KR20220118336A - Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same - Google Patents

Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same Download PDF

Info

Publication number
KR20220118336A
KR20220118336A KR1020220020257A KR20220020257A KR20220118336A KR 20220118336 A KR20220118336 A KR 20220118336A KR 1020220020257 A KR1020220020257 A KR 1020220020257A KR 20220020257 A KR20220020257 A KR 20220020257A KR 20220118336 A KR20220118336 A KR 20220118336A
Authority
KR
South Korea
Prior art keywords
nanoparticles
coated
nanoparticle complex
nanoparticle
polymer material
Prior art date
Application number
KR1020220020257A
Other languages
Korean (ko)
Inventor
박성수
이진엽
우터펑
나병준
Original Assignee
성균관대학교산학협력단
(주)킹고바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, (주)킹고바이오 filed Critical 성균관대학교산학협력단
Priority to CN202280015547.1A priority Critical patent/CN116868052A/en
Priority to PCT/KR2022/002367 priority patent/WO2022177326A1/en
Publication of KR20220118336A publication Critical patent/KR20220118336A/en
Priority to US18/451,734 priority patent/US20230393128A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/548Carbohydrates, e.g. dextran
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Abstract

The present invention relates to a nanoparticle complex for isolating a biological target, and a preparation method thereof, and specifically relates to a nanoparticle complex in which a receptor is bound to nanoparticles coated with macromolecule, a preparation method thereof, and a use thereof. The macromolecule is one or more selected from a group including polydopamine, polyethylene glycol, polyetherimide, polyvinyl alcohol, casein, dextran, and chitosan. According to the present invention, the nanoparticle complex can be effectively used for diagnosis of various diseases.

Description

생물학적 표적의 분리를 위한 고분자 물질로 코팅된 나노 입자 복합체 및 이의 제조 방법{Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same}Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same}

본 발명은 생물학적 표적의 분리를 위한 나노 입자 복합체, 이의 제조 방법 등에 관한 것으로, 구체적으로 고분자로 코팅된 나노 입자에 수용체를 결합시킨 나노 입자 복합체로서, 다양한 성분들이 복합적으로 존재하는 생물학적 시료에서 매트릭스 효과를 감소시켜 나노 입자 복합체의 분산된 상태를 효과적으로 유지하고, 이를 통하여 높은 효율로 생물학적 표적을 분리할 수 있는 나노 입자 복합체에 관한 것이다.The present invention relates to a nanoparticle complex for separation of a biological target, a method for manufacturing the same, and more specifically, a nanoparticle complex in which a receptor is bound to a nanoparticle coated with a polymer, and the matrix effect in a biological sample in which various components are present in complex It relates to a nanoparticle complex that can effectively maintain a dispersed state of the nanoparticle complex by reducing

건강 및 질병에 대한 관심이 높아지고 있는 현 시점에서, 질병의 조기 진단을 통해 건강을 관리하고 치료비를 절감할 수 있는 방법에 대한 연구가 활발히 진행되고 있다. 그 중 나노 입자를 이용하여 다양한 성분들이 복합적으로 존재하는 생물학적 시료에서 특정 바이오마커를 인식하거나, 또는 분리하는 방법을 통하여 질병을 검출하고자 하는 시도들이 다수 있었으나, 혈액, 타액, 소변 등 생물학적 시료에는 단백질, 핵산, 탄수화물 형태의 세포성 물질을 포함하여, 다른 불순물들이 다량 존재하기 때문에 질병 진단 시에 나노 입자들의 매트릭스 효과(matrix effect)로 인하여 입자들간의 응집이 발생됨으로써, 표적 물질의 검출 감도가 현저히 감소될 뿐만 아니라, 효율적으로 표적하는 물질을 분리하는데 어려움을 겪고 있다.At this point in time when interest in health and diseases is increasing, research on methods for managing health and reducing treatment costs through early diagnosis of diseases are being actively conducted. Among them, there have been many attempts to detect diseases by recognizing or isolating specific biomarkers in biological samples in which various components exist in a complex manner using nanoparticles, but proteins in biological samples such as blood, saliva, and urine Since a large amount of other impurities, including cellular substances in the form of , nucleic acids, and carbohydrates, exist, aggregation between particles occurs due to the matrix effect of nanoparticles during disease diagnosis, thereby significantly improving the detection sensitivity of the target substance. Not only is it reduced, but it is difficult to isolate the target material efficiently.

따라서, 생물학적 시료에서 매트릭스 효과를 방지하여 입자들의 응집을 억제함으로써 입자들을 효율적으로 분산시킬 수 있다면, 표적에 대한 결합력을 증가시켜 검출 감도를 현저히 증가시킬 수 있을 뿐만 아니라, 높은 효율로 표적 물질을 분리 및/또는 검출할 수 있을 것으로 기대된다.Therefore, if particles can be efficiently dispersed by preventing aggregation of particles by preventing a matrix effect in a biological sample, not only can the detection sensitivity be remarkably increased by increasing the binding force to the target, but also the target material can be separated with high efficiency and/or detectable.

국내등록특허 10-1646610Domestic registered patent 10-1646610

본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로, 고분자로 코팅된 나노 입자에 수용체를 결합시킨 나노 입자 복합체에 관한 것으로, 나노 입자를 코팅함으로써 매트릭스 효과를 억제함으로써 나노 입자의 분산력을 높이고, 이를 통하여 검출 감도를 현저히 증가시킨 나노 입자 복합체, 이의 제조 방법, 이의 용도 등을 제공하는 것을 그 목적으로 한다.The present invention has been devised to solve the problems in the prior art as described above, and relates to a nanoparticle complex in which a receptor is bound to nanoparticles coated with a polymer, and the dispersing power of nanoparticles by inhibiting the matrix effect by coating the nanoparticles It is an object of the present invention to provide a nanoparticle complex, a method for preparing the same, and a use thereof, which have significantly increased detection sensitivity through this.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical task to be achieved by the present invention is not limited to the tasks mentioned above, and other tasks not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. will be.

본 발명은 생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 나노 입자 복합체를 제공한다. 상기 나노 입자 복합체는 바람직하게는 나노 입자의 표면이 고분자 물질(macromolecule)로 코팅되어, 생물학적 시료 내에서 매트릭스 효과를 방지할 수 있으며, 상기 고분자 물질에는 표적 물질을 검출 또는 분리하기 위한 수용체(receptor)가 결합되어 표적 물질에 특이적으로 결합할 수 있다. 그리고 상기 고분자 물질은 바람직하게는 폴리도파민(polydopamine), 폴리에틸렌 글리콜(polyethylene glycol), 폴리에테르이미드(Polyetherimide), 폴리비닐 알코올(polyvinyl alcohol), 카제인(casein), 덱스트란(dextran), 및 키토산(chitosan)으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으며, 더욱 바람직하게는 폴리도파민 또는 폴리에틸렌 글리콜이나, 나노 입자에 자가중합 반응에 의하여 코팅될 수 있거나, 티올기를 가지는 나노 입자에 결합할 수 있는 고분자 물질이라면 이에 제한되지 않는다. 또한, 상기 코팅은 바람직하게는 1 내지 500 nm의 두께로 코팅될 수 있으며, 더욱 바람직하게는 1 내지 100 nm, 더욱 바람직하게는 1 내지 30 nm의 두께로 코팅될 수 있으나, 매트릭스 효과를 방지할 수 있는 두께라면 이에 제한되지 않는다.The present invention provides a nanoparticle complex for detecting or separating a target material from a biological sample. In the nanoparticle complex, the surface of the nanoparticles is preferably coated with a macromolecule to prevent a matrix effect in a biological sample, and the polymeric material includes a receptor for detecting or separating the target material. may be bound to specifically bind to a target substance. And the polymer material is preferably polydopamine, polyethylene glycol, polyetherimide, polyvinyl alcohol, casein, dextran, and chitosan ( chitosan) may be any one or more selected from the group consisting of, more preferably polydopamine or polyethylene glycol, or a polymer material that can be coated on nanoparticles by self-polymerization, or can bind to nanoparticles having a thiol group If so, it is not limited thereto. In addition, the coating may be preferably coated in a thickness of 1 to 500 nm, more preferably in a thickness of 1 to 100 nm, more preferably in a thickness of 1 to 30 nm, but may prevent matrix effect. The thickness is not limited thereto.

본 발명의 일 구체예에 있어서, 상기 코팅은 렉틴 등과의 결합을 위한 단당류(monosaccharide)를 고분자 물질과 혼합하여 코팅할 수 있으며, 상기 단당류에는 만노스(mannose), 글루코즈(glucose), 프럭토즈(fructose), 글루코사민(glucosamine) 등을 포함할 수 있으나, 정전기적 결합에 의하여 렉틴과 결합할 수 있는 단당류라면 이에 제한되지 않는다.In one embodiment of the present invention, the coating may be coated by mixing a monosaccharide for binding to lectin and the like with a polymer material, and the monosaccharide includes mannose, glucose, fructose. ), glucosamine, and the like, but is not limited thereto as long as it is a monosaccharide capable of binding to lectin by electrostatic bonding.

본 발명의 다른 구체예에 있어서, 상기 결합은 이온결합, 공유결합, 배위결합, 수소결합, 소수성 상호작용, 반데르발스 상호작용, 및 링커에 의한 결합으로 이루어진 군으로부터 선택된 어느 하나 이상의 형태의 결합일 수 있으나, 고분자 물질과 수용체를 결합시키는 방법으로 알려져 있는 형태라면 이에 제한되지 않는다.In another embodiment of the present invention, the bond is any one or more types of bonds selected from the group consisting of an ionic bond, a covalent bond, a coordination bond, a hydrogen bond, a hydrophobic interaction, a van der Waals interaction, and a bond by a linker. It may be, but is not limited thereto, as long as it is a form known as a method for binding a polymer material and a receptor.

본 발명의 또 다른 구체예에 있어서, 상기 링커에 의한 결합은 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)/N-hydroxysuccinimide(NHS) 링커 또는 티올기에 의한 결합인 것을 특징으로 한다.In another embodiment of the present invention, the bonding by the linker is characterized in that the bonding by a 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) linker or a thiol group.

본 발명의 또 다른 구체예에 있어서, 상기 수용체는 바람직하게는 표적 물질에 특이적으로 결합하는 항생제, 항체, 핵산, 단백질, 렉틴 등일 수 있으며, 상기 핵산은 플라스미드 DNA, cDNA, siRNA, miRNA, antisense RNA, 압타머, 올리고뉴클레오티드 등일 수 있다. 그러나 표적 물질에 특이적으로 결합하여 표적 물질을 검출하거나 분리할 수 있는 수용체라면 이에 제한되지 않는다.In another embodiment of the present invention, the receptor may be an antibiotic, antibody, nucleic acid, protein, lectin, etc. that specifically binds to a target substance, and the nucleic acid is plasmid DNA, cDNA, siRNA, miRNA, antisense. RNA, aptamers, oligonucleotides, and the like. However, if it is a receptor capable of specifically binding to a target material to detect or isolate the target material, the present invention is not limited thereto.

본 발명의 또 다른 구체예에 있어서, 상기 표적 물질은 병원균, 바이러스, 세포, 단백질, 핵산, 항원, 당단백질, 금속 등일 수 있으며, 질병을 진단하는데 사용될 수 있는 바이오마커라면 이에 제한되지 않는다.In another embodiment of the present invention, the target material may be a pathogen, a virus, a cell, a protein, a nucleic acid, an antigen, a glycoprotein, a metal, etc., as long as it is a biomarker that can be used to diagnose a disease, but is not limited thereto.

본 발명의 또 다른 구체예에 있어서, 상기 나노 입자는 실리카 나노 입자, 산화철 나노 입자, 폴리스티렌 나노 입자 등일 수 있으나, 고분자 물질로 코팅될 수 있는 나노 입자라면 이에 제한되지 않는다.In another embodiment of the present invention, the nanoparticles may be silica nanoparticles, iron oxide nanoparticles, polystyrene nanoparticles, and the like, but is not limited thereto as long as the nanoparticles can be coated with a polymer material.

본 발명의 또 다른 구체예에 있어서, 상기 나노 입자 복합체의 직경은 바람직하게는 200 내지 1,000 nm일 수 있으며, 더욱 바람직하게, 200 내지 800 nm일 수 있으나, 이에 제한되지 않는다.In another embodiment of the present invention, the diameter of the nanoparticle composite may be preferably 200 to 1,000 nm, more preferably, 200 to 800 nm, but is not limited thereto.

본 발명의 또 다른 구체예에 있어서, 상기 생물학적 시료는 바람직하게는 혈액, 타액, 골수액, 림프액, 소변, 양수, 점막액, 복막액 등일 수 있으나, 세포, 핵산, 단백질, 세포밖소포, 불순물 등 다양한 물질들이 복합적으로 혼합되어 있는 생물학적 시료라면 이에 제한되지 않는다.In another embodiment of the present invention, the biological sample is preferably blood, saliva, bone marrow fluid, lymph fluid, urine, amniotic fluid, mucosal fluid, peritoneal fluid, etc., but cells, nucleic acids, proteins, extracellular vesicles, impurities If it is a biological sample in which various substances are complexly mixed, the present invention is not limited thereto.

또한 본 발명은 하기 단계를 포함하는 나노 입자 복합체의 제조 방법을 제공한다: a) 폴리도파민(polydopamine) 용액에 나노 입자 및 산염기촉매제를 첨가하고 분산시킴으로써 폴리도파민이 코팅된 나노 입자를 제조하는 단계; 및 b) 상기 폴리도파민이 코팅된 나노 입자에 수용체(receptor)를 첨가하고 반응시켜 수용체가 결합된 폴리도파민이 코팅된 나노 입자 복합체를 제조하는 단계.The present invention also provides a method for preparing a nanoparticle composite comprising the following steps: a) preparing polydopamine-coated nanoparticles by adding and dispersing nanoparticles and an acid-base catalyst to a polydopamine solution ; and b) adding a receptor to the polydopamine-coated nanoparticles and reacting to prepare a polydopamine-coated nanoparticle complex to which the receptor is bound.

본 발명의 일 구체예에 있어서, 상기 a) 단계의 나노 입자와 폴리도파민은 1 : 0.01 내지 1 : 1의 중량비로 혼합될 수 있으며, 상기 a) 단계의 폴리도파민 용액에 단당류를 1 : 0.5 내지 1 : 1.5의 중량비로 추가로 첨가할 수도 있다.In one embodiment of the present invention, the nanoparticles and polydopamine of step a) may be mixed in a weight ratio of 1: 0.01 to 1:1, and monosaccharides are added to the polydopamine solution of step a) from 1: 0.5 to It may be additionally added in a weight ratio of 1:1.5.

본 발명의 다른 구체예에 있어서, 상기 나노 입자는 바람직하게는 산화철 나노 입자, 폴리스티렌 나노 입자 등일 수 있으나, 고분자 물질과 자가중합 반응에 의하여 코팅될 수 있는 나노 입자의 종류라면 이에 제한되지 않는다.In another embodiment of the present invention, the nanoparticles may be preferably iron oxide nanoparticles, polystyrene nanoparticles, and the like, but is not limited thereto as long as it is a type of nanoparticles that can be coated by a self-polymerization reaction with a polymer material.

본 발명의 또 다른 구체예에 있어서, 상기 a) 단계는 4 시간 내지 36 시간 동안 분산시킬 수 있으며, 상기 b) 단계는 1 시간 내지 5 시간 동안 반응시킬 수 있다.In another embodiment of the present invention, step a) may be dispersed for 4 hours to 36 hours, and step b) may be reacted for 1 hour to 5 hours.

또한 본 발명은 하기 단계를 포함하는 나노 입자 복합체의 제조 방법을 제공한다: a) 티올기를 가지는 실리카 쉘 나노 입자에 고분자 물질을 첨가하고 분산시킴으로써 고분자 물질이 코팅된 나노 입자를 제조하는 단계; 및 b) 상기 코팅된 나노 입자에 수용체(receptor)를 첨가하고 반응시켜 수용체가 결합된 고분자 물질이 코팅된 나노 입자 복합체를 제조하는 단계를 포함하고, 상기 고분자 물질은 폴리에틸렌 글리콜(polyethylene glycol), 폴리에테르이미드(Polyetherimide), 폴리비닐 알코올(polyvinyl alcohol), 카제인(casein), 덱스트란(dextran), 키토산(chitosan) 등일 수 있다.The present invention also provides a method for producing a nanoparticle composite comprising the steps of: a) preparing nanoparticles coated with a polymer material by adding and dispersing a polymer material to silica shell nanoparticles having a thiol group; and b) adding and reacting a receptor to the coated nanoparticles to prepare a nanoparticle composite coated with a polymer material to which the receptor is bound, wherein the polymer material is polyethylene glycol, poly It may be etherimide (Polyetherimide), polyvinyl alcohol (polyvinyl alcohol), casein (casein), dextran (dextran), chitosan (chitosan), and the like.

본 발명의 일 구체예에 있어서, 상기 b) 단계는 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 및 NHS(N-hydroxysuccinimide)를 수용체와 함께 첨가하여 반응시킬 수 있다.In one embodiment of the present invention, step b) may be reacted by adding 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) together with the receptor.

본 발명의 다른 구체예에 있어서, 상기 a) 단계의 나노 입자와 폴리에틸렌 글리콜 또는 폴리비닐 알코올은 1 : 1 내지 1 : 5의 중량비로 혼합하여, 4 시간 내지 36 시간 동안 분산시킬 수 있다.In another embodiment of the present invention, the nanoparticles of step a) and polyethylene glycol or polyvinyl alcohol may be mixed in a weight ratio of 1:1 to 1:5 and dispersed for 4 hours to 36 hours.

본 발명의 또 다른 구체예에 있어서, 상기 b) 단계는 1 시간 내지 5 시간 동안 반응시킬 수 있다.In another embodiment of the present invention, step b) may be reacted for 1 hour to 5 hours.

또한, 본 발명은 상기 나노 입자 복합체를 이용하여 생물학적 시료에서 표적 물질을 검출 또는 분리하는 방법을 제공한다. 상기 방법은 체외에서 생물학적 시료에 상기 나노 입자 복합체를 처리하고 반응시키는 단계를 포함하는 것을 특징으로 한다.In addition, the present invention provides a method for detecting or separating a target material from a biological sample using the nanoparticle complex. The method is characterized in that it comprises the step of treating and reacting the nanoparticle complex to the biological sample in vitro.

