KR20220140396A - Method for recovering and manufacturing crude lithium carbonate from the battery meterial raffinate - Google Patents

Method for recovering and manufacturing crude lithium carbonate from the battery meterial raffinate Download PDF

Info

Publication number
KR20220140396A
KR20220140396A KR1020210125166A KR20210125166A KR20220140396A KR 20220140396 A KR20220140396 A KR 20220140396A KR 1020210125166 A KR1020210125166 A KR 1020210125166A KR 20210125166 A KR20210125166 A KR 20210125166A KR 20220140396 A KR20220140396 A KR 20220140396A
Authority
KR
South Korea
Prior art keywords
lithium
liquid
battery material
carbonate
fluorine
Prior art date
Application number
KR1020210125166A
Other languages
Korean (ko)
Inventor
옌페이 펑
슈아이 타오
팡링 장
궈넝 뤼
광화 탕
량 양
칭산 루어
Original Assignee
취저우 화여우 리소시스 리사이클링 테크놀로지 컴퍼니 리미티드
저지앙 후아유 코발트 캄파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 취저우 화여우 리소시스 리사이클링 테크놀로지 컴퍼니 리미티드, 저지앙 후아유 코발트 캄파니 리미티드 filed Critical 취저우 화여우 리소시스 리사이클링 테크놀로지 컴퍼니 리미티드
Publication of KR20220140396A publication Critical patent/KR20220140396A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/02Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a method for recovering and manufacturing crude lithium carbonate from a battery material raffinate. According to the present invention, fluorine entering a raffinate during a process of recovering batteries is removed by using a zirconium-based fluorine remover, sodium sulfate products are acquired through evaporation and separation, lithium is precipitated by evaporating a circulation mother liquid and adding carbonate, and the sodium content in lithium carbonate products is reduced by using a manner of multi-drop dispersion and addition of a pre-lithium precipitation liquid during a process of precipitating lithium. Accordingly, the method provides features such as a short process, low impurities in a product, realization of internal circulation and use of lithium precipitation mother liquid, and low production cost. In addition, the content of lithium-sodium carbonate produced by the method is less than 0.1%, the main content of lithium carbonate is greater than 98.50%, and the fluorine content is less than 0.020%, and each indicator satisfies the required level of industrial grade lithium carbonate. The method comprises a fluorine removal step, a phosphorus removal step, a heavy metal precipitation step, an acid-alkaline control step, an evaporation concentration step, and a lithium precipitation step.

Description

배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법 {METHOD FOR RECOVERING AND MANUFACTURING CRUDE LITHIUM CARBONATE FROM THE BATTERY METERIAL RAFFINATE}Method for recovering and manufacturing prepared lithium carbonate from the battery material raffinate

본 발명은 습식 야금 기술분야에 속하고, 상세하게는, 저-리튬 고-나트륨의 배터리재료 추잔액(raffinate)에서 저원가로 저-나트륨 저-불소의 조제(crude) 탄산 리튬을 제조하여 추출하는 방법에 관한 것이다.The present invention belongs to the field of hydrometallurgical technology, and specifically, it is a method of preparing and extracting crude lithium carbonate of low-sodium low-fluorine at low cost from a raffinate of a battery material of low-lithium high-sodium. it's about how

최근 몇년간 국가는 신에너지산업을 전력으로 지원하고 있으며, 리튬 이온 배터리는 가장 각광받는 이차 배터리로서, 양호한 발전 추세를 보여주고 있다. 현재는 동력 배터리가 폐기되는 시기에 놓여져 있고, 대량의 폐기 배터리가 시장에 유입하게 되고, 배터리 중의 니켈, 코발트, 망간, 리튬 등 유가금속의 회수는 한정된 자원을 회수해 순환 이용하고 지속적으로 발전시킬 수 있는 큰 계획이다.In recent years, the country has been supporting the new energy industry with electric power, and the lithium-ion battery is the most popular secondary battery, showing a good development trend. Currently, the power battery is in the period of being discarded, and a large amount of discarded batteries are flowing into the market. A big plan that can be

고온건식법이 오염이 많고 자원이용율이 낮은 등 특징을 갖고 있으므로, 배터리재료 중의 니켈, 코발트, 망간 등 유가금속은 통상적으로 침출, 추출 등의 습식 공법으로 회수해 이용한다. 경금속인 리튬은 추출을 통해 회수하기 어렵지만, 리튬 금속이 탄산염과 결합하면 침전이 형성되는 특성에 의해, 탄산염을 첨가함으로써, 잔액 중의 리튬 금속을 회수해 추출할 수 있다.Since the high-temperature dry method has characteristics such as high pollution and low resource utilization, valuable metals such as nickel, cobalt, and manganese in battery materials are usually recovered and used by wet methods such as leaching and extraction. Lithium, a light metal, is difficult to recover through extraction, but due to the property of forming a precipitate when lithium metal is combined with carbonate, lithium metal in the residue can be recovered and extracted by adding carbonate.

폐기된 리튬 이온 동력 배터리 중의 리튬 함유량은 5%~7%이고, 미리 처리와 침출 및 추출을 거쳐 코발트, 니켈과 망간을 회수한 후에 최종적으로 추출 잔액 중에 진입하는 리튬의 함유량이 아주 적고, 나트륨의 함유량이 아주 높고, 나트륨과 리튬의 비율이 높아 무려 18~22:1에 달하여 저-리튬 고-나트륨 함유량의 추출 잔액을 직접 탄산염 리튬 침강 공법에 이용할 수 없다.The lithium content in the discarded lithium-ion power battery is 5% to 7%, and after pre-treatment, leaching and extraction to recover cobalt, nickel and manganese, the lithium content that finally enters into the extraction residue is very small, and the amount of sodium The content is very high, and the ratio of sodium to lithium is as high as 18-22:1, so the extraction residue with low-lithium high-sodium content cannot be directly used for lithium carbonate precipitation method.

