KR20220122914A - Composition for treatment of lung cancer including extract of beet as an effective ingredient - Google Patents

Composition for treatment of lung cancer including extract of beet as an effective ingredient Download PDF

Info

Publication number
KR20220122914A
KR20220122914A KR1020210027041A KR20210027041A KR20220122914A KR 20220122914 A KR20220122914 A KR 20220122914A KR 1020210027041 A KR1020210027041 A KR 1020210027041A KR 20210027041 A KR20210027041 A KR 20210027041A KR 20220122914 A KR20220122914 A KR 20220122914A
Authority
KR
South Korea
Prior art keywords
extract
beet
composition
lung cancer
activity
Prior art date
Application number
KR1020210027041A
Other languages
Korean (ko)
Inventor
이재혁
박정숙
Original Assignee
남부대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남부대학교산학협력단 filed Critical 남부대학교산학협력단
Priority to KR1020210027041A priority Critical patent/KR20220122914A/en
Publication of KR20220122914A publication Critical patent/KR20220122914A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composition for treating lung cancer containing a beet extract as an active ingredient. In addition, the beet extract is the composition for treating lung cancer, characterized in that there is a riboflavin-derived active oxygen inhibitory activity. Through the present invention, it is possible to provide the beet extract having antioxidant or anti-inflammatory effects.

Description

비트추출물을 유효성분으로 포함하는 폐암 치료용 조성물{Composition for treatment of lung cancer including extract of beet as an effective ingredient}Composition for treatment of lung cancer including extract of beet as an effective ingredient

본 발명은 비트추출물을 유효성분으로 포함하는 폐암 치료용 조성물에 관한 것이다. The present invention relates to a composition for treating lung cancer comprising beetroot extract as an active ingredient.

진행성 암환우의 가장 심각한 어려움은 악액질 (cachexia)로 인한 증상들이며, 암환자 사망의 주요 원인이다. 항암 치료를 받는 환우의 경우 발생하는 치료의 부작용은 정상세포의 손상 및 암세포의 파괴로 인한 염증성 물질의 과잉(악액질 cachexia)이며, 암환우의 약 80%는 경험하고 있다. 악액질의 과다는 환자의 고통을 유발하고 수명을 단축시키는 가장 큰 원인이다. 이러한 악액질의 원인은 주로 염증 유발 물질인 사이토카인의 과다이며 이로인한 지속적 염증발현이 가장 큰 문제로 지적되고 있다.상들이며, 암환자 사망원인의 약 80%를 차지하고 지속적 염증과 이로 인한 통증은 해결해야 할 문제이다. The most serious difficulties in patients with advanced cancer are symptoms due to cachexia, which is a major cause of death in cancer patients. In the case of patients receiving chemotherapy, the side effect of treatment is an excess of inflammatory substances (cachexia) due to damage to normal cells and destruction of cancer cells, and about 80% of cancer patients are experiencing it. Excessive cachexia is the biggest cause of suffering and shortening the lifespan of patients. The cause of cachexia is mainly an excess of cytokines, which are inflammatory substances, and the continuous expression of inflammation is pointed out as the biggest problem. They account for about 80% of the causes of death in cancer patients, and the persistent inflammation and pain are resolved. It is a matter to be dealt with.

한편, 산화적 스트레스(Oxidative stress)는 수많은 생리학적 병리학적 현상에서 중요한 역할을 하는데, 산화적 스트레스에 수반되는 활성산소종(reactive oxygen species; ROS)으로는 산소(oxygen, O2), 과산화(superoxide, O-), 수산기 라디칼(hydroxyl radical, HO-), 과산화수소(hydrogen peroxide, H2O2) 등이 있다. 이러한 활성산소종들은 반응성이 매우 커서 체내에서 DNA 변성, 과도한 신호전달 유발 및 단백질 변성 등을 초래한다. 이러한 유해한 반응들은 생체 내에 존재하는 항산화 물질 또는 항산화 효소에 의해 억제되며, 항상성을 유지하도록 되어 있다. 그러나 노화에 따른 항산화 시스템의 노쇠와 지속적인 유해 자극에 의한 활성 산소의 집적은 항상성을 깨뜨려 노화를 촉진시키고, 피부질환, 피부암, 동맥경화 및 혈전과 같은 각종 질병을 유발하기도 한다(Laure Rittie et al., Ageing Research Reviews, 1, 705-720, 2002; Cutler RG, Annals of the New York Academy of Sciences, 1055, 93-135, 2005). On the other hand, oxidative stress (Oxidative stress) plays an important role in numerous physiological and pathological phenomena, as reactive oxygen species (ROS) accompanying oxidative stress include oxygen (O 2 ), peroxidation ( superoxide, O - ), hydroxyl radical (HO - ), hydrogen peroxide (H 2 O 2 ), and the like. These reactive oxygen species are very reactive and cause DNA denaturation, excessive signal transduction and protein denaturation in the body. These harmful reactions are inhibited by antioxidants or antioxidant enzymes present in the living body, and are designed to maintain homeostasis. However, senescence of the antioxidant system according to aging and accumulation of free radicals due to continuous harmful stimuli break homeostasis and promote aging, and cause various diseases such as skin diseases, skin cancer, arteriosclerosis and blood clots (Laure Rittie et al. , Aging Research Reviews, 1, 705-720, 2002; Cutler RG, Annals of the New York Academy of Sciences, 1055, 93-135, 2005).

염증반응은 어떤 자극에 대한 생체 조직의 방어 반응의 하나로, 조직 변질, 순환 장애와 삼출, 조직 증식의 세가지를 병발하는 복잡한 병변을 일컫는다. 또한, 여러 가지 형태의 감염이나 생체 내 대사산물 중의 자극성 물질에 대한 생체 내 방어기전의 발현이라 할 수 있고, 다양한 화학적 매개체가 염증의 발현 기전에 관여하고 있으며, 그 병인도 매우 복잡하다. 이는 조직의 상해 또는 파괴에 의해 유발되는 국소 보호 반응으로, 상해 유발 물질과 상해된 조직 모두를 파괴, 약화시키거나 차폐하는 작용을 한다. 이러한 염증의 특징은 미세혈관이 천공되고, 혈액 성분이 틈새 공간으로 누출되며, 백혈구가 염증 조직으로 이동한다는 것으로, 통상적으로 홍반, 부종, 통각과민 및 통증 등의 임상적 증상들을 동반한다.Inflammatory response is one of the body's defense responses to certain stimuli, and refers to a complex lesion that combines three types: tissue deterioration, circulatory disorder and exudation, and tissue proliferation. In addition, it can be said that it is the expression of a defense mechanism in vivo against various types of infection or irritants in in vivo metabolites, and various chemical mediators are involved in the expression mechanism of inflammation, and the pathogenesis is very complicated. It is a local protective reaction induced by tissue injury or destruction, and acts to destroy, weaken, or mask both the injury-causing agent and the injured tissue. The hallmark of such inflammation is that microvessels are perforated, blood components leak into the interstitial space, and leukocytes migrate to the inflamed tissue, which is usually accompanied by clinical symptoms such as erythema, edema, hyperalgesia and pain.

생체에 있어서 염증의 발생 원인으로는 다양한 생화화적인 현상이 관여하고 있으며, 특히 산화질소를 발생시키는 효소인 니트릭옥사이드 신타제(nitric oxide synthase: NOS)와 프로스타글란딘의 생합성에 관련된 효소들의 염증 반응을 매개하는데 있어서 중요한 역할을 하고 있는 것으로 알려진 바 있다. 이에 L-아르기닌으로부터 NO를 생성시키는 효소인 NOS나 아라키돈산으로부터 프로스타글란딘류를 합성하는데 관련된 효소인 COX는 염증을 차단하는데 있어서 주된 작용을 하고 있다. 최근의 연구 결과에 따르면, NOS는 뇌에 존재하는 bNOS(brain NOS), 신경계에 존재하는 nNOS(neuronal NOS), 혈관계에 존재하는 eNOS(endothelial NOS) 등이 있으며, 체내에 항상 일정수준으로 발현되고 있고, 이들에 의해 소량 생성되는 NO는 신경전달이나 혈관확장을 유도하는 등 정상적인 신체의 향상성 유지에 중요한 역할을 한다. 이에 반하여 각종 사이토카인이나 외부 자극물질에 의해 유도되는 iNOS에 의 해 급격히 과량 발생되는 NO는 세포독성이나 각종 염증반응을 일으키는 것으로 알려져 있으며, 만성 염증은 iNOS 활성의 증가와 관련 있다는 연구가 있다. TNF-와 같은 다기능성 사이토카인은 정상 조직에서 발현될 뿐만 아니라 병변 과정에서 그 발현 정도가 증가되며, 특히 암촉진 과정에서 일어나는 피부염증에 중요한 역할을 한다. TNF-rk 인간의 염증성 피부 질환과 관련이 있음은 이미 많이 보고되어 있다.Various biochemical phenomena are involved as the cause of inflammation in the living body. It is known to play an important role in mediating. Accordingly, NOS, an enzyme that produces NO from L-arginine, or COX, an enzyme involved in synthesizing prostaglandins from arachidonic acid, plays a major role in blocking inflammation. According to recent research results, NOS exists in the brain bNOS (brain NOS), nNOS (neuronal NOS) present in the nervous system, eNOS (endothelial NOS), etc. present in the vascular system, and is always expressed at a certain level in the body. and NO produced in small amounts by them plays an important role in maintaining normal body improvement, such as inducing neurotransmission or vasodilation. On the other hand, NO, which is rapidly excessively generated by iNOS induced by various cytokines or external stimulants, is known to cause cytotoxicity or various inflammatory reactions, and there are studies that chronic inflammation is related to an increase in iNOS activity. Multifunctional cytokines such as TNF- are not only expressed in normal tissues, but their expression level is increased in the course of lesions, and in particular, plays an important role in skin inflammation that occurs in the process of promoting cancer. It has already been reported that TNF-rk is associated with human inflammatory skin diseases.

또한, 여러 염증질환과 알러지 현상에 TNF-에 대한 항체를 처리하였을 때 증상이 완화되었고, TNF-는 호중성 백혈구를 활성화시켜 과산화수소 생성을 증가시킴으로써 내인성 암촉진제로서의 기능도 하고 있다. 따라서, 발암 촉진 단계와 밀접한 관계가 있는 염증 단계에 중추적 역할을 하고 있는 사이토카인 TNF-의 발현을 저해시키거나 COX-2 활성 저해에 기인하는 프로스타글란딘 PGE 2의 생성 억제를 통해 초기 염증성 분자의 증가를 수반하는 병변 과정을 조절할 수 있을 가능성이 높은 것으로 알려져 있다. 즉, 세균감염 하에서 항생제로 치료시, 박테리아를 죽이면서 세포 외막으로부터 방출되는 LPS는 엔도톡신 쇼크를 일으키며, 이러한 과정에 의해 심하게 파괴될 경우에 계속해서 생성되는 LPS를 중화시키지 못하게 된다. In addition, symptoms were alleviated when an antibody against TNF- was treated for various inflammatory diseases and allergic phenomena, and TNF- activates neutrophils and increases the production of hydrogen peroxide, thereby functioning as an endogenous cancer promoter. Therefore, by inhibiting the expression of TNF-, a cytokine that plays a pivotal role in the inflammatory stage closely related to the stage of promoting carcinogenesis, or by inhibiting the production of prostaglandin PGE 2 due to inhibition of COX-2 activity, the increase of the initial inflammatory molecules is prevented. It is known that there is a high possibility of controlling the concomitant lesion process. That is, when treated with antibiotics under bacterial infection, the LPS released from the outer membrane while killing the bacteria causes an endotoxin shock, and when it is severely destroyed by this process, it is not possible to neutralize the continuously generated LPS.

한편, 비트는 항암작용을 하는 것으로 알려져 있다. 비트뿌리 추출물은 유방암과 전립선 암을 예방할 수 있다고 보고되고 있다. 이는 비트뿌리에 함유된 betalain 이라는 성분이 항암작용을 나타낸다고 알려져 있다. 많은 연구가 비트뿌리의 항암 및 암예방 특성을 지지하고 있다. 특히, 레트비트는 betalains, flavonoids, polyphenols, vitamins, folic acid등 항산화 작용을 하는 기능성 물질의 좋은 공급원이다. 특히 레드비트 뿌리의 색소 물질인 베타레인은 red violet 색소물질인 베타시아닌과 yellow 색소물질인 베타잔틴으로 구성되는데 이런 화합물들은 베타레인을 함유하는 여러 천연 물질들 중에서 레드비트에 함유하고 있고, 또한 베타레인의 주물질인 베타닌은 우수한 전자공여능력을 갖는 phenolic group과 cyclic amine group으로 구성되어 있다. On the other hand, beets are known to have anticancer effects. It has been reported that beetroot extract can prevent breast and prostate cancer. It is known that a component called betalain contained in beetroot exhibits anticancer activity. Numerous studies support the anticancer and anticancer properties of beetroot. In particular, lettuce is a good source of functional substances with antioxidant action, such as betalains, flavonoids, polyphenols, vitamins, and folic acid. In particular, betalain, a pigment material in the root of red beet, is composed of betacyanin, a red violet pigment, and betaxanthin, a yellow pigment. Betanine, the main substance of betalain, is composed of a phenolic group and a cyclic amine group with excellent electron donating ability.

1. 대한민국 공개특허 제10-2016-0046782호1. Republic of Korea Patent Publication No. 10-2016-0046782 2. 대한민국 공개특허 제10-2017-0080336호2. Republic of Korea Patent Publication No. 10-2017-0080336

1. Jun Ho Lee and Koo Bok Chin. Evaluation of Antioxidant Activities of Red Beet Extracts, and Physicochemical and Microbial Changes of Ground Pork Patties Containing Red Beet Extracts during Refrigerated Storage. Korean J. Food Sci. An. 32(4), 497-503 (2012)1. Jun Ho Lee and Koo Bok Chin. Evaluation of Antioxidant Activities of Red Beet Extracts, and Physicochemical and Microbial Changes of Ground Pork Patties Containing Red Beet Extracts during Refrigerated Storage. Korean J. Food Sci. An. 32(4), 497-503 (2012) 2. Mi-Ran Yi1, Kang Chang-Hee1,2, Hee-Jung Bu. Antioxidant and anti-inflammatory activity of extracts from red beet(Beta vulagaris) root. Korean J. Food Preserv. 24(3), 413-420 (2017)2. Mi-Ran Yi1, Kang Chang-Hee1,2, Hee-Jung Bu. Antioxidant and anti-inflammatory activity of extracts from red beet(Beta vulagaris) root. Korean J. Food Preserv. 24(3), 413-420 (2017) 3. Jung-Yun Kim, Hyun-Ku Kim. Physiological Activity of Redbeet. Bulletin of Food Technology. 22(3), 537-543(2009) 3. Jung-Yun Kim, Hyun-Ku Kim. Physiological Activity of Redbeet. Bulletin of Food Technology. 22(3), 537-543 (2009)

본 발명은 비트 추출물을 폐암 치료효과가 있는 유효성분으로 제공하는 것을 목적으로 한다. An object of the present invention is to provide beetroot extract as an active ingredient having a therapeutic effect on lung cancer.

본 발명은 비트 추출물을 유효성분으로 포함하는 항염증 조성물이다. The present invention is an anti-inflammatory composition comprising beetroot extract as an active ingredient.

또한, 상기 비트 추출물은 리보플라빈 유래 활성산소 억제능을 갖는 것을 특징으로 하는 폐암치료용 조성물이다. In addition, the beet extract is a composition for the treatment of lung cancer, characterized in that it has the ability to inhibit riboflavin-derived free radicals.

또한, 상기 비트 추출물은 NO 생성 저해능을 갖는 것을 특징으로 하는 폐암 치료용 조성물이다. In addition, the beet extract is a composition for treating lung cancer, characterized in that it has NO production inhibitory ability.

한편, 본 발명에서 비트 추출물이란 추출 대상인 비트를 물, 메탄올, 에탄올, 부탄올 등의 탄소수 1내지 4의 저급 알콜, 메틸렌클로라이드, 에틸렌, 아세톤, 헥산, 에테르, 클로로포름, 에틸아세테이트, 부틸아세테이트, N, N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 1,3-부틸렌글리콜, 프로필렌글리콜 또는 이들의 혼합 용매를 사용하여 침출하여 얻어진 추출물, 이산화탄소, 펜탄 등 초임계 추출 용매를 사용하여 얻어진 추출물 또는 그 추출물을 분획하여 얻어진 분획물을 의미하며, 추출 방법은 활성물질의 극성, 추출 정도, 보존 정도등을 고려하여 냉침, 환류, 가온, 초음파 방사, 초임계 추출 등 임의의 방식을 적용할 수 있다. 분획된 추출물의 경우 상기 추출물을 특정 용매에 현탁시킨 후 극성이 다른 용매와 혼합·정치시켜 얻은 분획물을 포함하고, 상기 추출물을 상기 용매들을 극성이 증가 또는 감소하는 순으로 사용하여 순차적으로 분획하여 얻어진 분획물을 포함하며, 나아가 크기, 전하, 소수성, 친화성 등의 성질을 이용한 크로마토그래피에 의하여 얻어진 분획물을 포함한다. 또한 상기 추출물의 의미에는 동결건조, 진공건조, 열풍건조, 분무건조 등의 방식으로 추출 용매가 제거된 농축된 액상 또는 고형상의 추출물이 포함된다. 아래의 실시예를 참조할 때, 바람직하게는 추출용매로서 물, 에탄올 또는 이들의 혼합 용매를 사용하여 침출하여 얻어진 추출물(특히 물과 에탄올의 혼합 용매), 그 추출물에서 추출용매를 제거하여 얻은 고형상의 추출물을 물에 현탁하고 이를 헥산, 에틸아세테이트 및 부탄올로 순차적으로 분획하였을 때 얻어지는 각층의 분획물을 의미한다. 여기서 '순차적으로 분획한다'는 의미는 분획 후의 잔여 물층을 계속적으로 사용하여 상기 열거된 순서대로의 분획 용매로 분획한다는 의미이다.On the other hand, in the present invention, the beet extract refers to the beetroot extract as water, methanol, ethanol, lower alcohol having 1 to 4 carbon atoms such as butanol, methylene chloride, ethylene, acetone, hexane, ether, chloroform, ethyl acetate, butyl acetate, N, Extracts obtained by leaching using N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,3-butylene glycol, propylene glycol, or a mixed solvent thereof, carbon dioxide, pentane, etc. It refers to the obtained extract or a fraction obtained by fractionating the extract, and the extraction method may apply any method such as chilling, reflux, heating, ultrasonic radiation, supercritical extraction, etc. can In the case of the fractionated extract, it includes a fraction obtained by suspending the extract in a specific solvent and mixing and standing still with a solvent having a different polarity, and sequentially fractionating the extract using the solvents in the order of increasing or decreasing polarity. It includes fractions, and further includes fractions obtained by chromatography using properties such as size, charge, hydrophobicity, and affinity. In addition, the meaning of the extract includes a concentrated liquid or solid extract from which the extraction solvent is removed by methods such as freeze drying, vacuum drying, hot air drying, spray drying, and the like. When referring to the examples below, preferably an extract obtained by leaching using water, ethanol, or a mixed solvent thereof as an extraction solvent (especially a mixed solvent of water and ethanol), a high obtained by removing the extraction solvent from the extract It refers to the fraction of each layer obtained when the extract of the shape is suspended in water and sequentially fractionated with hexane, ethyl acetate and butanol. Here, 'sequential fractionation' means fractionation with the fractionation solvent in the order listed above by continuously using the residual water layer after fractionation.

본 발명의 조성물은 그 유효성분을 용도, 제형, 배합 목적 등에 따라 치료를 의도하는 염증성 질환의 개선 활성을 나타낼 수 있는 한 임의의 양(유효량)으로 포함할 수 있는데, 통상적인 유효량은 조성물 전체 중량을 기준으로 할 때 0.001 중량 % 내지 15 중량 % 범위 내에서 결정될 것이다. 여기서 "유효량"이란 그 적용 대상인 포유동물 바람직하게는 사람에게서, 염증성 질환의 개선, 치료, 또는 이러한 병리적 증상의 발병 억제/지연을 유도할 수 있는 유효성분의 양을 말한다. 이러한 유효량은 당업자의 통상의 능력 범위 내에서 실험적으로 결정될 수 있다.The composition of the present invention may include the active ingredient in any amount (effective amount) as long as it can exhibit the ameliorating activity of the inflammatory disease intended for treatment depending on the use, formulation, compounding purpose, etc., but a typical effective amount is the total weight of the composition It will be determined within the range of 0.001 wt % to 15 wt % based on Herein, the term "effective amount" refers to an amount of an active ingredient capable of inducing improvement, treatment, or suppression/delay of the onset of such pathological symptoms in mammals, preferably humans, to which it is applied. Such effective amounts can be determined empirically within the ordinary ability of one of ordinary skill in the art.

본 발명의 조성물이 적용(처방)될 수 있는 대상은 포유동물 및 사람이며, 특히 사람인 경우가 바람직하다. 본 발명의 조성물은 구체적인 양태에 있어서는 약제학적 조성물로 이용될 수 있다. 본 발명의 약제학적 조성물은 그 유효성분을 포함하는 이외에 약제학적으로 허용되는 담체, 부형제 등을 포함하여, 경구용 제형(정제, 현탁액, 과립, 에멀젼, 캡슐, 시럽 등), 비경구형 제형(멸균 주사용 수성 또는 유성 현탁액), 국소형 제형(용액, 크림, 연고, 겔, 로션, 패치) 등으로 제조될 수 있다. 상기에서 "약제학적으로 허용되는" 의미는 유효성분의 활성을 억제하지 않으면서 적용(처방) 대상이 적응가능한 이상의 독성(충분히 낮은 독성)을 지니지 않는다 의미이다. Subjects to which the composition of the present invention can be applied (prescribed) are mammals and humans, particularly preferably humans. The composition of the present invention may be used as a pharmaceutical composition in a specific embodiment. The pharmaceutical composition of the present invention includes oral dosage forms (tablets, suspensions, granules, emulsions, capsules, syrups, etc.), parenteral dosage forms (sterile aqueous or oily suspensions for injection), topical formulations (solutions, creams, ointments, gels, lotions, patches), and the like. In the above, "pharmaceutically acceptable" means that it does not inhibit the activity of the active ingredient and does not have a toxicity (sufficiently low toxicity) beyond which the subject of application (prescription) can be adapted.

본 발명을 통해 항산화 내지 항염증 효과가 있는 비트 추출물을 제공할 수 있다. Through the present invention, it is possible to provide a beet extract having an antioxidant or anti-inflammatory effect.

도 1은 비트 추출물 분획의 DPPH 라디칼 소거법에 의한 항산화활성을 나타낸 그래프이다.
도 2는 비트 추출물 분획의 수퍼옥사이드 억제활성능을 보여주는 그래프이다.
도 3은 비트 추출물 분획의 항산화 효소의 활성증가 효능을 보여준다.
도 4는 비트 추출물 분획의 활성 산소종 감소 효능을 보여준다.
도 5는 비트 추출물 분획의 형질 전환 선충내 SOD-3의 발현 증가 효능을 보여준다.
도 6은 비트 추출물 분획의 산화적 스트레스 저항성 증가 효능을 보여준다.
도 7 내지 14는 비트 추출물의 항산화 효과를 보여주는 그래프이다.
도 15 내지 16은 비트 추출물의 폐암 치료 효과를 보여주는 그래프이다.
1 is a graph showing the antioxidant activity of the beet extract fraction by the DPPH radical scavenging method.
2 is a graph showing the superoxide inhibitory activity of the beet extract fraction.
Figure 3 shows the activity of increasing the activity of the antioxidant enzyme of the beet extract fraction.
Figure 4 shows the active oxygen species reduction effect of the beet extract fraction.
5 shows the effect of increasing the expression of SOD-3 in transformed nematodes of the beet extract fraction.
6 shows the effect of increasing oxidative stress resistance of the beet extract fraction.
7 to 14 are graphs showing the antioxidant effect of beet extract.
15 to 16 are graphs showing the lung cancer treatment effect of beet extract.

이하 구체적인 실시예 등을 통해 본 발명을 설명한다. Hereinafter, the present invention will be described with reference to specific examples.

본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예는 본 발명의 가장 바람직한 일 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. The terms or words used in the present specification and claims are not to be construed as being limited in their ordinary or dictionary meanings, and the inventor may properly define the concepts of the terms to best describe his invention. Based on the principle, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, since the embodiments described in this specification are only the most preferred examples of the present invention and do not represent all the technical ideas of the present invention, there may be various equivalents and modifications that can be substituted for them at the time of the present application. It should be understood that there is

<비트의 항산화력 평가><Evaluation of antioxidant power of beets>

1. 재료 및 실험방법1. Materials and test methods

- 추출방법- Extraction method

비트를 음걸세절 후 얻은 시료 3.2 Kg을 ethanol로 진탕하면서 5시간씩 50℃에서 2회 온침 추출하였다. 그 추출액을 수욕상에서 감압농축하여 ethanol 엑스 약 164.93 g을 얻었으며, 이 ethanol 엑스에 증류수로 현탁시키고 상법에 따라 동량의 n-hexane(7.71 g), methylene chloride(2.01 g), ethyl acetate(1.18 g) 및 n-butanol(2.68 g)의 순으로 용매 분획하여 각각의 분획물을 얻었다.After shredding the beets, 3.2 Kg of the sample obtained was extracted twice at 50°C for 5 hours while shaking with ethanol. The extract was concentrated under reduced pressure on a water bath to obtain about 164.93 g of ethanol extract, suspended in distilled water in this ethanol extract, and the same amount of n-hexane (7.71 g), methylene chloride (2.01 g), ethyl acetate (1.18 g) according to a conventional method. ) and n-butanol (2.68 g) were subjected to solvent fractionation in the order to obtain each fraction.

- DPPH free radical 소거법에 의한 항산화활성 - Antioxidant activity by DPPH free radical scavenging method

96well plate에 시료를 EtOH로 각 농도별로 조제한 용액에 0.2 mM의 1,1-diphenyl-2-picrylhydrazyl (DPPH) (EtOH)을 일정량씩 가하였다. 10초간 진탕한 후 25oC에서 30분간 방치한 후 microplate reader를 이용하여 517 nm에서 흡광도를 측정하였다. 대조약물은 L-ascorbic acid를 사용하였다. 항산화효과는 시료를 첨가하지 않은 대조군의 흡광도와 비교하여 그래프로 나타내었다. 각 시료에 대한 DPPH radical 소거작용을 3회 반복하여 측정하였다.In a 96-well plate, 0.2 mM 1,1-diphenyl-2-picrylhydrazyl (DPPH) (EtOH) was added in a certain amount to a solution prepared at each concentration with EtOH. After shaking for 10 seconds, it was left at 25oC for 30 minutes, and then absorbance was measured at 517 nm using a microplate reader. As a control drug, L-ascorbic acid was used. The antioxidant effect was graphically compared with the absorbance of the control group to which the sample was not added. DPPH radical scavenging activity for each sample was measured three times repeatedly.

- Riboflavin 유래 superoxide 억제활성 - Riboflavin-derived superoxide inhibitory activity

시료의 superoxide 억제능력은 methionine, riboflavin, NBT로 구성된 평가시스템을 이용하여 광화학작용을 측정하는 것이다. 반응혼합액은 2.6 μM riboflavin, 3 mM methionine, 75 μM NBT, 0.1mM EDTA, PBS(pH 7.4) 및 여러 농도의 시료로 이루어졌다. 혼합물은 light box에 넣은 후 5분마다 자리를 임의로 바꾸어 주면서 15분동안 넣어두었다. light box안의 온도는 20±1oC, 빛의 밝기는 5,500 lux를 유지하였다. NBT는 빛 아래에서 blue formazane으로 환원되어지는데, 이 생성물을 560 nm에서 측정하였다. Blue formazane 형성억제가 superoxide 억제능력이 된다. The superoxide inhibitory ability of the sample is to measure the photochemical activity using an evaluation system composed of methionine, riboflavin, and NBT. The reaction mixture consisted of 2.6 μM riboflavin, 3 mM methionine, 75 μM NBT, 0.1 mM EDTA, PBS (pH 7.4), and samples of various concentrations. The mixture was placed in a light box and kept for 15 minutes, changing the position randomly every 5 minutes. The temperature inside the light box was maintained at 20±1oC, and the brightness of the light was maintained at 5,500 lux. NBT was reduced to blue formazane under light, and the product was measured at 560 nm. Inhibition of blue formazane formation becomes the ability to inhibit superoxide.

C. elegans의 배양 - C. elegans는 E. coli OP50를 도말한 Nematode Growth Medium (NGM) agar plate에 20℃ 에서 배양 되었다. 비트 에탄올 추출물 DMSO를 용매로 한 stock solution 상태로 멸균된 NGM plates (at 50℃)에 첨가되었다. 최종 DMSO 농도는 모든 상태에서 0.1% (v/v)를 유지하였다.Cultivation of C. elegans - C. elegans was cultured on a Nematode Growth Medium (NGM) agar plate coated with E. coli OP50 at 20°C. Beet ethanol extract was added to sterilized NGM plates (at 50°C) as a stock solution using DMSO as a solvent. The final DMSO concentration was maintained at 0.1% (v/v) in all conditions.

- 선충 체내의 항산화 효소(SOD, catalase) 활성 측정- Measurement of antioxidant enzyme (SOD, catalase) activity in nematodes

시료를 농도별로 조제한 plate에 성장 단계가 동일한 N2 선충을 배양하였다. 성체가 된 후 4일째에 선충을 모아 M9 buffer로 3회 세척 후 분쇄하여 효소 활성 측정에 사용하였다(homogenization buffer: 10 mM Tris-HCl, 150 mM NaCl, 0.1 mM EDTA, pH7.5). SOD 활성은 Ibrahim등의 방법을 응용하여 측정하였다. 먼저 10 mM phosphate buffer(pH 8.0)를 용매로 반응혼합물(1.6 mM xanthine과 0.48 mM NBT 0.49 mL)를 만든 뒤 농도별 시료 10 μL와 37 oC 에서 5분간 pre-incubation시켰다. 그 후 xanthine oxidase 100 μL(0.05 U/mL)을 첨가하고 37 oC 에서 20분 동안 incubation시킨 다음 69 mM SDS로 반응을 멈추고 570 nm에서 흡광도를 측정하였다. Catalase activity는 Aebi의 방법을 응용하여 25 mM H2O2에 농도별 시료 50 μL를 3분 동안 반응시키고 240 nm에서 흡광도를 측정하였다.N2 nematodes of the same growth stage were cultured on plates prepared by concentration of samples. On the 4th day after becoming adults, the nematodes were collected, washed three times with M9 buffer, and then pulverized and used for enzyme activity measurement (homogenization buffer: 10 mM Tris-HCl, 150 mM NaCl, 0.1 mM EDTA, pH7.5). SOD activity was measured by applying the method of Ibrahim et al. First, a reaction mixture (1.6 mM xanthine and 0.48 mM NBT 0.49 mL) was prepared with 10 mM phosphate buffer (pH 8.0) as a solvent, and then pre-incubated with 10 μL of each concentration sample at 37 oC for 5 minutes. After that, 100 μL (0.05 U/mL) of xanthine oxidase was added, incubated at 37 oC for 20 minutes, the reaction was stopped with 69 mM SDS, and absorbance was measured at 570 nm. Catalase activity was determined by applying Aebi's method to reacting 50 μL of each concentration sample in 25 mM H2O2 for 3 minutes and measuring the absorbance at 240 nm.

- 선충 세포 내 활성산소종(ROS) 분석 - Analysis of reactive oxygen species (ROS) in nematode cells

선충 세포 내 활성 산소종은 2',7'-dichlorodihydro fluorescein diacetate(H2DCF-DA)를 사용하여 측정하였다. 성장 단계가 동일한 선충을 시료를 농도별로 제조한 plate에서 배양하였다. 성체가 된 후 4일째 50 μM juglone을 함유한 M9 buffer에넣고 2시간 노출시킨 뒤 96 well plate에 담긴 50 μL M9 buffer에 5마리씩 옮겼다. 마지막으로 25 μM H2DCF-DA 50 μL를 첨가한 뒤 여기 485 nm, 방출 535 nm에서 흡광도를 각각 측정하였다. Reactive oxygen species in nematode cells were measured using 2',7'-dichlorodihydro fluorescein diacetate (H2DCF-DA). Nematodes having the same growth stage were cultured on plates prepared by sample concentrations. On the 4th day after they became adults, they were placed in M9 buffer containing 50 μM juglone, exposed for 2 hours, and then transferred 5 each to 50 μL M9 buffer contained in a 96 well plate. Finally, after adding 50 μL of 25 μM H2DCF-DA, absorbance was measured at excitation 485 nm and emission 535 nm, respectively.

형질전환 선충 내 SOD-3::GFP 형광 측정-형질 전환된 선충으로 SOD-3::GFP를 포함한 CF1553을 농도별로 투여된 배지에 배양하였다. 성체가 된 후 4일째에 사용하였으며, 선충은 sodium azide(4%)로 마취시켰고 GFP 발현은 형광 실체 현미경(Olympus, Japan)으로 관찰하였다. 발현강도를 정량, 분석하기 위해 현미경을 이용한 사진 촬영과 ImageJ 소프트웨어를 사용하여 분석하였다. 모든 실험은 3회 반복하였다.Measurement of SOD-3::GFP fluorescence in transformed nematodes- As transformed nematodes, CF1553 containing SOD-3::GFP was cultured in a medium administered by concentration. It was used on the 4th day after becoming an adult, and the nematodes were anesthetized with sodium azide (4%), and the expression of GFP was observed with a fluorescence stereo microscope (Olympus, Japan). In order to quantify and analyze the expression intensity, photos were taken using a microscope and analyzed using ImageJ software. All experiments were repeated three times.

- 통계 분석- Statistical analysis

통계 자료의 값은 평균값 ± 표준오차 (mean ± S.E.M.)로 표시 하였다. 그룹간의 통계적 유의성 검정은 Student's t-test를 통해서 분석하였고 선충의 연속적인 생존도는 Log-rank test 분석 방법을 이용하였다. p값은 *p< 0.05, **p< 0.01, ***p< 0.001 일 때 유의성이 있는 것으로 간주하였다.Statistical data were expressed as mean ± standard error (mean ± S.E.M.). The statistical significance test between groups was analyzed through Student's t-test, and the continuous viability of nematodes was analyzed using the log-rank test analysis method. The p value was considered significant when *p<0.05, **p<0.01, and ***p<0.001.

2. 결과 2. Results

- DPPH 라디칼 소거능- DPPH radical scavenging ability

DPPH radical 소거능 측정-DPPH radical 소거능 분석은 실험에서 사용된 시료의 DPPH radical 소거 활성을 평가하기 위해 수행되었다. 비트추출물의 DPPH radical 소거 효과(IC50 value, 239.3 μg/ml)는 도 1에 보여지는 바와 같이 비타민 C (IC50 value, 19.81 μg/ml)보다는 좋게 나타나지 않았지만 free radical DPPH 소거 효과가 좋은 것으로 나타났다. 평균값은 세 번의 실험으로부터 얻었다. DPPH radical scavenging activity measurement-DPPH radical scavenging activity analysis was performed to evaluate the DPPH radical scavenging activity of the samples used in the experiment. The DPPH radical scavenging effect (IC50 value, 239.3 μg/ml) of the beet extract was not better than that of vitamin C (IC50 value, 19.81 μg/ml) as shown in FIG. 1, but the free radical DPPH scavenging effect was good. The mean value was obtained from three experiments.

- Superoxide 억제활성- Superoxide inhibitory activity

Superoxide 억제능은 methionine, riboflavin, NBT로 구성된 평가시스템을 이용하여 광화학작용을 측정하는 것으로 사용된 시료의 superoxide 억제 활성 평가하기 위해 수행되었다. 비트 에탄올 추출물에서, superoxide 억제효과는 도 2에서 보여지는 바와 같이 비트 에탄올 추출물이 (IC50 value, 317.8 μg/ml), 비타민 C (IC50 value, 255.7 μg/ml)와 거의 유사한 superoxide 억제 효과를 나타내었다. 평균값은 세 번의 실험으로부터 얻었다.Superoxide inhibitory activity was performed to evaluate the superoxide inhibitory activity of the sample used by measuring the photochemical activity using an evaluation system composed of methionine, riboflavin, and NBT. In the beet ethanol extract, the superoxide inhibitory effect was almost similar to that of the beet ethanol extract (IC50 value, 317.8 μg/ml) and vitamin C (IC50 value, 255.7 μg/ml), as shown in FIG. 2 . . The mean value was obtained from three experiments.

- 항산화 효소(SOD, Catalase) 활성 증가 효능- Efficacy of increasing antioxidant enzyme (SOD, Catalase) activity

Xanthine을 기질로 xanthine oxidase의 효소반응 과정 중에 생성되는 superoxide anion을 활용하여 SOD의 활성을 측정한 결과 도 3A에서 나타난 바와 같이 예쁜꼬마선충의 비트 에탄올 추출물의 투여군은 SOD의 활성을 농도 의존적으로 증가 시켰으며, 비트 에탄올 추출물 250, 500 μg/mL 투여군은 대조군과 비교 하여 SOD 활성을 각각 약 6.2%, 14.4%(*p<0.05) 정도 증가시켰다. 강력한 반응성을 가진 활성산소종인 hydrogen peroxide를 체내에서 대사 시키는 catalase의 활성은 도 3B에서 나타난 바와 같이 비트 추출물 250, 500 μg/mL 투여군이 대조군에 비해 catalase활성을 약 10%(*p<0.05), 21.7%(***p<0.001) 정도 증가시켰다(도 3).As a result of measuring the activity of SOD by using superoxide anion generated during the enzymatic reaction of xanthine oxidase with xanthine as a substrate, as shown in Fig. 3A, the group administered with the beet ethanol extract of C. and 250 and 500 μg/mL of beet ethanol extract increased SOD activity by about 6.2% and 14.4% (*p<0.05), respectively, compared to the control group. The activity of catalase that metabolizes hydrogen peroxide, an active oxygen species with strong reactivity, in the body, as shown in FIG. 3B, showed that the beetroot extract 250 and 500 μg/mL administered group showed a catalase activity of about 10% (*p<0.05), compared to the control group. It increased by 21.7% (***p<0.001) (FIG. 3).

- 활성 산소종(ROS) 감소 효능- Reduction of reactive oxygen species (ROS)

비트 에탄올 추출물의 농도별 세포 내 활성 산소종의 감소 효능을 알아보기 위해 H2DCF-DA와 선충 내부의 활성 산소종을 반응시켜 형광을 관찰하였다. 활성산소종 형광의 감소 폭은 대조군과 비교 하여 비트 추출물 250 μg/mL 투여군에서 9.1%(*p<0.05), 500 μg/mL 투여군에서 평균 약 20.8% (**p<0.01) 활성산소종을 감소시키는 것으로 확인되었다(도 4).In order to investigate the effect of reducing intracellular reactive oxygen species by concentration of the beet ethanol extract, H2DCF-DA was reacted with reactive oxygen species inside the nematode and fluorescence was observed. The decrease in reactive oxygen species fluorescence was 9.1% (*p<0.05) in the 250 μg/mL beet extract group and about 20.8% (**p<0.01) in the 500 μg/mL group on average compared to the control group. It was confirmed to decrease (Fig. 4).

- 형질 전환 선충 내 SOD-3의 발현 증가 효능- Efficacy of increasing expression of SOD-3 in transgenic nematodes

선충 내 에서 oxidative stress에 저항하기 위한 단백질의 증가 여부를 확인하기 위해서 SOD발현 유전자의 증가 여부를 확인 하였다. SOD-3을 포함한 형질 전환 선충 CF1553을 사용하여 실험한 결과 CF1553 형질전환 선충에 비트 에탄올 추출물의 250, 500 μg/mL 처리군이 처리되지 않은 선충에 비해 높은 SOD-3::GFP 발현율(8.9%, 18.5%, *p<0.05, **p<0.01)을 보여 주었다(도 5A, 5B).In order to check whether the protein to resist oxidative stress in the nematode increases, it was checked whether the SOD-expressing gene was increased. As a result of the experiment using the transgenic nematode CF1553 including SOD-3, the CF1553 transgenic nematodes treated with 250 and 500 μg/mL of beet ethanol extract showed a higher SOD-3::GFP expression rate (8.9%) compared to untreated nematodes. , 18.5%, *p<0.05, **p<0.01) (FIGS. 5A, 5B).

- Oxidative Stress 저항성 증가 효능- Efficacy of increasing oxidative stress resistance

비트 에탄올 추출물이 선충의 산화적 스트레스 조건에서 선충의 생존율에 미치는 영향을 확인하였다. 선충에 산화적 스트레스를 유도하기 위해서 1mM juglone이 함유된 M9 buffer가 담긴 96 well plate에서 배양한 대조군 선충의 최고 생존시간은 21시간이었으나, 비트 에탄올 추출물 250 μg/mL에서는 생존시간을 22시간으로 증가 시켰으며, 500 μg/mL 농도에 서는 생존시간을 26시간으로 증가시켰다. 대조군의 평균 생존시간이 13.7±0.9시간었으나 250μg/mL 처리군에서는 15.8±0.9시간, 500 μg/mL 농도 처리군은 평균 생존 시간을 18.1±1.2시간으로 15.8%, 32.2%의 생존 시간을 향상시켰다(*p<0.05, **p<0.01)(도 6 A, B).The effect of beet ethanol extract on the survival rate of nematodes under oxidative stress conditions was confirmed. In order to induce oxidative stress in nematodes, the maximum survival time of control nematodes cultured in a 96-well plate containing 1 mM juglone M9 buffer was 21 hours, but with 250 μg/mL of beet ethanol extract, the survival time was increased to 22 hours. and the survival time was increased to 26 hours at a concentration of 500 μg/mL. The average survival time of the control group was 13.7±0.9 hours, but 15.8±0.9 hours in the 250μg/mL treatment group and 18.1±1.2 hours in the 500 μg/mL concentration group, which improved the survival time by 15.8% and 32.2%. (*p<0.05, **p<0.01) (Fig. 6 A, B).

비트 에탄올 추출물의 DPPH radical 소거시험과, superoxide 소거활성시험에서 항산화력을 보여주었다. 예쁜꼬마선충을 사용하여 비트 에탄올 추출물의 수명연장에 미치는 요인을 확인하기 위하여 산화적 스트레스를 가하여 선충의 생존도를 측정한 결과 비트 에탄올 추출물 500 ㎍/mL에서 생존율이 증가하였다. 이러한 결과는 비트 에탄올 추출물이 항산화에 관련된 물질 개발의 자원으로서의 개발가치가 있을 것으로 사료된다.Antioxidant activity was shown in DPPH radical scavenging test and superoxide scavenging activity test of beet ethanol extract. As a result of measuring the viability of nematodes by applying oxidative stress to determine the factors affecting the lifespan extension of the beetroot extract using C. elegans, the survival rate was increased at 500 μg/mL of the beetroot extract. These results suggest that beetroot ethanol extract has development value as a resource for the development of substances related to antioxidants.

<항염증 실험><Anti-inflammatory experiment>

1. 재료 및 실험방법1. Materials and test methods

- 추출 및 농축- Extraction and concentration

레드 비트 원료(약 20kg)를 음건세절 후 2kg을 ethanol로 진탕하면서 5시간씩 50℃에서 2회 온침 추출하였다. 그 추출액을 수욕상 에서 감압 농축하여 ethanol 엑스를 얻었으며, 이 ethanol 엑스를 냉동고(-200) 보관 후 시료로 사용 하였다. Red beet raw material (about 20 kg) was dried in the shade and then 2 kg were extracted with ethanol while shaking with ethanol twice at 50°C for 5 hours. The extract was concentrated under reduced pressure in a water bath to obtain ethanol extract, which was stored in a freezer (-200) and used as a sample.

- NO 생성 저해 작용의 측정- Measurement of NO production inhibitory action

NO의 농도는 배양액 내의 nitrite농도를 Wang등1)의 방법에 따라 Griess Reagent System을 이용하여 측정하였다. RAW 264.7 세포를 96 well plate에 5.0×105cells/well이 되도록 분주하고 18시간 동안 배양한 후 레드비트 외 6종의 추출물과 betalain, DL-sulforaphane, 포뮬러 10, 100, 1000 μg/mL의 농도로 전 처리하고 1시간 후에 LPS 10μg/mL 처리한 후 24시간 동안 배양하였다. 배양액과 동량의 Griess Reagent를 가하고 10분간 상온에서 반응시킨 후 540nm에서 흡광도를 측정하였다. Sodium nitrite의 농도별 표준곡선을 이용하여 배양액의 NO농도를 결정하였다.The concentration of NO was measured using the Griess Reagent System according to the method of Wang et al. 1) for the concentration of nitrite in the culture medium. Raw 264.7 cells were aliquoted in a 96-well plate to 5.0 × 105 cells/well and incubated for 18 hours, then transferred to extracts of red beet and 6 other types, betalain, DL-sulforaphane, formula 10, 100, and 1000 μg/mL. After 1 hour of treatment, 10 μg/mL of LPS was treated and cultured for 24 hours. The same amount of Griess Reagent as the culture medium was added and reacted at room temperature for 10 minutes, and then absorbance was measured at 540 nm. The NO concentration of the culture medium was determined using a standard curve for each concentration of sodium nitrite.

- Proinflammatory cytokine 측정- TNF-α, IL-1β, IL-8- Measurement of proinflammatory cytokines - TNF-α, IL-1β, IL-8

RAW264.7 세포를 96 well plate에 1.0×105cells/well이 되도록 분주하고 18시간 동안 배양한 후 비트 외 6종의 추출물과 betalain, DL-sulforaphane, total extract 10, 100, 1000 μg/mL의 농도로 전 처리하고 1시간 후에 LPS 10μg/mL 처리한 후 24시간 동안 배양하였다. 세포배양액을 얻은 다음 배양액에 함유된 TNF-α, IL-1β, IL-8을 ELISA kit을 이용하여 측정하였다.RAW264.7 cells were aliquoted to a 96-well plate at 1.0 × 105 cells/well and cultured for 18 hours. Extracts of beet and 6 other types, betalain, DL-sulforaphane, and total extract at concentrations of 10, 100, and 1000 μg/mL were used. After pre-treatment and 1 hour after treatment with LPS 10 μg/mL, incubated for 24 hours. After obtaining a cell culture medium, TNF-α, IL-1β, and IL-8 contained in the culture medium were measured using an ELISA kit.

- 통계적 분석- Statistical analysis

실험결과는 평균±표준오차(Mean±S.E.)로 계산하였고, 각 군간의 유의성 검증은 students' t-test를 사용하였다. p<0.05 일 경우에 유의성이 있는 것으로 하였다. Experimental results were calculated as mean ± standard error (Mean ± S.E.), and the students' t-test was used to verify the significance between each group. When p<0.05, it was considered to be significant.

2. 결과 2. Results

- NO 생성 저해 작용의 측정 결과 - Measurement result of NO production inhibitory action

대식세포들은 염증반응에서 중추적인 역할을 하며, NO, HNO2, ONOO-와 같은 활성 질소(reactive nitrogen species, RNS)는 염증반응 시 대식세포, 호중구 및 다른 면역 세포들의 면역반응으로 인해 다량 생성된다. 활성산소의 일종으로 최근 염증유발에 중요한 역할을 하는 것으로 알려진 NO는 높은 반응성을 가진 생체 생성분자로서, NOS (Nitric oxide synthase)에 의해 L-arginine으로부터 생성되는데, 특히 iNOS (inducible NOS)가 염증반응에 관여하며, TNF-α, LPS와 같은 염증성 사이토카인의 자극이 있을 때 발현된다.Macrophages play a central role in the inflammatory response, and reactive nitrogen species (RNS) such as NO, HNO2, and ONOO- are produced in large amounts due to the immune response of macrophages, neutrophils and other immune cells during the inflammatory response. NO, a type of reactive oxygen species that has recently been known to play an important role in inducing inflammation, is a highly reactive biogenic molecule, produced from L-arginine by NOS (nitric oxide synthase). It is involved in inflammatory cytokines such as TNF-α and LPS, and is expressed when stimulated.

염증 유발물질로 사용되는 LPS를 이용하여 RAW 264.7 세포의 NO 생성의 저해 실험 결과 레드 비트가 매우 우수하였다. (도 7)As a result of the inhibition of NO production in RAW 264.7 cells using LPS used as an inflammatory substance, red beet was very good. (Fig. 7)

이 저해 효과를 확인 하기 위하여 양성대조군인 황금과 대비하여 살펴 보았다. 비트는 1000mg/ml 농도에서 비교시 LPS가 일으키는 염증을 100%로 할 때 비트는 54.68%로 염증 발현을 45.32%로 억제 할 수 있었다 이는 양성 대조군의 성격으로 비교 실험한 황금의 40.2% 보다 우수하였고(도 8) 이로서 비트는 훌륭한 NO 생성 저해 효과가 있음을 확인 하였다.In order to confirm this inhibitory effect, it was compared with gold, which is a positive control. When comparing beets at 1000mg/ml concentration, when LPS-induced inflammation was 100%, beets were able to suppress the inflammation expression by 54.68% and 45.32%. (Fig. 8) As a result, it was confirmed that beets have an excellent NO production inhibitory effect.

- Proinflammatory cytokine 측정결과(각 결과를 도 9 내지 14에 나타내었다)- Proinflammatory cytokine measurement results (each result is shown in FIGS. 9 to 14)

TNF-a 생성저해력에서는 비트는75.05%, IL-1β 생성 저해 효과에서는 1000mg/ml 농도에서 LPS 값을 100%로 할 때 비트는 41.1%를 나타냈으며 양성대조군인 황금은 43.5%를 나타내었다. IL-8β 생성 저해 효과에 대한 연구 결과 1000mg / ml 농도에서 LPS값을 100%로 하였을 때 비트추출물은 40.7%,양성대조군인 황금은 43.0%를 나타내었다,In terms of TNF-a production inhibitory power, beets showed 75.05% and IL-1β production inhibitory effects were 41.1% when LPS value was 100% at 1000 mg/ml concentration, and gold showed 43.5% as a positive control. As a result of the study on the IL-8β production inhibitory effect, when the LPS value was 100% at the concentration of 1000 mg / ml, the beetroot extract showed 40.7% and the positive control group, gold, showed 43.0%.

<폐암 치료 효과><Lung cancer treatment effect>

1차 재료에 대한 선별 : 비트( Beetroot), 셀러리악(Celeriac,) 자색감자(Vitelotte), 우엉(Burdock), 황금(Scutellaria baicalensis), 양배추(cabage, 방울양배추(Brussels Sprouts) , 브로콜리(Broccoli), 감자(Potato), 무(Radish), 강황(curcuma longa) 12가지에 대하여 항암증식 예비 선별 실험 통해 의미가 없는 원료는 제외 하였다. Selection of primary ingredients: Beetroot, Celeriac, Vitelotte, Burdock, Scutellaria baicalensis, Cabbage, Brussels Sprouts, Broccoli , Potato, Radish, and Curcuma longa 12 kinds of raw materials were excluded through the preliminary screening test for anticancer growth.

암세포 배양 배지는 Dulbeco's modified eagle medium(DMEM)을 사용하였으며 소 태아 혈청(fetal bovine serum, FBS), 항생제, trypsin-EDTA 등은 모두 GIBCO(Grand Island Biological Co., NY, USA) 제품을 사용하였고 추출용 유기용매인 methanol(MeOH), ethanol(EtOH)은 덕산약품(KOREA), 기타 시약은 Sigma-Aldrich Co. Ltd(Irvine, UK) 시약을 사용하였다. CO2 incubator는 My CO2(Science Technology, Korea)를 사용하였고, 세포 현미경은 자이스 inverted microscope(Axiovert s 100, Germany)를 사용 하였다. Dulbeco's modified eagle medium (DMEM) was used as the cancer cell culture medium, and GIBCO (Grand Island Biological Co., NY, USA) products were used for fetal bovine serum (FBS), antibiotics, and trypsin-EDTA. Methanol (MeOH) and ethanol (EtOH) as organic solvents for solvents are from Duksan Pharmaceutical (KOREA), and other reagents from Sigma-Aldrich Co., Ltd. Ltd (Irvine, UK) reagent was used. My CO2 (Science Technology, Korea) was used for the CO2 incubator, and a ZEISS inverted microscope (Axiovert s 100, Germany) was used for the cell microscope.

연구에 사용된 세포주는 8종으로 A549(폐암), DU-145(전립샘암), HeLa(자궁암), MCF-7(유방암), SNU-182(간암), SNU-1196(담도암), HepG2(간암) SNU -1(위암) 이며. 모두 인체 유래 암세포를 사용하였으며 한국 세포주은행(KCLB)에서 분양 받았다. 이중 HepG2(간암) SNU -1(위암) 두 종류는 배양 및 증식의 문제로 연구에서 제외하여 총 6종을 연구 하였다. Eight cell lines were used in the study: A549 (lung cancer), DU-145 (prostate cancer), HeLa (uterine cancer), MCF-7 (breast cancer), SNU-182 (liver cancer), SNU-1196 (biliary tract cancer), and HepG2. (liver cancer) and SNU -1 (stomach cancer). All of them used human-derived cancer cells, and they were purchased from the Korea Cell Line Bank (KCLB). Of these, two types of HepG2 (liver cancer) and SNU-1 (gastric cancer) were excluded from the study due to culture and proliferation problems, and a total of 6 types were studied.

- 추출 및 농축- Extraction and concentration

Beetroot, Celeriac, Vitelotte, Burdock, Scutellaria baicalensis, Brussels Sprouts , Broccoli 원료(약 20kg)를 음건세절 후 2kg을 methanol로 진탕하면서 5시간씩 50℃에서 2회 온침 추출하였다. 그 추출액을 수욕상 에서 감압 농축하여 methanol 엑스를 얻었으며, 이 methanol 엑스를 냉동고(-200) 보관 후 시료로 사용 하였다. Beetroot, Celeriac, Vitelotte, Burdock, Scutellaria baicalensis, Brussels Sprouts , Broccoli raw materials (approximately 20 kg) were minced in the shade and then extracted twice with warm needles at 50 °C for 5 hours while shaking 2 kg with methanol. The extract was concentrated under reduced pressure on a water bath to obtain methanol extract, which was stored in a freezer (-200) and used as a sample.

세포배양cell culture

100mm petri dish에 DMEM (5% FBS 함유) 배지와 약 2×104 cells/ 5ml을 CO2 incubator 에서 48시간 배양 한후 각 셀의 현탁액을 만들고 cck-8 방법에 의하여 실험 하였다In a 100 mm petri dish, DMEM (containing 5% FBS) medium and about 2 × 104 cells/5 ml were incubated in a CO2 incubator for 48 hours, and a suspension of each cell was prepared and tested by the cck-8 method.

세포 독성 실험 (cck-8)Cytotoxicity test (cck-8)

100 μl의 암세포세포 현탁액 (5×103 cells / well)을 96- 웰 플레이트에 분주한 후After dispensing 100 μl of cancer cell suspension (5×103 cells/well) in a 96-well plate,

24 시간 동안 37 ° C, 5 % CO2 조건에서 미리 플레이트 배양한다. 다양한 농도의 비트 추출물 등 sample 10 μl를 96well 플레이트에 첨가 한다. 그리고 동일한 조건에서 24시간 배양하고 플레이트의 각 well에 10 μl의 CCK-8 solution을 첨가 한 후 Pre-incubate the plate at 37 °C and 5% CO2 conditions for 24 hr. 10 μl of samples such as beet extracts of various concentrations are added to the 96-well plate. After incubation for 24 hours under the same conditions, 10 μl of CCK-8 solution was added to each well of the plate.

2시간 동안 플레이트를 배양 하고 마이크로 플레이트리더를 사용하여 450 nm에서 흡광도를 측정 한다. 흡광도 값은 살아있는 세포의 수와 비례하므로 각 sample의 암세포 성장 억제를 흡광도 값으로 알 수 있다. Incubate the plate for 2 h and measure the absorbance at 450 nm using a microplate reader. Since the absorbance value is proportional to the number of living cells, the inhibition of cancer cell growth of each sample can be known as the absorbance value.

나. 실험결과me. Experiment result

(1) 폐암세포 A549에 대한 각 원료의 증식 억제 효과(1) Growth inhibitory effect of each raw material on lung cancer cell A549

폐암세포인 A549에 대한 10종의 추출물에 대한 암세포 증식 억제 효과에 대한 연구결과 비트가 가장 우수 하였으며 1mg/ml 농도에서 Coctrol 값을 100%로 할 때 비트는 0.167만큼만 성장하여 98.4%의 억제력을 나타냈으며 양성대조군인 황금은 99.4%, 셀러리악(Celeriac,) 91.8%, 자색감자(Vitelotte), 62.8% 비트(Beetroot) 1mg, 98.4%, 셀러리악(Celeriac,) 91.8%, 황금(Scutellaria baicalensis), 99.4% 나타내었다 As a result of the study on the cancer cell proliferation inhibitory effect of 10 extracts against lung cancer cell A549, beets were the best, and when the Coctrol value was 100% at 1 mg/ml concentration, beets grew only by 0.167, showing an inhibitory power of 98.4%. As a positive control, gold 99.4%, Celeriac 91.8%, Purple potato (Vitelotte), 62.8% Beetroot 1mg, 98.4%, Celeriac 91.8%, Gold (Scutellaria baicalensis), 99.4% showed

Claims (3)

비트 추출물을 유효성분으로 포함하는 폐암 치료용 조성물. A composition for treating lung cancer comprising a beet extract as an active ingredient. 제 1항에 있어서,
상기 비트 추출물은 리보플라빈 유래 활성산소 억제능을 갖는 것을 특징으로 하는 폐암 치료용 조성물.
The method of claim 1,
The beet extract is a composition for treating lung cancer, characterized in that it has the ability to inhibit riboflavin-derived free radicals.
제 1항에 있어서,
상기 비트 추출물은 NO 생성 저해능을 갖는 것을 특징으로 하는 폐암치료용 조성물.
The method of claim 1,
The beet extract is a composition for the treatment of lung cancer, characterized in that it has the ability to inhibit NO production.
KR1020210027041A 2021-02-27 2021-02-27 Composition for treatment of lung cancer including extract of beet as an effective ingredient KR20220122914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210027041A KR20220122914A (en) 2021-02-27 2021-02-27 Composition for treatment of lung cancer including extract of beet as an effective ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210027041A KR20220122914A (en) 2021-02-27 2021-02-27 Composition for treatment of lung cancer including extract of beet as an effective ingredient

Publications (1)

Publication Number Publication Date
KR20220122914A true KR20220122914A (en) 2022-09-05

Family

ID=83279762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210027041A KR20220122914A (en) 2021-02-27 2021-02-27 Composition for treatment of lung cancer including extract of beet as an effective ingredient

Country Status (1)

Country Link
KR (1) KR20220122914A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046782A (en) 2016-04-20 2016-04-29 제주대학교 산학협력단 Composition for Protecting Damage of Immunomodulation and Heamatopoiesis by Radiation Using a Red Beet Extract
KR20170080336A (en) 2015-12-31 2017-07-10 주식회사 풀무원 Radish, lotus root and a red bit alcoholic extract consisting of anti-inflammatory composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080336A (en) 2015-12-31 2017-07-10 주식회사 풀무원 Radish, lotus root and a red bit alcoholic extract consisting of anti-inflammatory composition
KR20160046782A (en) 2016-04-20 2016-04-29 제주대학교 산학협력단 Composition for Protecting Damage of Immunomodulation and Heamatopoiesis by Radiation Using a Red Beet Extract

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1. Jun Ho Lee and Koo Bok Chin. Evaluation of Antioxidant Activities of Red Beet Extracts, and Physicochemical and Microbial Changes of Ground Pork Patties Containing Red Beet Extracts during Refrigerated Storage. Korean J. Food Sci. An. 32(4), 497-503 (2012)
2. Mi-Ran Yi1, Kang Chang-Hee1,2, Hee-Jung Bu. Antioxidant and anti-inflammatory activity of extracts from red beet(Beta vulagaris) root. Korean J. Food Preserv. 24(3), 413-420 (2017)
3. Jung-Yun Kim, Hyun-Ku Kim. Physiological Activity of Redbeet. Bulletin of Food Technology. 22(3), 537-543(2009)

Similar Documents

Publication Publication Date Title
Liczbiński et al. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research
El-Shitany et al. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways
Mendonça et al. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells
Ashrafizadeh et al. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress
Moldovan et al. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects
Han et al. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage
Dajas Life or death: neuroprotective and anticancer effects of quercetin
Impellizzeri et al. The effects of a polyphenol present in olive oil, oleuropein aglycone, in an experimental model of spinal cord injury in mice
Miles et al. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease
Su et al. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans
Lee et al. C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide
Wang et al. Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation
Mendonca et al. Evaluation of the cytotoxicity and genotoxicity of curcumin in PC12 cells
Zhu et al. Advancements in therapeutic drugs targeting of senescence
Lei et al. The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in D-galactose induced mice aging model and in vitro
Zhao et al. Mechanistic elucidation of apoptosis and cell cycle arrest induced by 5-hydroxymethylfurfural, the important role of ROS-mediated signaling pathways
Cano et al. Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds
Kushwaha et al. Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers
Tan et al. Structure–activity relationship analysis on antioxidant and anticancer actions of Theaflavins on human colon cancer cells
Wang et al. Delonix regia leaf extract (DRLE): a potential therapeutic agent for cardioprotection
Yuan et al. Tribulus terrestris Ameliorates Oxidative Stress‐Induced ARPE‐19 Cell Injury through the PI3K/Akt‐Nrf2 Signaling Pathway
Torki et al. Anchusa italica extract: phytochemical and neuroprotective evaluation on global cerebral ischemia and reperfusion
Xu et al. A polysaccharide from Aloe vera L. var. chinensis (Haw.) Berger prevents damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo
Zulfin et al. Reactive oxygen species and senescence modulatory effects of rice bran extract on 4T1 and NIH-3T3 cells co-treatment with doxorubicin
Bicer et al. Neuroprotection by melatonin against acrylamide-induced brain damage in pinealectomized rats

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application