KR20220138302A - heat pump type hotgasdefrostsystem refrigeration system - Google Patents

heat pump type hotgasdefrostsystem refrigeration system Download PDF

Info

Publication number
KR20220138302A
KR20220138302A KR1020210044333A KR20210044333A KR20220138302A KR 20220138302 A KR20220138302 A KR 20220138302A KR 1020210044333 A KR1020210044333 A KR 1020210044333A KR 20210044333 A KR20210044333 A KR 20210044333A KR 20220138302 A KR20220138302 A KR 20220138302A
Authority
KR
South Korea
Prior art keywords
defrosting
refrigeration
refrigeration system
temperature
evaporator
Prior art date
Application number
KR1020210044333A
Other languages
Korean (ko)
Inventor
홍용
Original Assignee
홍용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍용 filed Critical 홍용
Priority to KR1020210044333A priority Critical patent/KR20220138302A/en
Publication of KR20220138302A publication Critical patent/KR20220138302A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

During refrigeration operation, a cycle is operated to a compressor, an oil separator, four-way valves A to B, a lower inlet and an upper outlet of a condenser, a dryer, side glass, a capillary tube, an evaporator, four-way valves D to C, the liquid separator, and the compressor. During defrosting operation, the cycle is operated to the compressor, the oil separator, four-way valves A to D, a lower inlet and an upper outlet of an evaporator, the capillary tube, the side glass, the dryer, an upper inlet and a lower outlet of a condenser, four-way valves B to C, the liquid separator, and the compressor.

Description

히트펌프식 핫가스제상시스템 냉동장치{heat pump type hotgasdefrostsystem refrigeration system} Heat pump type hot gas defrost system refrigeration system {heat pump type hotgas defrostsystem refrigeration system}

본 발명은 냉장 냉동장치 운전중 증발기 코일에 성에가 부착되면 전열 불량이 According to the present invention, when frost is attached to the evaporator coil during operation of a refrigeration and freezing device, heat transfer failure is prevented.

되므로 주기적으로 성에제거를 해야한다.이기능을 제상(Defrost)이라고 한다 Therefore, defrost must be periodically removed. This function is called Defrost.

본 발명은 히트펌프식 핫가스제상기능으로 기존 방법보다 훨신 안전하며, 전기에너지소비효율 또한 매우 우수한 방법에 관한 것이다. The present invention relates to a method that is much safer than the conventional method with a heat pump-type hot gas defrosting function, and is also very excellent in electrical energy consumption efficiency.

본 발명은 기존의 가장 많이 사용되고있는 전기제상방식을 핫가스제상방식으로 The present invention is a hot gas defrosting method by using the electric defrost method, which is the most used conventional method.

적용하고자 발명하게 되었다 Invented to apply

기존 전기제상방식은 유니트쿨러 본체 즉 몸통에 히터봉을 삽입하여 전기를 인가하면 가열이 되면서 유니트쿨러코일에 착상된 성에를 제거하는 제상방식이다. 설치작업이 단순하고 편리하기때문에 많이 채택하는 방식이다. The existing electric defrost method is a defrosting method that removes the frost formed on the unit cooler coil while heating when electricity is applied by inserting a heater rod into the unit cooler body, that is, the body. This method is widely adopted because the installation work is simple and convenient.

성에제거시 유니트쿨러에 상당히 많은 수분이 발생한다. When defrosting, a lot of moisture is generated in the unit cooler.

이때 유니트쿨러 코일상단에부착된성에가 녹으면서 하단으로 수분이 흐르게 되는 데 가열된 전기히터봉에 접촉되면서 균열이 생겨 수분침투로 인한 누전이 발생된 다. At this time, as the frost attached to the top of the unit cooler coil melts, moisture flows to the bottom, and when it comes into contact with the heated electric heater rod, cracks form and a short circuit occurs due to moisture penetration.

누전으로 인한 화재의 위험성이 가장큰 문제점으로 지적되고 있다. The risk of fire due to short circuit is pointed out as the biggest problem.

효율 낮은 제상방법으로 길어진 전기제상시간 이로인한 전기에너지과다사용, Long electric defrost time due to low-efficiency defrosting method, excessive use of electric energy,

보관품에 대한 품질 저하등을 해결하고자 핫가스제상시스템을 발명하게 되었다. The hot gas defrosting system was invented to solve the deterioration of the quality of stored products.

본 발명은 간단하면서도 가장 효율적인 핫가스제상시스템으로 복잡하지않고 쉽게 The present invention is a simple and most efficient hot gas defrosting system that is not complicated and easily

적용 할수있도록 발명하였다. Invented to be applicable.

본 발명은 사방변과 양방향팽창변 또는 모세관을 사용하여 고온고압의 냉매가스를 제상시 유니트쿨러 냉각코일 출구측으로 고온고압의 토출가스를 유입시켜 증발기 코일에 부착된 성에를 제거한다. The present invention removes the frost attached to the evaporator coil by introducing the high-temperature and high-pressure discharge gas to the outlet side of the unit cooler cooling coil when defrosting the high-temperature and high-pressure refrigerant gas using a four-sided and bidirectional expansion valve or capillary tube.

증발기 코일 표면에 부착된 성에는 코일내부로 순환되는 고온고압의 핫가스가 직 접열전달되며 빠르게 성에를 제거하게된다. In the frost attached to the surface of the evaporator coil, the high-temperature, high-pressure hot gas circulated inside the coil is directly transferred and the frost is quickly removed.

본 발명 핫가스제상시스템 적용시 제상시간은 약5분정도 소요되며, 전기제상시간 20분보다 1/4일 수준으로 월등한 에너지절감효과가 있다 When the hot gas defrosting system of the present invention is applied, the defrosting time takes about 5 minutes, and there is a superior energy saving effect at the level of 1/4 day than the electric defrosting time of 20 minutes.

짧은 제상시간으로 보관품에 대한 품질을 최상으로 유지할수있으며, 화재의 위험 성도 차단할수있다. With a short defrosting time, the quality of the stored items can be maintained at the best level, and the risk of fire can also be blocked.

본 발명의 히트펌프식 핫가스제상시스템의 필수 부품과 기준냉동4대사이클을 표현했다. The essential parts of the heat pump type hot gas defrosting system of the present invention and the four standard refrigeration cycles are expressed.

본 발명은 냉동4대사이클을 기본으로하며 최소한의 구성으로 최대의 효율을 낼수 있도록 발명하였으며,냉동기계(실외기) 제작시 반드시 사방변(50)을 부착한다. The present invention is based on four cycles of refrigeration and was invented to achieve maximum efficiency with a minimum configuration, and the four sides 50 must be attached when manufacturing a refrigeration machine (outdoor unit).

본 발명은 핫가스제상시스템의 이해를 돕기위해 기본 냉동사이클을 먼저 설명하도 록하겠다. The present invention will first explain the basic refrigeration cycle to help the understanding of the hot gas defrosting system.

냉동운전시 압축기(10)에서 압축된 고온고압의 토출된 가스는 유분리기(180)를 During the refrigeration operation, the high-temperature and high-pressure discharged gas compressed in the compressor (10) is discharged by the oil separator (180).

거쳐 사방변(50)A에서B로 통과한다. It passes from A to B on the four sides 50.

고온,고압의 냉매가스는 응축기(20)하단출구가 입구가된다.이유는 핫가스제상시스 템 동작시 The high-temperature, high-pressure refrigerant gas becomes the inlet at the bottom outlet of the condenser 20. The reason is that when the hot gas defrost system is operating

응축기가 증발기역활을 하게되는데 이때 증발과정이 상단에서 하단으로 순환해야 원활한 증발압력으로 운전이 가능하며,저온저압상태에서도 오일회수가 가능하다. The condenser plays the role of the evaporator. At this time, the evaporation process must circulate from the top to the bottom so that it can be operated at a smooth evaporation pressure, and oil can be recovered even at low temperature and low pressure.

때문에 냉동운전시 배관순환도는 응축기(20)입출구를 바꾸어 작업해야한다. Therefore, in the refrigeration operation, the pipe circulation diagram must be worked by changing the inlet and outlet of the condenser (20).

냉동운전시 응축기(20)는 고온고압의 냉매가스가 아래에서 위로 순환하는 시스템 이된다. During the refrigeration operation, the condenser 20 becomes a system in which high-temperature and high-pressure refrigerant gas circulates from bottom to top.

응축기(20)는 고온고압의 냉매가스이기때문에 오일체류 및 가스흐름상태에 영향을 주지않는다. Since the condenser 20 is a high-temperature and high-pressure refrigerant gas, it does not affect oil retention and gas flow conditions.

응축기(20)에서 응축된 고온,고압의 냉매액은 만액상태가되면서 아래에서 위로 순 환하게 된다. The high-temperature, high-pressure refrigerant liquid condensed in the condenser 20 circulates from the bottom to the top while being in a full state.

up feed방식은 만액상태의 자연스러운 순환구조를 만들게된다. The up-feed method creates a natural circulation structure in the full state.

때문에 별도의 수액기를 부착하지 않아도 효율적 운전이 된다. Therefore, efficient operation is achieved without attaching a separate receiver.

만액상태의 고온고압은 냉매액은 드라이어(60),사이드글라스(70)를 지나 The high-temperature and high-pressure refrigerant in the full state passes through the dryer (60) and the side glass (70).

모세관(30)을 통과한다. It passes through the capillary (30).

이때 교축작용이 이루워지며 저온저압의 냉매액이 증발기(40)유니트쿨러를 지나면 서 저온저압의 냉매가스로 상태변화를하게된다. At this time, the throttling action is achieved, and as the low-temperature and low-pressure refrigerant liquid passes through the evaporator 40 unit cooler, the state changes to low-temperature and low-pressure refrigerant gas.

사방변(50)D에서C로 순환하며 액분리기(190)을 거쳐 저온저압의 냉매가스만을 압 축기(10)로 유입하게된다. It circulates from the four sides (50) D to C, and only the low-temperature and low-pressure refrigerant gas is introduced into the compressor (10) through the liquid separator (190).

이과정을 압축(10),응축(20),팽창(30),증발(40) 이라고 하며, This process is called compression (10), condensation (20), expansion (30), evaporation (40),

냉동4대 사이클이라고한다. It is called the 4 refrigeration cycle.

증발기(40)는 실제적 냉각이 이루워지는 장치이며, Evaporator 40 is a device in which actual cooling is made,

이때 증발기코일표면에 성에가 부착된다. At this time, frost is attached to the surface of the evaporator coil.

성에제거가 이뤄지지 않으면 전열 불량으로 냉동능력이 저하된다. If defrost is not performed, the refrigeration capacity is reduced due to poor heat transfer.

증발기(40)종류는 여러가지가 있는데 저온저장고에 가장많이 사용되는 유니트쿨러 를 예로 발명에 대한 구체적인 내용을 서술하겠다. There are various types of the evaporator 40, and the specific contents of the invention will be described with an example of the unit cooler used most in the low-temperature storage.

상기내용은 냉동운전 기본사이클이며,제상시 사방변(50)이 동작하여 토출된 고온 고압의 냉매가스는 A에서D로 순환하며 증발기(40)유니트쿨러로 유입된다. The above is the basic cycle of the refrigeration operation, and the high-temperature and high-pressure refrigerant gas discharged by operating the four sides 50 during defrost circulates from A to D and flows into the evaporator 40 unit cooler.

지금부터는 역순환시스템으로 핫가스제상시스템이 이뤄지게된다. From now on, the hot gas defrosting system will be implemented as a reverse circulation system.

토출된 고온고압의 냉매가스가 증발기(40)코일 표면에 착상된 성에를 제거하기 시 작한다. The discharged high-temperature and high-pressure refrigerant gas begins to remove the frost formed on the surface of the evaporator (40) coil.

사실상 증발기(40)는 응축기기능이 되고,성에를 제거하기 시작한다. In effect, the evaporator 40 functions as a condenser and begins to defrost.

핫가스제상시간은 약5분으로 설정하며 압축기(10)는 5분동안 쉬지않고 제상기능을 수행하게된다. The hot gas defrost time is set to about 5 minutes, and the compressor 10 performs the defrosting function without rest for 5 minutes.

고온고압의 냉매가스는 성에제거를 하면서 열교환이 되고, 고온고압의 냉매액으로 상태변화를 하며 증발기(40)를 빠져나간다.이때도 고온고압의 냉매가스는 아래에 서 위로 순환하는 구조가 된다. The high-temperature and high-pressure refrigerant gas undergoes heat exchange while defrosting, and the state changes into the high-temperature and high-pressure refrigerant liquid and exits the evaporator 40. At this time, the high-temperature and high-pressure refrigerant gas circulates from the bottom to the top.

고온고압의 냉매액은 모세관(30)으로 유입되며 출구를 지나 저온저압의 냉매가스 로증발하면서 사이드글라스(70)드라이어(60) 응축기(20) 상단으로 흐르게된다. The high-temperature and high-pressure refrigerant liquid flows into the capillary tube 30, passes through the outlet and evaporates into low-temperature and low-pressure refrigerant gas, and flows to the top of the side glass 70, the dryer 60, and the condenser 20.

응축기(20)는 사실상 증발기기능을 하게되고 증발된 저온저압의 냉매가스는 사방 변(50)B에서C로 순환하여 액분리기(190)거쳐 저온저압의 냉매가스만을 압축기(10) 으로 유입하게된다. The condenser 20 actually functions as an evaporator, and the evaporated low-temperature and low-pressure refrigerant gas circulates from all sides 50 B to C, and only the low-temperature and low-pressure refrigerant gas flows into the compressor 10 through the liquid separator 190. .

본 발명의 핵심은 사방변과 양방향 팽창변 또는 모세관을 이용하여 기본4대 냉동 사이클을 이용하여 복잡하지 않게 핫가스제상시스템을 구현하는것이다. The core of the present invention is to implement a hot gas defrosting system without complexity using four basic refrigeration cycles using a four-sided and bidirectional expansion valve or capillary tube.

10:압축기 180:유분리기
20:응축기 190:액분리기
30:모세관(양방향팽창변) 140:고,저압력스위치
40:증발기
50:사방변
60:드라이어
70:사이드글라스(액면계)
10: compressor 180: oil separator
20: condenser 190: liquid separator
30: capillary tube (two-way expansion valve) 140: high, low pressure switch
40: evaporator
50: all sides
60: Dryer
70: side glass (level gauge)

Claims (3)

냉동장치 운전중 증발기코일에 부착되는 성에를 제거하는 방법으로 제상시
압축기에서 압축된 고온고압의 토출가스를 사방변의 전환으로 증발기 출구로 유입 되며 냉동장치가 역순환사이클되어 핫가스제상이 이뤄지게 되는 방법 및 장치이다 오직 사용하고 있는 냉매만으로 제상기능를 수행하게되는것이다.




When defrosting by removing the frost adhering to the evaporator coil while the refrigeration system is running
This is a method and device in which the high-temperature and high-pressure discharge gas compressed from the compressor is introduced into the evaporator outlet by changing all sides, and the refrigeration system is reverse cycled to achieve hot gas defrosting.




제 1 항에 있어서
제상시 작동되는 사방변이 유니트 제작시 실외기에 반드시 대표도 처럼 부착되어야 한다.
일반 냉동장치에서는 정방향 팽창변을 사용하지만 본 발명장치에서는 입출구가
정해져 있지 않은 양방향 팽창변이나 모세관을 필히 사용한다.
냉동능력에 따라 소형에는 모세관사용을 권장하며,
중,대형에서는 양방향 팽창변을 사용한다.

2. The method of claim 1
When manufacturing a four-sided unit that operates during defrost, it must be attached to the outdoor unit as shown in the representative diagram.
In a general refrigeration system, a forward expansion valve is used, but in the present invention, the inlet and outlet are
An unspecified bidirectional expansion valve or capillary tube must be used.
Depending on the refrigeration capacity, it is recommended to use a capillary tube for small
For medium and large sizes, use bidirectional expansion valves.

제 2 항에 있어서
핫가스제상시스템적용시 필수 부품 부착 및 준비가 되면 냉동설비시
복잡하지 않은시공으로 공사시간단축,공사비용절감,전기에너지 절감,
화재로 부터 안정성을 얻을수 있다.




3. The method of claim 2
When the hot gas defrosting system is applied, the necessary parts are attached and ready when the refrigeration equipment is installed.
Reduction of construction time, reduction of construction cost, reduction of electric energy,
Stability can be obtained from fire.




KR1020210044333A 2021-04-05 2021-04-05 heat pump type hotgasdefrostsystem refrigeration system KR20220138302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210044333A KR20220138302A (en) 2021-04-05 2021-04-05 heat pump type hotgasdefrostsystem refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210044333A KR20220138302A (en) 2021-04-05 2021-04-05 heat pump type hotgasdefrostsystem refrigeration system

Publications (1)

Publication Number Publication Date
KR20220138302A true KR20220138302A (en) 2022-10-12

Family

ID=83597765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210044333A KR20220138302A (en) 2021-04-05 2021-04-05 heat pump type hotgasdefrostsystem refrigeration system

Country Status (1)

Country Link
KR (1) KR20220138302A (en)

Similar Documents

Publication Publication Date Title
CN102395840B (en) Freezer-refrigerator
KR100785116B1 (en) Refrigerator
KR101202287B1 (en) The heat pump system have to double pipe type evaporater for of cooling and heating water production to very stability the same time driving mode heat pump cycle
CN106225358A (en) Cold storage hot gas defrosting refrigeration system and heat accumulating type steam defrosting heat pump system
CN103900310A (en) Solution desiccant system and method for preventing air source heat pump water heater from frosting
CN108844265A (en) A kind of energy-saving and water-saving type heat water-spraying removes defrosting system
CN110779228A (en) Compression driving type two-phase indirect cooling system
CN101285633A (en) Energy-saving refrigeration system of hot gas frost melting
CN109724289B (en) Multi-effect regeneration frostless heat pump system device and method
KR101715863B1 (en) Defrost system at low temperature device
KR20130086404A (en) Apparatus of hot water supplying and heating room using two stage refrigerating cycle
KR101262927B1 (en) Apparatus for dual heat pump
CN105135553A (en) Multiple-on-line system and method for enhancing supercooling degree of multiple-on-line system
KR101209511B1 (en) Refrigerant circuits system of the heat pump
CN205783233U (en) A kind of ultra low temperature overlapping formula heating unit
CN1858523A (en) Energy storaging defrosting refrigerator
CN101368777A (en) Liquid coolant defrosting and refrigeration system
KR20220138302A (en) heat pump type hotgasdefrostsystem refrigeration system
KR100816450B1 (en) Air conditioning method and system using brine heat exchanger
CN115540361A (en) Defrosting control method for low-ambient-temperature air source heat pump hot water unit
KR200274119Y1 (en) Heat pump system
CN211261344U (en) Continuous heating defrosting-free air conditioner
CN104833147A (en) Vacuum precooling and fresh-keeping equipment capable of preventing ice blockage of cold trap
KR101249817B1 (en) Defrost operation method of the heat pump
CN109827355A (en) Freezer is freezed with hot fluorine defrosting type air injection enthalpy-increasing and two alliance machine set system of hot water

Legal Events

Date Code Title Description
E601 Decision to refuse application
E601 Decision to refuse application