중국 특허공개번호가 CN108002410B인 발명은 테일 워터에서 회수한 리튬을 저함유량으로 추출하고 테일 워터를 추출하는 순환이용방법을 공개하였는 데, 해당 발명은 테일 워터의 리튬 추출 및 산업 폐수 순환이용기술에 관한 것이다. 해당 특허는 추출 잔액에 칼슘을 첨가하고, 불소를 제거하고, 결정을 증발시키고, 리튬을 침전하고 침강해 리튬 회수를 실현한다. 해당 특허는, 불소제거제가 칼슘을 선택하고 불소를 제거하는 불소 제거의 효율이 낮고, 불소 제거의 찌거기 수량이 많고, 인 제거 공법이 존재하지 않고(추출 잔액 중에 함유된 인이 비교적 많음), 먼저 결정을 형성해 불순물을 제거한 후, 이어서, 리튬을 침강시키는 공법을 선정하여 황산나트륨 중의 불순물이 많은 편이고, 탄산 리튬 제품 중의 나트륨 함유량이 많고, 주요 함량이 낮은 편인 단점을 갖고 있다.The invention with Chinese Patent Publication No. CN108002410B discloses a recycling method for extracting lithium recovered from tailwater in a low content and extracting tailwater, and the invention relates to lithium extraction from tailwater and a technology for recycling industrial wastewater. will be. This patent realizes lithium recovery by adding calcium to the extraction residue, removing fluorine, evaporating the crystals, precipitating and sedimenting lithium. In this patent, the fluoride removal agent selects calcium and the fluorine removal efficiency is low, the amount of residues from the fluorine removal is large, there is no phosphorus removal method (the phosphorus contained in the extraction residue is relatively large), and first, After removing impurities by forming crystals, a method of precipitating lithium is selected, which has disadvantages in that the amount of impurities in sodium sulfate is high, and the sodium content in lithium carbonate products is high and the main content is low.

본 발명은 상기 종래기술에 존재하는 문제점을 해결하기 위해 창출된 것으로, 그 목적은 저-리튬 고-나트륨의 배터리재료 추잔액(raffinate)에서 저-나트륨 저-불소의조제(crude) 탄산 리튬울 제조해 추출하는 방법을 제공해 리튬 침강 효율을 향상하고, 리튬 추출의 생산원가를 효과적으로 줄여 배터리재료 추잔액 중 리늄의 순환 이용을 실현하는 데 있다.The present invention was created to solve the problems existing in the prior art, and its purpose is to prepare low-sodium low-fluorine crude lithium carbonate in a low-lithium high-sodium battery material raffinate. It aims to improve lithium sedimentation efficiency by providing a manufacturing and extraction method, and to effectively reduce the production cost of lithium extraction to realize the cyclic use of lithium in the battery material balance.

상기 목적에 달성하기 위해, 본 발명은 아래의 기술방안을 이용하여 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법을 제공하며, 해당 방법은,In order to achieve the above object, the present invention provides a method for recovering and manufacturing prepared lithium carbonate from a battery material raffinate using the following technical method, the method comprising:

1) 배터리재료 추잔액에 지르코늄 기반 불소제거제를 첨가해 불소를 제거하여 불소 함유량이 3mg/L보다 적은 불소제거 후 액체를 얻는 불소제거단계;1) A fluorine removal step of removing fluoride by adding a zirconium-based fluoride removal agent to the battery material balance solution to obtain a liquid after removal of fluoride with a fluorine content of less than 3 mg/L;

2) 불소제거 후의 액체에 대해 인 제거제를 통해 인 제거를 진행하고, 얻은 찌꺼기는 교반, 세척, 압출과 여과를 거친 후 폐기하는 인 제거 단계;2) a phosphorus removal step in which phosphorus is removed from the liquid after fluorine removal through a phosphorus remover, and the obtained residue is discarded after being stirred, washed, extruded and filtered;

3) 인을 제거한 후의 액체에 액체 보조재를 첨가하여 중금속을 침강하고, 중금속을 침전시킨 후, 압출 여과와 분리를 통해 중금속 침강 모액과 중금속 침강 찌꺼기를 얻는 중금속을 침강 하는 단계;3) precipitating heavy metals by adding a liquid auxiliary to the liquid after phosphorus has been removed, precipitating heavy metals, and then precipitating heavy metals to obtain heavy metal precipitation mother liquor and heavy metal precipitation residues through extrusion filtration and separation;

4) 중금속 침강 모액에 산성 용액을 첨가하여 pH를 산성까지 조절하고, 잔존 탄산기를 제거한 후에 알칼리성 용액을 첨가하여 pH를 중성까지 조절하는 산성-알칼리성 조절 단계;4) an acid-alkaline control step of adjusting the pH to acidity by adding an acidic solution to the heavy metal precipitation mother liquor, and adding an alkaline solution to neutralize the pH after removing the residual carbonic acid;

5) 산성-알칼리성 조절 후의 배터리재료 추잔액을 이중효과 순환 증발을 통해 황산나트륨을 석출해 내는 동시에, 리튬 농도를 향상시키는 증발 농축 단계;5) an evaporation concentration step of increasing the lithium concentration while precipitating sodium sulfate through double-effect circulation evaporation of the battery material raffinate after acid-alkaline control;

6) 단계 5)에서 얻은 농축 모액에 탄산염을 첨가하고 리튬 침강을 진행하고, 여과와 분리를 거친 후에 조제 탄산 리튬 제품을 얻는 리튬 침강 단계;를 포함하고,6) lithium precipitation step of adding carbonate to the concentrated mother liquor obtained in step 5), performing lithium precipitation, filtration and separation, and obtaining a crude lithium carbonate product;

상기 배터리재료 추잔액에서, Li 함유량은 0.5~5g/L이고, 나트륨 함유량은 30~80g/L이고, 중금속 함유량은 0.5~2g/L이고, 불소 함유량은 50~150mg/L이고, 인 함유량은 30~60mg/L이다.In the battery material balance, the Li content is 0.5-5 g/L, the sodium content is 30-80 g/L, the heavy metal content is 0.5-2 g/L, the fluorine content is 50-150 mg/L, and the phosphorus content is 30 to 60 mg/L.

더 나아가, 단계 1)에서, 상기 지르코늄 기반 불소제거제는 흡착 상한에 도달한 후, 재생 순환을 진행해 이용한다.Furthermore, in step 1), the zirconium-based fluoride scavenger reaches the upper limit of adsorption, and then proceeds through a regeneration cycle to be used.

더 나아가, 단계 1)에서, 지르코늄 기반 불소제거제의 재생과정에서 이용하는 재생액의 수산화 나트륨의 농도는 0.1~2mol/L이고, 재생액과 지르코늄 기반 불소제거제의 질량비는 2-8:1이고, 재생 온도는 상온이고, 재생시간은 30~60min이다.Furthermore, in step 1), the concentration of sodium hydroxide in the regeneration liquid used in the regeneration process of the zirconium-based fluoride removal agent is 0.1-2 mol/L, and the mass ratio of the regeneration liquid and the zirconium-based fluorine remover is 2-8:1, The temperature is room temperature, and the regeneration time is 30 to 60 min.

더 나아가, 단계 2)에서, 중금속 침강 찌거기는 침출공법을 통해 유가금속을 회수한다.Furthermore, in step 2), the heavy metal sedimentation residue recovers valuable metals through a leaching method.

더 나아가, 단계 1)에서, 상기 지르코늄 기반 불소제거제의 첨가 질량은 배터리재료 추잔액 질량의 1%~10%이고, 불소를 제거하는 과정에서 pH를 3~8로 제어하고, 온도는 상온이고, 시간은 10~90min이다.Furthermore, in step 1), the added mass of the zirconium-based fluorine remover is 1% to 10% of the mass of the battery material raffinate, and the pH is controlled to 3 to 8 in the process of removing fluorine, the temperature is room temperature, The time is 10-90 min.

더 나아가, 단계 1)에서, 상기 지르코늄 기반 불소제거제의 주요 함량은 ZrO2+TIO2≥33%이다.Furthermore, in step 1), the main content of the zirconium-based defluorination agent is ZrO 2 +TIO 2 ≥33%.

더 나아가, 단계 2)에서, 상기 인 제거제는 황산철, 수산화 칼슘, 황산알루미늄 중 1개 또는 다수 개의 혼합물을 이용하고, 질량 농도를 10%~30%로 배합한 후에 사용하고, 인 제거제 용액의 첨가 질량은 배터리재료 추잔액 질량의 0.01%~0.02%이고, 인을 제거하는 pH는 3~10이고, 온도는 상온이고, 반응시간은 10~90min이다.Further, in step 2), the phosphorus scavenger uses one or a mixture of one or more of iron sulfate, calcium hydroxide, and aluminum sulfate, and is used after mixing the mass concentration of 10% to 30%, and The added mass is 0.01% to 0.02% of the mass of the battery material raffinate, the pH to remove phosphorus is 3 to 10, the temperature is room temperature, and the reaction time is 10 to 90 min.

더 나아가, 단계 3)에서, 상기 액체 보조재는 탄산기를 함유하는 리튬 침강 모액이고, 리튬 침강 모액과 인 제거 후 액체의 첨가 비율은 1/5~1:1이고, 반응 온도는 50℃~70℃이고, 반응시간은 50~120min이고, 반응 pH는 8.5~13이다.Further, in step 3), the liquid auxiliary material is a lithium precipitation mother liquor containing a carbonic acid group, and the ratio of the lithium precipitation mother liquor to the liquid after phosphorus removal is 1/5 to 1:1, and the reaction temperature is 50° C. to 70° C. , the reaction time is 50 to 120 min, and the reaction pH is 8.5 to 13.

더 나아가, 단계 4)에서, 이용하는 산성 용액은 95%~98%의 황산 용액이고, 이용하는 알칼리성 용액은 30%~32%의 액체 수산화 나트륨이고, 산성 조절 pH 는 3~6이고, 알칼리성 조절 pH는 6~9이다.Further, in step 4), the acidic solution used is 95%-98% sulfuric acid solution, the alkaline solution used is 30%-32% liquid sodium hydroxide, the acidic control pH is 3-6, and the alkaline control pH is 6-9.

더 나아가, 단계 5)에서, 증발 농축비는 3~10배이고, 증발 모액의 리튬 농도는 10~20g/L이고, 나트륨 농도는 90~125 g/L이다.Further, in step 5), the evaporation concentration ratio is 3 to 10 times, the lithium concentration in the evaporation mother liquor is 10 to 20 g/L, and the sodium concentration is 90 to 125 g/L.

더 나아가, 단계 6)에서, 선택하는 탄산염은 탄산나트륨이고, 질량 농도는25%~32%이고, 리튬을 침강하는 과정에서 이용하는 멀티드롭 분산 방식은 농축 모액(즉, 리튬침강전 액체)을 첨가하고, 리튬 침강 온도는 80℃보다 높고, 리튬 침강 시간은 0.5~3h이고, 순수 알칼리 첨가량은 이론량의 1.05~1.15배이다.Further, in step 6), the carbonate selected is sodium carbonate, the mass concentration is 25% to 32%, and the multi-drop dispersion method used in the process of precipitating lithium is to add a concentrated mother liquor (i.e., liquid before lithium precipitation) and , the lithium precipitation temperature is higher than 80 ° C, the lithium precipitation time is 0.5 to 3 h, and the amount of pure alkali added is 1.05 to 1.15 times the theoretical amount.

본 발명은 아래의 기술효과를 이룬다.The present invention achieves the following technical effects.

본 발명은 최초로 배터리재료에서 리튬을 추출하는 과정에 지르코늄 기반 불소제거제를 사용하고, 불소 제거율이 높다.The present invention uses a zirconium-based fluoride removal agent in the process of extracting lithium from a battery material for the first time, and the fluorine removal rate is high.

본 발명은 선택하는 리튬 추출 과정이 짧고, 인 제거제는 철 기반,칼슘 기반, 알루미늄 기반의 1개 또는 다수 개의 혼합물을 선택해 사용하고, 인 제거율이 높다.In the present invention, the lithium extraction process to be selected is short, the phosphorus removal agent is iron-based, calcium-based, and aluminum-based one or a mixture of several selected and used, and the phosphorus removal rate is high.

본 발명은 배터리재료 추잔액(raffinate)의 저-리튬 고-나트륨 특성에 근거해, 먼저 순환 증발로 황산나트륨을 생산하는 동시에, 원료의 리튬 농도를 향상시키고, 이어서, 탄산염을 이용해 리튬을 침강시키는 방식을 선택함으로써, 배터리재료 추잔액 중 금속 리튬의 일회성 회수율을 대폭 향상시키고, 배터리재료 추잔액 중 금속 리튬의 회수 원가를 낮춘다.Based on the low-lithium high-sodium properties of the battery material raffinate, the present invention is a method of first producing sodium sulfate by cyclic evaporation, improving the lithium concentration of the raw material, and then precipitating lithium using carbonate By selecting , the one-time recovery rate of lithium metal in the battery material balance is greatly improved, and the recovery cost of lithium metal in the weight balance of the battery material is lowered.

본 발명은 농축 모액의 첨가과정에서 멀티드롭 분산을 이용해 첨가함으로써, 황산나트륨 시스템 중에서 나트륨이 탄산 리튬 제품을 감싸는 확률을 효과적으로 낮추고, 생산된 인더스트리얼 그레이드(industrial grade) 탄산 리튬 제품 중의 나트륨 함유량이 0.1%보다 낮다.The present invention effectively lowers the probability of sodium enveloping lithium carbonate products in the sodium sulfate system by adding them using multi-drop dispersion during the addition process of the concentrated mother liquor, and the sodium content in the industrial grade lithium carbonate products produced is less than 0.1%. low.

본 발명은 리튬 침강 모액 중에 탄산기를 함유하는 특성을 이용해 배터리재료 추잔액 중의 중금속을 침강함으로써, 리튬 침강 모액의 탄산기 순환 이용을 실현하는 동시에, 중금속을 침강하는 보조재의 사용량을 줄인다.The present invention utilizes the property of containing carbonic acid groups in the lithium precipitation mother liquid to precipitate heavy metals in the battery material raffinate liquid, thereby realizing the carbonic acid group cycle utilization of the lithium precipitation mother liquid and reducing the amount of use of auxiliary materials for precipitating heavy metals.

본 발명이 제조하는 탄산 리튬-나트륨의 함유량은 0.1%보다 적고, 탄산 리튬의 질량 함유량의 비율이 98.50%보다 높고, 불소 함유량이 0.020%보다 적고, 각 지표는 인더스트리얼 그레이드 탄산 리튬의 수준 요구를 만족시킨다.The lithium carbonate content produced by the present invention is less than 0.1%, the mass content of lithium carbonate is higher than 98.50%, the fluorine content is less than 0.020%, and each indicator meets the level requirements of industrial grade lithium carbonate make it

도 1은 본 발명에 따른 실시예가 배터리재료 추잔액(raffinate)에서 리튬을 회수하는 공정흐름도이다.1 is a process flow chart for recovering lithium from a battery material raffinate according to an embodiment of the present invention.

이하, 도면과 결합하고 구체 실시방식을 통해 본 발명의 기술방안을 진일보 설명한다. 본 기술분야의 기술자들은 상기 실시예가 본 발명에 대한 이해를 도울 뿐이며, 본 발명을 상세하게 한정하는 것으로 보지 말아야 한다는 것을 이해하여야 할 것이다.Hereinafter, the technical solution of the present invention will be further described in conjunction with the drawings and specific implementation methods. Those skilled in the art should understand that the above examples only aid in understanding the present invention, and should not be viewed as limiting the present invention in detail.

실시예 1Example 1

상온 조건에서, 통상적으로 배터리재료 추잔액(raffinate)에 3%의 불소제거제를 첨가하고, 교반을 진행하고, 불소 제거 pH를 4.5로 제어하고, 0.5h 반응시킨 후에 불소를 제거한 슬러리를 압출해 여과하고, 불소를 함유한 불소제거제는 0.5mol/L의 수산화 나트륨 용액을 통해 재생되어 불소를 제거하고, 재생된 후의 불소제거제는 배터리재료 추잔액 슬러리화 후에 불소 제거 공정단계로 리턴되는 것을 통해 순환 사용되며; 압출해 여과하고 분리해 얻은 불소 제거 후 액체에 질량 농도가 15%인 인 제거제 용액을 첨가하고, pH를 3.99로 제어하고, 인 제거 시간은 30min으로 인 제거 작업을 진행하고, 인을 제거한 슬러리는 압출과 여과를 통해 분리한다. 인을 제거하고 압출해 여과한 후의 액체에 리튬 침강 모액(인 제거 후 액체와 리튬 침강 모액의 질량비는 3:1)을 첨가해 pH를 10.0까지 조절하고, 온도는 60℃이고, 60min 반응시킨 후에 침강된 중금속 슬러리를 압출해 여과하고, 침출을 통해 니켈을 함유한 중금속 찌꺼기를 회수한다.At room temperature, usually 3% of a fluoride removal agent is added to the raffinate of the battery material, stirred, the fluorine removal pH is controlled to 4.5, and after reacting for 0.5 h, the fluorine-removed slurry is extruded and filtered And, the fluoride removal agent containing fluorine is regenerated through 0.5 mol/L sodium hydroxide solution to remove fluorine, and the fluoride removal agent after being regenerated is recycled and returned to the fluoride removal process step after slurrying the battery material raffinate solution. become; After removal of fluorine obtained by extrusion, filtration, and separation, a phosphorus remover solution having a mass concentration of 15% was added to the liquid, the pH was controlled to 3.99, the phosphorus removal time was 30 min, and the phosphorus removal operation was performed. It is separated by extrusion and filtration. Lithium precipitation mother liquid (mass ratio of liquid and lithium precipitation mother liquid after phosphorus removal is 3:1) is added to the liquid after phosphorus is removed, extruded and filtered to adjust the pH to 10.0, the temperature is 60° C., and after reacting for 60 minutes The precipitated heavy metal slurry is extruded and filtered, and heavy metal residues containing nickel are recovered through leaching.

침강된 중금속을 압출해 여과한 후의 액체에 98%의 황산을 첨가해 pH를 4.0까지 조절한 후, 32%의 액상 수산화 나트륨을 첨가해 pH를 7.0까지 조절하고, 산성-알칼리성 조절 후의 액체는 이중효과 순환 증발기를 통해 증발하고, 증발과정에서는 농축비를 4배로 제어하고, 증발 모액은 이론량의 1.1배에 의해, 30%의 탄산나트륨 용액을 첨가해 리튬을 침강시키고, 리튬 침강 온도는 80℃이고, 리튬 침강 시간은 2h이고, 모액은 멀티드롭 분산을 통해 리튬 침강 용기에 첨가한다. 산출된 탄산 리튬은 국가의 인더스트리얼 그레이드(industrial grade) 탄산 리튬 표준(GB/T11075-2013)에 도달한다.After the precipitated heavy metal is extruded and filtered, 98% sulfuric acid is added to the liquid to adjust the pH to 4.0, then 32% liquid sodium hydroxide is added to adjust the pH to 7.0, and the liquid after acid-alkaline adjustment is double Evaporation through the effect circulation evaporator, the concentration ratio is controlled 4 times during the evaporation process, the evaporation mother liquid is 1.1 times the theoretical amount, 30% sodium carbonate solution is added to precipitate lithium, and the lithium precipitation temperature is 80 ° C. , the lithium precipitation time is 2 h, and the mother liquor is added to the lithium precipitation vessel through multi-drop dispersion. The produced lithium carbonate reaches the national industrial grade lithium carbonate standard (GB/T11075-2013).

표 1 배터리재료 추잔액 성분표Table 1 Battery material weight balance composition table

Figure pat00001
Figure pat00001

표 2 불소제거 인제거 압출 여과 후 액체의 성분표Table 2 Composition Table of Liquids after Fluoride Removal Phosphorus Removal Extrusion Filtration

Figure pat00002
Figure pat00002

표 3 탄산 리튬 성분표Table 3 Lithium Carbonate Composition Table

Figure pat00003
Figure pat00003

표 4 황산나트륨 성분표Table 4 Sodium Sulfate Ingredients Table

Figure pat00004
Figure pat00004

실시예 2Example 2

상온 조건에서, 통상적으로 배터리재료 추잔액에 5%의 불소제거제를 첨가하고, 교반을 진행하고, 불소 제거 pH를 5.0로 제어하고, 1h 반응시킨 후에 불소를 제거한 슬러리를 압출해 여과하고, 불소를 함유한 불소제거제는 1mol/L의 수산화 나트륨 용액을 통해 재생되어 불소를 제거하고, 재생된 후의 불소제거제는 배터리재료 추잔액 슬러리화 후에 불소 제거 공정단계로 리턴되는 것을 통해 순환 사용되며; 압출해 여과하고 분리해 얻은 불소 제거 후 액체에 질량 농도가 10%인 인 제거제 용액을 첨가하고, pH를 4.12로 제어하고, 인 제거 시간은 50min으로 인 제거 작업을 진행하고, 인을 제거한 슬러리는 압출과 여과를 통해 분리한다. 인을 제거하고 압출해 여과한 후의 액체에 리튬 침강 모액(인 제거 후 액체와 리튬 침강 모액의 질량비는 3:1)을 첨가해 pH를 11.0까지 조절하고, 온도는 50℃이고, 90min 반응시킨 후에 침강된 중금속 슬러리를 압출해 여과하고, 침출을 통해 니켈을 함유한 중금속 찌꺼기를 회수한다.At room temperature, typically, 5% of a fluoride removal agent is added to the battery material weight balance, stirring is performed, the fluorine removal pH is controlled to 5.0, and after reacting for 1 h, the slurry from which fluorine has been removed is extruded and filtered, and fluorine is removed The contained fluorine scavenger is recycled through 1 mol/L sodium hydroxide solution to remove fluorine, and the regenerated fluorine scavenger is recycled and returned to the fluorine removal process step after slurrying the battery material raffinate; After removal of fluorine obtained by extrusion, filtration and separation, a phosphorus remover solution having a mass concentration of 10% was added to the liquid, the pH was controlled to 4.12, and the phosphorus removal time was 50 min. It is separated by extrusion and filtration. Lithium precipitation mother liquid (mass ratio of liquid and lithium precipitation mother liquid after phosphorus removal is 3:1) is added to the liquid after phosphorus is removed, extruded and filtered to adjust the pH to 11.0, the temperature is 50° C., and after 90 minutes of reaction The precipitated heavy metal slurry is extruded and filtered, and heavy metal residues containing nickel are recovered through leaching.

침강된 중금속을 압출해 여과한 후의 액체에 98%의 황산을 첨가해 pH를 3.5까지 조절한 후, 32%의 액상 수산화 나트륨을 첨가해 pH를 7.5까지 조절하고, 산성-알칼리성 조절 후의 액체는 이중효과 순환 증발기를 통해 증발하고, 증발과정에서는 농축비를 5배로 제어하고, 증발 모액은 이론량의 1.05배에 의해, 28%의 탄산나트륨 용액을 첨가해 리튬을 침강시키고, 리튬 침강 온도는 85℃이고, 리튬 침강 시간은 1h이고, 모액은 멀티드롭 분산을 통해 리튬 침강 용기에 첨가한다. 산출된 탄산 리튬은 국가의 인더스트리얼 그레이드 탄산 리튬 표준(GB/T11075-2013)에 도달한다.After the precipitated heavy metal is extruded and filtered, 98% sulfuric acid is added to adjust the pH to 3.5, then 32% liquid sodium hydroxide is added to adjust the pH to 7.5, and the liquid after acid-alkaline adjustment is double. Evaporation through the effect circulation evaporator, the concentration ratio is controlled 5 times in the evaporation process, the evaporation mother liquid is 1.05 times the theoretical amount, 28% sodium carbonate solution is added to precipitate lithium, and the lithium precipitation temperature is 85 ° C. , the lithium precipitation time is 1 h, and the mother liquor is added to the lithium precipitation vessel through multi-drop dispersion. The produced lithium carbonate reaches the national industrial grade lithium carbonate standard (GB/T11075-2013).

표 5 배터리재료 추잔액 성분표Table 5 Battery material weight balance composition table

Figure pat00005
Figure pat00005

표 6 불소제거 인제거 압출 여과 후 액체의 성분표Table 6 Composition Table of Liquids after Fluoride Removal Phosphorus Removal Extrusion Filtration

Figure pat00006
Figure pat00006

표 7 탄산 리튬 성분표Table 7 Lithium Carbonate Composition Table

Figure pat00007
Figure pat00007

표 8 황산나트륨 성분표Table 8 Sodium Sulfate Ingredients Table

Figure pat00008
Figure pat00008

상기 실시방식은 본 발명이 실시하는 일부 세부적인 내용을 설명하였지만,본 발명에 대한 한정으로는 이해하지 말아야 하며, 본 기술분야의 기술자들은 본 발명의 원리와 취지를 벗어나지 않는 전제하에 본 발명의 범위 내에서 그에 대한 변화, 수정, 치환, 변형을 진행할 수 있다.Although the above embodiment has described some details of carrying out the present invention, it should not be understood as a limitation on the present invention, and those skilled in the art should understand the scope of the present invention under the premise that does not depart from the principle and spirit of the present invention Changes, corrections, substitutions, and transformations can be made within it.

Claims (10)

배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법에 있어서,
이하의 단계,
1) 배터리재료 추잔액에 지르코늄 기반 불소제거제를 첨가해 불소를 제거하여 불소 함유량이 3mg/L보다 적은 불소제거 후 액체를 얻는, 불소제거단계;
2) 불소제거 후의 액체에 대해 인 제거제를 통해 인 제거를 진행하고, 얻은 찌꺼기는 교반, 세척, 압출과 여과를 거친 후 폐기하는, 인 제거 단계;
3) 인을 제거한 후의 액체에 액체 보조재를 첨가하여 중금속을 침강하고, 중금속을 침전시킨 후, 압출 여과와 분리를 통해 중금속 침강 모액과 중금속 침강 찌꺼기를 얻는, 중금속을 침강 하는 단계;
4) 중금속 침강 모액에 산성 용액을 첨가하여 pH를 산성까지 조절하고, 잔존 탄산기를 제거한 후에 알칼리성 용액을 첨가하여 pH를 중성까지 조절하는, 산성-알칼리성 조절 단계;
5) 산성-알칼리성 조절 후의 배터리재료 추잔액을 이중효과 순환 증발을 통해 황산나트륨을 석출해 내는 동시에, 리튬 농도를 향상시키는, 증발 농축 단계;
6) 단계 5)에서 얻은 농축 모액에 탄산염을 첨가하고 리튬 침강을 진행하고, 여과와 분리를 거친 후에 조제 탄산 리튬 제품을 얻는 리튬 침강 단계;를 포함하고,
상기 배터리재료 추잔액에서, Li 함유량은 0.5~5g/L이고, 나트륨 함유량은 30~80g/L이고, 중금속 함유량은 0.5~2g/L이고, 불소 함유량은 50~150mg/L이고, 인 함유량은 30~60mg/L인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
In the method for manufacturing by recovering the prepared lithium carbonate from the battery material raffinate,
the following steps,
1) A fluorine removal step of removing fluoride by adding a zirconium-based fluoride removal agent to the battery material purifying liquid to obtain a liquid after removal of fluoride with a fluorine content of less than 3 mg/L;
2) a phosphorus removal step of removing phosphorus from the liquid after fluorine removal through a phosphorus removal agent, and discarding the resulting residue after stirring, washing, extrusion and filtration;
3) precipitating heavy metals by adding a liquid auxiliary to the liquid after phosphorus has been removed, precipitating heavy metals, and then precipitating heavy metals to obtain heavy metal precipitation mother liquor and heavy metal precipitation residues through extrusion filtration and separation;
4) an acidic-alkaline control step of adjusting the pH to acidity by adding an acidic solution to the heavy metal precipitation mother liquor, and adjusting the pH to neutral by adding an alkaline solution after removing the residual carbonic acid;
5) an evaporation and concentration step of precipitating sodium sulfate through double-effect circulation evaporation of the battery material raffinate after acid-alkaline control, and at the same time improving lithium concentration;
6) lithium precipitation step of adding carbonate to the concentrated mother liquor obtained in step 5), performing lithium precipitation, filtration and separation, and obtaining a crude lithium carbonate product;
In the battery material balance, the Li content is 0.5-5 g/L, the sodium content is 30-80 g/L, the heavy metal content is 0.5-2 g/L, the fluorine content is 50-150 mg/L, and the phosphorus content is A method for recovering and manufacturing the prepared lithium carbonate from the battery material weight balance, characterized in that it is 30-60 mg/L.
제1항에 있어서,
단계 1)에서, 상기 지르코늄 기반 불소제거제는 흡착 상한에 도달한 후, 재생 순환을 진행해 이용하는 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
According to claim 1,
In step 1), the zirconium-based fluoride scavenger reaches the upper limit of adsorption, and then proceeds through a regeneration cycle to recover and manufacture the crude lithium carbonate from the battery material raffinate solution.
제1항에 있어서,
단계 1)에서, 지르코늄 기반 불소제거제의 재생과정에서 이용하는 재생액의 수산화 나트륨의 농도는 0.1~2mol/L이고, 재생액과 지르코늄 기반 불소제거제의 질량비는 2 내지 8:1이고, 재생 온도는 상온이고, 재생시간은 30~60min이고; 상기 지르코늄 기반 불소제거제의 주요 함량은 ZrO2+TIO2≥33%인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
According to claim 1,
In step 1), the concentration of sodium hydroxide in the regeneration liquid used in the regeneration process of the zirconium-based fluoride removal agent is 0.1 to 2 mol/L, the mass ratio of the regeneration liquid to the zirconium-based fluorine remover is 2 to 8:1, and the regeneration temperature is room temperature , and the playing time is 30 to 60 min; The main content of the zirconium-based fluoride removal agent is ZrO 2 +TIO 2 A method for recovering and manufacturing the prepared lithium carbonate from the battery material raffinate, characterized in that ≥33%.
제1항 또는 제2항에 있어서,
단계 2)에서, 중금속 침강 찌꺼기는 침출 공법을 통해 유가금속을 회수하는 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 2), the heavy metal sedimentation residue is a method of recovering and manufacturing crude lithium carbonate from the battery material raffinate, characterized in that the valuable metal is recovered through a leaching method.
제1항 또는 제2항에 있어서,
단계 1)에서, 상기 지르코늄 기반 불소제거제의 첨가 질량은 배터리재료 추잔액 질량의 1~10%이고, 불소를 제거하는 과정에서 pH를 3~8로 제어하고, 온도는 상온이고, 시간은 10~90min인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 1), the added mass of the zirconium-based fluoride removal agent is 1 to 10% of the mass of the battery material raffinate, and in the process of removing fluorine, the pH is controlled to 3 to 8, the temperature is room temperature, and the time is 10 to A method for recovering and manufacturing the prepared lithium carbonate from the battery material weight balance, characterized in that it is 90 min.
제1항 또는 제2항에 있어서,
단계 2)에서, 상기 인 제거제는 황산철, 수산화 칼슘과 황산알루미늄 중 하나 또는 다수 개의 혼합물이고, 질량 농도를 10%~30%로 배합한 후에 사용하고, 인 제거제 용액의 첨가 질량은 배터리재료 추잔액 질량의 0.01%~0.02%이고, 인 제거 pH는 3~10이고, 온도는 상온이고, 반응시간은 10~90min인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 2), the phosphorus remover is one or a mixture of iron sulfate, calcium hydroxide, and aluminum sulfate, and is used after mixing the mass concentration of 10% to 30%, and the added mass of the phosphorus remover solution is the weight of the battery material. 0.01% to 0.02% of the mass of the balance, the phosphorus removal pH is 3 to 10, the temperature is room temperature, and the reaction time is 10 to 90 min.
제1항 또는 제2항에 있어서,
단계 3)에서, 상기 액체 보조재는 탄산기를 함유하는 리튬 침강 모액이고, 리튬 침강 모액과 인 제거 후 액체의 첨가 비율은 1/5~1:1이고, 반응 온도는 50℃~70℃이고, 반응시간은 50~120min이고, 반응 pH는 8.5~13인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 3), the liquid auxiliary material is a lithium precipitation mother liquor containing a carbonic acid group, the addition ratio of the lithium precipitation mother liquid and the liquid after phosphorus removal is 1/5 to 1:1, the reaction temperature is 50 ° C to 70 ° C, the reaction The time is 50 ~ 120 min, and the reaction pH is 8.5 ~ 13.
제1항 또는 제2항에 있어서,
단계 4)에서, 이용하는 산성 용액은 95%~98%의 황산 용액이고, 이용하는 알칼리성 용액은 30%~32%의 액체 수산화 나트륨이고, 산성 조절 pH 는 3~6이고, 알칼리성 조절 pH는 6~9인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 4), the acidic solution used is 95%-98% sulfuric acid solution, the alkaline solution used is 30%-32% liquid sodium hydroxide, the acidic control pH is 3-6, and the alkaline control pH is 6-9 A method for recovering and manufacturing the prepared lithium carbonate from the battery material weight balance, characterized in that
제1항 또는 제2항에 있어서,
단계 5)에서, 증발 농축비는 3~10배이고, 증발 모액의 리튬 농도는 10~20g/L인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 5), the evaporation concentration ratio is 3 to 10 times, and the lithium concentration of the evaporation mother liquid is 10 to 20 g/L.
제1항 또는 제2항에 있어서,
단계 6)에서, 선택된 탄산염은 탄산나트륨이고, 질량 농도는25%~32%이고, 리튬을 침강하는 과정에서 이용하는 멀티드롭 분산 방식은 농축 모액을 첨가하고, 리튬 침강 온도는 80℃보다 높고, 리튬 침강 시간은 0.5~3h이고, 순수 알칼리 첨가량은 이론량의 1.05~1.15배인 것을 특징으로 하는 배터리재료 추잔액에서 조제 탄산 리튬을 회수해 제조하는 방법.
3. The method of claim 1 or 2,
In step 6), the selected carbonate is sodium carbonate, the mass concentration is 25% to 32%, the multi-drop dispersion method used in the process of precipitating lithium is to add a concentrated mother liquor, the lithium precipitation temperature is higher than 80 ° C., lithium precipitation The time is 0.5 to 3 h, and the amount of pure alkali added is 1.05 to 1.15 times the theoretical amount.
KR1020210125166A 2021-07-19 2021-09-17 Method for recovering and manufacturing crude lithium carbonate from the battery meterial raffinate KR20220140396A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110814246.2A CN113582206A (en) 2021-07-19 2021-07-19 Method for recovering and preparing crude lithium carbonate from battery material raffinate
CN202110814246.2 2021-07-19

Publications (1)

Publication Number Publication Date
KR20220140396A true KR20220140396A (en) 2022-10-18

Family

ID=78248096

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210125166A KR20220140396A (en) 2021-07-19 2021-09-17 Method for recovering and manufacturing crude lithium carbonate from the battery meterial raffinate

Country Status (2)

Country Link
KR (1) KR20220140396A (en)
CN (1) CN113582206A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203635187U (en) * 2013-10-16 2014-06-11 抚顺市禄通化工有限公司 High-efficiency reaction kettle
CN108002410B (en) * 2016-10-31 2019-10-18 湖南金源新材料股份有限公司 Lithium is recycled from low content extraction tail water and extracts the circulation utilization method of tail water

Also Published As

Publication number Publication date
CN113582206A (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN108899601B (en) Method for recovering lithium and iron from lithium iron phosphate
US11414324B2 (en) Method for extracting lithium from salt lake brine and simultaneously preparing aluminum hydroxide
CN109775678B (en) Method for preparing battery-grade iron phosphate and industrial-grade lithium phosphate from waste lithium iron phosphate batteries
CN110541075B (en) Method for recycling lithium cobaltate positive electrode material
CN107416908B (en) A kind of method that low cost prepares high-purity sulphuric acid manganese solution
CN109110788B (en) Method for comprehensively utilizing lithium and magnesium resources in salt lake brine
CN103114211A (en) Method for extracting lithium from primary lithium extraction solution of lithium ore
CN108517422B (en) Method for efficiently recovering lithium from lithium-containing multi-metal mixed solution
CN111268701A (en) Method for preparing battery-grade lithium hydroxide by using lepidolite
CN111137909B (en) Method for stepwise recovering lithium and magnesium in salt lake brine
CN110902699B (en) Method for preparing high-purity potassium sulfate from waste residue raw material obtained after lithium is extracted from lepidolite
CN111118311B (en) Manganese-lithium separation method in comprehensive recovery of ternary battery waste
CN103408046B (en) Method for separating sodium and magnesium from laterite-nickel ore smelting primary wastewater
CN113206227A (en) Method for preparing carbon-based metal sulfide negative electrode material by simultaneously recycling positive and negative electrode materials of waste nickel-cobalt-manganese lithium ion battery
CN109930000B (en) Method for purifying lepidolite leaching solution
CN116440873A (en) Adsorbent for adsorbing lithium from refined liquid of alumina produced by Bayer process and use method thereof
CN110759364A (en) Method for preparing high-purity lithium carbonate by using crude lithium phosphate
KR20220140396A (en) Method for recovering and manufacturing crude lithium carbonate from the battery meterial raffinate
CN214830594U (en) Lithium extraction device by carbonate type salt lake adsorption method
CN110104665B (en) Method for preparing lithium carbonate by using lithium fluoride waste liquid
CN113666397A (en) Method for economically recycling lithium from waste lithium iron phosphate material by acid process
CN102730723B (en) High-concentration salt pan enriching method of Li<+> in sulfate type salt lake brine
CN117327923B (en) Method for jointly extracting lithium from waste aluminum electrolyte and overhaul slag
CN114836621B (en) Process and device for extracting lithium by using carbonic acid type salt lake adsorption method
CN114231741B (en) Method for selectively separating lithium from potassium

Legal Events

Date Code Title Description
G15R Request for early publication
E902 Notification of reason for refusal