또한, 본 발명은 상기 나노 입자 복합체를 이용하여 감염증(infectious disease)을 진단하는 방법 또는 감염증 진단에 관한 정보를 제공하는 방법을 제공한다. 상기 방법은 체외에서 생물학적 시료에 상기 나노 입자 복합체를 처리하고 반응시키는 단계를 포함하는 것을 특징으로 한다.In addition, the present invention provides a method for diagnosing an infectious disease or a method for providing information on the diagnosis of an infectious disease using the nanoparticle complex. The method is characterized in that it comprises the step of treating and reacting the nanoparticle complex to the biological sample in vitro.

또한, 본 발명은 상기 나노 입자 복합체의 생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 용도를 제공한다.In addition, the present invention provides a use for detecting or separating a target material from a biological sample of the nanoparticle complex.

또한, 본 발명은 상기 나노 입자 복합체의 감염증의 진단 용도를 제공한다.In addition, the present invention provides the use of the nanoparticle complex for diagnosis of infectious diseases.

또한, 본 발명은 상기 나노 입자 복합체를 유효성분으로 포함하는, 생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 키트를 제공한다.In addition, the present invention provides a kit for detecting or separating a target material from a biological sample, comprising the nanoparticle complex as an active ingredient.

또한, 본 발명은 상기 나노 입자 복합체를 유효성분으로 포함하는, 감염증 진단용 키트를 제공한다.In addition, the present invention provides a kit for diagnosing an infection comprising the nanoparticle complex as an active ingredient.

본 발명에 따른 나노 입자 복합체는 고분자로 코팅된 나노 입자를 이용함으로써, 다양한 수용체를 효과적으로 나노 입자에 결합시켜 용이하게 나노 입자 복합체를 제조할 수 있으며, 이를 통하여 병원균, 바이러스 등에 의한 감염병뿐만 아니라, 암 등 바이오마커를 이용한 다양한 질병의 진단에 효과적으로 사용할 수 있다. 또한, 고분자로 코팅된 나노 입자를 사용함으로써 생물학적 시료 내에서 발생하는 매트릭스 효과를 방지함으로써 생물학적 시료의 전처리 없이, 생물학적 시료에 직접적으로 나노 입자 복합체를 처리하여도 입자들간의 응집이 발생되지 않으며, 이를 통하여 fouling 현상을 방지함으로써 검출 감도를 현저히 높일 수 있다. 따라서, 본 발명의 나노 입자 복합체는 수용체를 이용한 다양한 생물학적 표적의 분리, 검출, 진단, 치료 등에 폭넓게 사용될 수 있을 것으로 기대된다.The nanoparticle complex according to the present invention uses nanoparticles coated with a polymer, so that various receptors can be effectively bound to the nanoparticles to easily produce a nanoparticle complex, and through this, not only infectious diseases caused by pathogens, viruses, but also cancer It can be effectively used for diagnosis of various diseases using biomarkers such as In addition, aggregation between particles does not occur even when the nanoparticle complex is directly treated on a biological sample without pre-treatment of the biological sample by preventing the matrix effect occurring in the biological sample by using the nanoparticles coated with the polymer. Through this, the detection sensitivity can be significantly increased by preventing fouling. Therefore, the nanoparticle complex of the present invention is expected to be widely used in the separation, detection, diagnosis, treatment, etc. of various biological targets using receptors.

도 1은 본 발명의 일 실시예에 따른 고분자 물질로 코팅된 나노 입자들을 주사전자현미경으로 관찰한 결과를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 고분자 물질로 코팅된 나노 입자를 투과전자현미경으로 관찰한 결과를 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 항체 또는 항생제가 결합된 PDA 코팅 나노 입자 복합체의 제조 방법 및 표적과의 결합 기작을 간략히 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 렉틴이 결합된 Man/PDA 코팅 나노 입자 복합체의 제조 방법 및 표적과의 결합 기작을 간략히 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 항체 또는 항생제가 결합된 PEG 코팅 나노 입자 복합체의 제조 방법을 간략히 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 나노 입자의 분산능을 확인한 결과를 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 항생제가 결합된 고분자 물질로 코팅된 나노 입자 복합체를 사용하여 표적의 분리능을 확인한 결과를 나타낸 도면이다.
1 is a view showing the results of observing nanoparticles coated with a polymer material according to an embodiment of the present invention with a scanning electron microscope.
2 is a view showing the results of observing nanoparticles coated with a polymer material according to an embodiment of the present invention with a transmission electron microscope.
3 is a diagram schematically illustrating a method for preparing a PDA-coated nanoparticle complex bound to an antibody or antibiotic according to an embodiment of the present invention and a binding mechanism with a target.
4 is a view briefly showing a method of manufacturing a lectin-coupled Man/PDA-coated nanoparticle complex and a binding mechanism with a target according to an embodiment of the present invention.
5 is a diagram schematically illustrating a method for preparing a PEG-coated nanoparticle complex to which an antibody or antibiotic is bound according to an embodiment of the present invention.
6 is a view showing the results of confirming the dispersibility of nanoparticles according to an embodiment of the present invention.
7 is a view showing the results of confirming the resolution of the target using the nanoparticle complex coated with the polymer material to which the antibiotic is bound according to an embodiment of the present invention.

본 발명의 나노 입자 복합체는 고분자로 코팅된 나노 입자에 수용체를 결합시킨 나노 입자 복합체로서, 나노 입자의 표면에 PDA, PEG, PVA 등의 고분자를 나노 두께로 코팅함으로써 생물학적 시료 내에서 매트릭스 효과를 방지함으로써, 생물학적 시료 내에 포함되어 있는 표적 물질의 검출 감도를 현저히 향상시킬 수 있기 때문에 소량의 표적 물질을 포함하더라도 높은 정확성을 가지고 검출 및/또는 분리할 수 있기 때문에 다양한 질병의 진단에 효과적으로 사용될 수 있다.The nanoparticle composite of the present invention is a nanoparticle composite in which a receptor is bound to a nanoparticle coated with a polymer, and a polymer such as PDA, PEG, or PVA is coated on the surface of the nanoparticle in a nano-thickness to prevent the matrix effect in the biological sample By doing so, the detection sensitivity of the target material contained in the biological sample can be significantly improved, and even if a small amount of the target material is included, it can be detected and/or separated with high accuracy, so that it can be effectively used for diagnosis of various diseases.

본 명세서에 있어서, “특이적 결합(specifically binding)”이란 분리 또는 검출하고자 하는 표적 물질에 특이적으로 상호작용하여 결합하는 것을 의미하며, 본 발명의 나노 입자 복합체에 결합되어 있는 수용체와 표적 물질이 결합되는 형태를 의미한다. 상기 표적 물질은 생물학적 시료 내에 포함되어 있는 핵산, 항원, 단백질, 세포, 암세포, 병원균, 바이러스, 금속 등 일반적으로 질병을 진단하는데 사용되는 물질 또는 바이오마커 등을 모두 포함할 수 있다.As used herein, "specifically binding" refers to binding to a target material to be separated or detected by specifically interacting with the receptor and target material bound to the nanoparticle complex of the present invention. It means the form that is combined. The target material may include all substances or biomarkers generally used for diagnosing diseases, such as nucleic acids, antigens, proteins, cells, cancer cells, pathogens, viruses, and metals, included in a biological sample.

본 명세서에 있어서, “수용체(receptor)”란 상기 표적 물질에 특이적으로 결합하는 물질을 총칭하며, 바람직하게는 항생제, 항체, 핵산, 단백질, 렉틴 등이나, 표적 물질에 특이적으로 결합하며 표적 물질을 검출 또는 분리할 수 있는 것이라면 이에 제한되지 않는다.As used herein, the term “receptor” refers to a substance that specifically binds to the target substance, and preferably an antibiotic, an antibody, a nucleic acid, a protein, a lectin, etc., or a target substance that specifically binds to the target substance If the substance can be detected or separated, it is not limited thereto.

본 명세서에 있어서, “나노 입자(nanoparticle)”란 일반적으로 사용되는 나노 크기의 입자를 모두 포함하며, 바람직하게는 실리콘 입자, 폴리스티렌 입자, 라텍스 입자, 금속 입자, 유리 입자, 자성 입자, 실리카 쉘 나노 입자 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있으나, 이에 한정하지는 않는다.As used herein, the term “nanoparticle” includes all commonly used nano-sized particles, preferably silicon particles, polystyrene particles, latex particles, metal particles, glass particles, magnetic particles, silica shell nanoparticles. It may be selected from the group consisting of particles and combinations thereof, but is not limited thereto.

본 명세서에 있어서, “생물학적 시료(biological sample)”란 상기 표적 세포가 존재할 수 있는 어떠한 생물학적 시료라도 가능하며, 예를 들어, 생검시료, 조직시료, 분리된 세포를 액체 매질에 현탁시킨 세포 현탁물, 세포 배양물, 체액 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있으며, 상기 체액은 혈액, 타액, 골수액, 림프액, 소변, 양수, 점막액, 복막액 등을 포함할 수 있다.As used herein, the term “biological sample” may be any biological sample in which the target cells may be present, for example, a biopsy sample, a tissue sample, or a cell suspension in which isolated cells are suspended in a liquid medium. , cell culture, body fluid, and combinations thereof, and the body fluid may include blood, saliva, bone marrow fluid, lymph fluid, urine, amniotic fluid, mucosal fluid, peritoneal fluid, and the like.

본 명세서에 있어서, “코팅(coating)”이란 나노 입자의 겉면에 고분자 물질을 이용하여 얇은 막을 입히는 것으로서, 상기 얇은 막은 1 내지 500 nm, 1 내지 200 nm, 1 내지 100 nm, 1 내지 50 nm, 또는 1 내지 30 nm의 두께를 가지고 있을 수 있으나, 이에 제한되지는 않는다.As used herein, the term "coating" refers to coating a thin film using a polymer material on the surface of nanoparticles, and the thin film is 1 to 500 nm, 1 to 200 nm, 1 to 100 nm, 1 to 50 nm, Or it may have a thickness of 1 to 30 nm, but is not limited thereto.

본 명세서에 있어서, "키트(kit)"란 본 발명의 나노 입자 복합체를 유효성분으로 포함하여, 생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 기기를 의미하며, 생물체로부터 분리된 생물학적 시료로부터 표적 물질의 존재 여부 또는 표적 물질의 양을 확인할 수 있는 형태라면 제한이 없다. 상기 키트는 본 발명의 나노 입자 복합체에 결합되는 표적 물질의 존재 여부 또는 표적 물질의 양을 확인함으로써 다양한 진단 분야에 사용될 수 있으며, 바람직하게는 감염증을 진단하는데도 사용될 수도 있다.As used herein, the term "kit" refers to a device for detecting or separating a target material from a biological sample, including the nanoparticle complex of the present invention as an active ingredient, and a target material from a biological sample separated from an organism There is no limitation as long as it is a form in which the presence or absence of the target substance or the amount of the target substance can be confirmed. The kit can be used in various diagnostic fields by checking the presence or amount of a target material bound to the nanoparticle complex of the present invention, and preferably can also be used for diagnosing an infection.

본 명세서에 있어서, 상기 “감염증(infection disease)”이란 병원성 미생물의 감염에 의한 결과로 생기는 모든 질병을 의미하며, 상기 병원성 미생물은 세균, 바이러스, 원충, 진균 등일 수 있으나, 생물체에 감염되어 감염증을 유도할 수 있는 것으로 알려져 있는 미생물이라면 이에 제한되지 않는다.As used herein, the term “infection disease” refers to any disease resulting from infection of a pathogenic microorganism, and the pathogenic microorganism may be bacteria, viruses, protozoa, fungi, etc. Any microorganism known to be inducible is not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

[실시예][Example]

실시예 1: 고분자 물질로 코팅된 나노 입자의 제조Example 1: Preparation of nanoparticles coated with a polymer material

다양한 성분이 복합적으로 혼합되어 있는 생물학적 시료의 분석 시에 문제가 되는 매트릭스 효과(matrix effect)를 방지하기 위한 나노 입자들을 제조하기 위하여, 고분자 물질로 코팅된 나노 입자를 제조하였다. 매트릭스 효과를 가장 효과적으로 방지할 수 있는 고분자 물질을 선별하기 위하여, 폴리도파민(polydopamine; PDA), 폴리에틸렌 글리콜(polyethylene glycol; PEG), 폴리에테르이미드(Polyetherimide; PEI), 폴리비닐 알코올(polyvinyl alcohol; PVA), 카제인(casein), 덱스트란(dextran), 그리고 키토산(chitosan)을 이용하여 고분자 물질로 코팅된 나노 입자를 제조하였다. In order to prepare nanoparticles for preventing a matrix effect, which is a problem when analyzing a biological sample in which various components are complexly mixed, nanoparticles coated with a polymer material were prepared. In order to select the polymer material that can most effectively prevent the matrix effect, polydopamine (PDA), polyethylene glycol (PEG), polyetherimide (PEI), polyvinyl alcohol (PVA) ), casein, dextran, and chitosan were used to prepare nanoparticles coated with a polymer material.

산화철 나노 입자는 일반적으로 알려져 있는 방법으로 제조하였다. 보다 자세하게는, 100 mg의 Fe3O4 파우더(100 nm)를 40 mL의 1M HCl(hydrochloric acid) 용액에 첨가하고 혼합해준 후, 1 시간 동안 상온에서 반응시켰다. 그리고 영구자석을 통하여 입자를 포집시킨 후 나머지 용액은 제거하고, 40 mL의 인산염완충용액(phosphate buffered saline; PBS, pH 7.4)에 포집된 입자를 첨가하고 1분간 vortexing하고, 다시 영구자석을 이용하여 입자만 포집시키는 방식으로 3회 세척하였다. 그리고 최종적으로 10 mL의 인산염완충용액에 제조된 산화철 나노 입자를 담아서 보관하였다.The iron oxide nanoparticles were prepared by a generally known method. More specifically, 100 mg of Fe 3 O 4 powder (100 nm) was added to 40 mL of 1M HCl (hydrochloric acid) solution and mixed, followed by reaction at room temperature for 1 hour. After collecting the particles through a permanent magnet, the remaining solution is removed, the collected particles are added to 40 mL of phosphate buffered saline (PBS, pH 7.4), vortexed for 1 minute, and again using a permanent magnet. It was washed three times in such a way that only particles were collected. And finally, the prepared iron oxide nanoparticles were stored in 10 mL of phosphate buffer solution.

그리고 PDA가 코팅된 나노 입자를 제조하기 위해서는, 일차적으로 50 mg의 도파민을 산염기촉매제로서 25 mL의 Tris-HCl buffer(pH 8.5) 또는 acetic acid가 첨가된 완충용액에 첨가하여 PDA 용액을 제조하고, 이후 산화철 나노 입자 또는 폴리스티렌 나노 입자 등의 나노 입자를 첨가하고, 16시간 동안 초음파 처리하여 분산시키며 자가중합(self-polymerization) 반응을 통하여, PDA가 코팅된 나노 입자(NPs@PDA)를 제조하였다. 그리고 영구자석을 통하여 입자를 포집시킨 후 나머지 용액은 제거하고, 40 mL의 인산염완충용액(phosphate buffered saline; PBS, pH 7.4)에 포집된 입자를 첨가하고 1분간 vortexing하고, 다시 영구자석을 이용하여 입자만 포집시키는 방식으로 3회 세척하였다. 그리고 최종적으로 1 mL의 인산염완충용액에 제조된 PDA가 코팅된 나노 입자를 담아서 보관하였다. 이때, 나노 입자와 PDA의 함량비를 다양하게 변경하며, PDA가 코팅된 나노 입자를 제조하였는데, 나노 입자와 PDA의 함량비가 1 : 0.01 내지 1 : 1.5 중량비일 때 효과적으로 PDA가 코팅된 나노 입자가 제조되었으며, 1 : 1.5 중량비를 초과할 경우에는 나노 입자가 서로 뭉쳐지며, 1 : 0.01 중량비 미만일 경우에는 PDA 코팅이 충분하지 않은 것을 확인하였다. 그리고 자가중합 반응 시간을 감소시킴에 따라 PDA의 코팅 두께가 감소되며, PDA의 함량비를 감소시킬 때도 PDA의 코팅 두께가 감소되는 것을 확인하였다. 그 결과, 1 내지 30 nm의 두께로 코팅될 수 있는 시간은 4 내지 36 시간인 것을 확인하였다.And to prepare PDA-coated nanoparticles, firstly, 50 mg of dopamine is added to 25 mL of Tris-HCl buffer (pH 8.5) or acetic acid-added buffer as an acid-base catalyst to prepare a PDA solution, Then, nanoparticles such as iron oxide nanoparticles or polystyrene nanoparticles were added, dispersed by ultrasonication for 16 hours, and PDA-coated nanoparticles (NPs@PDA) were prepared through a self-polymerization reaction. . After collecting the particles through a permanent magnet, the remaining solution is removed, the collected particles are added to 40 mL of phosphate buffered saline (PBS, pH 7.4), vortexed for 1 minute, and again using a permanent magnet. It was washed three times in such a way that only particles were collected. And finally, the prepared PDA-coated nanoparticles were stored in 1 mL of phosphate buffer solution. At this time, the content ratio of nanoparticles and PDA was variously changed, and PDA-coated nanoparticles were prepared. When the content ratio of nanoparticles and PDA was 1: 0.01 to 1: 1.5 by weight, PDA-coated nanoparticles were effectively produced was prepared, and when the weight ratio was greater than 1: 1.5, the nanoparticles were agglomerated with each other, and when the weight ratio was less than 1: 0.01, it was confirmed that the PDA coating was not sufficient. In addition, it was confirmed that the coating thickness of the PDA decreased as the self-polymerization reaction time was decreased, and the coating thickness of the PDA was decreased even when the content ratio of the PDA was decreased. As a result, it was confirmed that the time for coating with a thickness of 1 to 30 nm was 4 to 36 hours.

티올(thiol)기에 결합하는 고분자 물질을 나노 입자에 코팅하기 위해서는, 티올기를 가지는 실리카 쉘 나노 입자(NPs@SiO2)를 이용하였고, 고분자 물질로는 폴리에틸렌 글리콜, 폴리에테르이미드, 폴리비닐 알코올, 카제인, 덱스트란, 그리고 키토산을 이용하였다. 실리카 쉘 나노 입자는 산화철과 같은 자성나노입자(magnetic nanoparticle, MNP) 또는 폴리스티렌 나노 입자 80 mg에 Tetra Ethyl Ortho Silicate(TEOS)가 첨가된 NH4OH 용액을 0.5 mL 첨가하고 16 시간 동안 반응시켜, 실리카 쉘이 형성된 나노 입자를 제조하였다. 그리고, 제조된 실리카 쉘 나노 입자에 40 mL의 머캅토에탄올(mercaptoethanol; MA, 80% v/v), 400 mg의 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide), 40 mL Dimethylformamide(DMF) 및 80 mg 4-Dimethylaminopyridine(DMAP)을 첨가하고 16 시간 동안 반응시켜 실리카 쉘 표면에 티올(thiol)기를 형성시켰다. 이후, 1 mL의 인산염완충용액(pH 7.4)에 표면에 티올기를 가지는 실리카 쉘 나노 입자 2 mg과 0.6 mg의 PEG 파우더(분자량: 6,000), PEI 파우더, 덱스타란, 카제인, 또는 키토산을 첨가하고 혼합한 후에, 16시간 동안 반응시켜 고분자 물질이 코팅된 나노 입자를 제조하였다. 이때, 나노 입자와 고분자 물질의 함량비를 다양하게 변경하며, 고분자 물질이 코팅된 나노 입자를 제조하였는데, 나노 입자와 고분자 물질의 함량비가 1 : 1 내지 1 : 5 중량비일 때 효과적으로 고분자 물질이 코팅된 나노 입자가 제조되었으며, 1 : 5 중량비를 초과할 경우에는 나노 입자가 서로 뭉쳐지며, 1 : 1 중량비 미만일 경우에는 고분자 물질의 코팅이 충분하지 않은 것을 확인하였다. 그리고 반응 시간을 12시간, 8시간, 4시간으로 감소시킴에 따라 고분자 물질의 코팅 두께가 감소되며, 고분자 물질의 함량비를 감소시킬 때도 고분자 물질의 코팅 두께가 감소되는 것을 확인하였다. In order to coat the nanoparticles with a polymer material binding to a thiol group, silica shell nanoparticles (NPs@SiO 2 ) having a thiol group were used, and as the polymer material, polyethylene glycol, polyetherimide, polyvinyl alcohol, casein , dextran, and chitosan were used. Silica shell nanoparticles were obtained by adding 0.5 mL of NH 4 OH solution containing Tetra Ethyl Ortho Silicate (TEOS) to 80 mg of magnetic nanoparticles (MNP) or polystyrene nanoparticles such as iron oxide, and reacting for 16 hours to obtain silica. Nanoparticles with shells were prepared. Then, 40 mL of mercaptoethanol (MA, 80% v/v), 400 mg of EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide), 40 mL of dimethylformamide ( DMF) and 80 mg 4-dimethylaminopyridine (DMAP) were added and reacted for 16 hours to form a thiol group on the silica shell surface. After that, 2 mg of silica shell nanoparticles having a thiol group on the surface and 0.6 mg of PEG powder (molecular weight: 6,000), PEI powder, dextaran, casein, or chitosan are added to 1 mL of phosphate buffer solution (pH 7.4) and mixed. After that, the reaction was carried out for 16 hours to prepare nanoparticles coated with a polymer material. At this time, the content ratio of the nanoparticles and the polymer material was variously changed, and nanoparticles coated with a polymer material were prepared. Nanoparticles were prepared, and when the weight ratio was greater than 1:5, the nanoparticles were agglomerated with each other, and when the weight ratio was less than 1:1, it was confirmed that the coating of the polymer material was not sufficient. And it was confirmed that the coating thickness of the polymer material was decreased as the reaction time was reduced to 12 hours, 8 hours, and 4 hours, and the coating thickness of the polymer material was decreased even when the content ratio of the polymer material was decreased.

그리고 수용체가 결합할 수 있도록, 제조된 고분자 물질로 코팅된 나노 입자에 2 mg의 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 및 2 mg의 NHS(N-hydroxysuccinimide)를 첨가하고 6 시간 동안 실온에서 반응시켜 아민 결합(amine coupling)을 위한 링커를 결합시켰다. 그리고 영구자석을 통하여 입자를 포집시킨 후 나머지 용액은 제거하고, 40 mL의 인산염완충용액(pH 7.4)에 포집된 입자를 첨가하고 1분간 vortexing하고, 다시 영구자석을 이용하여 입자만 포집시키는 방식으로 3회 세척하였다. 그리고 최종적으로 1 mL의 인산염완충용액에 제조된 고분자 물질로 코팅된 나노 입자를 담아서 보관하였다.Then, 2 mg of EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) and 2 mg of NHS (N-hydroxysuccinimide) were added to the prepared polymer-coated nanoparticles so that the receptor could bind, and 6 A linker for amine coupling was bound by reaction at room temperature for a period of time. Then, after collecting the particles through a permanent magnet, the remaining solution is removed, the collected particles are added to 40 mL of phosphate buffer solution (pH 7.4), vortexed for 1 minute, and again, only the particles are collected using a permanent magnet. Washed 3 times. And finally, the nanoparticles coated with the polymer material prepared in 1 mL of phosphate buffer were stored and stored.

이하, 모든 실험에서 대조군으로는 코팅이 되지 않은 실리카 나노 입자를 사용하였다. 상기 방법으로 제조된 각각의 고분자 물질로 코팅된 나노 입자들은 주사전자현미경(Scanning Electron Microscope; SEM)을 이용하여 관찰하였다. 그 결과는 도 1에 나타내었다.Hereinafter, uncoated silica nanoparticles were used as a control in all experiments. Nanoparticles coated with each polymer material prepared by the above method were observed using a scanning electron microscope (SEM). The results are shown in FIG. 1 .

도 1에 나타난 바와 같이, 코팅이 되지 않은 나노 입자와 고분자 물질로 코팅된 나노 입자의 경우에는 표면의 느낌이 서로 다른 것을 확인할 수 있었으며, 이를 통하여 고분자 물질로 나노 입자가 코팅된 것을 확인하였다. 그리고 고분자 물질로 코팅된 나노 입자 중에서는 카제인 또는 덱스트란으로 코팅된 나노 입자의 경우에는 나노 입자들끼리 뭉쳐있는 것이 확인되었으며, 특별히, 카제인의 경우에 뭉침 현상이 가장 큰 것을 확인하였다. 반면, PDA, PEG, PEI, 키토산의 경우에는 뭉침 현상이 거의 없는 것을 확인하였다. As shown in FIG. 1 , in the case of the uncoated nanoparticles and the nanoparticles coated with a polymer material, it was confirmed that the surface feel was different, and through this, it was confirmed that the nanoparticles were coated with a polymer material. And among the nanoparticles coated with a polymer material, in the case of the nanoparticles coated with casein or dextran, it was confirmed that the nanoparticles were agglomerated, and in particular, it was confirmed that the agglomeration phenomenon was the largest in the case of casein. On the other hand, in the case of PDA, PEG, PEI, and chitosan, it was confirmed that there was almost no agglomeration phenomenon.

또한, 고분자 물질로 코팅된 나노 입자를 보다 자세히 관찰하기 위하여, 투과전자현미경(transmission electron microscope; TEM)을 이용하여 PDA 또는 PEG로 코팅된 나노 입자를 관찰하였다. 그 결과는 도 2에 나타내었다.In addition, in order to observe the nanoparticles coated with the polymer material in more detail, the nanoparticles coated with PDA or PEG were observed using a transmission electron microscope (TEM). The results are shown in FIG. 2 .

도 2에 나타난 바와 같이, PDA 또는 PEG로 코팅된 나노 입자의 경우 표면에 얇은 막이 형성되어 있는 것을 확인하였으며, 대조군인 실리카 나노 입자에는 막이 형성되어 있지 않은 것을 확인하였다. 상기 결과를 통하여, 나노 입자가 PDA 또는 PEG로 코팅되어 막을 형성하였으며, 이를 통하여 PDA 코팅 나노 입자(NPs@PDA)와 PEG 코팅 나노 입자(MNPs@SiO2-PEG)가 정상적으로 제조된 것을 확인할 수 있었다.As shown in FIG. 2 , it was confirmed that a thin film was formed on the surface of the nanoparticles coated with PDA or PEG, and it was confirmed that no film was formed on the silica nanoparticles as a control. Through the above results, the nanoparticles were coated with PDA or PEG to form a film, and through this, it was confirmed that PDA-coated nanoparticles (NPs@PDA) and PEG-coated nanoparticles (MNPs@SiO2-PEG) were normally prepared.

실시예 2: 나노 입자 복합체의 제조Example 2: Preparation of Nanoparticle Composites

생물학적 시료에서 표적(target)을 분리 정제 및 검출하기 위하여, 실시예 1과 동일한 방법으로 제조된 고분자 물질로 코팅된 나노 입자에 병원체, 세포, 바이오마커(핵산, 효소, 단백질 등) 등이 결합할 수 있는 수용체(receptor)를 결합시킨 나노 입자 복합체를 제조하였다.In order to separate, purify and detect a target from a biological sample, pathogens, cells, biomarkers (nucleic acids, enzymes, proteins, etc.) Nanoparticle complexes were prepared in which a receptor capable of being bound to each other was obtained.

PDA 코팅 나노 입자에 항체 또는 항생제를 첨가한 후 4℃에서 분산시키며 2시간 이상 반응시켜 항체 또는 항생제가 PDA에 결합된, PDA 코팅 나노 입자 복합체를 제조하였다. 항체 또는 항생제가 결합된 PDA 코팅 나노 입자 복합체의 제조 방법은 도 3에 간략하게 나타내었다.After adding the antibody or antibiotic to the PDA-coated nanoparticles, the PDA-coated nanoparticle complex was prepared by dispersing at 4° C. and reacting for 2 hours or more, in which the antibody or antibiotic was bound to the PDA. A method for preparing the PDA-coated nanoparticle complex to which an antibody or antibiotic is bound is briefly shown in FIG. 3 .

바이러스를 표적으로 하는 렉틴(lectin)을 결합시키기 위해서는, 단당류의 한 종류인 만노스(mannose; Man)와 PDA를 1 : 1의 중량비로 혼합한 후에, 산화철 나노 입자를 첨가하고 16시간 동안 초음파 처리하여 분산시키며 자가중합 반응을 통하여, Man과 PDA가 코팅된 나노 입자(NPs@PDA-Man)를 제조하고, 제조된 코팅 나노 입자에 콘카나발린 A(Concanavalin A; ConA)를 첨가하고 3시간 동안 반응시켜 렉틴이 공유결합된 Man과 PDA가 코팅된 나노 입자 복합체를 제조하였다. 렉틴이 결합된 Man/PDA 코팅 나노 입자 복합체의 제조 방법은 도 4에 간략하게 나타내었다.In order to bind a lectin that targets a virus, mannose (Man), a type of monosaccharide, and PDA are mixed in a weight ratio of 1:1, then iron oxide nanoparticles are added and sonicated for 16 hours. Man and PDA-coated nanoparticles (NPs@PDA-Man) were prepared through self-polymerization while dispersing, and Concanavalin A (ConA) was added to the prepared coated nanoparticles and reacted for 3 hours. To prepare a nanoparticle complex coated with Man and PDA covalently bound to lectin. The manufacturing method of the lectin-coupled Man/PDA-coated nanoparticle complex is briefly shown in FIG. 4 .

EDC/NHS 링커가 결합되어 있는 PEG 코팅 나노 입자에 항생제 또는 항체를 결합시키기 위해서는 항생제인 반코마이신(vancomycin), 폴리마이신 B(Polymyxin B) 등을 처리하고, 4℃에서 2시간 동안 반응시켜 PEG에 항생제가 결합된 나노 입자 복합체를 제조하였다. 항체 또는 항생제가 결합된 PEG 코팅 나노 입자 복합체의 제조 방법은 도 5에 간략하게 나타내었다.In order to bind antibiotics or antibodies to the PEG-coated nanoparticles to which the EDC/NHS linker is bonded, antibiotics such as vancomycin, polymyxin B, etc. are treated, and reacted at 4° C. for 2 hours. A nanoparticle composite was prepared. The method for preparing the PEG-coated nanoparticle complex to which an antibody or antibiotic is bound is briefly shown in FIG. 5 .

제조된 나노 입자 복합체는 각각 인산염완충용액에 사용 전까지 보관하였다.The prepared nanoparticle complexes were each stored in a phosphate buffer solution until use.

실시예 3: 나노 입자 복합체의 특성 확인Example 3: Characterization of nanoparticle composites

3.1. 나노 입자의 분산능 확인3.1. Confirmation of dispersibility of nanoparticles

실시예 1과 동일한 방법으로 제조된 나노 입자들의 생물학적 시료 내에서의 분산능을 확인하기 위하여, 가장 뭉침 현상이 적은 것으로 확인되었던 PEG 코팅 실리카 나노 입자(NPs@SiO2-PEG)와 PDA 코팅 나노 입자(NPs@PDA)를 전혈(whole blood)에 각각 첨가하고, 세척 횟수에 따른 입자간 응집 정도를 확인하였다. 보다 자세하게는, 1 mL의 인산염완충용액에 각각의 나노 입자를 첨가하고, 15초 동안 vortexing하고, 이후 magnetic rack을 이용하여 나노 입자를 포집시킨 후, 상층액을 제거하고 다시 인산염완충용액을 첨가하는 과정을 3회 반복하였다. 대조군으로는 코팅이 되지 않는 나노 입자를 이용하였다. 그 결과는 도 6에 나타내었다.In order to confirm the dispersibility of nanoparticles prepared in the same manner as in Example 1 in a biological sample, PEG-coated silica nanoparticles (NPs@SiO 2 -PEG) and PDA-coated nanoparticles that were confirmed to have the least agglomeration phenomenon (NPs@PDA) was added to whole blood, respectively, and the degree of aggregation between particles was checked according to the number of washings. More specifically, each nanoparticle is added to 1 mL of phosphate buffer solution, vortexed for 15 seconds, and then the nanoparticles are collected using a magnetic rack, then the supernatant is removed and the phosphate buffer solution is added again. The process was repeated 3 times. As a control, nanoparticles that were not coated were used. The results are shown in FIG. 6 .

도 6에 나타난 바와 같이, 코팅되지 않은 실리카 나노 입자의 경우에는 응집되어 바닥에 가라앉는 반면, PEG 또는 PDA로 코팅된 나노 입자의 경우에는 혈액 내에 분산되어 응집되지 않는 것을 확인하였다. 상기 결과를 통하여, 본 발명의 고분자 물질로 코팅된 나노 입자는 SEM에서 관찰된 결과와 마찬가지로, 나노 입자들끼리의 뭉침이 없을 뿐만 아니라, 생물학적 시료 내에서의 매트릭스 효과가 나타나지 않는 것을 확인할 수 있었다.As shown in FIG. 6 , it was confirmed that uncoated silica nanoparticles were aggregated and settled to the bottom, whereas nanoparticles coated with PEG or PDA were dispersed in blood and did not aggregate. Through the above results, it was confirmed that the nanoparticles coated with the polymer material of the present invention did not have agglomeration between the nanoparticles, as well as the matrix effect in the biological sample, as observed in the SEM.

3.2. 표적 분리능 확인3.2. Check target resolution

실시예 2와 동일한 방법으로 제조된 나노 입자 복합체들의 표적 분리능을 확인하기 위하여, 전혈 내에 포함되어 있는 세균들의 분리능을 확인하였다. 보다 자세하게는, 전혈에 각각의 병원균 또는 바이러스를 혼합하고 나노 입자 복합체들을 처리하고 20분 동안 반응시킨 후, 나노 입자 복합체를 분리하였다. 그리고 분리된 나노 입자 복합체에 결합된 병원균의 양은 bacterial universal 16s rDNA primer를 이용하여, PCR을 실시하여 확인하고, 나노 입자를 첨가하지 않은 시료 내의 병원균의 양을 기준으로 하여, 나노 입자에 결합되어 있는 병원균의 양을 %로 나타내었다. 표적용 균주는 대장균(Escherichia coli O157:H7; E. coli), 황색포도상구균(Staphylococcus aureus; S. aureus), 항생제 내성 균주인 메티실린 내성 황색포도상구균(methicillin-resistant Staphylococcus aureus; MRSA), 클렙시엘라 뉴모니아(Klebsiella pneumonia; K. pneumonia), 녹농균(Pseudomonas aeruginosa; P. aeruginosa) 및 살모넬라 엔테리티디스(Salmonella enteritidis; S. enteritidis)를 이용하였으며, 나노 입자는 코팅되지 않은 실리카 나노 입자에 수용체를 결합시킨 나노 입자 복합체, PDA 코팅 나노 입자에 수용체를 결합시킨 나노 입자 복합체, EDC/NHS 링커가 결합되어 있는 PEG 코팅 나노 입자에 수용체를 결합시킨 나노 입자 복합체, 덱스트란 코팅 나노 입자에 수용체를 결합시킨 나노 입자 복합체, 그리고 PEI 코팅 나노 입자에 수용체를 결합시킨 나노 입자 복합체를 사용하였다. 상기 수용체로는 반코마이신(vancomycin) 또는 폴리믹신 B(polymyxins B)를 사용하였다. 그 결과는 도 7에 나타내었다. In order to confirm the target resolving ability of the nanoparticle complexes prepared in the same manner as in Example 2, the resolving ability of bacteria contained in whole blood was checked. In more detail, each pathogen or virus was mixed with whole blood, and the nanoparticle complexes were treated and reacted for 20 minutes, then the nanoparticle complexes were separated. And the amount of pathogens bound to the separated nanoparticle complex is confirmed by PCR using a bacterial universal 16s rDNA primer, and based on the amount of pathogens in the sample to which nanoparticles are not added, The amount of pathogen was expressed in %. The target strain is Escherichia coli O157:H7; E. coli), Staphylococcus aureus (S. aureus), antibiotic-resistant strain methicillin-resistant Staphylococcus aureus (MRSA), Kleb Klebsiella pneumonia (K. pneumonia), Pseudomonas aeruginosa (P. aeruginosa) and Salmonella enteritidis (S. enteritidis) were used, and nanoparticles were applied to uncoated silica nanoparticles. Receptor-coupled nanoparticle complex, PDA-coated nanoparticles with receptor bound nanoparticle complex, EDC/NHS linker bound PEG-coated nanoparticles with receptor bound nanoparticle complex, dextran-coated nanoparticles with receptors A nanoparticle complex bound to the nanoparticles and a nanoparticle complex in which a receptor was bound to PEI-coated nanoparticles were used. As the receptor, vancomycin or polymyxins B was used. The results are shown in FIG. 7 .

도 7에 나타난 바와 같이, 고분자 물질로 코팅되어 있지 않은 나노 입자의 경우에는 40% 이하의 포집효율(Capturing efficiency)을 나타내는 반면, 고분자 물질로 코팅된 나노 입자의 경우에는 모두 40% 이상의 포집효율을 나타내는 것을 확인하였다. 그리고 그 중 PDA 또는 PEG가 코팅된 나노 입자의 경우에는 20분 내에 80% 이상의 포집효율(Capturing efficiency)을 나타내어, 가장 높은 포집효율을 나타내는 것을 확인하였다.As shown in FIG. 7 , in the case of nanoparticles not coated with a polymer material, a capturing efficiency of 40% or less was exhibited, whereas in the case of nanoparticles coated with a polymer material, a capturing efficiency of 40% or more was obtained. was confirmed to be indicated. And among them, in the case of nanoparticles coated with PDA or PEG, it was confirmed that the capturing efficiency was 80% or more within 20 minutes, showing the highest capturing efficiency.

또한, 항체를 이용한 분리능을 확인하기 위하여, 타액 내에 인플루엔자 바이러스인 Influenza A virus subtype H1N1을 혼합하고, Anti-H1N1 Antibody(Santa Cruz Biotechnology)가 결합된 PDA 코팅 나노 입자 복합체를 처리하고 20분 동안 반응시킨 후, 나노 입자 복합체를 분리하였다. 그리고 분리된 나노 입자 복합체에 결합된 바이러스의 양을 항체를 이용하여 확인하였다. 그 결과, Anti-H1N1 Antibody가 결합된 PDA 코팅 나노 입자 복합체를 사용하여 바이러스를 분리하는 경우 20분 내에 약 90%의 바이러스가 분리되는 반면, Anti-H1N1 Antibody를 결합시킨 코팅이 되지 않은 나노 입자 복합체를 사용한 경우에는 40% 정도의 바이러스가 분리되어, 고분자 물질로 코팅된 나노 입자의 경우에 포집효율이 현저히 증가되는 것을 확인하였다.In addition, in order to confirm the resolution using the antibody, the influenza virus, Influenza A virus subtype H1N1, was mixed in saliva, and the PDA-coated nanoparticle complex to which the Anti-H1N1 Antibody (Santa Cruz Biotechnology) was bound was treated and reacted for 20 minutes. Then, the nanoparticle complex was separated. And the amount of virus bound to the separated nanoparticle complex was confirmed using the antibody. As a result, when the virus is isolated using the PDA-coated nanoparticle complex to which the Anti-H1N1 antibody is bound, about 90% of the virus is isolated within 20 minutes, whereas the non-coated nanoparticle complex to which the Anti-H1N1 antibody is bound. In the case of using , about 40% of the virus was isolated, and it was confirmed that the collection efficiency was significantly increased in the case of nanoparticles coated with a polymer material.

상기 결과들을 통하여, 본원 발명의 고분자를 코팅시킨 나노 입자는 수용액 내에서 나노 입자 사이의 뭉침 현상을 억제할 뿐만 아니라, 혈액, 타액, 소변 등 다양한 성분이 복합적으로 존재하는 생물학적 시료에서 매트릭스 효과를 방지하여 입자간 응집을 억제하여 효율적으로 분산된 상태로 존재할 수 있기 때문에, 실질적인 생물학적 시료에서 표적의 분리 및 정제 효율을 현저히 증가시킬 수 있으며, 이를 통하여 최종적으로 분석 기술의 검출 감도, 검출 정확성, 진단 정확성 등을 현저히 증가시킬 수 있다는 것을 확인할 수 있었다. 또한, 코팅되어 있는 고분자 물질의 표면에 기존에 알려져 있는 다양한 방식을 통하여 다양한 종류의 수용체를 제한없이 손쉽게 결합시킬 수 있기 때문에 다양한 표적 물질을 검출하는 다양한 분야에 효과적으로 적용될 수 있다는 것을 확인할 수 있었다. Through the above results, the nanoparticles coated with the polymer of the present invention not only inhibit the aggregation between nanoparticles in aqueous solution, but also prevent the matrix effect in biological samples in which various components such as blood, saliva, and urine are present in a complex manner. Since the particles can exist in an efficiently dispersed state by inhibiting aggregation between particles, it is possible to significantly increase the separation and purification efficiency of the target from a practical biological sample, and through this, the detection sensitivity, detection accuracy, and diagnostic accuracy of the analysis technology finally It was confirmed that the back can be significantly increased. In addition, it was confirmed that various types of receptors can be easily bound without limitation to the surface of the coated polymer material through various known methods, so that it can be effectively applied to various fields of detecting various target substances.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The foregoing description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (23)

생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 나노 입자 복합체로서,
상기 나노 입자 복합체는 나노 입자의 표면이 고분자 물질(macromolecule)로 코팅된 것이며,
상기 고분자 물질에는 표적 물질을 검출 또는 분리하기 위한 수용체(receptor)가 결합되며,
상기 고분자 물질은 폴리도파민(polydopamine), 폴리에틸렌 글리콜(polyethylene glycol), 폴리에테르이미드(Polyetherimide), 폴리비닐 알코올(polyvinyl alcohol), 카제인(casein), 덱스트란(dextran), 및 키토산(chitosan)으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, 나노 입자 복합체.
A nanoparticle complex for detecting or separating a target material from a biological sample, comprising:
In the nanoparticle composite, the surface of the nanoparticles is coated with a polymer material (macromolecule),
A receptor for detecting or separating a target material is bound to the polymer material,
The polymer material is made of polydopamine, polyethylene glycol, polyetherimide, polyvinyl alcohol, casein, dextran, and chitosan. Nanoparticle composite, characterized in that at least one selected from the group.
제 1 항에 있어서,
상기 코팅은 렉틴 결합을 위한 단당류(monosaccharide)가 고분자 물질과 혼합되어 코팅되는 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The coating is a nanoparticle complex, characterized in that a monosaccharide for lectin binding is mixed with a polymer material and coated.
제 2 항에 있어서,
상기 단당류는 만노스(mannose), 글루코즈(glucose), 프럭토즈(fructose), 및 글루코사민(glucosamine)으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 나노 입자 복합체.
3. The method of claim 2,
The monosaccharide is mannose (mannose), glucose (glucose), fructose (fructose), and glucosamine (glucosamine), characterized in that any one or more selected from the group consisting of, the nanoparticle complex.
제 1 항에 있어서,
상기 결합은 이온결합, 공유결합, 배위결합, 수소결합, 소수성 상호작용, 반데르발스 상호작용, 및 링커에 의한 결합으로 이루어진 군으로부터 선택된 어느 하나 이상의 형태인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The bond is an ionic bond, a covalent bond, a coordination bond, a hydrogen bond, a hydrophobic interaction, a van der Waals interaction, and any one or more types selected from the group consisting of a linker, the nanoparticle complex.
제 4 항에 있어서,
상기 링커에 의한 결합은 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)/N-hydroxysuccinimide(NHS) 링커 또는 티올기에 의한 결합인 것을 특징으로 하는, 나노 입자 복합체.
5. The method of claim 4,
The binding by the linker is 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS), characterized in that the binding by the linker or a thiol group, the nanoparticle complex.
제 1 항에 있어서,
상기 수용체는 표적 물질에 특이적으로 결합하는 항생제, 항체, 핵산, 렉틴, 및 단백질로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The receptor is a nanoparticle complex, characterized in that any one or more selected from the group consisting of antibiotics, antibodies, nucleic acids, lectins, and proteins that specifically bind to a target substance.
제 1 항에 있어서,
상기 표적 물질은 병원균, 바이러스, 세포, 단백질, 핵산, 항원, 및 당단백질로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The target material is a pathogen, virus, cell, protein, nucleic acid, antigen, characterized in that any one or more selected from the group consisting of a glycoprotein, nanoparticle complex.
제 1 항에 있어서,
상기 나노 입자는 실리카 나노 입자, 산화철 나노 입자, 및 폴리스티렌 나노 입자로 이루어진 군으로부터 선택된 어느 하나 이상의 나노 입자인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The nanoparticles are silica nanoparticles, iron oxide nanoparticles, and any one or more nanoparticles selected from the group consisting of polystyrene nanoparticles, the nanoparticle composite.
제 1 항에 있어서,
상기 나노 입자 복합체는 직경이 200 내지 1,000 nm인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The nanoparticle composite has a diameter of 200 to 1,000 nm, characterized in that the nanoparticle composite.
제 1 항에 있어서,
상기 생물학적 시료는 혈액, 타액, 골수액, 림프액, 소변, 양수, 점막액, 및 복막액으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 나노 입자 복합체.
The method of claim 1,
The biological sample is blood, saliva, bone marrow fluid, lymph fluid, urine, amniotic fluid, mucosal fluid, and peritoneal fluid, characterized in that any one or more selected from the group consisting of, the nanoparticle complex.
제 1 항의 나노 입자 복합체의 제조 방법으로서, 하기 단계를 포함하는 것을 특징으로 하는, 제조 방법:
a) 폴리도파민(polydopamine) 용액에 나노 입자 및 산염기촉매제를 첨가하고 분산시킴으로써 폴리도파민이 코팅된 나노 입자를 제조하는 단계; 및
b) 상기 폴리도파민이 코팅된 나노 입자에 수용체(receptor)를 첨가하고 반응시켜 수용체가 결합된 폴리도파민이 코팅된 나노 입자 복합체를 제조하는 단계.
A method for preparing the nanoparticle composite of claim 1, characterized in that it comprises the following steps:
a) preparing polydopamine-coated nanoparticles by adding and dispersing nanoparticles and an acid-based catalyst to a polydopamine solution; and
b) preparing a polydopamine-coated nanoparticle complex to which a receptor is bound by adding and reacting a receptor to the polydopamine-coated nanoparticles.
제 11 항에 있어서,
상기 a) 단계의 나노 입자와 폴리도파민은 1 : 0.01 내지 1 : 1.5의 중량비로 혼합하는 것을 특징으로 하는, 제조 방법.
12. The method of claim 11,
The nano-particles and polydopamine of step a) are 1: 0.01 to 1: 1.5, characterized in that mixed in a weight ratio, the manufacturing method.
제 11 항에 있어서,
상기 a) 단계의 폴리도파민 용액에 단당류를 1 : 0.5 내지 1 : 1.5의 중량비로 추가로 첨가하는 것을 특징으로 하는, 제조 방법.
12. The method of claim 11,
A manufacturing method, characterized in that the monosaccharide is further added to the polydopamine solution of step a) in a weight ratio of 1: 0.5 to 1: 1.5.
제 11 항에 있어서,
상기 나노 입자는 산화철 나노 입자 또는 폴리스티렌 나노 입자인 것을 특징으로 하는, 제조 방법.
12. The method of claim 11,
The nanoparticles are iron oxide nanoparticles or polystyrene nanoparticles, characterized in that the manufacturing method.
제 11 항에 있어서,
상기 a) 단계는 4 시간 내지 36 시간 동안 분산시키는 것을 특징으로 하는, 제조 방법.
12. The method of claim 11,
Step a) is characterized in that the dispersion for 4 hours to 36 hours, the manufacturing method.
제 11 항에 있어서,
상기 b) 단계는 1 시간 내지 5 시간 동안 반응시키는 것을 특징으로 하는, 제조 방법.
12. The method of claim 11,
Step b) is characterized in that the reaction for 1 hour to 5 hours, the production method.
제 1 항의 나노 입자 복합체의 제조 방법으로서, 하기 단계를 포함하는 것을 특징으로 하는, 제조 방법:
a) 티올기를 가지는 실리카 쉘 나노 입자에 고분자 물질을 첨가하고 분산시킴으로써 고분자 물질이 코팅된 나노 입자를 제조하는 단계; 및
b) 상기 코팅된 나노 입자에 수용체(receptor)를 첨가하고 반응시켜 수용체가 결합된 고분자 물질이 코팅된 나노 입자 복합체를 제조하는 단계를 포함하고,
상기 고분자 물질은 폴리에틸렌 글리콜(polyethylene glycol), 폴리에테르이미드(Polyetherimide), 폴리비닐 알코올(polyvinyl alcohol), 카제인(casein), 덱스트란(dextran), 및 키토산(chitosan)으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, 제조 방법.
A method for preparing the nanoparticle composite of claim 1, characterized in that it comprises the following steps:
a) preparing nanoparticles coated with a polymer material by adding and dispersing a polymer material to silica shell nanoparticles having a thiol group; and
b) adding and reacting a receptor to the coated nanoparticles to prepare a nanoparticle complex coated with a polymer material to which the receptor is bound,
The polymer material is any one selected from the group consisting of polyethylene glycol, polyetherimide, polyvinyl alcohol, casein, dextran, and chitosan. The above, characterized in that the manufacturing method.
제 17 항에 있어서,
상기 b) 단계는 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 및 NHS(N-hydroxysuccinimide)를 수용체와 함께 첨가하는 것을 특징으로 하는, 제조 장법.
18. The method of claim 17,
In step b), EDC (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide) and NHS (N-hydroxysuccinimide) are added together with the receptor, the manufacturing method.
제 17 항에 있어서,
상기 a) 단계의 나노 입자와 고분자 물질은 1 : 1 내지 1 : 5의 중량비로 혼합하는 것을 특징으로 하는, 제조 방법.
18. The method of claim 17,
The nano-particles and the polymer material of step a) are 1:1 to 1:5, characterized in that mixed in a weight ratio, the manufacturing method.
제 17 항에 있어서,
상기 a) 단계는 4 시간 내지 36 시간 동안 혼합하고 분산시키는 것을 특징으로 하는, 제조 방법.
18. The method of claim 17,
Step a) is characterized in that the mixing and dispersing for 4 hours to 36 hours, the manufacturing method.
제 17 항에 있어서,
상기 b) 단계는 1 시간 내지 5 시간 동안 반응시키는 것을 특징으로 하는, 제조 방법.
18. The method of claim 17,
Step b) is characterized in that the reaction for 1 hour to 5 hours, the manufacturing method.
제 1 항의 나노 입자 복합체를 유효성분으로 포함하는, 생물학적 시료에서 표적 물질을 검출 또는 분리하기 위한 키트.A kit for detecting or separating a target material from a biological sample, comprising the nanoparticle complex of claim 1 as an active ingredient. 제 1 항의 나노 입자 복합체를 유효성분으로 포함하는, 감염증 진단용 키트.A kit for diagnosing infection, comprising the nanoparticle complex of claim 1 as an active ingredient.
KR1020220020257A 2021-02-17 2022-02-16 Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same KR20220118336A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280015547.1A CN116868052A (en) 2021-02-17 2022-02-17 Nanoparticle composite coated with high molecular substance for separating biological target and preparation method thereof
PCT/KR2022/002367 WO2022177326A1 (en) 2021-02-17 2022-02-17 Polymeric material-coated nanoparticle complex for isolation of biological target and preparation method therefor
US18/451,734 US20230393128A1 (en) 2021-02-17 2023-08-17 Polymeric material-coated nanoparticle complex for isolation of biological target and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210021476 2021-02-17
KR1020210021476 2021-02-17

Publications (1)

Publication Number Publication Date
KR20220118336A true KR20220118336A (en) 2022-08-25

Family

ID=83111455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220020257A KR20220118336A (en) 2021-02-17 2022-02-16 Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same

Country Status (1)

Country Link
KR (1) KR20220118336A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646610B1 (en) 2015-05-28 2016-08-09 (주)바이오니아 High active magnetic silica nano particles for separating biomaterial and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646610B1 (en) 2015-05-28 2016-08-09 (주)바이오니아 High active magnetic silica nano particles for separating biomaterial and method for preparing the same

Similar Documents

Publication Publication Date Title
Bohara et al. Innovative developments in bacterial detection with magnetic nanoparticles
Shen et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition
US7169618B2 (en) Magnetic particles and methods of producing coated magnetic particles
Niemirowicz et al. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles
Reddy et al. Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria
Qi et al. Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells
Lim et al. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk
US8597959B2 (en) Methods of use of solid support material for binding biomolecules
US20100209946A1 (en) Uses of water-dispersible silica nanoparticles for attaching biomolecules
CN107614458B (en) Stable dispersions of nano-magnetic particles
Rother et al. Silicon, silica and its surface patterning/activation with alkoxy-and amino-silanes for nanomedical applications
Bone et al. Physisorption and chemisorption of T4 bacteriophages on amino functionalized silica particles
Hasan et al. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles
Aljabali et al. Rapid magnetic nanobiosensor for the detection of Serratia marcescen
Qi et al. An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@ Au-Teicoplanin and aptamer functionalized Au@ Ag nanoparticles for detection of Staphylococcus aureus
Jo et al. Rapid and selective electrochemical sensing of bacterial pneumonia in human sputum based on conductive polymer dot electrodes
Lv et al. Biomimetic octopus-like particles for ultraspecific capture and detection of pathogens
Chen et al. A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria
Karawacka et al. SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product
KR20220118336A (en) Nanoparticle complex coated with macromolecule for isolating biological target and preparation method the same
US20230393128A1 (en) Polymeric material-coated nanoparticle complex for isolation of biological target and preparation method therefor
Vedantam et al. Binding of Escherichia coli to functionalized gold nanoparticles
KR102513309B1 (en) Nanoparticle complex for isolating biological target and preparation method the same
CN116148239A (en) Multiple SERS signal enhanced nano sandwich bacteria detection system and preparation method thereof
CN116868052A (en) Nanoparticle composite coated with high molecular substance for separating biological target and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal