KR20220140402A - 신규 뷰 합성을 위한 신경 블렌딩 - Google Patents

신규 뷰 합성을 위한 신경 블렌딩 Download PDF

Info

Publication number
KR20220140402A
KR20220140402A KR1020217041885A KR20217041885A KR20220140402A KR 20220140402 A KR20220140402 A KR 20220140402A KR 1020217041885 A KR1020217041885 A KR 1020217041885A KR 20217041885 A KR20217041885 A KR 20217041885A KR 20220140402 A KR20220140402 A KR 20220140402A
Authority
KR
South Korea
Prior art keywords
image
images
depth
view
camera
Prior art date
Application number
KR1020217041885A
Other languages
English (en)
Other versions
KR102612529B1 (ko
Inventor
브루알라 리카르도 마틴
다니엘 골드만
후그스 헤르베 호페
린 차이
라스 피터 요하네스 헤드맨
Original Assignee
구글 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구글 엘엘씨 filed Critical 구글 엘엘씨
Publication of KR20220140402A publication Critical patent/KR20220140402A/ko
Application granted granted Critical
Publication of KR102612529B1 publication Critical patent/KR102612529B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T3/0093
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/18Image warping, e.g. rearranging pixels individually
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Generation (AREA)
  • Tea And Coffee (AREA)

Abstract

복수의 입력 이미지, 복수의 깊이 이미지, 및 타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하기 위한 시스템 및 방법이 설명된다. 시스템 및 방법은 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성할 수 있다. 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 워핑된 이미지를 신경망에 제공하는 것에 응답하여, 시스템 및 방법은 신경망으로부터 타겟 피사체의 가상 뷰의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신할 수 있고, 블렌딩 가중치 및 가상 뷰에 기초하여 뷰 파라미터에 따른 합성된 이미지를 생성할 수 있다.

Description

신규 뷰 합성을 위한 신경 블렌딩
본 명세서는 일반적으로 3차원(3D) 콘텐츠를 합성하는 데 사용되는 방법, 장치 및 알고리즘에 관한 것이다.
기존의 객체 렌더링에는 일반적으로 사실적인 이미지를 생성하기 위한 집중적인 계산 노력이 포함된다. 객체가 움직이고 있다면 객체의 사실적인 이미지를 생성하기 위해 추가적인 계산 노력이 사용될 수 있다. 이러한 렌더링에는 신경망을 사용하여 객체의 모양을 모델링하는 것이 포함될 수 있다. 그러나 모델은 외부 노이즈 및 기하학적 아티팩트(artifact)가 있는 이미지를 생성할 수 있다.
여기에 설명된 시스템 및 방법은 입력 이미지에 기초한 이미지 및/또는 비디오의 신규(예를 들어, 보이지 않는) 뷰를 생성(예를 들어, 합성)하기 위해 입력 이미지 및 미리 정의된 뷰 파라미터를 사용하여 이미지 기반 렌더링을 수행할 수 있다. 보이지 않는 뷰의 이미지 기반 렌더링은 수신된 입력 이미지에 대한 워핑(warping) 프로세스를 활용할 수 있다. 일반적으로 워핑 프로세스는 기하학적 부정확성과 뷰 및/또는 다른 입력 뷰의 기여가 함께 블렌딩될 때 아티팩트를 생성할 수 있는 이미지 종속 효과를 유발할 수 있다. 여기에 설명된 시스템 및 방법은 신규 뷰의 이미지 기반 렌더링을 위해 이미지 콘텐츠를 블렌딩하기 위해 신경망(NN)을 사용하는 딥 러닝 기술을 사용한다. 특정 블렌드 가중치는 학습되고 최종 합성된 뷰에 대한 입력 이미지 기여도를 결합하는 데 사용된다. 블렌드(blend) 가중치는 감소된 뷰 및/또는 이미지 종속 효과 및 감소된 수의 이미지 아티팩트를 나타내는 합성된 이미지를 생성하는 이점을 제공하기 위해 생성된다.
NN, 워핑 프로세스 및/또는 블렌드 가중치를 사용할 때 발생할 수 있는 기술적인 문제는 NN(예: 컨볼루션 신경망)이 이미지 아티팩트를 피하기 위해 적절한 블렌딩 가중치를 선택할 수 있도록 충분히 정확한 지오메트리(기하학적 구조)(geometry)가 없다는 것이다. 여기에 설명된 시스템 및 방법은 입력 이미지의 컬러 및 깊이 뷰의 학습된 블렌딩을 사용하고 및/또는 다중해상도 블렌딩 기술을 사용하여 이미지 아티팩트가 감소된 정확한 이미지를 제공하는 픽셀 컬러를 선택함으로써 이 기술적 과제를 해결할 수 있다. 예를 들어, 블렌딩 가중치는 주어진 GT(ground truth) 이미지에 대해 정확 및/또는 정확할 가능성이 덜한 프로젝션된 픽셀 컬러의 가중치를 덜 강조하면서 GT(ground truth) 이미지와 관련하여 정확하고 정확할 가능성이 높은 프로젝션된(예: 확률적으로 제공됨) 픽셀 컬러에 무거운 가중치(heavily weight)를 적용할 수 있다.
이러한 블렌딩 기술을 사용하기 위해, 여기에 설명된 시스템 및 방법은 특정 온보드 시스템 카메라(예: 컬러 카메라, 적외선 카메라 등) 외에 하나 이상의 목격 카메라(들)를 활용할 수 있다. 목격 카메라(들)는 신규 뷰를 생성하는 데 사용되는 콘텐츠를 감독(supervise)할 수 있다. 예를 들어, 목격 카메라(들)는 GT(ground truth) 데이터를 제공하도록 기능할 수 있는 고해상도 카메라일 수 있다. 생성된 신규 뷰는 목격 카메라(들)로부터 수신된(예: 캡처된) GT 데이터와 비교된다. 일부 구현에서, 신규 뷰의 이미지 세부사항은 신규 뷰를 생성할 때 목격 카메라(들)에 의해 캡처된 이미지 세부사항에 기초하여 스코어링될 수 있다.
일부 구현에서, 여기에 설명된 시스템 및 방법은 훈련 손실을 고려한다. 예를 들어, 시스템은 고품질의 신규 뷰 합성을 제공하기 위해 손실을 최소화하고 합성된 뷰에서 일시적인 플리커(flickering) 아티팩트를 줄이기 위해 다양한 캡처된 장면으로 훈련 데이터를 생성할 수 있다. 일부 구현에서, 여기에 설명된 시스템 및 방법은 또한 합성된 신규 뷰에서 아티팩트를 보정하기 위해 오클루션 추론을 사용할 수 있다.
하나 이상의 컴퓨터로 구성된 시스템은 소프트웨어, 펌웨어, 하드웨어 또는 동작 중에 시스템이 액션을 수행하도록 하거나 시스템에 설치하는 소프트웨어, 펌웨어, 하드웨어의 조합을 통해 특정 동작 또는 액션을 수행하도록 구성할 수 있다. 하나 이상의 컴퓨터 프로그램은 데이터 처리 장치에 의해 실행될 때 장치가 액션(동작)을 수행하게 하는 명령어를 포함함으로써 특정 동작 또는 액션을 수행하도록 구성될 수 있다.
하나의 일반적인 양태에서, 복수의 입력 이미지를 수신하고, 복수의 입력 이미지 중 적어도 하나에서 타겟 피사체와 연관된 복수의 깊이 이미지를 수신하고, 상기 타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하고, 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된(warped) 이미지를 생성하기 위한 시스템 및 방법이 설명된다. 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 워핑된 이미지를 신경망에 제공하는 것에 응답하여, 시스템 및 방법은 상기 신경망로부터, 상기 타겟 피사체의 가상 뷰의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신할 수 있다. 시스템 및 방법은 상기 블렌딩 가중치 및 가상 뷰에 기초하여, 상기 뷰 파라미터에 따라 합성된 이미지를 생성할 수 있다.
이들 및 다른 양태는 단독으로 또는 조합하여 다음 중 하나 이상을 포함할 수 있다. 일부 구현에서, 시스템 및 방법은 기하학적 융합 모델을 생성하기 위해 복수의 깊이 이미지에 대한 기하학적 융합 프로세스를 사용하여 콘센서스 서피스(consensus surface)를 재구성하는 단계; 상기 복수의 입력 이미지 및 상기 콘센서스 서피스에 기초하여 복수의 재프로젝션된 이미지를 생성하는 단계; 그리고 상기 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 재프로젝션된 이미지를 상기 신경망에 제공하는 것에 응답하여, 합성된 이미지의 픽셀에 컬러를 할당하기 위한 추가 블렌딩 가중치를 상기 신경망으로부터 수신하는 단계를 포함할 수 있다.
일부 구현에서, 시스템 및 방법은 상기 복수의 깊이 이미지에서 관찰된 깊이와 상기 기하학적 융합 모델 간의 깊이 차이를 상기 신경망에 제공하는 단계를 더 포함하며, 상기 방법은 상기 깊이 차이에 기초하여 상기 합성된 이미지에서 검출된 오클루션(occlusion)을 보정하는 단계를 더 포함할 수 있다. 일부 구현에서, 복수의 입력 이미지는 복수의 입력 이미지를 캡처한 적어도 하나의 카메라와 연관된 미리 정의된 뷰 파라미터에 따라 캡처된 컬러 이미지이고; 및/또는 복수의 깊이 이미지 각각은, 복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는 복수의 입력 이미지 중 적어도 하나의 캡처에 대응하는 시간에 적어도 하나의 목격(witness) 카메라에 의해 캡처된 GT(ground truth) 이미지와 연관된 깊이 맵을 포함한다. 일부 구현에서, 상기 블렌딩 가중치는 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성된다.
일부 구현들에서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련된다. 일부 구현에서, 상기 합성된 이미지는 3차원 화상 회의를 위해 생성된 타겟 피사체의 캡처되지 않은 뷰이다.
일부 구현에서, 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 단계는 복수의 깊이 이미지 중 적어도 하나를 사용하여 캡처되지 않은 뷰로의 복수의 입력 이미지와 연관된 컬러의 후보 프로젝션을 결정하는 단계를 포함하며, 상기 캡처되지 않은 뷰는 복수의 입력 이미지 중 적어도 하나의 이미지 특징의 적어도 일부를 포함한다.
다른 일반적인 양태에서, 특히 선행 청구항들 중 어느 한 항에 청구된 바와 같은 방법을 수행하기 위한 이미지 처리 시스템이 설명된다. 이미지 처리 시스템은, 적어도 하나의 처리 장치; 그리고 실행될 때 시스템으로 하여금 동작들을 수행하도록 하는 명령어를 저장하는 메모리를 포함하며, 상기 동작들은, 이미지 처리 시스템에 의해 캡처된 복수의 입력 이미지를 수신하는 동작; 이미지 처리 시스템에 의해 캡처된 복수의 깊이 이미지를 수신하는 동작; 상기 복수의 입력 이미지 중 적어도 하나와 연관된 캡쳐되지 않은 뷰와 연관된 복수의 뷰 파라미터를 수신하는 동작; 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 동작을 포함한다. 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 워핑된 이미지를 신경망에 제공하는 것에 응답하여, 시스템은 상기 신경망로부터 캡처되지 않은 뷰의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신하는 동작을 포함할 수 있다. 시스템은 상기 블렌딩 가중치에 따라 합성된 이미지를 생성하는 동작을 포함할 수 있으며, 상기 합성된 이미지는 상기 캡처되지 않은 뷰에 대응한다.
이들 및 다른 양태는 단독으로 또는 조합하여 다음 중 하나 이상을 포함할 수 있다. 일부 구현에서, 복수의 입력 이미지는 이미지 처리 시스템과 연관된 미리 정의된 뷰 파라미터에 따라 이미지 처리 시스템에 의해 캡처된 컬러 이미지이고; 및/또는 복수의 깊이 이미지는, 복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는 이미지 처리 시스템의 목격 카메라와 연관된 깊이 맵을 포함할 수 있다.
일부 구현에서, 상기 블렌딩 가중치는 상기 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성된다. 일부 구현들에서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련된다. 일부 구현에서, 상기 합성된 이미지는 3차원 화상 회의를 위해 생성된 신규 뷰(novel view)이다.
다른 일반적인 양태에서, 비일시적 기계 판독 가능 매체는 명령어가 저장된 것으로 기술되고, 상기 명령어는 프로세서에 의해 실행될 때 컴퓨팅 장치로 하여금 동작들을 수행하게 하며, 상기 동작들은, 복수의 입력 이미지를 수신하는 동작; 복수의 입력 이미지 중 적어도 하나에서 타겟 피사체와 연관된 복수의 깊이 이미지를 수신하는 동작; 타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하는 동작을 포함할 수 있다. 기계 판독 가능 매체는 또한 상기 타겟 피사체의 기하학적 융합 모델을 생성하기 위해 복수의 깊이 이미지에 대한 기하학적 융합 프로세스를 사용하여 콘센서스 서피스를 재구성하는 동작; 상기 복수의 입력, 복수의 뷰 파라미터, 및 콘센서스 서피스에 기초하여 복수의 재프로젝션된(reprojected) 이미지를 생성하는 동작; 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 재프로젝션된 이미지를 신경망에 제공하는 것에 응답하여, 상기 신경망로부터 상기 타겟 피사체의 가상 뷰에 대한 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신하는 동작; 그리고 상기 블렌딩 가중치 및 가상 뷰에 기초하여, 상기 뷰 파라미터에 따라 합성된 이미지를 생성하는 동작을 수행하도록 구성될 수 있다.
이들 및 다른 양태는 단독으로 또는 조합하여 다음 중 하나 이상을 포함할 수 있다. 일부 구현에서, 기계 판독 가능 매체는 상기 복수의 깊이 이미지에서 관찰된 깊이와 상기 기하학적 융합 모델 간의 깊이 차이를 상기 신경망에 제공하고 그리고 상기 깊이 차이에 기초하여 상기 합성된 이미지에서 검출된 오클루션을 보정하는 것을 더 포함할 수 있다. 일부 구현에서, 복수의 입력 이미지는 복수의 입력 이미지를 캡처한 적어도 하나의 카메라와 연관된 미리 정의된 뷰 파라미터에 따라 캡처된 컬러 이미지이고; 및/또는 복수의 깊이 이미지는 복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는 복수의 입력 이미지 중 적어도 하나의 캡처에 대응하는 시간에 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지와 연관된 깊이 맵을 포함할 수 있다.
일부 구현에서, 상기 블렌딩 가중치는 상기 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성된다. 일부 구현들에서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련된다. 일부 구현에서, 상기 합성된 이미지는 3차원 화상 회의에 대한 신규 뷰이다. 일부 구현에서, 상기 신경망은 상기 합성된 이미지의 픽셀에 픽셀 컬러를 할당하기 위해 다중해상도 블렌딩(multiresolution blending)을 수행하도록 더 구성되며, 상기 다중해상도 블렌딩은 상기 신경망에 대한 입력으로서 이미지 피라미드(pyramid)의 제공을 트리거하여, 신경망으로부터 복수의 스케일에 대한 다중해상도 블렌딩 가중치 및 각 스케일과 연관된 불투명도 값을 수신하는 것을 트리거한다.
이들 및 다른 양태는 단독으로 또는 조합하여 다음 중 하나 이상을 포함할 수 있다. 일부 양태에 따르면, 본 명세서에 청구된 방법, 시스템, 및 컴퓨터 판독가능 매체는 다음 특징(또는 이들의 임의의 조합) 중 하나 이상(예를 들어, 모두)을 포함할 수 있다.
설명된 기술의 구현은 하드웨어, 방법 또는 프로세스, 또는 컴퓨터 액세스 가능한 매체 상의 컴퓨터 소프트웨어를 포함할 수 있다. 하나 이상의 구현의 세부 사항은 첨부 도면 및 아래의 설명에 설명되어 있다. 다른 특징은 설명과 도면, 그리고 청구범위로부터 명백할 것이다.
도 1은 본 개시물 전반에 걸쳐 설명된 구현들에 따른, 디스플레이 장치 상에 합성된 콘텐츠를 디스플레이하기 위한 예시적인 3D 콘텐츠 시스템을 예시하는 블록도이다.
도 2는 본 개시물 전반에 걸쳐 설명된 구현들에 따른, 디스플레이 상에서 렌더링하기 위한 콘텐츠를 합성하기 위한 예시적인 시스템의 블록도이다.
도 3은 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 타겟 카메라 뷰포인트로의 입력 이미지들의 재프로젝션(reprojection)을 예시하는 예의 블록도이다.
도 4는 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 디스플레이 상에서 렌더링하기 위해 합성된 콘텐츠를 생성하기 위해 신경 블렌딩 기술들을 사용하기 위한 예시적인 흐름도의 블록도이다.
도 5는 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 블렌드 가중치들을 생성하기 위한 예시적인 흐름도의 블록도이다.
도 6은 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 신경 블렌딩 기술들을 사용하여 합성된 콘텐츠를 생성하기 위한 프로세스의 일례를 도식화하는 흐름도이다.
도 7은 본 명세서에 설명된 기술과 함께 사용될 수 있는 컴퓨터 장치 및 모바일 컴퓨터 장치의 예를 도시한다.
다양한 도면에서 유사한 참조 부호는 유사한 요소를 나타낸다.
이 문서는 이미지 콘텐츠의 신규(novel)(예: 보이지 않는(unseen)) 뷰 생성과 연관된 예를 설명한다. 여기에 설명된 예는 캡처된 비디오 콘텐츠 및/또는 이미지 콘텐츠에 기초하여 실시간 신규 뷰를 합성(예를 들어, 생성)할 수 있다. 예를 들어, 이미지 기반 렌더링 기술은 컬러 뷰와 깊이 뷰의 학습된 블렌딩을 사용하여 움직이는 이미지 콘텐츠(예: 객체, 사용자, 장면 콘텐츠, 이미지 프레임 등)의 신규 뷰를 합성하는 데 사용될 수 있다.
여기에 설명된 시스템 및 방법은 기존 시스템보다 아티팩트가 적은 신규 컬러 이미지를 생성할 수 있다. 예를 들어, 여기에 설명된 시스템 및 방법은 특정 이미지 노이즈 및 손실 함수 분석을 보정하여 깊이 부정확도와 오클루션이 적은 신규 이미지를 생성할 수 있다. 보정은 가시성 오류를 포함하는 이미지 영역을 검출하고 보정하는 방법을 학습하기 위해 신경망(NN)을 사용하여 수행될 수 있다. 또한 NN은 출력 값을 컬러 입력 이미지에서 검색된 재프로젝션된 입력 컬러의 선형 조합으로 제한하는 블렌딩 알고리즘을 사용하여 신규 뷰에 대한 컬러 값을 학습하고 예측할 수 있다.
동작 중, 프로세스는 동일한 장면(예: 장면의 이미지 콘텐츠)의 입력 이미지(예: 뷰)로부터 컬러 이미지 스트림을 결합함으로써 신규 뷰(예: 보이지 않는 컬러 이미지)를 예측하기 위해 복수의 입력 이미지 및 데이터(예: 타겟 뷰 파라미터)를 검색(예: 캡처, 획득, 수신 등)할 수 있다.
실시간 이미지 캡처 시스템(예: 텔레프레즌스 시스템과 같은 3D 화상 회의 시스템)의 저품질 출력을 향상시키기 위해 신경 렌더링 기술을 사용하기 위해 컬러 이미지 스트림이 NN에 제공될 수 있다. 예를 들어, 신규 뷰는 여기에 설명된 시스템 및 기술에 의해 생성된 예측된 컬러 이미지일 수 있다. 예측된 이미지는 예측된 컬러 이미지에 픽셀 컬러를 할당하기 위해 NN이 특정 블렌딩 가중치를 학습할 수 있도록 NN에 입력 이미지 및 결합된 컬러 이미지 스트림(예: 및/또는 이러한 입력 이미지의 재프로젝션 또는 표현)을 제공함으로써 생성될 수 있다. 학습된 블렌딩 가중치를 적용하여 신규 컬러 이미지에 대한 픽셀 컬러를 생성할 수 있다. 학습된 블렌딩 가중치는 또한 하나 이상의 제공된 입력 이미지에 표현된 이미지 콘텐츠의 다른 신규 뷰를 생성하는 데 사용될 수 있다.
일부 구현에서, 여기에 설명된 NN은 사용자의 이미지를 생성하는 데 사용되는 특정 기하학(지오메트리) 정보(geometry information) 및/또는 사용자를 캡처하는 카메라로부터 수신된 지오메트리 정보 및/또는 사용자의 이미지에 대해 수행된 이미지 처리(프로세싱)로부터 수신된 정보의 노이즈 특성으로 인한 아티팩트의 미스프로젝션(mis-projection)을 완화하기 위해 미래의 사용자 움직임(예: 동작)을 예측하기 위해 뷰 종속 효과를 모델링할 수 있다.
일부 구현에서, 여기에 설명된 시스템 및 방법은 예를 들어 출력 컬러 이미지에 대한 감독(supervision)을 제공하는 데 사용될 수 있는 별도의 목격 카메라의 뷰포인트에서 이미지를 예측하도록 하나 이상의 NN(예: U-net과 같은 convolutional NN)을 훈련할 수 있다. 목격 카메라는 여기에 설명된 이미지 캡처링 및/또는 처리(프로세싱) 시스템을 위한 GT(ground truth) 카메라로 기능할 수 있다. 일부 구현에서, 2개 이상의 목격 카메라가 NN에 대한 훈련 데이터로 사용될 수 있다. 두 개 이상의 목격 카메라는 한 쌍 또는 여러 쌍의 목격 카메라를 나타낼 수 있다.
일부 구현에서, 시스템 및 방법은 캡처된 입력 이미지, 원하는 신규 출력 뷰와 연관된 미리 정의된 파라미터, 및/또는 깊이 차이 및 깊이 맵을 포함하는 오클루션 맵을 활용할 수 있다. 깊이 차이는 신규 뷰에 가장 가까운 서피스(surface)와 카메라 뷰의 서피스 사이의 컬러 카메라 뷰를 사용하여 생성될 수 있다. 깊이 차이는 생성된 이미지의 가려진 뷰 및/또는 기타 오류를 보정하기 위해 오클루션 추론에 사용될 수 있다. 일부 구현들에서, 깊이 맵은 목격 카메라에 의해 캡처된 뷰로부터의 깊이 맵을 포함할 수 있다.
일부 구현에서, 여기에 설명된 시스템 및 방법은 입력 깊이 이미지의 기하학적 융합에 의해 콘센서스 서피스(consensus surface)(예: 기하학적 서피스)을 재구성할 수 있다. 일부 구현에서, 여기에 설명된 시스템 및 방법은 개별적으로 캡처된 깊이 이미지 및/또는 콘센서스 서피스과 같은 깊이 정보를 사용하여 신규 뷰로의 입력 컬러의 프로젝션을 결정할 수 있다.
일부 구현에서, 여기에 설명된 시스템 및 방법은 블렌딩된 컬러를 신규 뷰의 각 픽셀에 할당함으로써 신규 뷰(예: 컬러 이미지)에 대한 컬러 이미지를 생성할 수 있다. 블렌딩된 컬러는 여기에 설명된 NN에 의해 결정된 블렌딩 가중치 및 컬러 입력 이미지를 사용하여 결정될 수 있다. 일부 구현에서, 블렌딩 가중치는 손실 함수를 통해 정규화된다. 일부 구현에서, 신규 뷰는 원본(original) 입력 이미지로부터 신규 뷰로 프로젝션된 이미지의 하나 이상의 픽셀 컬러 값의 가중 조합(weighted combination)이다.
본 명세서에서 사용되는 바와 같이, 신규(예를 들어, 보이지 않는) 뷰는 카메라 캡처 이미지 콘텐츠 및/또는 비디오 콘텐츠의 하나 이상의 프레임에 기초하여 해석된(예: 합성, 보간, 모델링 등) 이미지 콘텐츠 및/또는 비디오 콘텐츠를 포함할 수 있다. 카메라 캡처 이미지 콘텐츠 및/또는 비디오 콘텐츠의 해석은 예를 들어 캡처된 이미지 콘텐츠 및/또는 비디오 콘텐츠의 보이지 않는 버전 및 뷰(예: 포즈, 표정, 각도 등)를 생성하기 위해 여기에 설명된 기술과 조합하여 사용될 수 있다.
일부 구현에서, 여기에 설명된 기술은 예를 들어 다자간 2D 또는 3D 비디오(예를 들어, 텔레프레즌스) 회의에서 사용되는 2D 또는 3D 디스플레이의 스크린에 표시하기 위해 정확하고 사실적으로 나타나는 이미지를 합성하는 데 사용될 수 있다. 여기에 설명된 기술은 화상(비디오) 회의에서 사용자의 정확하고 사실적인 뷰(예를 들어, 이미지 콘텐츠, 비디오 콘텐츠)를 생성하고 표시하는 데 사용될 수 있다. 뷰에는 일반적으로 상당한 이미지 아티팩트 없이 3D 방식으로 묘사하기 어려울 수 있는 보이지 않는 뷰가 포함된다.
여기에 설명된 시스템 및 방법은 다중 뷰 컬러 입력 이미지 및 노이즈 오클루션 신호(큐)(cue)에 기초한 블렌딩 가중치를 학습하기 위해 하나 이상의 목격 카메라 및 NN을 사용하여 중요한 이미지 아티팩트 없이 신규 뷰를 생성하는 이점을 제공한다. 학습된 블렌딩 가중치는 결과 출력 이미지에서 오클루션 및 컬러 아티팩트가 보정되도록 할 수 있다. 또한, 학습된 블렌딩 가중치 및 하나 이상의 목격 카메라는 입력 이미지에서 캡처되지 않은 이미지 콘텐츠가 입력 이미지의 이미지 콘텐츠와 연관된 신규 뷰를 정확하게 예측하는 데 사용될 수 있음을 보장하기 위해 여기에 설명된 시스템에 의해 사용될 수 있다. 예를 들어, 블렌딩 가중치는 목격(witness) 카메라 이미지와 관련하여 학습 및 평가되기 때문에 원본 입력 이미지에서 캡처되거나 표현되지 않은 장면의 이미지 부분에 대해 정확한 예측이 이루어질 수 있다.
일부 구현에서, 여기에 설명된 기술은 영화, 비디오, 단편, 게임 콘텐츠, 가상 및/또는 증강 현실 콘텐츠, 또는 여기에 설명된 예측 기술로부터 이익을 얻을 수 있는 사용자의 이미지를 포함하는 다른 형식에서 엔터테인먼트 목적으로 사용될 수 있다. 예를 들어, 여기에 설명된 기술은 이미지 및/또는 비디오 콘텐츠에서 렌더링된 움직이는 캐릭터에 대한 신규 뷰를 생성하는 데 사용될 수 있다.
일부 구현에서, 본 명세서에 기술된 기술은 본 명세서에 기술된 기술을 사용하여 객체를 인식하고, 객체를 재생성하고, 및/또는 이러한 객체로부터 합성된 이미지를 생성하기 위해 이미지 처리를 수행할 수 있는 가상 어시스턴트 장치 또는 다른 지능형 에이전트에 의해 사용될 수 있다.
도 1은 본 개시물 전반에 걸쳐 설명된 구현들에 따른, 입체 디스플레이 장치에서 콘텐츠를 디스플레이하기 위한 예시적인 3D 콘텐츠 시스템(100)을 예시하는 블록도이다. 3D 콘텐츠 시스템(100)은 예를 들어 3D(예를 들어, 텔레프레즌스 세션)로 화상 회의 통신을 수행하고/하거나 증강 및/또는 가상 현실 콘텐츠에 액세스하기 위해 다중 사용자에 의해 사용될 수 있다. 일반적으로, 도 1의 시스템은, 화상 회의 세션 내에서 신규 뷰를 묘사하는 정확한 이미지를 렌더링하기 위해, 2D 또는 3D 화상 회의 동안 사용자 및/또는 장면의 비디오 및/또는 이미지를 캡처하고 여기에 설명된 시스템 및 기술을 사용하여 캡처된 콘텐츠에 기초하여 신규 뷰를 생성하는 데 사용될 수 있다. 시스템(100)은 여기에 설명된 기술의 사용으로부터 이익을 얻을 수 있는데, 그 이유는 그러한 기술이 예를 들어 화상 회의 내에서 사용자를 정확하게 나타내는 실시간 신규 뷰(real-time novel views)를 생성 및 표시할 수 있기 때문이다. 신규 뷰는 예를 들어 시스템(100)을 통해 2D 및/또는 3D 방식으로 다른 사용자에게 표시하기 위해 제공될 수 있다.
도 1에 도시된 바와 같이, 3D 콘텐츠 시스템(100)은 제1 사용자(102) 및 제2 사용자(104)에 의해 액세스된다. 예를 들어, 사용자(102, 104)는 3D 텔레프레즌스 세션에 참여하기 위해 3D 콘텐츠 시스템(100)에 액세스할 수 있다. 그러한 예에서, 3D 콘텐츠 시스템(100)은 사용자(102, 104) 각각이 서로의 매우 사실적이고 시각적으로 일치하는 표현을 볼 수 있게 하여, 사용자가 서로의 물리적 존재에 있는 것과 유사한 방식으로 상호작용하는 것을 촉진할 수 있다.
각각의 사용자(102, 104)는 대응하는 3D 시스템을 사용하여 3D 텔레프레즌스 세션을 수행할 수 있다. 여기서, 사용자(102)는 3D 시스템(106)에 액세스하고 사용자(104)는 3D 시스템(108)에 액세스한다. 3D 시스템(106, 108)은 3D 디스플레이를 위한 이미지 캡처, 이미지 정보 처리 및 표시, 오디오 정보 처리 및 표시를 포함하지만 이에 국한되지 않는 3D 콘텐츠와 연관된 기능을 제공할 수 있다. 3D 시스템(106) 및/또는 3D 시스템(108)은 하나의 유닛으로 통합된 검출 장치의 집합체를 구성할 수 있다. 3D 시스템(106) 및/또는 3D 시스템(108)은 도 2 및 도 8을 참조하여 설명된 일부 또는 모든 컴포넌트를 포함할 수 있다.
3D 콘텐츠 시스템(100)은 하나 이상의 2D 또는 3D 디스플레이를 포함할 수 있다. 여기에서, 3D 시스템(106)에 대해 3D 디스플레이(110)가 도시되고, 3D 시스템(108)에 대해 3D 디스플레이(112)가 도시된다. 3D 디스플레이(110, 112)는 각각의 뷰어(예를 들어, 사용자(102) 또는 사용자(104))에 대한 입체 뷰를 제공하기 위해 여러 유형의 3D 디스플레이 기술 중 임의의 것을 사용할 수 있다. 일부 구현에서, 3D 디스플레이(110, 112)는 독립형 유닛(standalone unit)(예를 들어, 자체 지지되거나 벽에 매달림)일 수 있다. 일부 구현에서, 3D 디스플레이(110, 112)는 웨어러블 기술(예를 들어, 컨트롤러, 머리 장착형 디스플레이, AR 안경 등)을 포함하거나 이에 대한 액세스를 가질 수 있다. 일부 구현에서, 디스플레이(110, 112)는 2D 디스플레이일 수 있다.
일반적으로, 디스플레이(110, 112)는 HMD(head-mounted display) 장치를 사용하지 않고 실제 세계에서 물리적 객체의 3D 광학 특성에 가까운 이미지를 제공할 수 있다. 본 명세서에 기술된 디스플레이는 렌티큘러 렌즈(예를 들어, 마이크로렌즈 어레이), 및/또는 디스플레이와 연관된 복수의 상이한 관찰 영역으로 이미지를 재지향시키는 시차 배리어(parallax barriers)를 수용하는 평면 패널 디스플레이를 포함할 수 있다.
일부 구현들에서, 디스플레이들(110, 112)은 고해상도 및 무안경 렌티큘러 3D 디스플레이를 포함할 수 있다. 예를 들어, 디스플레이(110, 112)는 디스플레이의 마이크로렌즈에 결합된(예를 들어, 접합된) 유리 스페이서(glass spacer)를 갖는 복수의 렌즈(예를 들어, 마이크로렌즈)를 포함하는 마이크로렌즈 어레이(미도시)를 포함할 수 있다. 마이크로렌즈는 선택된 뷰 위치에서 디스플레이의 사용자의 왼쪽 눈이 픽셀의 제1 세트를 볼 수 있는 반면 사용자의 오른쪽 눈이 픽셀의 제2 세트를 볼 수 있도록 설계될 수 있다(예: 픽셀의 제2 세트가 픽셀의 제1 세트와 상호 배타적인 경우).
일부 예시적인 디스플레이에서, 그러한 디스플레이에 의해 제공되는 이미지 콘텐츠(예를 들어, 사용자, 객체 등)의 3D 뷰를 제공하는 단일 위치가 있을 수 있다. 사용자는 적절한 시차, 최소한의 워핑 및 사실적인 3D 이미지를 경험하기 위해 단일 위치에 앉을 수 있다. 사용자가 다른 물리적 위치로 이동(또는 머리 위치 또는 시선 위치 변경)하면 이미지 콘텐츠(예: 사용자, 사용자가 착용한 객체 및/또는 기타 객체)가 덜 현실적이고 2D로 나타나거나 워핑될 수 있다. 여기에 설명된 시스템 및 기술은 디스플레이에서 프로젝션된 이미지 콘텐츠를 재구성하여 사용자가 이동할 수 있지만 여전히 적절한 시차, 낮은 워핑률 및 사실적인 3D 이미지를 실시간으로 경험할 수 있도록 할 수 있다. 따라서, 여기에 설명된 시스템 및 기술은 사용자가 3D 디스플레이를 보고 있는 동안 발생하는 임의의 사용자 움직임에 관계없이 사용자에게 디스플레이할 3D 이미지 콘텐츠 및 객체를 유지하고 제공하는 이점을 제공한다.
도 1에 도시된 바와 같이, 3D 콘텐츠 시스템(100)은 하나 이상의 네트워크에 연결될 수 있다. 여기서, 네트워크(114)는 3D 시스템(106) 및 3D 시스템(108)에 연결된다. 네트워크(114)는 단지 두 가지 예를 들자면 공개적으로 이용 가능한 네트워크(예를 들어, 인터넷) 또는 사설 네트워크일 수 있다. 네트워크(114)는 유선, 무선, 또는 이들의 조합일 수 있다. 네트워크(114)는 하나 이상의 서버(미도시)를 포함하지만 이에 제한되지 않는 하나 이상의 다른 장치 또는 시스템을 포함하거나 이를 이용할 수 있다.
3D 시스템(106, 108)은 3D 정보의 캡처, 처리, 전송 또는 수신, 및/또는 3D 콘텐츠의 표시와 연관된 복수의 컴포넌트를 포함할 수 있다. 3D 시스템(106, 108)은 3D 프레젠테이션에 포함될 이미지에 대한 이미지 콘텐츠 및/또는 비디오(예를 들어, 가시광선 및 IR 이미지 데이터)를 캡처하기 위한 하나 이상의 카메라를 포함할 수 있다. 도시된 예에서, 3D 시스템(106)은 카메라(116, 118)를 포함한다. 예를 들어, 카메라(116) 및/또는 카메라(118)는 본질적으로 3D 시스템(106)의 하우징 내에 배치될 수 있으므로, 각각의 카메라(116 및/또는 118)의 대물렌즈 또는 렌즈는 하우징의 하나 이상의 개구부를 통해 이미지 콘텐츠를 캡처한다. 일부 구현에서, 카메라(116 및/또는 118)는 (예를 들어, 3D 시스템(106)에 대한 유선 및/또는 무선 연결을 갖는) 독립형 장치의 형태와 같이 하우징으로부터 분리될 수 있다. 카메라(116, 118)는 사용자(예를 들어, 사용자(102))의 충분히 대표적인 뷰를 캡처하도록 위치설정 및/또는 배향될 수 있다.
카메라(116, 118)는 일반적으로 사용자(102)를 위한 3D 디스플레이(110)의 뷰를 가리지 않을 것이지만, 카메라(116, 118)의 배치는 임의로 선택될 수 있다. 예를 들어, 카메라(116, 118) 중 하나는 사용자(102)의 얼굴 위 어딘가에 위치될 수 있고 다른 하나는 얼굴 아래 어딘가에 위치될 수 있다. 예를 들어, 카메라(116, 118) 중 하나는 사용자(102)의 얼굴의 오른쪽 어딘가에 위치될 수 있고 다른 하나는 얼굴의 왼쪽 어딘가에 위치될 수 있다. 3D 시스템(108)은 유사한 방식으로 예를 들어 카메라(120, 122)를 포함할 수 있다. 추가 카메라가 가능하다. 예를 들어, 제3 카메라는 디스플레이(110) 근처 또는 뒤에 배치될 수 있다.
일부 구현에서, 3D 시스템(106, 108)은 하나 이상의 목격 카메라(119, 121)를 포함할 수 있다. 목격 카메라(119, 121)는 GT 이미지를 나타낼 수 있는 고품질 이미지(예를 들어, 목격 카메라 이미지(132))를 캡처하는 데 사용될 수 있다. 목격 카메라(119) 및/또는 카메라(121)에 의해 캡처된 이미지는 신규 뷰를 생성하고 손실을 계산하고 이러한 손실을 보정할 때 비교로 사용하기 위해 여기에 설명된 기술과 함께 사용될 수 있다. 일반적으로, 목격 카메라(119, 121)에 의해 캡처된 이미지는 카메라(116, 118, 120, 122, 124 및/또는 126) 및 이러한 카메라 및/또는 카메라 포드(pods)의 조합에 의해 캡처된 다른 이미지(예: 프레임) 중 대응하는 것과 실질적으로 동일한 시간에 캡처될 수 있다. 일부 구현에서, 목격 카메라 이미지(134)는 신규 뷰를 생성하기 위해 캡처되고 하나 이상의 NN에 대한 훈련(트레이닝) 데이터로서 사용될 수 있다.
일부 구현들에서, 3D 시스템들(106, 108)은 3D 프리젠테이션에서 사용될 깊이 데이터를 캡처하기 위한 하나 이상의 깊이 센서들을 포함할 수 있다. 이러한 깊이 센서는 3D 디스플레이에서 장면을 올바르게 표현하기 위해 3D 시스템(106 및/또는 108)에 의해 캡처된 장면을 특성화하는 데 사용되는 3D 콘텐츠 시스템(100)의 깊이 캡처링 컴포넌트의 일부로 간주될 수 있다. 또한 시스템은 시청자의 머리 위치와 방향을 추적할 수 있으므로 3D 프레젠테이션이 시청자의 현재 시점(point of view)에 해당하는 모양으로 렌더링될 수 있다. 여기서, 3D 시스템(106)은 적외선 카메라를 나타낼 수도 있는 깊이 센서(124)를 포함한다. 유사한 방식으로, 3D 시스템(108)은 깊이 센서(126)를 포함할 수 있다. 여러 유형의 깊이 검출 또는 깊이 캡처를 사용하여 깊이 데이터를 생성할 수 있다.
일부 구현에서, 각각의 카메라(116, 118, 119, 124)는 포드(pod)의 카메라의 수를 나타낼 수 있다. 예를 들어, 깊이 센서(124)는 카메라 포드의 카메라(116) 및/또는 카메라(118)와 함께 수용될 수 있다. 일부 구현에서, 3개 이상의 카메라 포드는 디스플레이(110) 주변 및/또는 뒤에 배치될 수 있고 각각의 포드는 카메라(124)(예를 들어, 깊이 센서/카메라), 및 하나 이상의 카메라(116, 118)를 포함할 수 있다. 유사하게, 3개 이상의 카메라 포드가 디스플레이(112) 주변 및/또는 뒤에 배치될 수 있고 각각의 포드는 카메라(126)(예를 들어, 깊이 센서/카메라), 및 하나 이상의 카메라(120, 122)를 포함할 수 있다.
3D 시스템(106, 108)은 3D 정보의 캡처, 처리, 전송 또는 수신, 및/또는 3D 콘텐츠의 표시와 연관된 복수의 컴포넌트를 포함할 수 있다. 3D 시스템(106, 108)은 3D 프레젠테이션에 포함될 이미지에 대한 이미지 콘텐츠 및/또는 비디오(예를 들어, 가시광선 및 IR 이미지 데이터)를 캡처하기 위한 하나 이상의 카메라를 포함할 수 있다. 도시된 예에서, 3D 시스템(106)은 카메라(116, 118)를 포함한다. 예를 들어, 카메라(116) 및/또는 카메라(118)는 본질적으로 3D 시스템(106)의 하우징 내에 배치될 수 있으므로, 각각의 카메라(116 및/또는 118)의 대물렌즈 또는 렌즈는 하우징의 하나 이상의 개구부를 통해 이미지 콘텐츠를 캡처한다. 일부 구현에서, 카메라(116 및/또는 118)는 (예를 들어, 3D 시스템(106)에 대한 유선 및/또는 무선 연결을 갖는) 독립형 장치의 형태와 같이 하우징으로부터 분리될 수 있다. 카메라(116, 118)는 사용자(예를 들어, 사용자(102))의 충분히 대표적인 뷰를 캡처하도록 위치설정 및/또는 배향될 수 있다.
카메라(116, 118)는 일반적으로 사용자(102)를 위한 3D 디스플레이(110)의 뷰를 가리지 않을 것이지만, 카메라(116, 118)의 배치는 임의로 선택될 수 있다. 예를 들어, 카메라(116, 118) 중 하나는 사용자(102)의 얼굴 위 어딘가에 위치될 수 있고 다른 하나는 얼굴 아래 어딘가에 위치될 수 있다. 예를 들어, 카메라(116, 118) 중 하나는 사용자(102)의 얼굴의 오른쪽 어딘가에 위치될 수 있고 다른 하나는 얼굴의 왼쪽 어딘가에 위치될 수 있다. 3D 시스템(108)은 유사한 방식으로 예를 들어 카메라(120, 122)를 포함할 수 있다. 추가 카메라가 가능하다. 예를 들어, 제3 카메라는 디스플레이(110) 근처 또는 뒤에 배치될 수 있다.
일부 구현에서, 3D 시스템(106, 108)은 하나 이상의 목격 카메라(119, 121)를 포함할 수 있다. 목격 카메라(119, 121)는 GT 이미지를 나타낼 수 있는 고품질 이미지(예를 들어, 목격 카메라 이미지(132))를 캡처하는 데 사용될 수 있다. 목격 카메라(119) 및/또는 카메라(121)에 의해 캡처된 이미지는 신규 뷰를 생성하고 손실을 계산하고 이러한 손실을 보정할 때 비교로 사용하기 위해 여기에 설명된 기술과 함께 사용될 수 있다. 일반적으로, 목격 카메라(119, 121)에 의해 캡처된 이미지는 카메라(116, 118, 120, 122, 124 및/또는 126), 이러한 카메라 및/또는 카메라 포드의 조합에 의해 캡처된 다른 이미지(예를 들어, 프레임) 중 대응하는 것과 실질적으로 동일한 시간에 캡처될 수 있다. 일부 구현에서, 목격 카메라 이미지(134)는 신규 뷰를 생성하기 위해 캡처되고 하나 이상의 NN에 대한 훈련 데이터로서 사용될 수 있다.
일부 구현들에서, 3D 시스템들(106, 108)은 3D 프리젠테이션에서 사용될 깊이 데이터를 캡처하기 위한 하나 이상의 깊이 센서들을 포함할 수 있다. 이러한 깊이 센서는 3D 디스플레이에서 장면을 올바르게 표현하기 위해 3D 시스템(106 및/또는 108)에 의해 캡처된 장면을 특성화하는 데 사용되는 3D 콘텐츠 시스템(100)의 깊이 캡처링 컴포넌트의 일부로 간주될 수 있다. 또한 시스템은 시청자의 머리 위치와 방향을 추적할 수 있으므로 3D 프레젠테이션이 시청자의 현재 시점에 해당하는 모양으로 렌더링될 수 있다. 여기서, 3D 시스템(106)은 적외선 카메라를 나타낼 수도 있는 깊이 센서(124)를 포함한다. 유사한 방식으로, 3D 시스템(108)은 깊이 센서(126)를 포함할 수 있다. 여러 유형의 깊이 검출 또는 깊이 캡처를 사용하여 깊이 데이터를 생성할 수 있다.
일부 구현에서, 각각의 카메라(116, 118, 119, 124)는 포드(pod)의 카메라의 수를 나타낼 수 있다. 예를 들어, 깊이 센서(124)는 카메라 포드의 카메라(116) 및/또는 카메라(118)와 함께 수용될 수 있다. 일부 구현에서, 3개 이상의 카메라 포드는 디스플레이(110) 주변 및/또는 뒤에 배치될 수 있고 각각의 포드는 카메라(124)(예를 들어, 깊이 센서/카메라), 및 하나 이상의 카메라(116, 118)를 포함할 수 있다. 유사하게, 3개 이상의 카메라 포드가 디스플레이(112) 주변 및/또는 뒤에 배치될 수 있고 각각의 포드는 카메라(126)(예를 들어, 깊이 센서/카메라), 및 하나 이상의 카메라(120, 122)를 포함할 수 있다.
시스템(106)의 동작에서, 보조(어시스턴트) 스테레오 깊이 캡처가 수행될 수 있다. 장면은 빛의 점(dots of lights)을 사용하여 조명될 수 있으며, 예를 들어 두 대의 카메라 간에 스테레오 매칭이 수행될 수 있다. 이 조명은 선택한 파장 또는 파장 범위의 파동을 사용하여 수행할 수 있다. 예를 들어, 적외선(IR) 빛을 사용할 수 있다. 깊이 데이터는 깊이 센서(예를 들어, 깊이 센서(124))와 장면의 객체 사이의 거리를 반영하는 장면에 관한 임의의 정보를 포함하거나 이에 기초할 수 있다. 깊이 데이터는 장면의 객체에 해당하는 이미지의 콘텐츠에 대해 객체까지의 거리(또는 깊이)를 반영한다. 예를 들어, 카메라(들)와 깊이 센서 사이의 공간 관계를 알 수 있고, 카메라(들)로부터의 이미지를 깊이 센서로부터의 신호와 상관시켜 이미지에 대한 깊이 데이터를 생성하는 데 사용할 수 있다.
3D 콘텐츠 시스템(100)에 의해 캡처된 이미지는 처리된 후 3D 프리젠테이션으로 표시될 수 있다. 도 1의 예에 도시된 바와 같이, 사용자(104)의 3D 이미지는 3D 디스플레이(110) 상에 제시된다. 이와 같이, 사용자(102)는 (예를 들어, 사용자의) 3D 이미지(104')를 사용자(102)로부터 원격에 위치할 수 있는 사용자(104)의 3D 표현으로 인지할 수 있다. 유사하게, 3D 이미지(102')는 3D 디스플레이(112) 상에 제시된다. 이와 같이, 사용자(104)는 3D 이미지(102')를 사용자(102)의 3D 표현으로 인지할 수 있다.
3D 콘텐츠 시스템(100)은 참가자(예를 들어, 사용자(102, 104))가 서로 및/또는 다른 사람과 오디오 통신에 참여하게 할 수 있다. 일부 구현에서, 3D 시스템(106)은 스피커 및 마이크로폰(미도시)을 포함한다. 예를 들어, 3D 시스템(108)은 유사하게 스피커 및 마이크로폰을 포함할 수 있다. 이와 같이, 3D 콘텐츠 시스템(100)은 사용자(102, 104)가 서로 및/또는 다른 사람들과 3D 텔레프레즌스 세션에 참여하는 것을 허용할 수 있다. 일반적으로, 여기에 설명된 시스템 및 기술은 시스템(100)의 사용자들 사이에서 디스플레이를 위한 이미지 콘텐츠 및/또는 비디오 콘텐츠를 생성하기 위해 시스템(100)과 함께 기능할 수 있다.
시스템(100)의 동작에서, 입력 이미지(132)의 세트는 카메라(116, 118, 119, 124 및/또는 120, 121, 122, 126)에 의해 캡처될 수 있다. 입력 이미지는 예를 들어, 목격자 카메라 이미지(134) 및 RGB 컬러 이미지(136)를 포함할 수 있다. 일부 구현들에서, 시스템(100)은 또한 깊이 이미지들(138)을 생성 및/또는 그렇지 않으면 획득할 수 있다. 일 예에서, 깊이 이미지(138)는 전술한 바와 같이 IR 카메라로부터 검색된 한 쌍의 IR 이미지로부터 하나 이상의 스테레오 계산을 수행함으로써 생성될 수 있다. 입력 이미지(132)는 입력 이미지(들)로부터 재프로젝션된 컬러의 선형 조합(linear combination)인 출력 이미지를 예측하기 위한 기초로 사용될 수 있다. 일부 구현들에서, 입력 이미지들(132)은 알려진(예를 들어, 미리 결정된, 미리 정의된) 뷰 파라미터들로 캡처된 재프로젝션된 컬러 이미지들(예를 들어, RGB(Red Green Blue))을 나타내는 2개 이상의 컬러 이미지들을 포함할 수 있다. 일부 구현들에서, 입력 이미지들(132)은 또한 알려진 뷰 파라미터들로 계산된(예를 들어, 생성된) 하나 이상의 깊이 이미지들(138)을 포함한다. 입력 이미지(132)는 디스플레이(110 및/또는 112) 상의 디스플레이를 위한 신규 뷰를 생성하기 위해 특정 카메라 파라미터, 뷰 파라미터, 및/또는 NN 블렌딩 알고리즘(140)과 조합하여 사용될 수 있다.
도 2는 본 개시물 전반에 걸쳐 설명된 구현들에 따른, 디스플레이 상에서 렌더링하기 위한 콘텐츠를 합성하기 위한 예시적인 시스템의 블록도이다. 시스템(200)은 본 명세서에 설명된 하나 이상의 구현으로서 기능하거나 그 안에 포함될 수 있고/있거나 여기에 설명된 이미지 콘텐츠의 합성, 처리, 모델링 또는 프리젠테이션의 하나 이상의 예의 동작(들)을 수행하는 데 사용될 수 있다. 전체 시스템(200) 및/또는 그 개별 컴포넌트 중 하나 이상은 여기에 설명된 하나 이상의 예에 따라 구현될 수 있다.
시스템(200)은 하나 이상의 3D 시스템(202)을 포함할 수 있다. 도시된 예에서, 3D 시스템(202A, 202B 내지 202N)이 도시되며, 여기서 인덱스 N은 임의의 숫자를 나타낸다. 3D 시스템(202)은 2D 또는 3D 프리젠테이션을 위한 시각 및 오디오 정보 캡처를 제공할 수 있고 처리를 위해 2D 또는 3D 정보를 전달할 수 있다. 이러한 정보는 장면의 이미지, 장면에 대한 깊이 데이터, 이미지 캡처와 연관된 파라미터, 및/또는 장면의 오디오를 포함할 수 있다. 2D/3D 시스템(202)은 시스템(106, 108) 및 2D/3D 디스플레이(110, 112)(도 1)로서 기능하거나 시스템 내에 포함될 수 있다. 시스템(202B 및 202N)이 시스템(202A)에 도시된 것과 동일한 모듈을 나타내지는 않지만, 시스템(202A)의 각 모듈은 시스템(202B 및 202N)에도 존재할 수 있다.
시스템(200)은 카메라(204)에 의해 표시된 바와 같이 복수의 카메라를 포함할 수 있다. 일반적인 디지털 카메라에 사용되는 이미지 센서 유형과 같이 모든 유형의 광 검출 기술을 사용하여 이미지를 캡처할 수 있다. 카메라(204)는 동일한 유형 또는 다른 유형일 수 있다. 카메라 위치는 예를 들어 시스템(106)과 같은 3D 시스템의 임의의 위치 내에 배치될 수 있다. 일부 구현에서, 각각의 시스템(202A, 202B, 202N)은 깊이 카메라(예를 들어, 깊이 이미지를 추론하기 위해 스테레오 알고리즘을 사용하여 콘텐츠가 분석되는 깊이 센서(206) 및/또는 하나 이상의 IR 카메라 쌍) 및 하나 이상의 컬러 카메라를 각각 포함하는 3개 이상의 카메라 포드를 포함한다. 일부 구현에서, 시스템(202A, 202B, 202N)은 또한 신규 뷰를 생성할 때 및/또는 예를 들어, 신경망을 훈련시키 위해 GT 이미지로 사용될 이미지를 캡처할 수 있는 하나 이상의 목격 카메라(표시되지 않음)를 포함한다.
시스템(202A)은 깊이 센서(206)를 포함한다. 일부 구현에서, 깊이 센서(206)는 IR 신호를 장면으로 전파하고 응답 신호를 검출함으로써 동작한다. 예를 들어, 깊이 센서(206)는 빔(128A 및/또는 128B 및/또는 130A 및/또는 130B)을 생성 및/또는 검출할 수 있다. 일부 구현들에서, 깊이 센서(206)는 오클루션 맵들을 계산하기 위해 사용될 수 있다. 시스템(202A)은 또한 적어도 하나의 마이크로폰(208) 및 스피커(210)를 포함한다. 일부 구현에서, 마이크로폰(208) 및 스피커(210)는 시스템(106)의 일부일 수 있다.
시스템(202)은 3D 이미지를 제시할 수 있는 3D 디스플레이(212)를 추가로 포함한다. 일부 구현에서, 3D 디스플레이(212)는 독립형 디스플레이일 수 있고 일부 다른 구현에서 3D 디스플레이(212)는 AR 안경, 머리 장착형 디스플레이 장치 등에 통합될 수 있다. 일부 구현에서, 3D 디스플레이(212)는 시차 베리어(parallax barrier) 기술을 사용하여 동작한다. 예를 들어, 시차 베리어는 스크린(장면)과 뷰어 사이에 배치되는 본질적으로 불투명한 재료(예: 불투명 필름)의 평행한 수직 스트라입(parallel vertical stripes)을 포함할 수 있다. 뷰어의 각 눈 사이의 시차 때문에 스크린의 다른 부분(예: 다른 픽셀)이 각각의 왼쪽 눈과 오른쪽 눈에 표시된다. 일부 구현에서, 3D 디스플레이(212)는 렌티큘러 렌즈를 사용하여 동작한다. 예를 들어, 렌즈의 열(rows)을 번갈아 가며 스크린 앞에 배치할 수 있으며, 열(rows)은 스크린에서 보는 빛을 각각 뷰어의 왼쪽 눈과 오른쪽 눈으로 향하게 한다.
시스템(200)은 데이터 처리, 데이터 모델링, 데이터 조정, 및/또는 데이터 전송의 특정 태스크를 수행할 수 있는 컴퓨팅 시스템(214)을 포함할 수 있다. 일부 구현에서, 컴퓨팅 시스템(214)은 또한 이미지를 생성하고, 가중치를 블렌딩하고, 신경 처리 태스크를 수행할 수 있다. 일부 구현에서, 컴퓨팅 시스템(214)은 이미지 처리 시스템이다. 컴퓨팅 시스템(214) 및/또는 그 컴포넌트는 도 8을 참조하여 설명된 일부 또는 모든 컴포넌트를 포함할 수 있다.
컴퓨팅 시스템(214)은 2D 및/또는 3D 정보를 생성할 수 있는 이미지 프로세서(216)를 포함한다. 예를 들어, 이미지 프로세서(216)는 하나 이상의 입력 이미지(132) 및/또는 뷰 파라미터(218)를 수신(예를 들어, 획득)할 수 있고 이미지 워프(warp) 엔진(220), 블렌딩 가중치 생성기(222), 및/또는 NN(224)에 의한 추가 처리를 위한 이미지 콘텐츠를 생성할 수 있다. 입력 이미지(132)는 캡쳐된 컬러(예를 들어, RGB, YUV, CMYK, CIE, RYB) 이미지를 포함할 수 있다.
뷰 파라미터(218)는 특정 입력 이미지(132)의 캡처와 연관된 및/또는 생성(예를 들어, 합성)될 이미지의 캡처와 연관된 카메라 파라미터를 포함할 수 있다. 일반적으로, 뷰 파라미터(218)는 카메라 모델 근사치를 나타낼 수 있다. 뷰 파라미터(218)는 뷰 방향, 포즈, 카메라 퍼스팩티브(perspective), 렌즈 워핑, 및/또는 카메라의 내적 및 외적 파라미터 중 임의의 것 또는 전부를 포함할 수 있다.
이미지 프로세서(216)는 또한 오클루션 맵(226), 깊이 맵(228), UV 맵(230), 타겟 뷰 파라미터(232), 손실 함수(234), 및 메시 프록시 기하학 구조(geometries)(236)을 포함(및/또는 생성 및/또는 수신)한다.
오클루션 맵(226)은 타겟 뷰포인트에 가장 가까운 것으로 결정된 서피스 포인트(surface points)와 서피스를 캡처하는 카메라 사이의 서명된 거리를 인코딩할 수 있다. 양수 값은 포인트가 뷰에서 가려지고 있음을 나타낼 수 있다. 따라서, 시스템(200)은 블렌딩 가중치(242)를 결정할 때 양의 값의 거리를 사용하지 않도록 블렌딩 가중치 생성기(222)(및 NN(224))를 구성할 수 있는데, 그 이유는 캡처된 이미지 콘텐츠에 기초하여 새로운 또는 신규 뷰를 생성할 때 가려진 이미지 콘텐츠가 정확한 재생 데이터를 제공하지 않기 때문이다. 일부 구현에서, 오클루션 맵(226)은 특정 뷰에서 관찰된 깊이와 뷰와 연관된 기하학적 융합 모델 사이의 깊이 차이를 평가하는 데 사용될 수 있다.
깊이 맵(228)은 선택된 뷰포인트로부터 특정 장면 객체의 서피스의 거리에 관한 정보를 포함하는 하나 이상의 이미지를 나타낸다. 일부 구현들에서, 깊이 맵들(228)은 3개의 컬러 카메라 이미지들 및/또는 합성된(예를 들어, 신규) 뷰에서 각각의 출력 픽셀에 대해 결정된 가장 가까운 서피스 포인트(surface point)까지의 타겟 뷰포인트로부터의 깊이에 각각 대응한다.
UV 맵(230)은 입력 이미지(132)의 가시적 콘텐츠로부터 생성된다. 특히 UV 맵(230)은 합성된 이미지(예를 들어, 신규 뷰)를 생성하는 데 사용될 수 있는 특징을 생성하기 위해 텍스처 매핑을 수행하기 위해 3D 모델 서피스에 대한 2D 이미지의 프로젝션을 나타낸다.
타겟 뷰 파라미터(232)는 신규 합성된 이미지에 대한 뷰 파라미터(즉, 타겟 피사체의 가상 뷰를 생성하기 위한 뷰 파라미터)를 나타낸다. 타겟 뷰 파라미터(232)는 이미지 파라미터, 및/또는 생성(예를 들어, 합성)될 이미지와 연관된 카메라 파라미터를 포함할 수 있다. 타겟 뷰 파라미터(232)는 뷰 방향, 포즈, 카메라 퍼스팩티브(perspective) 등을 포함할 수 있다.
손실 함수(234)는 GT(ground truth) 이미지와 예측 이미지 사이의 차이를 평가할 수 있으며, 여기서 예측된 이미지는 프레임에 대해 캡처된 가시광선 정보, 프레임에 대해 캡처된 IR 광 및 컬러 및/또는 깊이와 연관된 블렌딩 가중치의 조합을 기반으로 예측된다. 손실 함수(234)는 임의의 또는 모든 이미지 오류, 이미지 홀(holes), 이미지 미스-프로젝션(mis-projection) 아티팩트 등을 설명하는 함수를 포함할 수 있다.
일부 구현에서, 손실 함수(234)는 NN의 레이어의 활성화에 매핑된 분할된 GT 이미지와 NN의 레이어의 활성화에 매핑된 분할된 예측된 이미지 간의 재구성 차이에 기초한 복원 손실을 포함할 수 있다. 분할된 GT 이미지는 배경 픽셀을 제거하기 위해 GT 마스크(ground truth mask)로 분할될 수 있고, 분할된 예측 이미지는 배경 픽셀을 제거하기 위해 예측된 마스크로 분할될 수 있다. 예측된 마스크는 프레임에 대해 캡처된 가시광선 정보와 프레임에 대해 캡처된 IR 광의 조합에 기초하여 예측될 수 있다.
메시 프록시 지오메트리(236)는 K개의 프록시{Pi,1,…,Pi,K}의 세트를 포함하는 코스 지오메트리(coarse geometry)를 나타낼 수 있다(즉, 직사각형, 삼각형 등 UV 좌표가 있는 메쉬). 예를 들어, 메쉬 프록시 지오메트리(236)를 생성하기 위해 2D 이미지가 3D 프록시 모델 서피스에 프로젝션될 수 있다. 프록시는 특정 이미지 콘텐츠의 실제 지오메트리 버전을 나타내는 기능을 할 수 있다. 동작시, 시스템(200)은 형상, 알베도(albedo) 및 뷰 종속 효과(view dependent effects) 뿐만 아니라 코스 프록시 서피스(예를 들어, 메쉬 프록시 지오메트리(236))의 세트를 사용하여 지오메트리(기하학적 구조)를 인코딩하기 위해 프록시 지오메트리 원리를 사용한다.
이미지 워프 엔진(220)은 하나 이상의 입력 이미지(예를 들어, 프레임, 스트림) 및/또는 다른 캡처/특징 파라미터 데이터를 수신하고, 특징을 보존하는 하나 이상의 출력 이미지(예를 들어, 프레임, 스트림)를 생성하도록 구성될 수 있다. 이미지 워프 엔진(220)은 어떤 방식으로 입력 이미지를 재구성하기 위해 캡처/특징 파라미터 데이터를 활용할 수 있다. 예를 들어, 이미지 워프 엔진(220)은 입력 이미지들로부터 재구성된 후보 컬러 이미지들을 생성할 수 있고, 여기서 재구성된 이미지의 각 픽셀은 하나 이상의 입력 이미지에 대응하는 새로운 합성된 이미지에 대한 후보 픽셀이다.
일부 구현들에서, 이미지 워프 엔진(220)은 소규모(small scale) 이미지 특징들을 보존하기 위해 픽셀 레벨에서 입력 이미지들에 대한 함수들을 수행할 수 있다. 일부 구현들에서, 이미지 워프 엔진(220)은 재구성된 이미지들을 생성하기 위해 비선형 또는 선형 함수들을 사용할 수 있다.
블렌딩 가중치 생성기(222)는 블렌딩 알고리즘(238) 및 가시성 점수(스코어)(240)를 포함한다. 블렌딩 알고리즘(238)은 블렌딩 가중치(242)를 생성하기 위해 사용될 수 있다. 특히, 블렌딩 알고리즘(238)은 블렌딩 가중치(242)를 생성하기 위해 NN(224)을 통해 액세스될 수 있다. 블렌딩 가중치(242)는 결과(예를 들어, 최종, 신규 이미지)에서 픽셀의 에스팩트(aspects)에 기여하는 데 사용될 수 있는 이미지의 특정 픽셀에 대한 값을 나타낸다. 블렌딩 알고리즘(238)은 깊이 이미지의 특정 세트 및/또는 깊이 이미지를 나타내는 융합 지오메트리(fused geometry)를 음영 처리하기 위해 블렌딩 가중치를 계산하기 위한 휴리스틱(heuristics) 기반 알고리즘을 포함한다. 블렌딩 알고리즘은 신규 뷰(예: 신규 합성된 이미지)에 대한 출력 블렌딩 가중치를 학습하기 위해 입력으로 다중 뷰 컬러 이미지와 잡음이 있는 오클루션 큐(cues)를 수신한다. 일부 구현에서, (예를 들어, 카메라 포드(들)로부터 수신된) 텍스처 및 타겟 뷰 및 입력 이미지에 대한 가시성 스코어(240)가 또한 블렌딩 알고리즘(238)에 대한 입력으로서 제공될 수 있다.
가시성 스코어(240)는 이미지에서 캡처된 객체의 특정 픽셀 또는 특징의 가시성을 나타낼 수 있다. 각각의 가시성 스코어(240)는 이미지의 어느 부분(예를 들어, 픽셀, 특징 등)이 입력 이미지의 특정 뷰에서 가시적인지를 나타내는 단일 스칼라 값을 나타낼 수 있다. 예를 들어, 사용자의 입력 이미지에서 사용자 얼굴의 맨 왼쪽이 보이지 않는 경우, 사용자 얼굴의 가장 왼쪽을 나타내는 픽셀에 대한 가시성 스코어(240)는 낮게 가중치가 부여될 수 있는 반면, 입력 이미지에서 잘 보여지고 및/또는 잘 캡처될 수 있는 다른 영역은 높은 가중치가 부여될 수 있다. 신규 뷰(예를 들어, 이미지)에 대한 블렌딩 가중치(242)를 생성할 때 가시성 스코어가 고려될 수 있다.
신경망(224)은 임베더(embedder) 네트워크(244) 및 생성기 네트워크(246)를 포함한다. 임베더 네트워크(244)는 하나 이상의 컨볼루션 계층(레이어) 및 다운샘플링 계층을 포함한다. 생성기 네트워크(246)는 하나 이상의 컨볼루션 계층 및 업샘플링 계층을 포함한다.
인페인터(in-painter)(254)는 특정 누락된 콘텐츠 부분을 둘러싸는 픽셀의 로컬 이웃(local neighborhood)에 기초하여 특정 텍스처 또는 이미지에서 누락될 수 있는 콘텐츠(예를 들어, 픽셀, 영역 등)를 생성할 수 있다. 일부 구현에서, 인페인터(254)는 특정 픽셀, 영역 등을 인페인팅하는 방법을 결정하기 위해 블렌딩 가중치(242)를 활용할 수 있다. 인페인터(254)는 렌더링을 위한 특정 배경/전경 매트(/foreground mattes)를 예측하기 위해 NN(224)으로부터의 출력을 이용할 수 있다. 일부 구현들에서, 인페인터(254)는 홀-필링(hole-filing)을 풀-푸시(pull-push)하도록 이미지 보정 엔진(252)과 함께 기능할 수 있다. 이는 NN(224)에 의해 예측된 출력 컬러가 없을 수 있는 누락된 깊이 정보의 영역/픽셀이 있는 이미지에서 수행될 수 있다. 이미지 보정 엔진(252)은 인페인터를 트리거하여 이미지의 특정 영역/픽셀을 채색(colorize)할 수 있다.
블렌딩 가중치(242)가 결정되면, 시스템(214)은 가중치를 신경 렌더러(248)에 제공할 수 있다. 신경 렌더러(248)는 예를 들어 NN(224)(또는 다른 NN)을 활용하는 객체(예를 들어, 사용자) 및/또는 장면의 중간 표현을 생성할 수 있다. 신경 렌더러(248)는 예를 들어, 실제 모습(예를 들어, ground truth)과 객체-특정 컨볼루션 네트워크로 확산 재프로젝션(diffuse reprojection) 사이의 차이를 모델링함으로써 뷰 의존 효과를 통합할 수 있다.
동작 시, 시스템(200)은, (1) 3개의 컬러 카메라 이미지 각각에 해당하는 깊이 맵 및 (2) 합성된 뷰에서 타겟 뷰포인트에서 각 출력 픽셀(Dt)에 대해 결정된 가장 가까운 서피스 포인트까지의 깊이 값을 생성하는 스테레오-퓨전(fusion) 파이프라인을 수신할 수 있다. 예를 들어, 이미지 캡처 시스템은 적어도 3개의 카메라 포드를 포함할 수 있다. 각각의 카메라 포드는 하나 이상의 컬러 카메라 및 깊이 카메라(예를 들어, 카메라(204), 깊이 센서(206))를 포함할 수 있다. 일부 구현에서, 이미지 캡처 시스템은 목격 카메라 포드를 추가로 포함할 수 있다. 이 예에서, 시스템은 3개의 카메라 포드로부터의 정보를 목격 카메라 포드에 대한 타겟 이미지 공간으로 변환하기 위해 기하학적(지오메트리) 워핑(geometric warping)을 수행할 수 있다. 특히, 3개의 컬러 카메라의 각각의 k에 대해, 3차원 공간으로 재프로젝션된 타겟 뷰포인트 깊이(예를 들어, 깊이 맵(228)를 이용하여, 재프로젝션된 RGB 이미지를 나타내기 위해 재생된 컬러 이미지(
Figure pct00001
) 값이 계산될 수 있다. 또한,
Figure pct00002
값은 미리 정의된 타겟 뷰포인트와 카메라에 가장 가까운 서피스 포인트(surface points) 사이의 서명된 거리를 인코딩하는 오클루션 맵(예를 들어, 오클루션 맵(226))을 나타내도록 계산될 수 있다. 양수 값은 이미지 포인트가 뷰에서 가려져 있음을 나타낸다. 음수 값은 이미지 포인트가 뷰에서 가려지지 않음을 나타낸다.
Figure pct00003
값과
Figure pct00004
값은 Dt와 연결되어 NN(224)의 첫 번째 완전 2차원 컨볼루션 레이어에 대한 픽셀당 13채널 텐서로 연결된다. 네트워크는 각 채널이 각 입력 컬러 이미지 픽셀에 대한 음이 아닌 부동 소수점 값인 이미지 W를 예측할 수 있다. 그 다음, 시스템(214)은 출력 이미지(IN)를 구성할 수 있다.
일부 구현에서, 시스템(214)은 다중해상도 블렌딩 엔진(256)을 사용하여 다중해상도 블렌딩을 수행할 수 있다. 다중해상도 블렌딩 엔진(256)은 이미지 피라미드를 컨볼루션 신경망(예를 들어, NN 224/414)에 대한 입력으로 사용할 수 있으며, 이는 각 스케일과 연관된 불투명도 값으로 다중 스케일에서 블렌딩 가중치를 생성한다. 동작시에, 다중해상도 블렌딩 엔진(256)은 2단계 훈련된 종단간(end-to-end) 컨볼루션 네트워크 프로세스를 사용할 수 있다. 엔진(256)은 복수의 소스 카메라를 활용할 수 있다.
합성된 뷰(250)는 본 명세서에 설명된 바와 같이, 계산된 블렌딩 가중치(242)에 적어도 부분적으로 기초하여 디스플레이(예를 들어, 디스플레이(212))에 액세스하는 사용자와 연관된 양쪽 눈에 대한 적절한 시차 및 뷰 구성을 갖는 콘텐츠의 3D 입체 이미지(예: VR/AR 객체, 사용자, 장면 등)를 나타낸다. 합성된 뷰(250)의 적어도 일부는 사용자가 디스플레이를 보는 동안 머리 위치를 움직일 때마다 및/또는 디스플레이 상에서 특정 이미지가 변할 때마다 시스템(214)을 사용하는 신경망(예: NN(224))으로부터의 출력에 기초하여 결정될 수 있다. 일부 구현에서, 합성된 뷰(250)는 사용자의 얼굴 및 사용자의 얼굴을 캡처하는 뷰 내에서 사용자의 얼굴을 둘러싼 사용자의 다른 특징을 나타낸다. 일부 구현에서, 합성된 뷰(250)는 예를 들어 텔레프레즌스 시스템(202A)과 연관된 하나 이상의 카메라에 의해 캡처된 전체 시야(field of view)를 나타낸다.
일부 구현에서, 시스템(202 및 214)의 프로세서(미도시)는 그래픽 처리 장치(GPU)를 포함(또는 통신)할 수 있다. 동작 시 프로세서는 메모리, 스토리지, 및 기타 프로세서(예: CPU)를 포함할 수 있다(또는 액세스할 수 있음). 그래픽 및 이미지 생성을 용이하게 하기 위해, 프로세서는 GPU와 통신하여 디스플레이 장치(예를 들어, 디스플레이 장치(212))에 이미지를 표시할 수 있다. CPU와 GPU는 PCI, AGP, "PCI-Express"와 같은 고속 버스를 통해 연결될 수 있다. GPU는 HDMI, DVI 또는 디스플레이 포트와 같은 다른 고속 인터페이스를 통해 디스플레이에 연결될 수 있다. 일반적으로 GPU는 이미지 콘텐츠를 픽셀 형태로 렌더링할 수 있다. 디스플레이 장치(212)는 GPU로부터 이미지 콘텐츠를 수신하고, 디스플레이 스크린에 이미지 콘텐츠를 표시할 수 있다.
도 2에 도시되지는 않았지만, 특징 맵과 같은 추가 맵은 이미지 콘텐츠를 생성하기 위해 하나 이상의 NN(224)에 제공될 수 있다. 특징 맵은 이미지를 분석하여 이미지의 각 픽셀에 대한 특징을 생성함으로써 생성될 수 있다. 이러한 특징은 특징 맵 및 텍스처 맵을 생성하는 데 사용될 수 있으며, 이는 블렌딩 가중치(242)를 생성하는 것을 돕기 위해 블렌딩 가중치 생성기(222) 및/또는 NN(224)에 제공될 수 있다.
도 3은 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 타겟 카메라 뷰포인트로의 입력 이미지들의 재프로젝션을 예시하는 예의 블록도이다. 시스템(200)은 예를 들어 NN을 입력 이미지로 사용할 이미지의 재프로젝션을 생성하는 데 사용될 수 있다. 이미지를 워핑하는 것은 (깊이 이미지로부터의) 융합된 깊이를 사용하여 타겟 카메라 뷰포인트로 캡처된 입력 이미지(132)를 재프로젝션하여 카메라 뷰포인트를 타겟팅하는 것을 포함할 수 있다. 일부 구현들에서, 입력 이미지들(132)은 이미 재프로젝션된 이미지들의 형태이다. 일부 구현들에서, 이미지 워프 엔진(220)은 워핑을 수행한다.
예를 들어, 이미지 워프 엔진(220)은 타겟 이미지 포인트(x)(302)를 광선에 역프로젝션할 수 있다. 이미지 워프 엔진(220)은 타겟 카메라(308)로부터 거리 d에서 포인트 X(304)를 찾을 수 있다. 다음으로, 이미지 워프 엔진(220)은 포드 카메라(310)로부터 거리 d'인 포드 이미지 포인트 x'(306)에 X를 프로젝션할 수 있다. 아래 수학식 1-3은 이 계산을 나타낸다.
Figure pct00005
Figure pct00006
Figure pct00007
다음으로, 이미지 워프 엔진(220)은 아래의 수학식 4 및 5에 의해 나타낸 바와 같이 x'에서 텍스처 카메라 이미지를 쌍선형으로 샘플링할 수 있다.
Figure pct00008
Figure pct00009
도 4는 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 디스플레이 상에서 렌더링하기 위한 합성 콘텐츠를 생성하기 위해 신경 블렌딩 기술들을 사용하기 위한 예시적인 다이어그램(400)의 블록도이다. 다이어그램(400)은 신경망을 통해 블렌딩 알고리즘에 제공될 데이터(예를 들어, 멀티뷰 컬러 이미지, 잡음(노이즈)이 있는 오클루션 큐, 깊이 데이터 등)를 생성할 수 있다. 그런 다음 신경망은 출력 블렌딩 가중치를 학습할 수 있다.
이 예에서, 복수의 입력 이미지(402)가 획득(예를 들어, 수신)될 수 있다. 예를 들어, 시스템(202A)은 복수의 입력 이미지(402)(예를 들어, 이미지 프레임, 비디오)를 캡처할 수 있다. 입력 이미지(402)는 컬러 이미지일 수 있다. 입력 이미지(402)는 또한 입력 이미지와 실질적으로 동시에 캡처된 깊이 이미지와 연관될 수 있다. 깊이 이미지는 예를 들어 적외선 카메라로 캡처할 수 있다.
컴퓨팅 시스템(214)은 입력 이미지 컬러 및 깊이 이미지를 사용하여 입력 이미지(402)를 재프로젝션된 이미지(404)로 워프(예를 들어, 재프로젝션)할 수 있다. 예를 들어, 워프 엔진(220)은 입력 이미지(402)를 원하는 신규 뷰를 나타내는 출력 뷰로 재프로젝션할 수 있다. 특히, 워프 엔진(220)은 입력 이미지(402)로부터 컬러를 검색하고, 입력 이미지와 연관된 깊이 뷰를 사용하여 출력 뷰로 컬러를 워핑할 수 있다. 일반적으로, 각 입력 이미지는 하나의 재프로젝션된 뷰로 워핑될 수 있다. 따라서, 4개의 입력 이미지가 검색되면, 워프 엔진(220)은 각각 단일 입력 이미지와 연관된 4개의 재프로젝션된 뷰를 생성할 수 있다. 재프로젝션된 이미지(404)는 신규 합성된 출력 이미지의 픽셀에 대해 선택될 수 있는 후보 컬러으로 기능한다. 입력 이미지(402)와 실질적으로 동시에 캡처된 깊이 뷰는 깊이 맵(406) 및 오클루션 맵(408)(깊이 맵(228) 및 오클루션 맵(226)과 유사)을 생성하는 데 사용될 수 있다.
재프로젝션된 이미지(404)는 픽셀에 대한 컬러의 가중 조합을 나타내는 가중 합(Weighted Sum) 이미지(410)를 생성하는 데 사용될 수 있다. 가중 합 이미지(410)는 또한 GT 이미지(412)를 고려할 수 있다. GT 이미지(412)는 하나 이상의 목격 카메라에 의해 캡처될 수 있다.
재프로젝션된 이미지(404), 깊이 맵(406) 및 오클루션 맵(408)은 도 4에 도시된 NN(414)에 제공될 수 있으며, U-Net 형태의 컨볼루션 신경망이다. 물론 다른 NN도 가능하다. 하나의 비제한적인 예에서, NN(414) 입력은 3개의 컬러 RGB 이미지, 오클루션 맵, 및 약 14개의 채널을 활용할 수 있는 타겟 뷰 깊이 맵을 포함할 수 있다.
일부 구현에서, 복수의 뷰 파라미터(415)가 NN(414)에도 제공될 수 있다. 뷰 파라미터(415)는 원하는 신규 뷰(예를 들어, 이미지)와 관련될 수 있다. 뷰 파라미터(415)는 뷰 방향, 포즈, 카메라 퍼스팩티브(perspective), 렌즈 워핑, 및/또는 카메라(가상 또는 실제 카메라)의 내적 및 외적 파라미터 중 임의의 것 또는 전부를 포함할 수 있다.
NN(414)은 각각의 재프로젝션된 이미지(404)에 대한 블렌딩 가중치(416)를 생성하여 정확한 신규 출력 이미지를 생성하기 위해 재프로젝션된 이미지(404)의 컬러를 결합하는 방법을 결정할 수 있다. 재프로젝션된 이미지(404)는 깊이 이미지(406)에 따라 입력 이미지(402)를 예를 들어 신규 뷰로 워핑함으로써 계산될 수 있다. NN(414)은 블렌딩 가중치(416) 및 재프로젝션 이미지(404)를 사용하여 블렌딩된 텍스처 이미지(418)를 생성할 수 있다. NN(414)은, 예를 들어 블렌딩 가중치(416)를 사용하여 재프로젝션 이미지(404)의 적어도 일부를 서로 블렌딩함으로써, 블렌딩된 텍스처 이미지(418)를 생성하기 위해 블렌딩 가중치(416) 및 재프로젝션 이미지(404)를 사용할 수 있다. 블렌딩된 텍스처 이미지(418)는 입력 이미지(402)와 연관되고 따라서 재프로젝션된 이미지(404)와 연관된 각각의 카메라 포드와 연관된 이미지를 생성하는 데 사용될 수 있다. 이 예에서, 3개의 카메라 포드는 3개의 컬러 이미지(예: 입력 이미지(402)) 및 3개의 깊이 이미지(예: 깊이 맵(406)으로 표시됨)를 캡처하는 데 사용되었다. 따라서, 이미지(420)에 의해 도시된 바와 같이 3개의 대응하는 이미지 뷰가 출력된다. 이미지(418)와 이미지(420)를 활용하여 합성된 이미지(422)에 표시된 것처럼 신규 뷰를 합성할 수 있다.
동작시, NN(414)은 블렌딩 가중치(416)를 사용하여 정확한 합성된 이미지(422)를 생성하기 위해 재프로젝션된 이미지(404)와 연관된 재프로젝션된 컬러를 결합하는 방법을 결정할 수 있다. NN(414)은 미리 정의된 출력 뷰의 공간에 대해 학습함으로써 블렌딩 가중치를 결정할 수 있다.
NN(414)의 네트워크 아키텍처는 동일한 패딩(padding) 값 및 보정된 선형 단위 활성화 함수를 사용하는 모든 컨볼루션 레이어를 갖는 유넷(U-Net) 형태의 네트워크인 심층 신경망일 수 있다. 출력은 3개의 재프로젝션된 이미지(404)에 대한 블렌딩 가중치(416), 수학식 6에 따라 출력 가중치가 생성되는 카메라 포드당 채널을 포함할 수 있다.
Figure pct00010
다이어그램(400)은 훈련 손실을 고려하기 위해 수행될 수 있다. 예를 들어, 재구성 손실, 블렌딩된 컬러 이미지에 대한 지각(perceptual) 손실 및 완전성 손실이 결정되고, 결과 합성된 이미지(422)를 개선하는 데 사용될 수 있다.
동작시에, 시스템(200)은 픽셀당 손실 값을 생성하기 위해 여러 양태를 이용할 수 있다. 예를 들어 텍스처 카메라 i에 대한 신규 뷰 이미지 IN 및 신경 블렌딩 가중치 Wi는 수학식 7과 같이 나타낼 수 있다.
Figure pct00011
입력에 RGB 값이 없는 유효하지 않은 타겟 깊이 마스크는 IMask로 표시될 수 있다.
특히, 손실 함수의 예는 수학식 8로 나타낼 수 있다.
Figure pct00012
여기서,
Figure pct00013
는 재구성 및 지각 손실을 나타낸다. 다시 말해서, 블렌딩된 컬러 이미지의 재구성 및 지각 손실은 수학식 9와 같이 나타낼 수 있다.
Figure pct00014
각 x, y 픽셀 좌표에 대한 네트워크 출력 블렌딩 가중치에서 완전성 손실은 수학식 10과 같이 나타낼 수 있다.
Figure pct00015
네트워크의 오클루션 손실은 수학식 11과 같이 나타낼 수 있다.
Figure pct00016
일부 구현에서, NN(414)은 NN(414)에 의해 생성된 합성된 이미지(422)와 적어도 하나의 목격 카메라에 의해 캡처된 GT 이미지(412) 사이의 오클루션 손실 함수(즉, 수학식 8)를 최소화하는 것에 기초하여 훈련될 수 있다.
도 5는 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 블렌드 가중치들을 생성하기 위한 예시적인 흐름도의 블록도이다. 이 예는 예를 들어 각 입력 뷰의 픽셀을 처리하기 위해 컨볼루션 NN(예: 컨볼루션 U-Net)을 사용할 수 있다. 제안된 합성 뷰의 각 픽셀을 할당하기 위해 MLP(Multilayer Perceptron)를 사용하여 블렌드 가중치를 생성할 수 있다. MLP에 의해 생성된 블렌드 가중치는 입력 이미지(들)/뷰(들)의 특징을 결합하는 데 사용할 수 있다.
일부 구현에서, 블렌드 가중치를 생성하는 것은 다중해상도 블렌딩 기술의 사용을 수반할 수 있다. 다중해상도 블렌딩 기술은 2단계의 훈련된 종단 간 컨볼루션 네트워크 프로세스를 사용한다. 이 기술은 여러 소스 카메라를 사용한다. 예를 들어, 시스템(202A)은 제1 카메라 포드(Pod 1)(502), 제2 카메라 포드(Pod 2)(504), 및 제3 카메라 포드(Pod 3)(506) 각각으로부터 하나 이상의 입력 이미지(예를 들어, RGB 컬러 이미지)를 캡처할 수 있다. 유사하게, 그리고 실질적으로 동시에, 포드(pods)(502-504)는 각각 특정 입력 이미지에 대응하는 깊이 이미지를 캡처(또는 계산)할 수 있다.
적어도 3개의 컬러 소스 입력 이미지 및 적어도 3개의 소스 깊이 이미지는 뷰 종속 정보를 포함하는 특징 맵을 생성하기 위해 컨볼루션 네트워크(들)(508A, 508B, 508C)(예: 컨볼루션 U-Net)에 제공될 수 있다. 예를 들어, 하나 이상의 특징 맵(미도시)은 특징 공간에서 입력 이미지의 특징을 나타낼 수 있다. 특히, 각각의 입력 이미지/깊이 이미지(502-504)에 대해, 이미지의 추출된 특징을 사용하여 특징 맵(예를 들어, 특징 맵(510A, 510B, 510C))이 생성될 수 있다. 일부 구현에서, 입력 이미지는 2개의 컬러 소스 이미지 및 단일 깊이 이미지를 포함할 수 있다. 이러한 예에서, 시스템(500)은 단일 깊이 이미지를 사용하여 2개의 컬러 입력 이미지 각각을 출력 뷰로 재프로젝션할 수 있다.
특징 맵(510A-510C)은 UV 맵(UV1, UV2, UV3)(512A, 512B, 512C)을 생성하는 데 사용될 수 있다. 예를 들어, UV 맵(512A-C)은 특징 맵(510A-510C)을 사용하여 입력 이미지(502-504)의 가시적 콘텐츠로부터 생성될 수 있다. UV 맵(512A-512C)은 합성된 이미지(예: 신규 뷰)를 생성하는 데 사용될 수 있는 특징을 생성하기 위해 텍스처 매핑을 수행하기 위해 3D 모델 서피스에 대한 2D 이미지의 프로젝션을 나타낸다. 출력된 신경 텍스처는 소스 카메라 이미지 좌표에 남아 있다.
각각의 특징 맵(510A-510C)은 각각의 UV 맵(512A-512C) 및 목격 카메라 파라미터(514)와 함께 샘플링될 수 있다. 예를 들어, 시스템(500)은 합성된 신규 이미지를 생성하기 위한 타겟 카메라로서 목격 카메라를 사용할 수 있다. 목격(예를 들어, 타겟) 카메라 파라미터(514)는 미리 정의될 수 있다. 각각의 샘플링된 특징 맵(510A-510C) 및 UV 맵(512A-C)은 파라미터(514)와 함께 사용될 수 있고, 오클루션 맵 및 깊이 맵(516)과 함께 샘플링될 수 있다. 샘플링은 융합된 기하학적 구조(예를 들어, 메쉬 프록시 지오메트리(236))로부터 미리 계산된 UV-맵(512A-512C)을 사용하여 각 신경 텍스처를 워핑하는 미분 가능한 샘플링 레이어를 포함할 수 있다.
샘플링된 콘텐츠는 모든 소스 카메라 뷰로부터 샘플링된 특징의 오클루션 맵, 깊이 맵 등을 생성하기 위해 픽셀당 MLP(Multilayer Perceptron) NN(518)에 의해 사용될 수 있다. 맵으로부터, MLP(518)는 블렌딩 가중치(520)의 세트를 생성할 수 있다. 예를 들어, 픽셀당 MLP(518) 맵은 임의의 수의 소스 카메라 뷰에서 샘플링된 특징을 포함할 수 있으며, 이는 블렌딩 가중치(520)의 세트를 생성하는 데 사용될 수 있다. 이러한 블렌딩 가중치(520)는 합성된 이미지를 생성하는 데 사용될 수 있다.
일부 구현에서, 여기에 설명된 프로세스는 다중해상도 블렌딩 기술을 통합할 수 있다. 예를 들어, 다중해상도 블렌딩 기술은 예를 들어 다중해상도 블렌딩 엔진(256)에 의해 수행될 수 있고 이미지 피라미드를 컨볼루션 신경망(예: NN 224/414)에 대한 입력으로 사용할 수 있다. 각 스케일과 연관된 불투명도 값으로 여러 스케일에서 블렌딩 가중치를 생성한다.
각 스케일의 출력 블렌딩 가중치는 해당 스케일에서 입력 재프로젝션된 컬러 이미지를 사용하여 출력 이미지 피라미드를 형성하는 출력 컬러 이미지를 구성하는 데 사용된다. 그런 다음, 이 피라미드의 각 레벨은 연관된 불투명도 값에 의해 가중치가 부여되고 원본 비율로 업샘플링된다. 결과 이미지 세트는 최종 출력 이미지를 구성하기 위해 합산된다. 이는 입력 재프로젝션 이미지에 작은 홀(미싱 지오메트리(missing geometry)로 인한)이 존재하기 때문에 유리하다. 축소 및 확대 프로세스는 미싱 영역(missing regions)을 인접 픽셀 값으로 채운다. 또한 이 절차는 기존의 블렌딩 기술보다 시각적으로 더 매력적인 부드러운 실루엣을 생성할 수 있다. 일부 구현에서, 입력 피라미드는 재프로젝션된 이미지의 이중선형 재프로젝션 컬러를 다운샘플링하고, 다운샘플링된 유효 깊이 마스크(예: 맵)로 사전 곱셈을 해제(un-pre-multiplying)하고, 사전 정의된(예: 원본) 해상도로 다시 업샘플링하고, 업샘플링된 유효한 깊이 마스크로 사전 곱셈을 해제함으로써 구축될 수 있다. 각 레이어에 대해, 흐름도는 출력 레이어 디코더(블렌드 가중치 및 알파용)를 추가하고, 미리 정의된(예: 원본 해상도) 것으로 업샘플링하고, 최고 해상도에서 추가 배경 알파를 조정하고, 소프트 맥스 기능을 사용하여 알파를 정규화하고, 재프로젝션된 컬러 및 배경과 블렌딩할 수 있다.
다중해상도 블렌딩 기술은 2단계의 훈련된 종단 간 컨볼루션 네트워크 프로세스를 사용한다. 각 단계에 대해, 다중해상도 블렌딩 기술은 (예를 들어, 블렌드 가중치 및 알파 손실에 대해) 출력 레이어 디코더를 추가할 수 있다. 기술은 RGB 이미지를 계산하고, 손실을 더하고, 알파를 곱하고, 후보 RGB 이미지를 결정하기 위해 결합할 수 있다. 후보 RGB 이미지는 업샘플링될 수 있다. 손실을 고려한 업샘플링된 후보 이미지를 사용하여 출력 이미지(예: 신규 뷰/동기화된 이미지)를 생성할 수 있다.
동작 시, 기술은 여러 소스 카메라를 사용한다. 예를 들어, 시스템(202A)은 제1 카메라 포드(502), 제2 카메라 포드(504), 및 제3 카메라 포드(506) 각각으로부터 하나 이상의 입력 이미지(예를 들어, RGB 컬러 이미지)를 캡처할 수 있다. 유사하게, 그리고 실질적으로 동시에, 포드(502-504)는 각각 특정 입력 이미지에 대응하는 깊이 이미지를 캡처할 수 있다.
다중해상도 블렌딩은 출력 뷰포인트가 이동하는 방식에 관계없이 장면 맵의 동일한 3D 포인트를 피쳐(특징) 맵의 동일한 포인트 위치에 사용할 수 있다. 이렇게 하면 2D 컨볼루션이 수행되지 않고 입력 기능이 고정되기 때문에 출력에 포인트 위치에 대해 동일한 블렌딩 가중치가 포함된다.
도 6은 본 개시물 전체에 걸쳐 설명된 구현들에 따른, 신경 블렌딩 기술들을 사용하여 합성된 콘텐츠를 생성하기 위한 프로세스(600)의 일례를 도시하는 흐름도이다. 프로세스(600)는 도 1 및 도 2의 시스템(100 및/또는 200)의 예시적인 구현과 관련하여 설명된다. 도 1 및 2 및/또는 시스템(500 및/또는 800)을 참조하지만, 방법은 다른 구성을 갖는 시스템에 의해 구현될 수 있음을 이해할 것이다. 일반적으로, 시스템(202) 및/또는 컴퓨팅 시스템(214) 상의 하나 이상의 프로세서 및 메모리는 프로세스(600)를 수행하는데 사용될 수 있다.
하이 레벨에서, 프로세스(600)는 컬러 입력 이미지, 입력 이미지에 대응하는 깊이 이미지, 및 입력 이미지 내의 콘텐츠의 적어도 일부에 대응하는 원하는 신규 뷰와 연관된 뷰 파라미터를 이용할 수 있다. 프로세스(600)는 원하는 신규 뷰에 대한 특정 픽셀 컬러 및 깊이를 결정하기 위한 블렌딩 가중치를 수신하기 위해 상기 요소 또는 상기 요소의 버전을 신경망에 제공할 수 있다. 뷰는 신규 출력 이미지를 생성하기 위해 블렌딩 가중치와 함께 사용될 수 있다.
블록(602)에서, 프로세스(600)는 복수의 입력 이미지를 수신하는 것을 포함할 수 있다. 예를 들어, 시스템(202A)(또는 다른 이미지 처리 시스템)은 카메라(예를 들어, 카메라(204))를 사용하여 둘 이상의 카메라 포드로부터 입력 이미지를 캡처할 수 있다. 일반적으로, 복수의 입력 이미지는 미리 정의된 뷰 파라미터에 따라 캡처된 컬러 이미지이다. 그러나, 일부 구현에서, 복수의 입력 이미지는 단일 컬러(예를 들어, 세피아, 그레이스케일, 또는 다른 계조 컬러)의 계조 이미지일 수 있다. 미리 정의된 뷰 파라미터는 특정 입력 이미지(132)(예를 들어, 입력 이미지(402))의 캡처와 연관된 및/또는 생성(예를 들어, 합성)될 이미지의 캡처와 연관된 카메라 파라미터를 포함할 수 있다. 일부 구현에서, 뷰 파라미터는 뷰 방향, 포즈, 카메라 퍼스팩티브, 렌즈 워핑, 및/또는 카메라의 내적 및 외적 파라미터 중 임의의 것 또는 전부를 포함할 수 있다. 일부 구현에서, 복수의 입력 이미지는 이미지의 프레임 내에서 캡처된 복수의 타겟 피사체를 포함할 수 있다. 타겟 피사체는 사용자, 배경, 전경, 물리적 객체, 가상의 객체, 제스처, 헤어스타일, 웨어러블 장치 등을 포함할 수 있다.
블록(604)에서, 프로세스(600)는 복수의 입력 이미지 중 적어도 하나에서 타겟 피사체와 연관된 복수의 깊이 이미지를 수신하는 단계를 포함할 수 있다. 예를 들어, 입력 이미지(예를 들어, RGB 컬러 이미지(136))와 실질적으로 동일한 캡처 시간에, 시스템(202A)은 깊이 이미지(138)를 캡처할 수 있다. 깊이 이미지는 복수의 입력 이미지 중 하나 이상에서도 캡처되는 타겟 피사체를 캡처할 수 있다. 깊이 이미지는 복수의 입력 이미지(132) 중 적어도 하나를 캡처한 적어도 하나의 카메라(204)와 연관된 깊이 맵(예: 맵 228), 그리고 복수의 입력 이미지 중 적어도 하나의 캡처에 대응하는 시간에 적어도 하나의 목격 카메라에 의해 캡처된 GT 이미지와 연관된 깊이 맵(예: 타겟 뷰 파라미터(232)를 통해)을 포함할 수 있다. 요컨대, 시스템(200)은 타겟 뷰에 대한 블렌딩 가중치(242)를 생성할 때 입력 이미지의 깊이 및 목격 카메라(또는 다른 결정된 타겟 뷰)의 원하는 타겟 뷰의 깊이를 고려할 수 있다.
블록(606)에서, 프로세스(600)는 타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하는 것을 포함할 수 있다. 예를 들어, 뷰 파라미터는 원하는 신규 뷰(예: 카메라에 의해 이전에 캡처되지 않은 신규(예: 가상) 뷰에 속하는 신규 합성된 이미지)에 관련될 수 있다. 뷰 파라미터는 예를 들어 컬러 이미지(136) 및 깊이 이미지(138)와 실질적으로 동시에 콘텐츠를 캡처하는 목격 카메라에 대한 타겟 파라미터를 포함할 수 있다. 뷰 파라미터는 미리 정의된 렌즈 파라미터, 시야 방향, 포즈, 및 신규 뷰를 캡처하도록 구성된 카메라의 특정 고유(intrinsic) 및/또는 외부 파라미터를 포함할 수 있다.
블록(608)에서, 프로세스(600)는 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 단계를 포함할 수 있다. 예를 들어, 이미지 워프 엔진(220)은 입력 이미지(132)를 상기 이미지(132)의 재프로젝션된 버전으로 재프로젝션함으로써 입력 이미지(132)를 사용하여 워핑된 이미지를 생성할 수 있다. 워핑은 깊이 정보(예를 들어, 개별 깊이 이미지 또는 기하학적 콘센서스 서피스)를 사용하여 신규 뷰로의 입력 이미지(132)의 입력 컬러의 프로젝션을 결정하기 위해 수행될 수 있다. 워핑은 하나 이상의 원본 입력 뷰로부터 컬러를 획득하고, 깊이 이미지(예: 깊이 맵(406) 및 오클루션 맵(408))를 사용하여 신규 뷰(예: 이미지)에 대한 컬러를 조작함으로써 재프로젝션된 이미지(예: 이미지(404))를 생성할 수 있다. 각 입력 이미지는 별도의 재프로젝션을 생성하는 데 사용할 수 있다. 재프로젝션된 이미지(예: 이미지(404))는 신규 합성된 이미지에서 사용될 수 있는 후보 컬러의 픽셀을 나타낼 수 있다.
일부 구현에서, 프로세스(600)는 복수의 입력 이미지(402)와 연관된 컬러의 후보 프로젝션을 캡처되지 않은 뷰(미캡쳐 뷰)(즉, 신규 뷰/이미지, 가상 뷰/이미지)로 결정함으로써 복수의 깊이 이미지(예: 깊이 맵(406) 및 오클루션 맵(408)) 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 것을 포함할 수 있다. 미캡쳐 뷰는 복수의 입력 이미지 중 적어도 하나의 이미지 특징의 적어도 일부를 포함할 수 있다. 예를 들어, 입력 이미지가 객체를 포함하는 경우, 캡처되지 않은 뷰는 객체의 적어도 일부, 컬러, 픽셀 등을 설명할 수 있다.
블록(610)에서, 프로세스(600)는 타겟 피사체(예를 들어, 사용자(104'))의 가상 뷰(예를 들어, 보이지 않는 이미지/캡처되지 않은 뷰)의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치(416)를 신경망(예: NN 224, NN 414, NN 508A-C)으로부터 수신하는 것을 포함할 수 있다. 일부 구현에서, 타겟 피사체는 복수의 입력 이미지(402) 중 적어도 하나의 프레임에서 캡처된 적어도 하나의 요소를 포함하거나 이에 기초할 수 있다. 블렌딩 가중치(416)는 복수의 깊이 이미지(예를 들어, 깊이 이미지(138) 및/또는 깊이 맵(406) 및/또는 오클루션 맵(408)), 복수의 뷰 파라미터(415), 및 복수의 워핑 이미지(예를 들어, 재프로젝션된 이미지(404))를 NN(414)에 제공하는 것에 응답하여 수신될 수 있다. NN(414)은 타겟 피사체를 현실적으로 나타내는 가능성 있고 사실적인 출력 이미지를 제공하기 위해 재프로젝션된 이미지(404)의 컬러를 결합하는 확률적 방식을 나타내기 위해 블렌딩 가중치(416)를 생성할 수 있다. 일부 구현에서, 블렌딩 가중치(416)는 가상 뷰(즉, 신규 및/또는 본 적이 없는 및/또는 이전에 캡처되지 않은 뷰)의 각 픽셀에 블렌딩된 컬러를 할당하여 출력 합성된 이미지(예: 합성된 이미지 422)에 이러한 블렌딩된 컬러를 할당하도록 구성된다. 예를 들어, 블렌딩 가중치(416)는 재프로젝션된 이미지(404)의 적어도 일부를 서로 블렌딩하기 위해 사용된다.
블록(612)에서, 프로세스(600)는 블렌딩 가중치 및 가상 뷰에 기초하여 뷰 파라미터에 따라 합성된 이미지를 생성하는 단계를 포함할 수 있다. 합성된 이미지(422)는 보이지 않는(예를 들어, 이미지 시스템의 임의의 카메라에 의해 캡처되지 않고 대신 합성된) 뷰를 나타낼 수 있는 캡처되지 않은 뷰(예: 물리적 카메라로 캡처되지 않은, 가상 또는 물리적 카메라에서 가상 뷰로 생성된)에 속하는 파라미터를 사용하여 캡처된 이미지를 나타낼 수 있다. 합성된 이미지(422)는 3차원(예를 들어, 텔레프레즌스) 화상 회의를 위해 및/또는 그 동안 생성될 수 있다. 예를 들어, 합성된 이미지(422)는 화상 회의와 연관된 카메라에 의해 캡처되는 사용자 또는 콘텐츠의 오류 정정되고 정확한 이미지를 제공하기 위해 화상 회의 동안 실시간으로 생성될 수 있다. 일부 구현들에서, 합성된 이미지(422)는 3차원 화상 회의를 위해 생성된 신규 뷰를 나타낸다. 일부 구현에서, 합성된 이미지는 3차원 화상 회의를 위해 생성된 타겟 피사체의 캡처되지 않은 뷰를 나타낸다.
동작 시, 뷰 파라미터에 따라 가상 뷰의 픽셀에 블렌딩 가중치가 적용된다. 결과 가상 뷰는 타겟 피사체에 대한 블렌딩 가중치를 사용하여 생성된 픽셀 컬러를 포함할 수 있다. 가상 뷰의 컬러화된 이미지는 예를 들어 가상 카메라와 연관된 뷰 파라미터에 따라 합성된 뷰를 생성하는 데 사용될 수 있다.
일부 구현에서, 프로세스(600)는 기하학적 융합(퓨전) 프로세스를 추가로 수행할 수 있다. 일부 구현들에서, 프로세스(600)는 입력 이미지들과 함께 개별 깊이 이미지들을 제공하는 대신 기하학적 융합 프로세스들을 수행할 수 있다. 예를 들어, 프로세스(600)는 기하학적 융합 모델을 생성하기 위해 복수의 깊이 이미지들에 대한 기하학적 융합 프로세스를 사용하여 콘센서스 서피스(예를 들어, 기하학적 프록시(geometric proxy))을 재구성할 수 있다.
기하학적 융합 모델은 깊이 이미지 데이터의 다중 뷰(예를 들어, 이미지 콘텐츠의 캡처된 깊이 뷰)를 깊이 이미지 데이터의 업데이트된(예를 들어, 계산된) 뷰로 대체하는 데 사용될 수 있다. 업데이트된 깊이 뷰는 캡처된 깊이 뷰로부터의 깊이 데이터를 포함하고 그리고 이미지 콘텐츠의 임의의 다른 이용 가능한 캡처된 깊이 뷰 각각으로부터의 이미지 및/또는 깊이 정보를 추가로 포함하는 이미지 콘텐츠의 뷰로서 생성될 수 있다. 업데이트된 깊이 뷰 중 하나 이상은 예를 들어 기하학적으로 융합된 깊이 이미지 데이터 및 객체의 다수의 다른 뷰와 연관된 이미지 및/또는 깊이 정보를 활용함으로써 객체의 추가(그리고 새로운) 뷰를 합성하기 위해 추가(그리고 새로운) 블렌딩 가중치를 합성하기 위해 NN(414)에 의해 사용될 수 있다. 깊이 이미지 데이터는 여러 다른 깊이 뷰로부터 깊이 데이터 정보를 통합하는 새로운 깊이 뷰로 각각의 (입력) 깊이 뷰를 대체하기 위해 임의의 수의 알고리즘을 사용하여 융합될 수 있다. 일부 구현에서, 기하학적 융합 모델은 그러한 오클루션 손실을 보정하기 위해 오클루션에 대해 추론하는 데 사용될 수 있는 깊이 데이터(예를 들어, 깊이 맵)를 생성하기 위해 시스템(200)에 의해 사용될 수 있다.
그 다음, 프로세스(600)는 기하학적으로 융합된 깊이 이미지 데이터를 생성하고 기하학적으로 융합된 깊이 이미지 데이터를 (복수의 뷰 파라미터(415) 및 복수의 재프로젝션된 이미지(404)와 함께) NN(414)에 제공하기 위해 사용된 콘센서스 서피스 및 복수의 입력 이미지에 기초하여 복수의 재프로젝션된 이미지를 생성할 수 있다. 이에 응답하여, 프로세스(600)는 합성된 이미지(422)의 픽셀에 컬러를 할당하기 위해 콘센서스 서피스 깊이 이미지 데이터를 사용하여 생성된 블렌딩 가중치(416) 및/또는 추가 블렌딩 가중치를 NN(414)으로부터 수신하는 것을 포함할 수 있다.
일부 구현들에서, 프로세스(600)는 복수의 깊이 이미지들에서 관찰된 깊이와 기하학적 융합 모델 사이의 깊이 차이를 NN(414)에 제공하는 단계를 더 포함할 수 있다. 깊이 차이는 예를 들어 합성된 이미지(422)에서 검출된 오클루션을 보정하기 위해 사용될 수 있다. 일부 구현에서, NN(414)은 도 4와 관련하여 상세하게 설명된 바와 같이, NN(414)에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라(예를 들어, 시스템(202A)과 관련됨)에 의해 캡처된 GT 이미지(412) 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련될 수 있다. 일부 구현에서, 프로세스(400)는 복수의 깊이 이미지보다는 단일 깊이 이미지를 사용하여 수행될 수 있다.
일부 구현들에서, NN(414)은 합성된 이미지의 픽셀들에 픽셀 컬러를 할당하기 위해 다중해상도 블렌딩을 수행하도록 추가로 구성된다. 동작시, 다중해상도 블렌딩은 NN(414)에 대한 입력으로서 이미지 피라미드의 제공을 트리거하여 NN(414)으로부터 복수의 스케일에 대한 다중해상도 블렌딩 가중치(예: 추가 블렌딩 가중치 520)를 수신하는 것을 트리거할 수 있고, 각 스케일과 연관된 불투명도 값을 추가로 수신할 수 있다.
도 7는 여기에 기술된 기술들과 함께 사용될 수 있는 컴퓨터 장치(700) 및 이동 컴퓨터 장치(750)의 예를 도시한다. 컴퓨팅 장치(700)는 프로세서(702), 메모리(704), 저장 장치(706), 메모리(704) 및 고속 확장 포트(710)에 연결된 고속 인터페이스(708), 및 저속 버스(714) 및 저장 장치(706)에 연결되는 저속 인터페이스(712)를 포함한다. 컴포넌트(구성 요소)들(702, 704, 706, 708, 710, 및 712) 각각은 다양한 버스들을 사용하여 상호 접속되고, 공통 마더보드 상에 또는 적절한 다른 방식으로 장착될 수 있다. 프로세서(702)는 메모리(704) 또는 저장 장치(706)에 저장된 명령어들을 포함하는 컴퓨팅 장치(700) 내에서 실행하기 위한 명령어들을 처리하여, 고속 인터페이스(708)에 결합된 디스플레이(716)와 같은 외부 입/출력 장치상에 GUI에 대한 그래픽 정보를 디스플레이할 수 있다. 다른 구현 예에서, 복수의 메모리 및 유형들의 메모리와 함께, 적절하게, 복수의 프로세서 및/또는 복수의 버스가 사용될 수 있다. 또한, 복수의 컴퓨팅 장치(700)가 연결될 수 있으며, 각 장치는 필요한 동작(예: 서버 뱅크, 블레이드 서버 그룹 또는 멀티 프로세서 시스템)의 일부를 제공한다.
메모리(704)는 컴퓨팅 장치(700) 내의 정보를 저장한다. 일 구현 예에서, 메모리(704)는 휘발성 메모리 유닛(들)이다. 또 다른 구현 예에서, 메모리(704)는 비 휘발성 메모리 유닛(들)이다. 메모리(704)는 또한 자기 또는 광학 디스크와 같은 컴퓨터 판독 가능 매체의 다른 형태일 수 있다.
저장 장치(706)는 컴퓨팅 장치(700)에 대용량 저장 장치를 제공할 수 있다. 일 실시 예에서, 저장 장치(706)는 저장 영역 네트워크 또는 기타 구성의 장치들을 포함하는, 플로피 디스크 장치, 하드 디스크 장치, 광학 디스크 장치 또는 테이프 장치, 플래시 메모리 또는 다른 유사한 고체 상태 메모리 장치 또는 어레이와 같은 컴퓨터 판독 가능 매체이거나 이에 포함될 수 있다. 컴퓨터 프로그램 제품은 정보 매체에 유형적으로 구현될 수 있다. 상기 컴퓨터 프로그램 제품은 또한 실행될 때 상술한 바와 같은 하나 이상의 방법을 수행하는 명령어들을 포함할 수 있다. 정보 매체는 메모리(704), 저장 장치(706) 또는 프로세서(702)상의 메모리와 같은 컴퓨터 또는 기계 판독 가능 매체이다.
고속 제어기(708)는 컴퓨팅 장치(700)에 대한 대역폭 집중적인 동작을 관리하고, 저속 제어기(712)는 낮은 대역폭의 집중적인 동작을 관리한다. 이러한 기능 할당은 단지 예시적인 것이다. 일 실시 예에서, 고속 제어기(708)는(예를 들어, 그래픽 프로세서 또는 가속기를 통해) 메모리(704), 디스플레이(716) 및 다양한 확장 카드(도시되지 않음)를 수용할 수 있는 고속 확장 포트(710)에 결합된다. 구현시, 저속 제어기(712)는 저장 장치(706) 및 저속 확장 포트(714)에 결합된다. USB, 블루투스, 이더넷, 무선 이더넷과 같은 다양한 통신 포트를 포함할 수 있는 저속 확장 포트는 키보드, 포인팅 장치, 스캐너 또는 스위치 또는 라우터와 같은 네트워킹 장치와 같은 하나 이상의 입력/출력 장치에, 예를 들어 네트워크 어댑터를 통해 결합될 수 있다.
컴퓨팅 장치(700)는 도면에 도시된 바와 같이 복수의 상이한 형태로 구현될 수 있다. 예를 들어, 표준 서버(720)로서 구현되거나, 또는 그러한 서버들의 그룹에서 여러 번 구현될 수 있다. 또한, 랙 서버 시스템(724)의 일부로서 구현될 수도 있다. 또한, 이는 랩톱 컴퓨터(722)와 같은 퍼스널 컴퓨터에서 구현될 수도 있다. 대안적으로, 컴퓨팅 장치(700)로부터의 구성 요소는 장치(750)와 같은 모바일 장치(도시되지 않음)의 다른 구성 요소와 결합될 수 있다. 이러한 장치 각각은 컴퓨팅 장치(700, 750) 중 하나 이상을 포함할 수 있고, 전체 시스템은 서로 통신하는 복수의 컴퓨팅 장치(700, 750)로 구성될 수 있다.
컴퓨팅 장치(750)는 다른 구성 요소들 중에서 디스플레이(754), 통신 인터페이스(766) 및 송수신기(768)와 같은 입/출력 장치, 프로세서(752), 메모리(764)를 포함한다. 장치(750)는 또한 추가 저장 장치를 제공하기 위해 마이크로 드라이브 또는 다른 장치와 같은 저장 장치를 구비할 수 있다. 구성 요소들(750, 752, 764, 754, 766 및 768) 각각은 다양한 버스를 사용하여 상호 접속되며, 일부 구성 요소는 공통 마더보드 상에 또는 적절하게 다른 방식으로 탑재될 수 있다.
프로세서(752)는 메모리(764)에 저장된 명령어들을 포함하여 컴퓨팅 장치(750) 내의 명령어들을 실행할 수 있다. 프로세서는 개별 및 다중 아날로그 및 디지털 프로세서를 포함하는 칩들의 칩셋으로서 구현될 수 있다. 상기 프로세서는 예를 들어 사용자 인터페이스의 제어, 장치(750)에 의해 실행되는 애플리케이션 및 장치(750)에 의한 무선 통신과 같은 장치(750)의 다른 구성 요소들의 조정을 제공할 수 있다.
프로세서(752)는 제어 인터페이스(758) 및 디스플레이(754)에 연결된 디스플레이 인터페이스(756)를 통해 사용자와 통신할 수 있다. 디스플레이(754)는 예를 들어, TFT LCD(Thin-Film-Transistor Liquid Crystal Display) 또는 OLED(Organic Light Emitting Diode) 디스플레이, 또는 다른 적절한 디스플레이 기술일 수 있다. 디스플레이 인터페이스(756)는 사용자에게 그래픽 및 다른 정보를 제공하기 위해 디스플레이(754)를 구동하기 위한 적절한 회로를 포함할 수 있다. 제어 인터페이스(758)는 사용자로부터 명령들을 수신하여 이를 프로세서(752)에 제출하기 위해 변환할 수 있다. 또한, 외부 인터페이스(762)는 프로세서(752)와 통신하여 제공되어, 장치(750)의 다른 장치와의 근거리 통신을 가능하게할 수 있다. 외부 인터페이스(762)는 예를 들어, 일부 구현 예에서 유선 통신용으로 또는 다른 구현 예에서 무선 통신용으로 제공할 수 있으며, 다중 인터페이스가 또한 사용될 수 있다.
메모리(764)는 컴퓨팅 장치(750) 내의 정보를 저장한다. 메모리(764)는 컴퓨터 판독 가능 매체 또는 미디어, 휘발성 메모리 유닛(들) 또는 비휘발성 메모리 유닛(들) 중 하나 이상으로서 구현될 수 있다. 확장 메모리(784)는 또한 예를 들어 SIMM(Single In Line Memory Module) 카드 인터페이스를 포함할 수 있는 확장 인터페이스(782)를 통해 장치(750)에 제공되고 접속될 수 있다. 이러한 확장 메모리(784)는 장치(750)를 위한 여분의 저장 공간을 제공하거나 장치(750)에 대한 애플리케이션 또는 다른 정보를 저장할 수도 있다. 특히, 확장 메모리(784)는 전술한 프로세스를 수행하거나 보충하기 위한 명령어들을 포함할 수 있으며, 또한 보안 정보를 포함할 수 있다. 따라서, 예를 들어, 확장 메모리(784)는 장치(750)에 대한 보안 모듈로서 제공될 수 있고, 장치(750)의 안전한 사용을 허용하는 명령어들로 프로그램될 수 있다. 또한, 보안 애플리케이션은 SIMM 카드에 식별 정보를 해킹할 수 없는 방식으로 배치하는 것과 같은 추가 정보와 함께 SIMM 카드를 통해 제공될 수 있다.
상기 메모리는 예를 들어, 후술되는 바와 같이, 플래시 메모리 및/또는 NVRAM 메모리를 포함할 수 있다. 일 구현 예에서, 컴퓨터 프로그램 제품은 정보 매체에 유형적으로 구현된다. 컴퓨터 프로그램 제품은 실행될 때, 상술한 바와 같은 하나 이상의 방법을 수행하는 명령어들을 포함한다. 상기 정보 매체는 예를 들어 송수신기(768) 또는 외부 인터페이스(762)를 통해 수신될 수 있는 메모리(764), 확장 메모리(784) 또는 프로세서(752)상의 메모리와 같은 컴퓨터 또는 기계 판독 가능 매체이다.
장치(750)는 필요한 경우 디지털 신호 처리 회로를 포함할 수 있는 통신 인터페이스(766)를 통해 무선으로 통신할 수 있다. 통신 인터페이스(766)는 GSM 음성 호출, SMS, EMS 또는 MMS 메시징, CDMA, TDMA, PDC, WCDMA, CDMA2000 또는 GPRS와 같은 다양한 모드 또는 프로토콜 하에서 통신을 제공할 수 있다. 이러한 통신은, 예를 들어 무선 주파수 송수신기(768)를 통해 발생할 수 있다. 또한, 블루투스, Wi-Fi 또는 다른 송수신기(도시되지 않음)를 사용하는 것과 같은 단거리 통신이 발생할 수 있다. 또한, GPS(Global Positioning System) 수신기 모듈(770)은 장치(750)상에서 실행되는 애플리케이션에 의해 적절하게 사용될 수 있는 추가의 내비게이션 및 위치 관련 무선 데이터를 장치(750)에 제공할 수 있다.
장치(750)는 또한 사용자로부터 음성 정보를 수신하고 이를 이용 가능한 디지털 정보로 변환할 수 있는 오디오 코덱(760)을 사용하여 가청 통신할 수 있다. 오디오 코덱(760)은 마찬가지로, 예를 들어 장치(750)의 핸드셋에 있는 스피커를 통해, 사용자를 위한 가청 사운드를 생성할 수 있다. 이러한 사운드는 음성 전화 호출로부터의 사운드를 포함할 수 있고, 녹음된 사운드(예를 들어, 음성 메시지, 음악 파일 등)를 포함할 수 있으며, 또한 장치(750)상에서 동작하는 애플리케이션에 의해 생성된 사운드를 포함할 수 있다.
컴퓨팅 장치(750)는 도면에 도시된 바와 같이 복수의 상이한 형태로 구현될 수 있다. 예를 들어, 이는 셀룰러 전화기(780)로서 구현될 수 있다. 이는 또한 스마트폰(783), PDA(personal digital assistant) 또는 다른 유사한 모바일 장치의 일부로서 구현될 수도 있다.
여기에 설명된 시스템 및 방법의 다양한 구현 예는 디지털 전자 회로, 집적 회로, 특별히 설계된 ASIC(application specific integrated circuits), 컴퓨터 하드웨어, 펌웨어, 소프트웨어 및/또는 그러한 구현예들의 조합으로 실현될 수 있다. 이러한 다양한 구현예들은 저장 시스템, 적어도 하나의 입력 장치, 적어도 하나의 출력 장치와의 데이터 및 명령어들을 송수신하도록 결합된, 특수 또는 범용일 수 있는 적어도 하나의 프로그램 가능 프로세서를 포함하는 프로그램 가능 시스템상에서 실행 가능하고 및/또는 해석 가능한 하나 이상의 컴퓨터 프로그램에서의 구현을 포함할 수 있다.
이러한 컴퓨터 프로그램들(프로그램, 소프트웨어, 소프트웨어 애플리케이션 또는 코드로도 알려짐)은 프로그램 가능 프로세서에 대한 기계 명령어를 포함하며, 높은 수준의 절차 및/또는 객체 지향 프로그래밍 언어 및/또는 어셈블리/ 기계어로 구현될 수 있다. 여기에서 사용되는 "기계 판독 가능 매체", "컴퓨터 판독 가능 매체"라는 용어는 자기 디스크, 광 디스크, 메모리, 프로그램 가능 논리 장치(PLD)와 같은 임의의 컴퓨터 프로그램 제품, 장치 및/또는 장치를 나타내며, 기계 판독 가능 신호로서 기계 명령어를 수신하는 기계 판독 가능 매체를 포함하여, 프로그램 가능 프로세서에 기계 명령어 및/또는 데이터를 제공하는데 사용된다. "기계 판독 가능 신호"라는 용어는 기계 명령어 및/또는 데이터를 프로그램 가능 프로세서에 제공하기 위해 사용되는 모든 신호를 의미한다.
사용자와의 상호 작용을 제공하기 위해, 여기에 기술된 시스템 및 기술은 정보를 사용자에게 디스플레이하기 위한 CRT(cathode ray tube) 또는 LCD(liquid crystal display) 모니터와 같은 디스플레이 장치와, 사용자가 컴퓨터에 입력을 제공할 수 있는 마우스 또는 트랙볼과 같은 포인팅 장치 및 키보드를 갖는 컴퓨터상에서 구현될 수 있다. 다른 종류의 장치들이 사용자와의 상호 작용을 제공하는 데 사용될 수 있다. 예를 들어, 사용자에게 제공되는 피드백은 시각 피드백, 청각 피드백 또는 촉각 피드백과 같은 임의의 형태의 감각 피드백일 수 있으며, 사용자로부터의 입력은 어쿠스틱, 스피치 또는 촉각 입력을 포함하는 임의의 형태로 수신될 수 있다.
여기에 설명된 시스템 및 기술은 예를 들어 데이터 서버와 같은 백엔드 구성 요소 또는 애플리케이션 서버와 같은 미들웨어 구성 요소를 포함하거나 프론트 엔드 구성 요소를 포함하는 컴퓨팅 시스템에서 구현될 수 있으며, 예를 들어, 그래픽 사용자 인터페이스 또는 웹 브라우저를 갖는 클라이언트 컴퓨터로서, 여기서 사용자는 여기서 설명된 시스템 및 기술의 구현, 또는 이러한 백 엔드, 미들웨어 또는 프론트 엔드 구성 요소의 임의의 조합과 상호 작용할 수 있다. 시스템의 컴포넌트는 디지털 데이터 통신의 임의의 형태 또는 매체, 예를 들어 통신 네트워크에 의해 상호 접속될 수 있다. 통신 네트워크의 예는 근거리 통신망("LAN"), 광역 통신망("WAN") 및 인터넷을 포함한다.
컴퓨팅 시스템은 클라이언트 및 서버를 포함할 수 있다. 클라이언트와 서버는 일반적으로 서로 멀리 떨어져 있으며 일반적으로 통신 네트워크를 통해 상호 작용한다. 클라이언트와 서버의 관계는 각각의 컴퓨터에서 실행되고 클라이언트-서버의 서로의 관계를 갖는 컴퓨터 프로그램으로 발생한다.
일부 구현 예에서, 도 7에 도시된 컴퓨팅 장치는, 가상 현실(VR 헤드셋/HMD 장치(790))과 인터페이스하는 센서들을 포함할 수 있다. 예를 들어, 도 7에 도시된 컴퓨팅 장치(750) 또는 다른 컴퓨팅 장치에 포함된 하나 이상의 센서들은 VR 헤드셋(790)에 입력을 제공하거나 일반적으로 VR 공간에 입력을 제공할 수 있다. 상기 센서들은 터치 스크린, 가속도계, 자이로스코프, 압력 센서, 생체 센서, 온도 센서, 습도 센서 및 주변 광 센서를 포함할 수 있지만 이에 국한되지 않는다. 컴퓨팅 장치(750)는 VR 공간에 대한 입력으로서 사용될 수 있는 VR 공간 내의 컴퓨팅 장치의 절대 위치 및/또는 검출된 회전을 결정하기 위해 센서들을 사용할 수 있다. 예를 들어, 컴퓨팅 장치(750)는 제어기, 레이저 포인터, 키보드, 무기 등과 같은 가상 객체로서 VR 공간에 통합될 수 있다. VR 공간에 통합될 때 사용자에 의한 컴퓨팅 장치/가상 객체의 위치 결정은 사용자가 VR 공간의 특정 방식으로 가상 객체를 뷰 위해 컴퓨팅 장치를 위치시키는 것을 허용할 수 있다.
일부 구현 예에서, 컴퓨팅 장치(750) 상에 포함되거나 연결되는 하나 이상의 입력 장치는 VR 공간에 대한 입력으로서 사용될 수 있다. 입력 장치는 터치 스크린, 키보드, 하나 이상의 버튼, 트랙패드(trackpad), 터치 패드, 포인팅 장치, 마우스, 트랙볼, 조이스틱, 카메라, 마이크로폰, 이어폰 또는 입력 기능이 있는 버드(buds), 게임 제어기 또는 기타 연결 가능한 입력 장치를 포함하지만, 이에 국한되지 않는다. 컴퓨팅 장치가 VR 공간에 통합될 때 컴퓨팅 장치(750)에 포함된 입력 장치와 상호 작용하는 사용자는 특정 동작을 VR 공간에서 발생시킬 수 있다.
일부 구현 예에서, 컴퓨팅 장치(750)에 포함된 하나 이상의 출력 장치는 VR 공간에서 VR 헤드셋(790)의 사용자에게 출력 및/또는 피드백을 제공할 수 있다. 출력 및 피드백은 시각적, 택티컬(Tactical) 또는 오디오일 수 있다. 출력 및/또는 피드백은 진동, 하나 이상의 조명 또는 스트로브의 켜고 끄기 또는 플리커 및/또는 플레쉬(flash), 알람 울리기, 차임(chime) 플레이, 노래 연주 및 오디오 파일 재생 등을 포함할 수 있지만 이에 국한되지는 않는다. 출력 장치는 진동 모터, 진동 코일, 압전 장치, 정전기 장치, 발광 다이오드(LED), 스트로브 및 스피커를 포함할 수 있지만 이에 국한되지는 않는다.
일부 실시 예에서, 컴퓨팅 장치(750)는 VR 시스템을 생성하기 위해 VR 헤드셋(790) 내에 배치될 수 있다. VR 헤드셋(790)은 VR 헤드셋(790) 내의 적절한 위치에 스마트폰(783)과 같은 컴퓨팅 장치(750)의 배치를 허용하는 하나 이상의 포지셔닝 요소를 포함할 수 있다. 이러한 실시 예에서, 스마트 폰(783)의 디스플레이는 VR 공간 또는 가상 환경을 나타내는 입체 이미지를 렌더링할 수 있다.
일부 구현 예에서, 컴퓨팅 장치(750)는 컴퓨터 생성 3D 환경에서 또 다른 객체로 보일 수 있다. 사용자에 의한 컴퓨팅 장치(750)와의 상호 작용(예를 들어, 회전, 흔들림, 터치 스크린 접촉, 터치 스크린에 대한 스와핑(swiping))은 VR 공간에서 객체와의 상호 작용으로서 해석될 수 있다. VR 공간 내의 레이저 포인터의 예에서, 컴퓨팅 장치(750)는 컴퓨터 생성 3D 환경에서 가상 레이저 포인터로 나타난다. 사용자가 컴퓨팅 장치(750)를 조작함에 따라, VR 공간 내의 사용자는 레이저 포인터의 움직임을 보게 된다. 사용자는 컴퓨팅 장치(750)상의 VR 환경 또는 VR 헤드셋(790)상의 컴퓨팅 장치(750)와의 상호 작용으로부터 피드백을 수신한다.
일부 구현 예에서, 컴퓨팅 장치(750)는 터치 스크린을 포함할 수 있다. 예를 들어, 사용자는 VR 공간에서 일어나는 일과 함께 터치 스크린에서 일어나는 일을 모방할 수 있는 특정 방식으로 터치스크린과 상호 작용할 수 있다. 예를 들어, 사용자는 핀치-타입 모션을 사용하여 터치스크린 상에 디스플레이된 콘텐츠를 줌(zoom)할 수 있다. 터치 스크린상에서의 핀치-타입 모션은 VR 공간에 제공된 정보가 줌되도록할 수 있다. 다른 예에서, 컴퓨팅 장치는 컴퓨터 생성 3D 환경에서 가상 책으로 렌더링될 수 있다. VR 공간에서, 책의 페이지들은 VR 공간에 표시될 수 있고, 터치 스크린을 통한 사용자의 손가락 스와핑은 가상 책의 페이지를 회전넘기기로 해석될 수 있다. 각 페이지가 회전/넘김에 따라, 페이지 내용이 변경되는 것을 볼 수 있을뿐만 아니라, 책에 페이지를 넘기는 소리와 같은 오디오 피드백이 사용자에게 제공될 수 있다.
일부 구현 예에서, 컴퓨팅 장치 이외에 하나 이상의 입력 장치(예를 들어, 마우스, 키보드)가 컴퓨터 생성 3D 환경에서 렌더링될 수 있다. 렌더링된 입력 장치(예를 들어, 렌더링된 마우스, 렌더링된 키보드)는 VR 공간에서 렌더링된대로 사용되어 VR 공간의 객체들을 제어할 수 있다.
컴퓨팅 장치(700)는 랩톱, 데스크톱, 워크스테이션, 개인 휴대 정보 단말기, 서버, 블레이드 서버, 메인 프레임 및 다른 적절한 컴퓨터를 포함하는 다양한 형태의 디지털 컴퓨터 및 장치를 나타내는 것으로 의도되지만, 이에 국한되지는 않는다. 컴퓨팅 장치(750)는 개인 휴대 정보 단말기, 셀룰러 전화기, 스마트폰 및 다른 유사한 컴퓨팅 장치와 같은 다양한 형태의 모바일 장치를 나타내기 위한 것을 의도된다. 여기에 나타낸 구성 요소, 이들의 연결 및 관계, 및 그 기능은 단지 예시적인 것으로 의도되며, 본 명세서에 기재된 및/또는 청구된 본 발명의 구현을 제한하지 않는다.
또한, 도면에 묘사된 논리 흐름은 원하는 결과를 얻기 위해 표시된 특정 순서 또는 순차적 순서를 필요로하지 않는다. 또한, 설명된 흐름으로부터 다른 단계가 제공되거나 단계가 제거될 수 있으며, 설명된 시스템에 다른 구성 요소가 추가되거나 제거될 수 있다. 따라서, 다른 실시 예는 다음의 청구항의 범위 내에 있다.

Claims (21)

  1. 컴퓨터로 구현되는 방법으로서,
    복수의 입력 이미지를 수신하는 단계;
    상기 복수의 입력 이미지 중 적어도 하나에서 타겟 피사체와 연관된 복수의 깊이 이미지를 수신하는 단계;
    상기 타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하는 단계;
    복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된(warped) 이미지를 생성하는 단계;
    복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 워핑된 이미지를 신경망에 제공하는 것에 응답하여, 상기 신경망로부터, 상기 타겟 피사체의 가상 뷰의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신하는 단계; 그리고
    상기 블렌딩 가중치 및 가상 뷰에 기초하여, 상기 뷰 파라미터에 따라 합성된 이미지를 생성하는 단계를 포함하는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  2. 제1항에 있어서, 상기 방법은,
    기하학적 융합 모델을 생성하기 위해 복수의 깊이 이미지에 대한 기하학적 융합 프로세스를 사용하여 콘센서스 서피스(consensus surface)를 재구성하는 단계;
    상기 복수의 입력 이미지 및 상기 콘센서스 서피스에 기초하여 복수의 재프로젝션된 이미지를 생성하는 단계; 그리고
    상기 복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 재프로젝션된 이미지를 상기 신경망에 제공하는 것에 응답하여, 합성된 이미지의 픽셀에 컬러를 할당하기 위한 추가 블렌딩 가중치를 상기 신경망으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  3. 제2항에 있어서, 상기 방법은,
    상기 복수의 깊이 이미지에서 관찰된 깊이와 상기 기하학적 융합 모델 간의 깊이 차이를 상기 신경망에 제공하는 단계를 더 포함하며, 상기 방법은 상기 깊이 차이에 기초하여 상기 합성된 이미지에서 검출된 오클루션(occlusion)을 보정하는 단계를 더 포함하는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  4. 선행하는 청구항 중 어느 한 항에 있어서,
    복수의 입력 이미지는 복수의 입력 이미지를 캡처한 적어도 하나의 카메라와 연관된 미리 정의된 뷰 파라미터에 따라 캡처된 컬러 이미지이고; 및/또는
    복수의 깊이 이미지 각각은, 복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는
    복수의 입력 이미지 중 적어도 하나의 캡처에 대응하는 시간에 적어도 하나의 목격(witness) 카메라에 의해 캡처된 GT(ground truth) 이미지와 연관된 깊이 맵을 포함하는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  5. 선행하는 청구항 중 어느 한 항에 있어서, 상기 블렌딩 가중치는 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성되는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  6. 선행하는 청구항 중 어느 한 항에 있어서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련되는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  7. 선행하는 청구항 중 어느 한 항에 있어서, 상기 합성된 이미지는 3차원 화상 회의를 위해 생성된 타겟 피사체의 캡처되지 않은 뷰인 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  8. 선행하는 청구항 중 어느 한 항에 있어서, 복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 단계는 복수의 깊이 이미지 중 적어도 하나를 사용하여 캡처되지 않은 뷰로의 복수의 입력 이미지와 연관된 컬러의 후보 프로젝션을 결정하는 단계를 포함하며, 상기 캡처되지 않은 뷰는 복수의 입력 이미지 중 적어도 하나의 이미지 특징의 적어도 일부를 포함하는 것을 특징으로 하는 컴퓨터로 구현되는 방법.
  9. 선행하는 청구항 중 어느 한 항에 따른 방법을 수행하기 위한 이미지 처리 시스템으로서,
    적어도 하나의 처리 장치; 그리고
    실행될 때 시스템으로 하여금 동작들을 수행하도록 하는 명령어를 저장하는 메모리를 포함하며, 상기 동작들은,
    이미지 처리 시스템에 의해 캡처된 복수의 입력 이미지를 수신하는 동작;
    이미지 처리 시스템에 의해 캡처된 복수의 깊이 이미지를 수신하는 동작;
    상기 복수의 입력 이미지 중 적어도 하나와 연관된 캡쳐되지 않은 뷰와 연관된 복수의 뷰 파라미터를 수신하는 동작;
    복수의 깊이 이미지 중 적어도 하나, 복수의 입력 이미지, 복수의 뷰 파라미터에 기초하여 복수의 워핑된 이미지를 생성하는 동작;
    복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 워핑된 이미지를 신경망에 제공하는 것에 응답하여, 상기 신경망로부터 캡처되지 않은 뷰의 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신하는 동작; 그리고
    상기 블렌딩 가중치에 따라 합성된 이미지를 생성하는 동작을 포함하며, 상기 합성된 이미지는 상기 캡처되지 않은 뷰에 대응하는 것을 특징으로 하는 이미지 처리 시스템.
  10. 제9항에 있어서,
    복수의 입력 이미지는 이미지 처리 시스템과 연관된 미리 정의된 뷰 파라미터에 따라 이미지 처리 시스템에 의해 캡처된 컬러 이미지이고; 및/또는
    복수의 깊이 이미지는, 복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는 이미지 처리 시스템의 목격 카메라와 연관된 깊이 맵을 포함하는 것을 특징으로 하는 이미지 처리 시스템.
  11. 제9항 또는 제10항에 있어서, 상기 블렌딩 가중치는 상기 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성되는 것을 특징으로 하는 이미지 처리 시스템.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련되는 것을 특징으로 하는 이미지 처리 시스템.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서, 상기 합성된 이미지는 3차원 화상 회의를 위해 생성된 신규 뷰(novel view)인 것을 특징으로 하는 이미지 처리 시스템.
  14. 명령어가 저장된 비일시적 기계 판독 가능 매체로서, 상기 명령어는 프로세서에 의해 실행될 때 컴퓨팅 장치로 하여금 동작들을 수행하게 하며, 상기 동작들은,
    복수의 입력 이미지를 수신하는 동작;
    복수의 입력 이미지 중 적어도 하나에서 타겟 피사체와 연관된 복수의 깊이 이미지를 수신하는 동작;
    타겟 피사체의 가상 뷰를 생성하기 위한 복수의 뷰 파라미터를 수신하는 동작;
    상기 타겟 피사체의 기하학적 융합 모델을 생성하기 위해 복수의 깊이 이미지에 대한 기하학적 융합 프로세스를 사용하여 콘센서스 서피스를 재구성하는 동작;
    상기 복수의 입력, 복수의 뷰 파라미터, 및 콘센서스 서피스에 기초하여 복수의 재프로젝션된(reprojected) 이미지를 생성하는 동작;
    복수의 깊이 이미지, 복수의 뷰 파라미터, 및 복수의 재프로젝션된 이미지를 신경망에 제공하는 것에 응답하여, 상기 신경망로부터 상기 타겟 피사체의 가상 뷰에 대한 픽셀에 컬러를 할당하기 위한 블렌딩 가중치를 수신하는 동작; 그리고
    상기 블렌딩 가중치 및 가상 뷰에 기초하여, 상기 뷰 파라미터에 따라 합성된 이미지를 생성하는 동작을 포함하는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  15. 제14항에 있어서, 상기 동작들은,
    상기 복수의 깊이 이미지에서 관찰된 깊이와 상기 기하학적 융합 모델 간의 깊이 차이를 상기 신경망에 제공하는 동작 그리고 상기 깊이 차이에 기초하여 상기 합성된 이미지에서 검출된 오클루션을 보정하는 동작을 더 포함하는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  16. 제14항 또는 제15항에 있어서,
    복수의 입력 이미지는 복수의 입력 이미지를 캡처한 적어도 하나의 카메라와 연관된 미리 정의된 뷰 파라미터에 따라 캡처된 컬러 이미지이고; 및/또는
    복수의 깊이 이미지는
    복수의 입력 이미지 중 적어도 하나를 캡처한 적어도 하나의 카메라와 연관된 깊이 맵, 적어도 하나의 오클루션 맵, 및/또는 복수의 입력 이미지 중 적어도 하나의 캡처에 대응하는 시간에 적어도 하나의 목격 카메라에 의해 캡처된 GT(ground truth) 이미지와 연관된 깊이 맵을 포함하는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  17. 제14항 내지 제16항 중 어느 한 항에 있어서, 상기 블렌딩 가중치는 상기 합성된 이미지의 각 픽셀에 블렌딩된 컬러를 할당하도록 구성되는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  18. 제14항 내지 제17항 중 어느 한 항에 있어서, 상기 신경망은 상기 신경망에 의해 생성된 합성된 이미지와 적어도 하나의 목격 카메라에 의해 캡처된 GT 이미지 사이의 오클루션 손실 함수를 최소화하는 것에 기초하여 훈련되는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  19. 제14항 내지 제18항 중 어느 한 항에 있어서, 상기 합성된 이미지는 3차원 화상 회의에 대한 신규 뷰인 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  20. 제14항 내지 제19항 중 어느 한 항에 있어서,
    상기 신경망은 상기 합성된 이미지의 픽셀에 픽셀 컬러를 할당하기 위해 다중해상도 블렌딩(multiresolution blending)을 수행하도록 더 구성되며,
    상기 다중해상도 블렌딩은 상기 신경망에 대한 입력으로서 이미지 피라미드(pyramid)의 제공을 트리거하여, 신경망으로부터 복수의 스케일에 대한 다중해상도 블렌딩 가중치 및 각 스케일과 연관된 불투명도 값을 수신하는 것을 트리거하는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
  21. 제14항 내지 제20항 중 어느 한 항에 있어서, 상기 명령어는, 프로세서에 의해 실행될 때, 컴퓨팅 장치로 하여금 제1항 내지 제8항 중 어느 한 항에 따른 방법을 수행하게 하는 것을 특징으로 하는 명령어가 저장된 비일시적 기계 판독 가능 매체.
KR1020217041885A 2021-04-08 2021-04-08 신규 뷰 합성을 위한 신경 블렌딩 KR102612529B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2021/070362 WO2022216333A1 (en) 2021-04-08 2021-04-08 Neural blending for novel view synthesis

Publications (2)

Publication Number Publication Date
KR20220140402A true KR20220140402A (ko) 2022-10-18
KR102612529B1 KR102612529B1 (ko) 2023-12-11

Family

ID=75625694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217041885A KR102612529B1 (ko) 2021-04-08 2021-04-08 신규 뷰 합성을 위한 신경 블렌딩

Country Status (7)

Country Link
US (1) US20220398705A1 (ko)
EP (1) EP4091141A1 (ko)
JP (1) JP2023524326A (ko)
KR (1) KR102612529B1 (ko)
CN (1) CN115529835A (ko)
TW (1) TWI813098B (ko)
WO (1) WO2022216333A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648938B1 (ko) * 2023-02-15 2024-03-19 고려대학교 산학협력단 기하학적 일관성을 이용한 소수 샷 신경 방사장 기반 3차원 이미지 재구성 방법 및 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146900A (ko) * 2021-04-26 2022-11-02 삼성전자주식회사 휘도 데이터를 이용하여 심도 정보를 생성하는 처리 회로를 포함하는 전자 장치, 및 심도 정보 생성 방법
US20230196662A1 (en) * 2021-12-20 2023-06-22 Nvidia Corporation Image blending using one or more neural networks
US20230252714A1 (en) * 2022-02-10 2023-08-10 Disney Enterprises, Inc. Shape and appearance reconstruction with deep geometric refinement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503066A (ja) * 2014-11-19 2018-02-01 インテル コーポレイション 画像ベースの深さ検知システムの精度測定

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965902B1 (en) * 2006-05-19 2011-06-21 Google Inc. Large-scale image processing using mass parallelization techniques
US9681154B2 (en) * 2012-12-06 2017-06-13 Patent Capital Group System and method for depth-guided filtering in a video conference environment
US10958887B2 (en) * 2019-01-14 2021-03-23 Fyusion, Inc. Free-viewpoint photorealistic view synthesis from casually captured video
US10970911B2 (en) * 2019-02-21 2021-04-06 Facebook Technologies, Llc Graphics processing chip with machine-learning based shader
US10930054B2 (en) * 2019-06-18 2021-02-23 Intel Corporation Method and system of robust virtual view generation between camera views
US11928787B2 (en) * 2020-07-29 2024-03-12 Intel Corporation Deep novel view synthesis from unstructured input
CN112614060A (zh) * 2020-12-09 2021-04-06 深圳数联天下智能科技有限公司 人脸图像头发渲染方法、装置、电子设备和介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503066A (ja) * 2014-11-19 2018-02-01 インテル コーポレイション 画像ベースの深さ検知システムの精度測定

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETER HEDMAN ET AL, Deep blending for free-viewpoint image-based rendering, ACM Transactions on Graphics, Volume 37 Issue 6, Nov. 2018(2018.12.31.) 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648938B1 (ko) * 2023-02-15 2024-03-19 고려대학교 산학협력단 기하학적 일관성을 이용한 소수 샷 신경 방사장 기반 3차원 이미지 재구성 방법 및 장치

Also Published As

Publication number Publication date
US20220398705A1 (en) 2022-12-15
JP2023524326A (ja) 2023-06-12
KR102612529B1 (ko) 2023-12-11
TW202240530A (zh) 2022-10-16
CN115529835A (zh) 2022-12-27
WO2022216333A1 (en) 2022-10-13
EP4091141A1 (en) 2022-11-23
TWI813098B (zh) 2023-08-21

Similar Documents

Publication Publication Date Title
US12026833B2 (en) Few-shot synthesis of talking heads
EP3959688B1 (en) Generative latent textured proxies for object category modeling
EP3057066B1 (en) Generation of three-dimensional imagery from a two-dimensional image using a depth map
KR102612529B1 (ko) 신규 뷰 합성을 위한 신경 블렌딩
US20240087214A1 (en) Color and infra-red three-dimensional reconstruction using implicit radiance functions
US11335077B1 (en) Generating and modifying representations of dynamic objects in an artificial reality environment
KR20230097163A (ko) 자동입체 텔레프레즌스 시스템들을 위한 3차원(3d) 얼굴 피처 추적
US11887267B2 (en) Generating and modifying representations of hands in an artificial reality environment
US20230396751A1 (en) Sender-side geometric fusion of depth data
US20240153223A1 (en) Reliable Depth Measurements for Mixed Reality Rendering
US11562529B2 (en) Generating and modifying an artificial reality environment using occlusion surfaces at predetermined distances

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant