수 있고, 이것은 비교적 낮은 주파수에서 높은 안테나 효율을 실현하는데 특히 유리하다. 그리고 셋째, 드물고 비싼 대역폭이 공간에서 수만 번 이상 재사용될 수 있어서, 소형 및 초소형 위성과 제어 및 중계 위성 모두에서 분산 신호 처리 알고리즘을 사용하여 좁은 빔 및 빔 형성을 실현하여 높은 처리량 기능을 구현할 수 있다.
HTFS 등가 안테나 개구는 분산 위성 개구를 사용하는 것으로 인해 크기가 크게 증가한다. 그 결과, 단일체 위성의 도파로 시스템의 경우와 같이, RF 구성 요소, 배터리, 태양 전지 패널 및 전력 처리 구성 요소에 필요한 크기가 크게 감소되거나 제거된다. 이것은 또한 위성 시스템에 필요한 중량과 비용을 크게 줄인다.
다른 장점은 각각의 이산 위성이 요구하는 전력 레벨이 감소한다는 것이다. 본 발명의 HTFS 아키텍처는 가전 제품을 위한 수백만 개의 유닛으로 구축된 규격품을 상용으로 이용한다. 소프트웨어와 같은 HTFS 시스템에 필요한 중요 구성 요소는 무선 장치, HPA, LNA 및 필터를 한정하고, 이미 중량과 비용에 최적화된 규격품을 상용으로 이용 가능하다.
본 발명에 기술된 HTFS 시스템은 단일체 위성과 비교할 때 등가 수의 최종 사용자 및 유사한 대역폭 요구량을 위한 단일체 위성에 비해 소정의 분율(약 1/10)의 중량을 필요로 한다. 예를 들어, 중량이 1,000kg인 등가 능력 단일체 위성은 대략 100kg의 집합 중량을 갖는 본 발명에 따른 HTFS를 사용하여 구성될 수 있어, 중량 및 비용을 크게 감소시킨다.
본 발명에 기술된 HTFS 시스템은 등가의 매우 큰 분산 개구를 생성하여 비용, 중량 및 스펙트럼 재사용에 큰 장점을 제공한다. 이러한 장점은 100MHz 내지 2GHz의 스펙트럼이 일반적으로 최종 사용자 단말과 직접 연결을 위해 사용된다는 것이 특히 자명하다. 저주파 스펙트럼(예를 들어, 100MHz 내지 2GHz)은 공간에서 최종 사용자와 HTFS 시스템 간에 안테나, 게이트웨이 또는 VSAT 시스템을 사용하는 것을 제거하는데 특히 좋다. 건물, 나무, 비행기 동체, 기차, 자동차 및 선박 구조물, 및 가시선을 막는 다른 장애물에 의해 야기된 손실이 V, Ka, Ku, C, X와 같은 고주파 시스템에 비해 줄어든다. 또한, 고주파 스펙트럼에서 요구되는 최종 사용자 단말의 고가의 무거운 위성 추적 시스템이 저주파 대역에서는 제거된다. 또한, 본 발명의 HTFS 시스템에 저주파 대역을 연결하면 VSAT 단말 또는 고가의 무거운 추적 안테나 없이 최종 사용자 디바이스를 HTFS 시스템에 직접 연결할 수 있어 본 발명의 수많은 응용 및 사용을 가능하게 한다.
본 발명의 이들 목적 및 다른 목적뿐만 아니라 본 발명의 많은 의도된 장점은 첨부 도면과 관련하여 다음의 설명을 참조할 때 더욱 명백해질 것이다.
도 1a 및 도 1b는 본 발명의 바람직한 실시예에 따른 위성 통신 시스템을 도시한다;
도 2a 및 도 2b는 도 1의 시스템의 블록도이다;
도 3은 단일 채널 수신기의 잡음 온도를 도시한다;
도 4는 각각의 소형 위성(302) 및 위성 어레이(300) 전체에 대한 일반적인 어레이 수신 시스템이다;
도 5a, 도 5b 및 도 5c는 지구 상의 통신 풋프린트(footprint) 및 빔 스위칭을 도시한다;
도 6은 사다리꼴 구성을 갖는 어레이에서 소형 위성의 대안적인 배열을 도시한다;
도 7a는 도 6의 어레이의 풋프린트로 들어가는 형성체를 도시한다;
도 7b는 도 6의 어레이의 풋프린트의 중간에 있는 형성체를 도시한다;
도 7c는 도 6의 어레이의 풋프린트를 떠나는 형성체를 도시한다;
도 8a, 도 8b 및 도 8c는 빔 스위칭을 도시한다;
도 9a 및 도 9b는 방사 패턴을 도시한다; 및
도 10은 풋프린트 셀의 주파수 레이아웃을 도시한다.
도 11은 도플러 보상 기능을 갖는 지상국의 블록도.
도면에 도시된 본 발명의 바람직한 실시예를 설명할 때 명확화를 위해 특정 용어가 사용된다. 그러나, 본 발명은 이와 같이 선택된 특정 용어로 제한되는 것으로 의도된 것이 아니고, 각각의 특정 용어는 유사한 목적을 달성하기 위해 유사한 방식으로 동작하는 모든 기술적 등가물을 포함하는 것으로 이해되어야 한다.
도면을 참조하면, 도 1a는 본 발명의 하나의 예시적이고 비 제한적인 실시예에 따른 위성 통신 시스템 또는 HTFS(100)를 도시한다. 위성 시스템 또는 위성 형성체(100)는 소형 또는 초소형 위성(302)(예를 들어, 슬레이브 또는 원격 위성)과 같은 복수의 소형 또는 초소형 요소, 및 로컬 제어기 및 중계 위성(200)(예를 들어, 마스터 또는 중앙 위성, 이는 또한 본 명세서에서 제어 위성이라고도 지칭됨)을 포함한다. 위성(302)은 예를 들어, 크기가 초소형이고 경량(예를 들어, 1.5Kg 미만의 중량)일 수 있는 고도 제어된 초소형 위성(302)과 같은 임의의 적합한 위성일 수 있다. 대안으로서, 많은 안테나 요소가 단일 조립체에 통합될 수 있으며, 이것의 장점은 또한 요소들 사이의 공간의 일부에 태양 전지를 사용하여 이들 요소에 이용 가능한 전력을 향상시킬 수 있다는 것이다. 예를 들어, 도시된 바와 같이, 각각의 원격 위성은 와이어에 의해 함께 전기적으로 연결될 수 있는 4개의 안테나(305)를 수용하는 하우징(304)을 가질 수 있다. 설명의 편의를 위해, 단 3개의 원격 위성 하우징(304)만이 도 1a에 도시되어 있다.
원격 위성(302)은 저지구 궤도(Low Earth Orbit: LEO)에서 동작된다. 소형 위성(302)은 700km/1400km에서 플라즈마의 반알렌대(Van Allen Belt) 아래에서 동작하는데 이는 반알렌대보다 높은 곳에서 동작하려면 더 비싼 공간 경화된 구성 요소가 필요하기 때문이다. 그러나, 본 발명은 임의의 특정 궤도 또는 궤도의 조합에서 동작하는 것으로 제한되지 않으며, 다른 적합한 궤도는 반알렌대 위를 포함하여 모든 LEO, MEO 및 GEO 궤도를 포함할 수 있다.
시스템(100)(중앙 위성(200) 및 소형 위성(302)을 포함함)은 2개의 주요 구성, 즉 동작 구성 및 수송(shipping) 또는 저장 구성을 갖는다. 동작 구성에서, 복수의 소형 위성(302)은 공간 내에 함께 형성되어 어레이(300)를 형성한다. 하나의 예시적인 실시예에서, 1,000개의 소형 위성(302)이 제공되지만, 실질적으로 1,000보다 더 많거나 더 적은 것을 포함하여 임의의 수의 소형 위성(302)이 제공될 수 있다. 어레이(300)는 매우 큰 공간 어레이(300)를 형성한다. 1,000개의 소형 위성(302)의 예시적인 실시예에서, 어레이(300)는 폭 및/또는 높이가 500미터를 초과할 수 있다. 어레이 구성에서, 소형 위성(302) 안테나는 지구와의 통신을 향상시키는 대형 안테나와 등가이다. 원격 위성(302)들은 단일체 또는 연결된 어레이가 아니라 분산 위상 어레이 안테나를 제공한다는 점에서 원격 위성들은 본질적으로 분할된 것이다.
또한 동작 구성에서, 어레이(300)는 중앙 위성(200) 주위에 형성된다. 어레이(300)는 지구를 향하도록 위치되고 구성된다. 즉, 어레이(300)는 선형 또는 곡선일 수 있는 상부 표면을 규정하고, 이 상부 표면은 일반적으로 지구를 향한다. 더 큰 위성(200)은 실질적으로 어레이(300) 형성체의 질량 중심에 위치된다. 소형 위성은 대략 수 센티미터 내지 대략 20미터 서로 이격되어 위치될 수 있다.
또한, 시스템(100) 및 소형 위성(302)들은 저장 또는 운반 구성으로 배치될 수 있다. 소형 위성(302)들은 별개의 이산 디바이스이고 서로 물리적으로 연결되어 있지 않다. 소형 위성(302)들은 저장 및 운반을 위해 함께 통합 또는 결합될 수 있고, 이후 공간에서 큰 위성 어레이(300)로 형성될 수 있다. 예를 들어, 수송 구성에서, 다수의 소형 위성(302)은 로켓 또는 다른 운반 디바이스 또는 우주선으로 운반하기 위해 박스와 같은 단일 수송 컨테이너에 함께 배치될 수 있다. 일단 수송 컨테이너(들)가 원하는 궤도에서 공간에서 방출 위치에 도달하면, 수송 컨테이너가 개방될 수 있고 소형 위성(302)들이 방출될 수 있다. 소형 위성(302)들은 이후 스스로 및/또는 제어 위성(200)의 도움으로 자동으로 기동되어 공간에서 동작 구성 어레이를 형성할 수 있다. 중앙 위성(200)은 이미 공간에 위치되어 있을 수 있다. 또는 중앙 위성(200)은 별도의 수송 컨테이너로 운반될 수 있고, 어레이(300)가 형성되기 전에 또는 후에 공간에 별도로 위치될 수 있다.
이것은 운반 동안에는 소형 위성(302)에 의해 요구되는 공간을 감소시키지만, 동작 구성에 있을 때에는 소형 위성(302)들이 큰 어레이를 형성하도록 할 수 있다. 소형 위성(302)들은 위성(302)의 수에 따라 작은 평방미터의 공간을 차지할 수 있으며, 이는 공간에 전개될 때에는 넓은 평방미터로 변환된다. 이것은 또한 동작 구성에서 소형 위성(302)들을 서로 연결하거나 또는 제어기 위성(200)에 연결하는데 구조 부재가 필요치 않기 때문에 어레이(300)의 복잡성 및 발사 질량을 상당히 감소시킨다. 따라서, 위성 어레이(300)는 (예를 들어, 수송 컨테이너 및 우주선으로부터 위성(302)들을 방출하는데) 사람의 개입을 최소로 하여 형성될 수 있으며, 심지어 (예를 들어, 어레이의 프레임 또는 다른 구조물을 구축하는데) 사람의 물리적으로 개입함이 없이 형성될 수 있다. 또한, 다수의 어레이(300)는 지구의 전체 통신 범위를 얻는 위성 어레이(300)의 성상(constellation)을 형성하도록 공간의 다양한 위치에 제공될 수 있다. 예를 들어, 지구의 전체 연속 통신 범위를 얻기 위해 LEO 궤도에 위치된 대략 50개 내지 100개의 어레이(300)가 제공될 수 있다.
원격 위성(302)들은 임의의 적절한 방식으로 이동 및 위치될 수 있는 것에 유의해야 한다. 도 2a 및 도 2b에 도시된 일 실시예에서, 원격 위성(302)들 및 중앙 위성(200)에는 원격 위성(302)들을 이동시키기 위해 하나 이상의 전자기 코일(314)과 같은 임펄스 액추에이터 및 자기 토커(magnetorquer)(316)가 제공된다.
보다 구체적으로, 도 2a는 소형 또는 초소형 원격 위성(302)의 블록도이다. 원격 위성(302)은 처리 디바이스(306), 안테나(310)를 통해 통신하는 무선 트랜시버(308), GPS(312), 전자기 코일(314), 자기 토커(316), 전기 전력 관리부(320), 히트 싱크(322), 태양광 전력(324) 및 배터리 전력(326)을 포함한다. 원격 위성(302)의 구성 요소는 에너지 관리와 관련된 것과 에너지 사용과 관련된 것을 포함하는 2개의 부분으로 나뉜다. 전기 전력은 열, 광 또는 화학 물질과 같은 다른 소스로부터 얻어진다. 이들 구성 요소는 각각 히트 싱크(322), 태양광 전력(324) 및 배터리 전력(326)이다. 원격 위성(302)들 사이 또는 원격 위성(302)과 중앙 위성(200) 사이의 통신은 무선 트랜시버(308) 및 안테나(310)에 의해 수행된다.
도 2b는 원격 위성(302)들 사이 및 원격 위성(302)과 중앙 위성(200) 사이에 일정한 상대 위치를 유지하기 위한 전자기 시스템의 블록도이다. 도 2a와 도 2b를 참조하면, 위성 위치는 거리(x)와 각도(y)로 이루어진다. 온보드 컴퓨터 또는 처리 디바이스(306)는 다른 원격 위성(302)에 대해 및 중앙 위성(200)에 대해 원격 위성(302)이 미리 결정된 또는 동적으로 결정된 원하는 (가변적이거나 무작위적일 수 있는) 거리(x) 및 각도(y)를 유지하는데 필요한 기동을 계산한다. 이 디바이스는 원격 위성(302)의 상대 위치를 다른 원격 위성(302) 및 중앙 위성(200)과 비교함으로써 이를 수행한다. 전자기 코일(314)은 원격 위성(302)과 또 다른 원격 위성(302) 사이 또는 원격 위성(302)과 중앙 위성(200) 사이의 상대 거리를 변경함으로써 움직임을 얻기 위해 전자기력을 발생시킨다. 도 2b는 원격 위성(302)과 중앙 위성(200) 사이의 거리 및 각도를 도시하는 것을 유의해야 한다. 동일한 방식으로 또한 원격 위성(30)들 사이의 거리 및 각도는 유지되는 것으로 이해된다.
자기 토커(316)는 다른 원격 위성(302)에 대해 또는 중앙 위성(200)에 대해 각도(y)를 제어하기 위해 위성의 질량 중심을 중심으로 회전을 생성한다. 지구 위치 지정 시스템(312)은 지구 위치에 대해 상대 위성 위치를 비교한다.
중앙 위성(200)은 위성 어레이의 기준이며, 중앙 위성은 GPS(202)를 통해 지구 위치를 알아야 하지만, 그 상대 위치를 알 필요는 없다. 따라서, 중앙 위성(200)은 (원격 위성에서와 같이) 자기 토커를 사용하지 않고 전자기 코일(204)만을 사용한다. 전자기 형성체 비행 시스템은 전자기력 및/또는 회전을 생성함으로써 각각의 소형 위성(302) 및/또는 중앙 위성(200) 사이에 원하는 거리(x) 및 원하는 각도(y)를 유지한다. 전자기 코일(314)은 지구 위치 지정 시스템(312)으로부터 얻어진 것에 대해 그 위치를 비교함으로써 거리(x)를 제어한다.
그러나, 원격 위성(302)에서 GPS(312)는 선택적인 것임을 인식할 수 있을 것이다. 중앙 위성(200)은 GPS(202)를 포함하는데, 이는 원격 위성(302)만이 이웃 및/또는 주변 원격 위성(302)에 대한 상대 위치 및 원격 위성(302)과 중앙 위성(200) 사이의 상대 위치를 알 필요가 있다는 것을 의미한다. 그러나, 어레이(300) 내 하나 이상의 원격 위성(302)은 GPS(312)를 사용하여 원격 위성(302)의 위치 지정을 더욱 용이하게 하기 위해 지구 위치를 결정할 수 있다. 이러한 경우에, 중앙 위성의 GPS(202)는 생략될 수 있고, 중앙 위성(200)은 하나 이상의 원격 위성(302)에 대한 상대 위치만을 사용할 수 있다.
자기 토커(316)는 상대 위치를 측정함으로써 각도(y)를 제어한다. 이 정정은 위치와 각도가 안정될 때까지 여러 기동을 통해 수행된다. 그런 다음 특정 위성에 영향을 미치는 높은 하전 입자(즉, 우주 방사선(Cosmic Ray), 반알렌대 하전 입자 등)와 같은 교란이 발생할 경우에만 정정이 필요하다. 태양풍, 궤도 회전 또는 위성 간의 상호 작용은 예측 가능하고 기동의 일부이기 때문에 교란으로 고려되지 않는다.
동작 범위 내에서 원격 위성(302)들 사이 및 동작 범위 내에서 원격 위성(302)과 제어 위성(200) 사이의 거리를 유지하기 위해 전자기력들이 사용된다는 것에 유의해야 한다. 그러나, 본 발명은 또한 원격 위성(302)과 지구 사이 및 제어 위성(200)과 지구 사이의 1차 중력을 이용할 뿐만 아니라 원격 위성(302)과 제어 위성(200)의 자연 궤도로 인한 것을 이용한다. 본 발명은 원격 위성(302) 및 제어 위성(200)을 그 중력을 이용하도록 위치시키고, 전자기력 또는 다른 외부 힘을 사용함으로써 수행되어야 하는 위치 지정의 양을 최소화한다. 또한, 중력은 위성(302, 200)의 궤도를 생성한다. 본 발명은 위성(200, 302)의 자연 궤도를 사용하여 원격 위성(302)에 대한 제어 위성(200)의 위치뿐만 아니라 어레이(300) 내 원격 위성(302)의 위치를 유지한다. 마지막으로, 어레이(300) 및 제어 위성(200)은 자연적으로 회전하고, 위성(200, 302)의 어레이(300) 및 위치는 자연 회전을 설명하고 이 회전으로 인해 필요한 위성(200, 302)의 위치 조절을 최소화하도록 구성된다. 예를 들어, 원격 위성(302)의 체적 형상 회전에 동적으로 적응시키고/시키거나 원격 위성 및 표적 빔 물체 또는 지리의 상대 위치에 동적으로 적응시키는 알고리즘이 제어 위성(200)에 의해 이용될 수 있다. 이 알고리즘은 중력, 자연 궤도 및 회전을 설명할 수 있다.
도 1a, 도 1b, 도 2a, 도 2b는 무선 통신 네트워크를 통한 중앙 위성(200)과 초소형 위성(302) 간의 통신을 보여주는 시스템(100)의 블록도이다. 원격 위성(302)은 제어 인터페이스, 안테나(305), 및 송신기 및/또는 수신기를 갖는 원격 제어기(304)(예를 들어, 프로세서 또는 처리 디바이스)를 포함한다. 송신기/수신기는 예를 들어 무선 통신 네트워크를 통해 제어기 위성(200)과 통신한다. 위성(302)은 태양 전지의 전력을 공급받고, 일식 등에 대비해 충전 가능한 커패시터 또는 배터리를 갖는다.
위성(302)은 제어기(304)에 의해 제어되는 어레이 형성체로 위성(302)을 위치시키기 위해 전자기 기기 등을 포함하는 항공 전자 시스템을 포함할 수 있다. 항공 전자 시스템은 예를 들어, 지구 상의 디바이스와의 통신 및 통신 풋프린트를 최대화하고 또한 어레이(300) 형성체로 위성(302)들을 함께 유지하기 위해 적절한 고도, 위치 및 배향으로 위성(302)들을 유지한다. 원격 위성(302)은 또한 적절한 항공 전자 제어를 달성하기 위해 다른 원격 위성(302)과 통신할 수 있다.
소형 원격 위성(302)과 제어 위성(200) 사이에 전자기력이 이용되어 원격 위성(302)들을 형성체로 유지 및 정렬하고 전력을 분배할 수 있다. 자기력의 발생과 관련된 추가 질량은 요소 및 잠재적으로 전개 메커니즘 사이의 구조 연결부의 질량보다 훨씬 더 작다.
중앙 제어기 위성(200)은 각각의 어레이(300)에 제공된다. 일 실시예에서, 제어기 위성(200)은 큐브샛(CubeSat) 또는 소형 위성일 수 있다. 제어기 위성(200)은 각각의 소형 위성(200)과 통신한다. 예를 들어, 제어기 위성(200)은 각각의 원격 위성(302)의 원격 제어기(304)와 통신하는 중앙 제어기(예를 들어, 프로세서 또는 처리 디바이스)를 가질 수 있다. 중앙 제어기는 예를 들어 중앙 위성(200), 원격 위성(200) 및 지상국 사이의 정상 통신 동안 원격 제어기(304)를 통해 원격 위성(302)의 동작을 제어할 수 있으며, 지상국으로부터 수신된 원격 위성(200)으로 커맨드를 구현할 수 있다. 중앙 제어기는 원격 위성(302)들을 어레이(300)로 형성하는 것을 제어할 수 있다. 중앙 제어기는 또한 어레이(300)에 의한 전자기 음영 또는 폐색을 피하고 전개 및 동작 동안 통신 주파수를 제어할 수 있도록 중앙 위성(200)을 위치시킬 수 있다.
원격 위성(302)은 임의의 형상일 수 있다. 또한, 위성 어레이(300)는 정사각형, 직사각형, 육각형 또는 원형 형상이고, 원격 위성(302)은 행과 열로 서로 정렬되어 있으며, 어레이는 2차원 어레이이다(즉, 행과 어레이는 x와 y 좌표에 있다). 원격 위성(302)은 미리 결정된 거리만큼 서로 이격되도록 제어된다(또는 대안적인 실시예에서, 거리는 각각의 원격 위성(302)에 대해 변할 수 있고, 원격 위성(302) 및/또는 제어 위성(200)에 대해 동적으로 제어될 수 있다). 그러나, 간격뿐만 아니라 위성(302) 및 위성 어레이(300)는 임의의 적절한 크기 및 형상으로 제공될 수 있고, 어레이는 3차원일 수 있다.
도 1b를 참조하면, 통신 방식이 도시되어 있다. 최종 사용자 단말(500)은 서브 2Ghz 주파수를 통해 다수의 위성(302)과 통신한다. 이 주파수는 Tx 최종 사용자 주파수라고 지칭된다. 도시된 바와 같이, 그리고 아래의 도 10과 관련하여 보다 충분히 논의된 바와 같이, 지상 풋프린트 셀은 각각 4개의 다른 주파수 중 하나에서 통신한다. 즉, 제1 풋프린트 셀 내의 최종 사용자 단말(500)은 제1 주파수(F1)에서 통신하고, 제2 풋프린트 셀 내의 최종 사용자 단말(500)은 제2 주파수(F2)에서 통신하고, 제3 풋프린트 셀 내의 최종 사용자 단말(500)은 제3 주파수(F3)에서 통신하고, 제4 풋프린트 셀 내의 최종 사용자 단말(500)은 제4 주파수(F4)에서 통신한다. 따라서, 주파수(F1 내지 F4)는 다수 번(즉, 다수의 다른 풋프린트 셀에 위치된 최종 사용자 단말과 통신하기 위해) 재사용되어 고처리량 대역폭을 가능하게 한다. 동일한 셀(예를 들어, 제1 풋프린트 셀)에 위치된 다수의 최종 사용자 단말(500)은 시분할 다중화 또는 다른 적절한 전송 방식을 사용함으로써 동일한 주파수(즉, 제1 주파수(F1))를 통해 통신할 수 있다.
다수의 위성(302) 및 제어 위성(200)은 제어 위성(200)에서 위성(302)의 수신 신호를 수집(aggregate)하고 위치 지정 위성 시스템을 돕기 위해 이들 위성 사이에서 통신하는 WIFI 무선 네트워크를 형성한다. 도시된 바와 같이, 서로 통신하거나 또는 주어진 어레이(300)와 통신하는 제어 위성(200)이 다수 있을 수 있다. 제어 위성(200)은 (예를 들어, 광섬유 링크 또는 다른 링크를 통해) 인터넷, 셀룰러 시스템 또는 사설 네트워크와 통신하는 KA 대역 또는 V 대역과 같은 고주파를 통해 게이트웨이(600)(예를 들어 지구 상의 지상국에 위치될 수 있음)와 통신한다. 이 주파수는 다운링크 게이트웨이 주파수라고 불린다. 게이트웨이(600)는 또한 고주파를 통해 제어 위성(200)과 다시 통신한다. 이 주파수는 업링크 게이트웨이 주파수라고 불린다.
제어 위성(200) 및 다수의 위성(302)은 이들 사이에 통신하기 위해 Wi-Fi 무선 네트워크를 형성한다. 따라서, 제어 위성(200)은 신호를 지구로 전송하여 지구 시야에서 특정 빔 형성(400)을 생성하는 방식으로 상이한 소형 위성(302)으로 신호를 분배할 수 있다. 다수의 소형 위성(302)은 최종 사용자 디바이스(500)로 다시 전송한다. 이 주파수는 Rx 최종 사용자 주파수라고 불리며 저주파수일 수 있다. F1 Rx는 동일한 대역이지만 F1 Tx와는 다른 주파수이다. 동일한 전송 주파수는 다수의 셀에서 재사용된다 -- 즉, F1 Tx는 다수의 F1 셀 각각에서 동일하고, F1 Rx는 다수의 F1 셀 각각에서 동일하고; F4 Tx는 다수의 F4 셀 각각에서 동일하고, F4 Rx는 다수의 F4 셀 각각에서 동일하며, 이와 같이 계속된다.
주요 주파수는 전송 최종 사용자 주파수(Tx), 수신 최종 사용자 주파수(Rx), (원격 위성(302)과 중앙 위성(200) 사이) 네트워크 주파수, 다운링크 게이트웨이 주파수 및 업링크 게이트웨이 주파수이다. 예를 들어 최종 사용자 주파수(Tx)는 LTE 대역(31)일 수 있다. Rx 최종 사용자 주파수는 LTE 대역(31)일 수 있다. WiFi AC 네트워크 주파수는 5 GHz일 수 있다. 다운링크 게이트웨이 주파수는 Ka 대역일 수 있다. 그리고, 업링크 게이트웨이 주파수는 Ka 대역 업링크일 수 있다.
따라서, 제어기 위성(200)과 (지구에 위치된) 지상 게이트웨이 사이의 업 링크 및 다운 링크는 고주파수를 통한 것이고, 시스템은 지구 상에서 필요한 게이트웨이 수를 줄이기 위해 서로 다른 통신 대역을 통해 공간 내 다른 위성 시스템과 통신하도록 설계될 수 있다. 따라서, 위성(302)은 WiFi와 등가인 무선 통신 네트워크를 통해 저주파수의 최종 사용자 디바이스 또는 단말과 통신하고 중앙 위성(200)과 통신한다. 시스템은 적절한 장애물 손실(Moderate Obstacle Loss)에 바람직한 저주파를 사용하여 사용자 디바이스 및 사용자 단말을 어레이(300)와 직접 연결하는 저주파에서 동작할 수 있다. 주파수 대역의 예는 100MHz 내지 2GHz 범위이다.
공간 내 분산 안테나 시스템 어레이의 G/T 및 EIRP(Equivalent Isotropic Radiated Power: 등가 등방성 방사 전력)는 각각의 소형 또는 초소형 위성에서 헤르츠당 비트 수, 주파수 재사용 및 필요한 전력을 결정한다. 이것을 도출하기 위해, 도 3은 단일 채널 수신기의 잡음 온도를 도시한다. 다음은 단일 채널 수신기 모델로부터 위성 어레이(300)의 안테나 어레이의 G/T를 도출한다.
도 4는 각각의 소형 위성(302) 및 위성 어레이(300) 전체에 대한 일반적인 어레이 수신 시스템이다. 빔 형성 네트워크 출력에서 신호 전력은 다음과 같다:
Figure pat00001
여기서, P0은 무손실 등방성 안테나의 전력 출력이며, Gen은 어레이 안테나 요소의 이득이며, Gn은 n번째 안테나 요소의 출력으로부터 빔 형성기 출력으로 가는 채널의 이용 가능한 이득이며, Gm은 정규화에 사용되는 Gn의 최대값이며, αn = Sqrt(Gn/Gm)는 n번째 수신기 채널 전달 함수의 유효 진폭 테이퍼(taper)이다. θn은 빔 조향 및/또는 위상 테이퍼를 고려하여, 기준 채널의 것에 대한 n번째 수신기 채널의 총 위상 편이(phase shift)이다.
위의 수식에 어레이 안테나의 전력 이득
Figure pat00002
을 대입하면,
Figure pat00003
을 얻는다. 어레이 수신 시스템은 출력 PoGa을 갖는 등가 단일 안테나 및
Figure pat00004
를 갖는 2-포트 수신기로 표현될 수 있다. 어레이 수신기의 유효 입력 잡음 온도는
Figure pat00005
이다. 초과 출력 잡음 밀도는
Figure pat00006
이다. 따라서 잡음 온도는
Figure pat00007
이다.
다운링크 다중-빔 통신 범위를 위해, n x n 어레이의 크기를 선택하는데, 즉 아래 표 1에 따라 전계 강도
Figure pat00008
를 충족시키기 위한 그 이득 및 잡음 온도를 선택하고, 여기서 위성 어레이 형성체는 위성(위)으로부터의 전계 강도를 셀룰러 시스템(아래)에서 지상 기지국 사용에 의해 제공되는 것과 동일하게 유지한다.
[표 1]
Figure pat00009
도 5에 가장 잘 도시된 바와 같이, 각 위성 형성체(100)의 제어 위성(200)은 빔 스위칭을 처리할 수 있다. 예를 들어, 주어진 영역(예를 들어, 400km 직경을 갖는 영역)은 특정한 경도와 위도의 세트에 대응하는 빔 인덱스로 지정되고, 그리고 빔은 각각의 빔이 고유 인덱스를 갖게 지구적으로 매핑된다. 이 정보는 제어 위성(200)의 메모리에 저장될 수 있다. 제어 위성(200)은 (예를 들어, GPS(202)로부터 결정된 지구 위치에 기초하여) 임의의 주어진 시간에 제어 위성이 전송해야 하는 빔을 결정한다. 본 발명의 하나의 바람직한 실시예에서, 각각의 빔은 단일 위성 형성체(100)와만 통신할 수 있다. 따라서, 빔들이 중첩되거나 또는 최소로 중첩되고, 위성 형성체(100)는 이 형성체(100)가 특정 빔 내로 이동하고 특정 빔 밖으로 이동할 때 빔 스위칭을 수행할 수 있다. 빔 스위칭을 최소화하기 위해, 특정 빔에 할당된 위성 형성체(100)는 가장 긴 기간, 즉 시간 기간 동안 이 빔 위치를 포함하는 형성체(100)의 전체 성상의 형성체(100)일 수 있다. 제어 위성(200)은 빔 스위칭 동작을 수행하게 하기 위해 그 위치를 다른 제어 위성(200)으로 전달할 수 있다.
도 5a 내지 도 5c는 본 발명을 설명하기 위한 빔 스위칭을 위한 통신 프로토콜을 도시한다. 3개의 (고정된) 다중-빔 풋프린트(400)가 도시되어 있다. 많은 고정된 풋프린트는 풋프린트들이 부분적으로 중복되게 지구를 테셀레이트(tessellate)(즉, 커버)한다. 도 5는 위성 형성체가 지구를 공전 운동하며 풋프린트에 접근할 때(도 5a), 이후 이 풋프린트를 지날 때(도 5b), 마지막으로 이 풋프린트로부터 멀리 이동할 때(도 5c) 위성 형성체(100)(제어 위성(200) 및 어레이(300)를 포함함)를 도시한다. 제1 위성 형성체(100)는 인접한 다중 빔이 최하점(nadir)(위성 바로 아래)에 있을 때까지 주어진 제1 다중 빔 풋프린트의 통신 범위를 제공한다. 이 시점에서, 제1 형성체(100)는 이 아래에서 인접한 제2 다중 빔 풋프린트를 제공하도록 스위칭된다. 동시에, 상승하는 제2 형성체는 제1 다중-빔 풋프린트에 연속적인 통신 범위를 제공하도록 다중-빔 풋프린트를 스위칭한다. 빔-스위칭은 형성체에서 그 천체력에 기초하여 일어나는데, 즉 형성체가 다중 빔 풋프린트를 떠나기 시작하고 다른 형성체가 다중 빔 풋프린트를 제공하기 시작할 때 일어난다. 제어 위성(200)은 적절한 통신 프로토콜(주파수 등)을 원격 위성(302)으로 전달할 수 있다. 빔 스위칭은 제어 위성(200)에 의해 수행되는 것으로 기술되어 있지만, 빔 스위칭은 하나 이상의 원격 위성(302)에 의해 수행될 수 있다.
제어 위성(200)은 원격 위성(302)으로 빔 형성 계수를 송신함으로써 원격 위성에 커맨드한다. 제어기 위성(200)은 Ka 대역 이상의 주파수에서 어레이(300)의 빔을 수집한다. 수집된 모든 빔은 제어 위성에 의해 고주파 다운링크를 통해 지상국(그리고 그 이후 네트워크 클라우드)으로 전달되어야 반면, 이 지상국은 핸드셋으로 전달하기 위해 Ka 대역에서 업링크된 데이터를 다양한 초소형 위성으로 분배한다.
도 6을 참조하면, 본 발명의 대안적인 실시예에 따른 어레이(500)가 도시되어 있다. 어레이(500)는 하부 어레이(502) 및 측면 어레이(504a 내지 504d)를 갖는 절두체 형상의 피라미드를 실질적으로 갖는 사다리꼴 구성으로 위치된 소형 위성(302)으로 형성된다. 즉, 하부 어레이(502)는 타원의 트랙을 따라 행과 열로 위치된 소형 위성(302e)으로 형성되어 위성의 하부 어레이(502)를 형성한다. 그리고 각각의 측면 어레이(504a 내지 504d)(전방측 어레이(504a), 우측 어레이(504b), 후방측 어레이(504c) 및 좌측 어레이(504d))는 지구의 반경에 직교하는 타원의 트랙을 따라 행과 열로 위치된 소형 위성(302)으로 형성된다.
사다리꼴 어레이(500)를 도시하기 위해 일부 소형 위성(302c, 302d, 302e)이 도 6에 도시되어 있지만, 전체 사다리꼴 어레이(500)는 어레이(500)의 하부(502) 및 측면(504)을 따라 위치된 소형 위성(302)으로 구성된다는 것을 인식할 수 있을 것이다. 예를 들어, 측면 어레이(504c)는 지구의 반경에 직교하는 타원의 트랙을 따라 열과 행으로 형성된 소형 위성(302c)으로 형성되고, 측면 어레이(504d)는 지구의 무선에 직교하는 타원의 트랙을 따라 열과 행으로 형성된 소형 위성(302d)으로 형성된다. 하부 어레이(502)는 실질적으로 정사각형 또는 직사각형 또는 타원일 수 있고, 측면 어레이(504)는 각각 실질적으로 이등변 사다리꼴 형상을 가질 수 있다. 따라서, 측면 어레이(504a 내지 504d)는 하부 어레이(502)의 평면 표면으로부터 바깥쪽으로 각져 있고, 서로 인접하거나 이격되어 있을 수 있다. 특히, 각각의 어레이(502, 504a 내지 504d)는 지구의 반경에 실질적으로 직교한다.
도 6에 추가로 도시된 바와 같이, 소형 위성(302)들은 하부 어레이(502)의 평면 표면에 실질적으로 수직인 동일한 전방을 향하는 방향(510)으로 모두 위치된다. 즉, 소형 위성(302)은 임의의 형상을 가지고, 전방을 향하는 상부 평면 표면을 갖는다. 상부 표면은 지구의 방향(510)을 향하고 있어서, 원격 위성의 평면 표면은 지구 표면과 실질적으로 직교한다(즉, 지구의 반경에 직교한다). 어레이는 최하점 영역을 커버하도록 위치된다. 큰 풋프린트의 경우, 최하점 빔은 풋프린트의 다른 영역을 직접 향하지 않는다. 이 영역을 커버하기 위해, 최하점 평면으로 경사진 4개의 면을 제공한다.
사다리꼴 또는 임의의 등가 체적 도형 어레이(500) 구성은 신호를 영역으로 직접 또는 거의 직접 처리하여, 코사인 손실이 지구 지상국으로/지구 지상국으로부터 전송된 신호를 관리할 수 있게 하고, 코사인 손실을 감소시킨다. 제어 위성(200)은 어레이(500)의 질량 중심에 위치된다. "코사인 손실"은 평면의 중심을 향하는 영역에 결합시키는 라인에 대해 평면의 법선이 이루는 각도의 코사인이다. 코사인은 항상 1 이하이기 때문에 이것은 항상 손실이며 결코 이득이 아니며, 각도가 커질수록 손실이 커진다. 이 손실을 감소시키기 위해 도 6에서 사다리꼴의 어레이(502, 504a 내지 504d)에 추가 평면이 제공된다.
하부(502)와 측면(504)은 이들이 교차하는 각진 코너와 평면 차원을 갖는 편평한 부분으로 도시된 것임을 더 알 수 있다. 타원으로 형성된 곡선 코너와 곡선 차원을 갖는 형상은 더 만곡될 수 있다는 것임에 유의해야 한다. 그리고, 3차원 형상 또는 폴리메트릭 형상을 포함하여 상이한 어레이 형성체를 갖는 어레이의 다른 구성이 제공될 수 있다. 또한, 어레이(500)는 지구(510) 또는 공간(512)을 향하도록 임의의 적절한 방식으로 지구에 대해 배향될 수 있다.
도 7a 내지 도 7c는 본 발명의 광대역 통신 응용에서 천체력에 기초하여 빔을 서브 형성체에 할당하여 사용하는 것을 도시하며, 여기서 도 7a는 지구 상의 풋프린트에 들어가는 형성체를 도시하며, 도 7b는 풋프린트의 중간에 있는 형성체를 도시하며, 도 7c는 풋프린트를 떠나는 형성체를 도시한다. 풋프린트의 경계는 빔을 커버하는 데 사용되는 서브 형성체를 도시한다. 여기서, 빔(Tx) 및 빔(Rx)은 선택된 형성체로/로부터 스위칭된다. 스위치는 중앙 위성(200)에 의해 통신될 수 있다. 이들 도면은 위성이 풋프린트 중심을 통과하는 것을 도시하지만, 중심이 아닌 풋프린트 부분을 통과하는 것도 가능하다. 이 도면은 형성체가 풋프린트 위를 지날 때 빔이 절두체의 다양한 면으로 할당되는 것을 도시한다. 이는 또한 절두체의 모든 활성면이 임의의 주어진 시간에 반드시 활성인 것은 아닌 것을 도시한다.
도 8a 및 도 8b는 빔 스위칭 동작의 다른 비 제한적인 예로서 도 5 및 도 7에 대안적인 통신 프로토콜을 도시한다. (도 5 및 도 7에서와 같이) 도 8a에서 전체 지구는 다수의 빔(450)으로 매핑되고, 각각의 빔을 고유 빔 인덱스로 할당한다. 이 정보는 제어 위성(200)의 메모리에 저장될 수 있다. 위성 형성체(100)는 지구 주위의 궤도(102)에 도시되어 있다. 형성체(100)가 궤도(102)를 따라 이동할 때, 그 풋프린트(104)는 지구의 표면을 따라 이동하고, 위성 형성체(100)는 그 풋프린트(102) 내 빔(450)과 통신할 수 있다. 따라서, 위성 형성체가 지구를 공전 운동함에 따라, 위성 형성체(100)의 풋프린트(104)는 도 8a에 도시된 위치로부터 도 8b에 도시된 위치로 이동한다. 또한, 도 8c를 참조하면, 단일 궤도(102)에 다수의 위성 형성체(100)가 존재할 수 있다. 도 8c에 도시된 바와 같이, 6개의 위성 형성체(100)(도시된 지구의 절반에 3개의 위성 형성체가 도시됨)는 단일 궤도(102)에 있을 수 있다. 위성 형성체(100)의 풋프린트(104)는 서로 중복되지 않는다.
각 빔(450)은 빔(450)의 위도와 경도 및 위성 형성체(100)의 위치에 기초하여 단 하나의 위성 형성체(100)에만 고유하게 배분된다. 다수의 위성 형성체(100)가 빔(450)을 제공할 수 있을 때, 빔(450)은 가장 긴 지속 기간 동안 통신 범위를 제공할 수 있는 위성 형성체(100)에 배분될 수 있다.
도 9a 및 도 9(b)는 각각 64x64 요소 어레이 및 16x16 요소 어레이에 대한 방사 패턴을 도시한다(여기서 방사 패턴은 어레이의 조준점에서 각도의 함수로서 안테나 어레이 이득이다). 하나의 가능한 패치(또는 인쇄 회로 기판) 안테나 크기는 80mm x 80mm x 2mm이고, 요소 간격은 166mm이며, 주파수는 700MHz이다. 패치 안테나는 PCB 상에서 실현될 수 있는 하나의 유형의 안테나이다. PCB 상에서 실현될 수 있는 마이크로 스트립 등과 같은 여러 다른 유형이 있다. 64x64 안테나의 복합 방사 패턴이 도시되어 있다. 좁은 주엽(main lobe)과 훨씬 더 작은 주변 측엽(sidelobe)이 도시되어 있다. 하나의 어레이가 다른 어레이의 널(null)에 있도록 절두체의 각도를 선택하는 것은 하나의 설계 선택 사항일 수 있다. 방사 패턴은 또한 널이 있는 곳을 보여준다.
도 10을 참조하면, (동일한 대역에서 서로 다른 주파수로 통신할 수 있는) 송신 및 수신 주파수(Tx, Rx)에서 어레이(300)의 풋프린트에 주파수를 할당하는 것이 도시되어 있다. 4색 구성이 도시되어 있고, 여기서 각 색상은 다른 주파수를 나타낸다. 따라서, 2개의 인접한 셀이 동일한 주파수를 갖지 않는 방식으로 임의의 2차원 맵을 색상으로 나타내는데 단 4개의 색상(즉, 주파수)만이 필요하다. 빔이 6각형 셀이라면 단 4개의 주파수만으로 충분하다(그리고 이 빔들은 하나의 행에 2개의 주파수를 교대로 사용하고 그 다음 행에서 2개의 다른 주파수를 교대로 사용하여 행을 번갈아 가며 규칙적으로 사용한다). 따라서, 주파수 재사용 계수는 최적으로 4일 수 있다. 그러나, 간섭이 인접한 셀로 제한되는 경우에도, 간섭 그래프(G)의 최적의 색상을 부여하는 문제는 NP-완료되는 것으로 밝혀졌다. 고정된 할당을 위해 여러 근사 알고리즘이 고안되었다. 고정된 배분(Fixed Allocation: FA)은 최적의 주파수(또는 색상) 수의 3배를 초과하지 않는 수를 사용한다. (위성 빔이 6각형 그리드를 근사하게 따르고 하나의 셀을 건너뛰는 간섭이 작기 때문에) 4로 다운시킬 수 있다는 점을 염두에 두고 주파수 재사용 계수를 7로 사용한다. 4개의 주파수는 b개의 빔(예를 들어, 500)을 수용할 수 있다. 각 빔(b)이 대역폭(bw)을 처리할 수 있다고 가정하면 전체 처리량은 각 셀에 대해 b x bw가 된다. 물론, 4개보다 더 많거나 더 적은 임의의 적절한 수의 주파수 및 풋프린트 셀이 제공될 수 있다.
형성체에 의한 지연 및 도플러 사전 보상은 중앙 위성(200)에서 수행된다. 천체력을 알고 있는 위성 형성체는 위성 형성체가 제공하는 풋프린트의 각 빔의 중심에 대한 지연 및 도플러 변화를 사전 보상하여, 이 빔 내 임의의 곳에서 핸드셋에 보이는 잔여 도플러를 최소화하고, 핸드셋에 보이는 지연이 가능한 한 일정한 지연에 가깝도록 한다. (각 빔의 중심에 대한 형성체 천체력의 함수로서) 빔의 중심에 대한 사전 보상 후 잔류 도플러 및 지연 변동. 결과적으로, 핸드폰은 중심에서 벗어난 위치에서 지연 및 도플러 변형을 볼 수 있지만 크기는 작다(지상 기지국 서비스에서 관찰될 수 있는 것의 3배 정도).
대안적으로, 이러한 지연 및 도플러 보상은 도 11에 도시된 바와 같이 가상 기지국과 같은 지상국(GS)에서 동일하게 이루어질 수 있다. 이것은 큰 개구와 빔 중심에 대한 지연/도플러 보상과 결합된다. 개구가 클수록 빔의 (최악의 경우) 잔류 도플러(잔류 도플러 보상 후)가 작아진다. LTE는 잔류 도플러 > 1200Hz, 그리고 지연 변동 > 0.5ms를 견디지 못한다. 따라서 a) 지연/도플러 보상/균등화가 있어야 하고, b) 잔류 지연/도플러 변동이 작아야 한다. 지상국에서 보상 방법은 위성에서 이루어지는 보상과 동일할 수 있다.
도 11은 다양한 빔 신호들을 생성하고 LEO 형성체(100)로 전송하고 LEO 형성체(100)로부터 다양한 빔 신호들을 수신하는 지상국(GS)(700)의 장비 구성을 도시한다. 가상 기지국(702, 704, …, 706)은 LEO 형성체(100)를 통해 위성 풋프린트의 N개의 빔들에서 신호들을 핸드셋들로 생성하고, 핸드셋들로부터 신호들을 수신하는 N개의 기지국들이다. 각 기지국이 송신/수신한 신호들은 GPS 모듈(712), LEO 성좌 천체력 모듈(716), 지상국 및 빔 주파수 모듈(710), 및 빔-기지국 맵 또는 빔 지리-위치 및 일정 모듈(714)로부터의 입력들에 의해 도움을 받는 지연/도플러 보상을 거친다. GPS 모듈(712)은 지상국(700)의 위치 좌표를 제공하고, LEO 성좌 천체력(716)은 LEO 형성체(100)에 좌표들을 제공한다. 지상국 및 빔 주파수 모듈(710)은 LEO 형성체(100)로/로부터 각각의 기지국에 할당된 지상국 업링크/다운링크 주파수 및 LEO 형성체(100)로/로부터 위성 풋프린트의 각 빔에 할당된 대응하는 업링크/다운링크 주파수의 목록을 제공한다. 빔-기지국 맵 및 일정 모듈(714)은 어떤 빔이 어느 기지국에 할당되고, 기지국이 빔으로/로부터 신호를 생성/수신하기 시작하고 그것이 정지되는 시간 순간들을 나열한다.
입력들(710, 712, 714, 716)은 위성이 빔을 통과하기 훨씬 앞서서 지연/도플러 경향을 계산하는데 도움이 된다. 도플러 보상을 위해, 위성 통과가 빔을 통해 시작될 때, 역 도플러가 가상 기지국 생성 신호에 적용되어 순방향(지상국에서 LEO 형성체, 사용자 장비로)의 LEO 형성체 이동으로 인한 도플러 효과를 상쇄시켜, 최종 사용자 장비에서 볼 수 있는 거의 0의 도플러를 초래한다. 유사하게, 역 도플러는 가상 기지국에 공급하기 전에 LEO 형성체로부터의 다운링크 상에 적용되어, 역방향(사용자 장비에서 LEO 형성체, 지상국으로)에서 도플러 효과를 상쇄시킨다.
보상은 위성 통과 동안 도플러 변화들에 적응하도록 주기적으로 업데이트되고, 위성 통과의 끝까지 수행된다. 지연 보상의 경우, 지상국과 사용자 장비 사이에 유한한 대기 시간이 존재하는데, 왜냐하면 신호들이 이들 사이에서 지상국과 사용자 장비로부터 LEO 형성체까지의 경로 지연에 따라 LEO 형성체을 통해 교환되기 때문이다. 이러한 지연은 되돌릴 수 없기 때문에, 지연 보상은 전체 지연이 지상국과 사용자 장비 사이의 위성 통과 전반에 걸쳐 거의 일정하도록 비례 지연의 추가를 수반한다.
예를 들어, 지상국과 사용자 장비가 동일한 빔에 있다고 가정한다. 빔이 LEO 형성체 풋프린트의 가장자리에 있을 때, 경로 지연은 크고(예: d1), 보상을 위해 추가된 해당 지연(예: cd1)은 최소이다. 유사하게, 빔이 위성 통과 동안 최하점(LEO 형성체 아래)에 있을 때, 경로 지연은 최소이고(예: d2), 보상을 위해 추가된 해당 지연(예: cd2)은 최대이다. 이러한 예시된 시나리오의 경우, 경로 지연이 LEO 형성체 풋프린트의 빔 위치에 따라 변하지만, 전체 경로 지연들은 거의 일정한다, 즉 (d1+cd1)
Figure pat00010
(d2+cd2)). 따라서, 본 발명은 위성이 이동함에 따라 거의 일정한 마지막 최종 경로 지연을 달성하기 위해 기존 경로 지연에 기초한 동적 및 가변 지연을 제공한다.
따라서 지연/도플러 보상 메커니즘은 가상 기지국과 그들 사이에 LEO 형성체 채널을 가짐에도 불구하고 그들 사이의 통신을 설정하는데 필요한 사용자 장비 사이에서 거의 일정한 경로 지연 및 거의 0의 도플러(즉, 균등화된)를 유지하는데 도움이 된다. 여기서 거의 0의 도플러 및 거의 일정한 지연은 LTE 통신들을 방해하거나 심각하게 저하시키지 않는 도플러 및 지연 변동을 의미한다. 고정된 지상 서비스들의 경우, 일 실시예에서 ±800Hz, ±0.2ms 이내이고, 공중 이동 서비스들의 경우 ±1100Hz, ±0.3ms 이내이다.
유사하게, 다른 빔들과 통신하는 가상 기지국들 및 다른 지상국들의 가상 기지국들은 성좌에서 각각의 LEO 형성체들에 대해 거의 일정한 경로 지연 및 거의 0의 도플러를 또한 유지한다. 전체 경로 지연/도플러가 빔들에 걸쳐 그리고 LEO 형성체들에 걸쳐 거의 유사하게 유지되기 때문에, 사용자 장비는, 빔들 사이에서 사용자 장비의 전환 또는 설정 LEO 형성체 풋프린트로부터 증가하는 LEO 형성체 풋프린트로의 빔의 전환이 존재할 때마다, 새로운 빔들로 신속하게 동기화되어, 위성으로부터 사용자 장비의 위성으로 원활한 전환을 제공한다.
이러한 모든 입력들은 근거리 네트워크를 통해 또는 원격 네트워크(708)로부터의 클라우드를 통해 획득된다. 각 기지국(702, 704, …, 706)의 신호들은 공통 LTE 대역 주파수(f)일 수 있으며, 이들은 주파수 분할 다중화기/역다중화기(720)를 사용하여 주파수 (f1, f2, … fN)로/로부터 인터리브/디인터리브된다. 다중화기/역다중화기(720)로부터/로의 모든 기지국들의 복합 신호는 주파수-대-위성 주파수 상향/하향 변환기(722)에 의해 임대된 위성 주파수 대역(Q 또는 V-대역과 같은)으로/로부터 주파수 이동된다. 지상국 안테나(724)는 복합 기지국 신호들을 LEO 형성체(100)로/로부터 송신/수신한다.
전술한 바와 같이, 중앙 위성(200)은 원격 위성(302)들의 동작을 제어하여, 예를 들어, 각각의 원격 위성(302) 사이의 간격을 포함하여 소형 위성(302)의 형성체, 즉 위치를 제어하여 위성 어레이(300, 500)를 형성하는데 이용된다. 그러나, 원격 위성(302)(즉, 원격 제어기(304))들은 중앙 위성(200)을 이용하는 것 대신에 또는 이에 추가하여 서로 통신하며 위성 어레이(300, 500)를 형성하는 것을 포함하여 특정 동작을 수행할 수 있다는 것을 유의해야 한다. 원격 위성(302)들 사이의 미리 결정된 또는 동적 위치를 달성하기 위해 원격 위성(302)을 형성하는 것를 용이하게 하기 위해 근접 검출기 또는 센서와 같은 또 다른 구성 요소가 원격 위성(302)에 제공될 수 있다. 어레이를 형성하는 것은 사전 규정되거나 동적으로 조절될 수 있다.
대형 안테나 어레이(300, 500)는 그 자체가 소형 위성인 제어 위성(200)을 위한 대형 안테나로서 효과적으로 동작한다. 이와 같이, 안테나 어레이(300, 500)는 제어 위성(200)과 지구 사이의 향상된 통신을 가능하게 한다. 따라서, 제어 위성(200)은 휴대 전화 등과 같은 저전력 안테나 디바이스와 직접 신호를 송수신할 수 있다.
본 발명의 또 다른 실시예에서, 위상 어레이(300, 500)는 태양으로부터 태양 에너지를 수집하는데 이용될 수 있다. 예를 들어, 위성들(302) 또는 위성 모듈들은, 태양 에너지를 전기 에너지로 변환하여, 태양광 패널로서 동작하고, 또한 안테나 구조(또는 위성 또는 위성 모듈의 다른 구조)로서 동작하여, 본 발명에 따라 신호들을 송신 및 수신하는, 광기전 재료 또는 다른 재료로 만들어질 수 있다. 전기 에너지는 위성(302) 또는 위성 모듈들에 전력을 공급하는데 사용되거나 나중에 사용하기 위해 저장된다. 따라서 동일한 구조가 태양 에너지를 위해 및 위성 안테나로서의 동작을 위해 사용될 수 있다.
또한, 본 발명은 큰 지연을 보상하고 2G, 3G, 4G 및 5G의 표준 디바이스들을를 지원하기 위해 지상의 가상 eNodeB를 지원하는데 사용될 수 있다. 보다 상세하게는, 본 발명(100)이 모바일 디바이스들과 같이 지상의 최종 사용자 디바이스들과 통신하기 위해, 도플러 보상 및 균등화된 지연을 이용한다. 그러나 표준 통신 프로토콜들은 송신들이 0.66ms 이내와 같이 작은 지연을 갖고 빠르게 수신되는 시스템들에서만 통신을 처리할 수 있다. 그러나 본 발명에서는 원격 위성들 또는 위성 모듈들과 최종 사용자 디바이스들 사이에 큰 통신 지연이 존재한다. 이러한 큰 송신 지연은 표준 통신 프로토콜들에 따라 신호를 보낼 때 오류들을 생성한다. 따라서, 본 발명은, 2018년 11월 9일에 출원된 미국 가특허출원 제62/758,217호 및 2019년에 출원된 미국특허출원 제16/____호에 도시되고 설명된 바와 같이, 2G, 3G, 4G 및 5G 시스템들을 통한 큰 송신 지연들에도 불구하고 끊김없는 통신을 허용하기 위한 통신 프로토콜을 이용하며, 위의 특허출원들의 전체 내용은 본 명세서에 참조로 포함된다. 도플러 보상, 균등화된 지연 및 지연된-송신 통신 프로토콜의 조합은 원격 위성들(302) 또는 위성 모듈들과 사용자 지상 디바이스들 사이의 끊김없고 연속적이며 신뢰할 수 있는 통신을 가능하게 한다. 이러한 프로토콜은 지상국 및/또는 위성 또는 위성 모듈에서 구현될 수 있다.
위에서 추가로 설명된 바와 같이, 원격 위성(302) 또는 위성 모듈들은 예를 들어 전자기력들을 사용하여 제 위치로 이동되고 제 위치에 유지될 수 있다. 또한, 원격 위성(302) 또는 위성 모듈들은 기계 디바이스들에 의해 제 위치로 이동되거나 제 위치에 유지될 수 있다. 예를 들어, 원격 위성들(302) 또는 위성 모듈들은 움직임을 생성하기 위해 물리적으로 서로 맞물릴 수 있고, 각각의 원격 위성이 최종 동작 위치로 이동할 때 기계적으로 맞물리거나 서로 부착될 수 있다. 예를 들어, 원격 위성들(302) 또는 위성 모듈들은 서로에 대해 메커니즘을 중심으로 선회하거나 회전하도록 위성들을 회전 가능하게 연결하는 힌지 등과 같은 기계적 메커니즘에 의해 함께 결합될 수 있다. 따라서, 연결된 위성들(302) 또는 위성 모듈들은 소형컴팩트 저장 또는 수송 구성으로 서로 접힐 수 있고, 그 다음 기계적으로 대형 동작 구성으로 펼쳐질 수 있다.
각각의 원격 위성(302) 또는 위성 모듈은 예를 들어, 적어도 하나의 이웃 위성(302) 또는 위성 모듈에 기계적으로 및 회전 가능하게 결합되는 마이크로 위성 또는 안테나일 수 있다. 각각의 원격 위성(302) 또는 위성 모듈은 각 측면에 4개, 위, 아래 및 대각선에 하나씩과 같이 다수의 이웃하는 원격 위성들(302) 또는 위성 모듈들을 가질 수 있다. 각 원격 위성 또는 위성 모듈은, 원격 위성 또는 위성 모듈의 컴팩트한 저장 구성으로의 효율적인 접힘을 제공하는 방식으로, 이웃하는 원격 위성들 또는 모듈들 중 적어도 하나에 연결하는 기계적 메커니즘 또는 디바이스를 가질 수 있다. 원격 위성들 또는 모듈들은 회전 또는 예를 들어 슬라이딩, 피봇운동, 확장, 붕괴와 같은 다른 관계형 이동을 허용하기 위해 다른 적절한 방식들로 연결될 수 있음을 추가로 주목한다.
"위성" 및/또는 "위성 모듈"이라는 용어는 일반적으로 원격 위성(302)을 공간에 배치될 수 있는 요소, 물체 또는 디바이스로서 설명하기 위해 상호교환 가능하게 사용된다는 점이 또한 주목된다. 바람직한 실시예가 프로세서(304), 수신기(들)/송신기(들), 및 최대 4개의 안테나(305)를 포함하는 것으로 위에서 설명되었지만, 다른 실시예들은 이들 구성요소들 각각을 포함할 필요는 없다. 더욱이, 일 실시예에서, 위성 또는 위성 모듈은 그러한 구성요소들 중 단지 하나를 포함할 수 있다. 예를 들어, 위성 또는 위성 모듈은 안테나, 안테나의 일부분, 또는 일반적으로 예를 들어 다른 위성들, 지상국, 및/또는 최종 사용자 디바이스와의 통신을 지원하기 위하여 공간에 배치되는 임의의 다른 요소, 물체, 디바이스 또는 구성요소가 될 수 있다.
도 1 내지 도 2의 실시예에서, 원격 제어기 및/또는 중앙 제어기는 기지국들(702-706)에 대한 입력들(710-716) 및 지상국(700)에서의 것들을 포함하여, 본 발명에 따른 다양한 기능 및 동작을 수행하는 처리 디바이스를 포함할 수 있다. 처리 디바이스는 예를 들어 컴퓨팅 디바이스, 프로세서, 주문형 집적 회로(ASIC) 또는 제어기일 수 있다. 처리 디바이스에는 예를 들어 코-프로세서, 레지스터, 데이터 처리 디바이스 및 서브시스템, 유선 또는 무선 통신 링크, 및/또는 저장 디바이스(들), 예를 들어, 메모리, RAM, ROM, 아날로그 또는 디지털 메모리 또는 데이터베이스를 포함하는 하나 이상의 다양한 구성 요소 또는 서브시스템이 제공될 수 있다. 본 발명에 이용된 시스템, 프로세스 및/또는 데이터의 전부 또는 일부는 저장 디바이스에 저장되거나 저장 디바이스로부터 판독될 수 있다. 저장 디바이스는 본 발명의 프로세스를 수행하기 위한 머신 실행 가능 명령을 저장할 수 있다. 처리 디바이스는 저장 디바이스에 저장될 수 있는 소프트웨어를 실행할 수 있다. 달리 지시되지 않는 한, 프로세스는 바람직하게 지연 없이 실질적으로 실시간으로 프로세서에 의해 자동으로 구현된다.
본 명세서에 제공된 본 발명의 설명 및 도면은 본 발명의 원리를 단지 예시적으로 제시하는 것으로 고려되어야 한다. 본 발명은 다양한 방식으로 구성될 수 있으며 바람직한 실시예로 제한되도록 의도된 것이 아니다. 본 발명의 다수의 응용은 이 기술 분야에 통상의 지식을 가진 자에게 용이하게 일어날 수 있다. 따라서, 본 발명은 개시된 특정 예 또는 도시되고 설명된 정확한 구성 및 동작으로 제한되는 것으로 의도된 것이 아니다. 오히려, 모든 적합한 수정 및 균등물이 본 발명의 범위 내에 속하는 것으로 이해될 수 있다.

Claims (1)

  1. 시스템으로서:
    위성 또는 위성 형성체로의 및 이로부터의 경로 지연을 갖는 신호들을 송신
    및 수신하기 위한 지상국을 포함하고, 상기 지상국은 상기 경로 지연에 기초한 가
    변 지연을 적용하여, 상기 신호들에 대해 균등화된 최종 일정한 경로 지연을 제공
    하도록 구성되는, 시스템.
KR1020227035117A 2019-03-20 2020-03-05 고처리량 분할 위성들 KR20220141918A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/359,533 2019-03-20
US16/359,533 US10979133B2 (en) 2017-06-12 2019-03-20 System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites
KR1020217032060A KR102454426B1 (ko) 2019-03-20 2020-03-05 고처리량 분할 위성들
PCT/US2020/021215 WO2020190517A1 (en) 2019-03-20 2020-03-05 High throughput fractionated satellites

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217032060A Division KR102454426B1 (ko) 2019-03-20 2020-03-05 고처리량 분할 위성들

Publications (1)

Publication Number Publication Date
KR20220141918A true KR20220141918A (ko) 2022-10-20

Family

ID=72520365

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217032060A KR102454426B1 (ko) 2019-03-20 2020-03-05 고처리량 분할 위성들
KR1020227035117A KR20220141918A (ko) 2019-03-20 2020-03-05 고처리량 분할 위성들

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020217032060A KR102454426B1 (ko) 2019-03-20 2020-03-05 고처리량 분할 위성들

Country Status (6)

Country Link
EP (2) EP4236085A3 (ko)
JP (2) JP7132445B2 (ko)
KR (2) KR102454426B1 (ko)
AU (2) AU2020241308B2 (ko)
CA (1) CA3134030A1 (ko)
WO (1) WO2020190517A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271170B (zh) * 2021-05-13 2022-04-29 哈尔滨工业大学 基于译码辅助的vlbi数据处理方法、装置及计算机存储介质
CN114301517A (zh) * 2021-12-30 2022-04-08 中国电信股份有限公司卫星通信分公司 一种基于现有Ku卫星便携站高通量转接控制方法
JP7416468B1 (ja) 2022-07-13 2024-01-17 インターステラテクノロジズ株式会社 衛星通信システム及び信号中継制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611435A (en) * 1969-03-24 1971-10-05 Itt Satellite communication system
AU3176893A (en) * 1991-11-08 1993-06-07 Calling Communications Corporation Beam compensation methods for satellite communication system
JP2522626B2 (ja) * 1992-12-07 1996-08-07 ミサワホーム株式会社 無機面材とその製造方法
GB2293725B (en) * 1994-07-22 1999-02-10 Int Maritime Satellite Organiz Satellite communication method and apparatus
US6975582B1 (en) * 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
US6058306A (en) * 1998-11-02 2000-05-02 Hughes Electronics Corporation Compensation of dynamic doppler frequency of large range in satellite communication systems
US20070155318A1 (en) * 2006-01-04 2007-07-05 Globalstar, Inc. Satellite communication system employing a combination of time slots and orthogonal codes
US7769375B2 (en) * 2006-02-09 2010-08-03 Eagle River Holdings Llc System and method for communication utilizing time division duplexing
JPWO2009110053A1 (ja) * 2008-03-03 2011-07-14 富士通株式会社 放送サービス信号送信方法
US9496886B2 (en) * 2011-06-16 2016-11-15 Spatial Digital Systems, Inc. System for processing data streams
WO2015179214A2 (en) * 2014-05-14 2015-11-26 California Institute Of Technology Large-scale space-based solar power station: power transmission using steerable beams
US9900856B2 (en) * 2015-03-20 2018-02-20 Qualcomm Incorporated Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems
GB2571592B (en) * 2015-10-30 2021-07-21 Michaels Paris Mobile satellite communication system
US9973266B1 (en) * 2017-06-12 2018-05-15 Ast & Science, Llc System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites

Also Published As

Publication number Publication date
JP7132445B2 (ja) 2022-09-06
AU2022201566A1 (en) 2022-03-31
JP2022526721A (ja) 2022-05-26
AU2020241308A1 (en) 2021-11-04
WO2020190517A1 (en) 2020-09-24
EP3942709A1 (en) 2022-01-26
EP4236085A2 (en) 2023-08-30
EP3942709A4 (en) 2022-12-14
AU2022201566B2 (en) 2023-11-23
EP4236085A3 (en) 2023-09-27
JP2022173202A (ja) 2022-11-18
KR20210136074A (ko) 2021-11-16
KR102454426B1 (ko) 2022-10-12
CA3134030A1 (en) 2020-09-24
AU2020241308B2 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
KR102658277B1 (ko) 소형 또는 초소형 위성의 비행 형성체를 사용하여 최종 사용자 디바이스 및 단말과 직접 연결하기 위한 고처리량 분할 위성
US11870540B2 (en) System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites
KR102454426B1 (ko) 고처리량 분할 위성들
EP3266121A1 (en) Means of improving data transfer
US11894911B2 (en) Low earth orbit (LEO) satellite communication methods and systems using fractionated satellites and high-resolution spatial multiplexing
US20230182923A1 (en) Methods and Systems for Deploying Satellite Constellations
JP2023548735A (ja) ビーム形成システム及び衛星の動作モードを切り替える技術
Nessel et al. Potential applications of active antenna technologies for emerging nasa space communications scenarios
AU2018283981B2 (en) High throughput fractionated satellites for direct connectivity with end user devices and terminals using flight formations of small or very small satellites
US20240187088A1 (en) Low earth orbit (leo) satellite communication methods and systems using fractionated satellites and high-resolution spatial multiplexing
US20210336692A1 (en) Wireless LAN Access Point from Space and Wireless LAN System Using the Same
US20240120989A1 (en) Airborne Satellite Connectivity System
Davis et al. Future trends in communications satellite systems

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal