KR20220114748A - Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array - Google Patents

Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array Download PDF

Info

Publication number
KR20220114748A
KR20220114748A KR1020210018116A KR20210018116A KR20220114748A KR 20220114748 A KR20220114748 A KR 20220114748A KR 1020210018116 A KR1020210018116 A KR 1020210018116A KR 20210018116 A KR20210018116 A KR 20210018116A KR 20220114748 A KR20220114748 A KR 20220114748A
Authority
KR
South Korea
Prior art keywords
fiber array
fmcw lidar
lidar scanner
laser
optical switch
Prior art date
Application number
KR1020210018116A
Other languages
Korean (ko)
Inventor
박현주
Original Assignee
주식회사 인포웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인포웍스 filed Critical 주식회사 인포웍스
Priority to KR1020210018116A priority Critical patent/KR20220114748A/en
Publication of KR20220114748A publication Critical patent/KR20220114748A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/35581xN switch, i.e. one input and a selectable single output of N possible outputs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention relates to a method for controlling an FMCW LiDAR scanner based on a horizontally and vertically stacked multi-channel fiber array. The method for controlling an FMCW LiDAR scanner, according to the present invention, comprises the steps of: generating a laser via a FMCW LiDAR scanner; connecting a 1xN optical switch and a fiber splitter; connecting a multi-channel fiber array to the 1xN optical switch and the fiber splitter; controlling the FMCW LiDAR scanner; generating a laser corresponding to the generated laser through the fiber array and aligning signals between the lasers; and receiving the generated and reflected laser and obtaining data. According to the present invention, a scan method having a wide FOV, high resolution, and high resistance to external interference can be realized.

Description

수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법{FMCW LIDAR SCANNER CONTROL METHOD BASED ON HORIZONTAL VERTICAL STACKED MULTICHANNEL FIBER ARRAY}FMCW LIDAR SCANNER CONTROL METHOD BASED ON HORIZONTAL VERTICAL STACKED MULTICHANNEL FIBER ARRAY

본 발명은 FMCW LiDAR 스캐너 제어 방법에 관한 것으로, 더욱 상세하게는 FMCW(Frequency Modulated Continuous Wave) LiDAR(Light Detection And Ranging) 시스템은 FFT(Fast Fourier Transform)와 같은 고속의 신호 처리가 수반되고, 외부 방해로 인해 기존 Mechanical Scanner에 발생한 스캔 정확도 저하 및 지속 성능 저하, Mechanical Scanner의 취약점인 한정된 스캔 속도, 고속 스캔 시 발생하는 낮은 정확도를 개선하기 위한 수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법에 관한 것이다.The present invention relates to a method for controlling an FMCW LiDAR scanner, and more particularly, a Frequency Modulated Continuous Wave (FMCW) Light Detection And Ranging (LiDAR) system is accompanied by high-speed signal processing such as FFT (Fast Fourier Transform), and external interference As a result, the horizontal and vertical stacked multi-channel fiber array-based FMCW LiDAR scanner control method to improve the low accuracy that occurs during high-speed scanning and limited scan speed, which are weaknesses of mechanical scanners it's about

라이다(LiDAR)는 Light Detection And Ranging의 약자이며, 빛으로 탐지하고 거리를 측정한다는 뜻으로 때로는 LADAR(Laser Detection And Ranging)라는 이름으로 사용되지만, LiDAR가 보다 정확한 용어이며, LiDAR 센서 기술은 탐조등 빛의 산란 세기를 통하여 상공에서의 공기 밀도 분석 등을 위한 목적으로 1930년대 처음 시도되었으나, 1960년대 레이저의 발명과 함께 비로소 본격적인 개발이 가능하였고, 1970년대 이후 레이저 광원 기술의 지속적인 발전과 함께 다양한 분야에 응용 가능한 라이다 센서 기술들이 개발되었으며, 항공기, 위성 등에 탑재되어 정밀한 대기 분석 및 지구환경 관측을 위한 중요한 관측 기술로 활용되고 있으며, 또한 우주선 및 탐사 로봇에 장착되어 사물까지의 거리 측정 등 카메라 기능을 보완하기 위한 수단으로 활용되며, 지상에서는 원거리 거리 측정, 자동차 속도위반 단속 등을 위한 간단한 형태의 LiDAR 센서 기술들이 상용화되어 왔으며, 최근에는 3D reverse engineering 및 미래 무인 자동차를 위한 laser scanner 및 3D 영상 카메라의 핵심 기술로 활용되면서 그 활용성과 중요성이 점차 증가되고 있다.LiDAR is an abbreviation of Light Detection And Ranging, which means to detect and measure distance with light. It was first attempted in the 1930s for the purpose of analyzing the density of air in the sky through light scattering intensity, but full-scale development was possible only with the invention of the laser in the 1960s. LiDAR sensor technologies that can be applied to the world have been developed, and they are used as important observation technologies for precise atmospheric analysis and observation of the earth environment by being mounted on aircraft and satellites. It is used as a means to supplement Its utility and importance are gradually increasing as it is used as a core technology of

또한, 레이저 거리측정 기술은 레이저를 이용하여 레이저를 발생한 장소에서 레이저를 발생시킨 후 목표물에서 되돌아오는 레이저의 파장을 측정하여 목표물까지의 거리를 원격으로 측정하는 기술이며, 초창기에는 레이저 거리측정 기술이 레이저 및 부품 등의 가격이 비싸고 기술적인 난이도 때문에 주로 군사용으로만 사용되어, 최근에는 이러한 기술을 산업용으로 상용화하기 위해 많은 노력을 하고 있으며, 레이저 거리측정기는 자동화 산업 현장의 무인화 시스템, 선박 접안 시 배의 파손을 막기 위한 거리 측정, 무인 과속 감지기, 차량 충동 방지 시스템 등에 적용되고 있다. 산업용의 경우 측정거리가 약 1㎞ 이내로 짧고 측정오차도 1~10 ㎜ 이내를 만족하고 있다. In addition, laser distance measurement technology is a technology to remotely measure the distance to the target by measuring the wavelength of the laser returning from the target after generating a laser at the place where the laser is generated using a laser. Because lasers and parts are expensive and technically difficult, they are mainly used for military purposes. Recently, much effort is being made to commercialize these technologies for industrial purposes. It is applied to distance measurement, unmanned speed detectors, and vehicle collision prevention systems to prevent damage to cars. In the case of industrial use, the measurement distance is as short as about 1 km, and the measurement error is also within 1 to 10 mm.

하지만, 현재 LiDAR에서 Mechanical Scanner의 경우 외부 방해로 인하여 스캔 정확도 저하를 초래할 뿐만 아니라 지속적인 외부 방해로 인해 스캔 성능 저하 현상이라는 취약점을 갖고 있으며, Mechanical Scan 방식에 따른 한정된 스캔 속도와 고속 스캔 시 낮은 정확도를 도출하고 있다.However, in the case of mechanical scanners in the current LiDAR, external interference not only causes a decrease in scanning accuracy, but also has a weakness in that scanning performance is deteriorated due to continuous external interference. is deriving

대한민국 공개특허공보 제10-2018-0103462호Republic of Korea Patent Publication No. 10-2018-0103462

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, Optical Switch가 연결된 Fiber Spliter에 수평/수직으로 적층된 Fiber array를 각각 연결하고 Optical Switch를 전자식 제어함으로써 스캐너를 고속 스캔하여, 외부 방해로 인해 기존 Mechanical Scanner에 발생한 스캔 정확도 저하 및 지속 성능 저하, Mechanical Scanner의 취약점인 한정된 스캔 속도, 고속 스캔 시 발생하는 낮은 정확도를 개선하기 위한 수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법을 제공하는 것이다.The present invention has been devised to solve the problems of the prior art. By connecting each horizontally/vertically stacked fiber array to a fiber splitter to which an optical switch is connected, and electronically controlling the optical switch, the scanner is scanned at a high speed to prevent external interference. As a result, the horizontal and vertical stacked multi-channel fiber array-based FMCW LiDAR scanner control method to improve the scan accuracy and continuous performance degradation caused by the existing mechanical scanner, the limited scan speed, and the low accuracy that occurs during high-speed scanning, which are weaknesses of the mechanical scanner, has been developed. will provide

상기 목적을 달성하기 위하여, 본 발명의 방법은, FMCW LiDAR를 거쳐 레이저를 발생시키는 단계와; 1xN Optical Switch 및 Fiber Spliter을 연결하는 단계와; 상기 연결된 1xN Optical Switch 및 Fiber Spliter에 수평수직으로 적층된 다채널 Fiber array를 연결하는 단계와; 상기 연결된 Optical Switch를 제어하여 넓은 FOV(field of view)에 높은 해상도를 가지도록 FMCW LiDAR 스캐너를 제어하는 단계와; 상기 제어된 스캐너에 의해 발생된 레이저와 상응한 레이저를 Fiber array를 통해 생성하고 각 레이저 상호간 신호를 정렬하는 단계와; 상기 제어된 스캐너에 의해 발생되어 반사된 레이저를 Fiber array에서 수용하고, 해당 수용된 신호와 LO 신호 상호간 작용을 통해 데이터를 획득하는 단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the method of the present invention comprises the steps of generating a laser through FMCW LiDAR; Connecting a 1xN Optical Switch and a Fiber Splitter; connecting a multi-channel fiber array stacked horizontally and vertically to the connected 1xN optical switch and fiber splitter; controlling the FMCW LiDAR scanner to have high resolution in a wide field of view (FOV) by controlling the connected optical switch; generating lasers corresponding to the lasers generated by the controlled scanner through a fiber array and aligning signals between each laser; and receiving the laser generated and reflected by the controlled scanner in the fiber array, and acquiring data through interaction between the received signal and the LO signal.

본 발명에 따른 수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법은 외부 방해로 인해 기존 Mechanical Scanner에 발생한 스캔 정확도 저하 및 지속 성능 저하, Mechanical Scanner의 취약점인 한정된 스캔 속도, 고속 스캔 시 발생하는 낮은 정확도를 개선하기 위해 Optical Switch의 전자식 제어와 Fiber array의 수평/수직 적층으로 넓은 FOV와 높은 Resolution, 외부 방해에 대한 높은 내성을 가진 스캔 방식이 구현 가능하도록 한다.The horizontal and vertical stacked multi-channel fiber array-based FMCW LiDAR scanner control method according to the present invention reduces the scanning accuracy and continuous performance of existing mechanical scanners due to external interference, limited scan speed, which is a weakness of mechanical scanners, and In order to improve the low accuracy, the electronic control of the optical switch and the horizontal/vertical stacking of the fiber array enable the realization of a scanning method with wide FOV, high resolution, and high immunity to external interference.

다만, 본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-described effects, and the effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the present specification and accompanying drawings.

도 1은 본 발명에 따른 수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법에 대한 실시예를 도시한 도면1 is a view showing an embodiment of a method for controlling a FMCW LiDAR scanner based on a horizontal and vertical stacked multi-channel fiber array according to the present invention;

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor may properly define the concept of the term in order to best describe his invention. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Accordingly, the configuration shown in the embodiments and drawings described in the present specification is only one of the most preferred embodiments of the present invention, and does not represent all of the technical spirit of the present invention. It should be understood that various equivalents and modifications may be made.

본 발명에 따른 방법은, FMCW LiDAR를 거쳐 레이저를 발생시키는 단계와, 1xN Optical Switch 및 Fiber Spliter을 연결하는 단계와, 상기 연결된 1xN Optical Switch 및 Fiber Spliter에 수평수직으로 적층된 다채널 Fiber array를 연결하는 단계와, 상기 연결된 Optical Switch를 제어하여 넓은 FOV(field of view)에 높은 해상도를 가지도록 FMCW LiDAR 스캐너를 제어하는 단계와, 상기 제어된 스캐너에 의해 발생된 레이저와 상응한 레이저를 Fiber array를 통해 생성하고 각 레이저 상호간 신호를 정렬하는 단계와, 상기 제어된 스캐너에 의해 발생되어 반사된 레이저를 Fiber array에서 수용하고, 해당 수용된 신호와 LO 신호 상호간 작용을 통해 데이터를 획득하는 단계를 포함하여 이루어진다.The method according to the present invention comprises the steps of generating a laser through FMCW LiDAR, connecting a 1xN Optical Switch and a Fiber Splitter, and connecting a multi-channel fiber array stacked horizontally and vertically to the connected 1xN Optical Switch and Fiber Spliter. controlling the connected optical switch to control the FMCW LiDAR scanner to have high resolution in a wide field of view (FOV); It comprises the steps of generating and aligning the signals between the lasers, receiving the lasers generated and reflected by the controlled scanner in the fiber array, and acquiring data through the interaction between the received signals and the LO signals. .

또한, 도면 1을 참고하여 살펴보면, 1xN Optical Switch와 Fiber Spliter, 수평/수직 적층된 다채널 Fiber array를 연결하고, Optical Switch를 전자식 제어하여 넓은 FOV에 높은 Resolution을 가진 전자식 3D Solid state Scanner를 고속 구동하며, Tx와 상응한 Rx를 Fiber array를 통해 구현하고, Tx와 Rx를 정렬하여, Tx에서 주사 후 반사되어 돌아온 빔을 Rx에서 수용하고, 수용된 신호와 Lo 신호를 상호 작용시켜 데이터를 획득한다.In addition, referring to Figure 1, 1xN Optical Switch, Fiber Spliter, and horizontal/vertical stacked multi-channel fiber array are connected, and an electronic 3D solid state scanner with high resolution in a wide FOV is operated at high speed by electronically controlling the optical switch. In addition, Rx corresponding to Tx is implemented through a fiber array, Tx and Rx are aligned, and the reflected beam after scanning from Tx is received by Rx, and data is obtained by interacting with the received signal and Lo signal.

또한, 본 발명은 한편, 다양한 전자적으로 정보를 처리하는 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 저장 매체에 기록될 수 있다. 여기서, 저장 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 저장 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것 들이거나 소프트웨어 분야 당업자에게 공지되어 사용 가능한 것일 수도 있다. 저장매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media) 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 또한 상술한 매체는 프로그램 명령, 데이터 구조 등을 지정하는 신호를 전송하는 반송파를 포함하는 광 또는 금속선, 도파관 등의 전송 매체일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 전자적으로 정보를 처리하는 장치, 예를 들어, 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.In addition, the present invention may be implemented in the form of program instructions that can be executed through various electronic information processing means and recorded in a storage medium. Here, the storage medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded in the storage medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the software field. Examples of the storage medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magneto-optical media such as floppy disks. (magneto-optical media) and hardware devices specially configured to store and execute program instructions such as ROM, RAM, flash memory, and the like. In addition, the above-mentioned medium may be a transmission medium such as an optical or metal wire or waveguide including a carrier wave for transmitting a signal designating a program command, a data structure, and the like. Examples of the program instruction include not only machine code such as generated by a compiler, but also a device for electronically processing information using an interpreter or the like, for example, a high-level language code that can be executed by a computer. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

이상에서 첨부된 도면을 참조하여 본 발명을 설명함에 있어 특정형상 및 방향을 위주로 설명하였으나, 본 발명은 그 발명에 속하는 기술분야에서 통상의 지식을 가진 사람에 의하여 다양한 변형 및 변경이 가능하고, 이러한 변형 및 변경은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.In the above description of the present invention with reference to the accompanying drawings, a specific shape and direction have been mainly described, but the present invention is capable of various modifications and changes by those of ordinary skill in the art to which the invention pertains. Modifications and variations should be construed as being included in the scope of the present invention.

Claims (1)

FMCW LiDAR를 거쳐 레이저를 발생시키는 단계와;
1xN Optical Switch 및 Fiber Spliter을 연결하는 단계와;
상기 연결된 1xN Optical Switch 및 Fiber Spliter에 수평수직으로 적층된 다채널 Fiber array를 연결하는 단계와;
상기 연결된 Optical Switch를 제어하여 넓은 FOV(field of view)에 높은 해상도를 가지도록 FMCW LiDAR 스캐너를 제어하는 단계와;
상기 제어된 스캐너에 의해 발생된 레이저와 상응한 레이저를 Fiber array를 통해 생성하고 각 레이저 상호간 신호를 정렬하는 단계와;
상기 제어된 스캐너에 의해 발생되어 반사된 레이저를 Fiber array에서 수용하고, 해당 수용된 신호와 LO 신호 상호간 작용을 통해 데이터를 획득하는 단계;를 포함하는 것을 특징으로 하는 수평수직 적층된 다채널 Fiber array 기반 FMCW LiDAR 스캐너 제어 방법.
generating a laser via the FMCW LiDAR;
Connecting a 1xN Optical Switch and a Fiber Splitter;
connecting a multi-channel fiber array stacked horizontally and vertically to the connected 1xN optical switch and fiber splitter;
controlling the FMCW LiDAR scanner to have high resolution in a wide field of view (FOV) by controlling the connected optical switch;
generating lasers corresponding to the lasers generated by the controlled scanner through a fiber array and aligning signals between each laser;
The step of receiving the reflected laser generated by the controlled scanner in the fiber array, and acquiring data through the interaction between the received signal and the LO signal; How to control the FMCW LiDAR scanner.
KR1020210018116A 2021-02-09 2021-02-09 Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array KR20220114748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210018116A KR20220114748A (en) 2021-02-09 2021-02-09 Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210018116A KR20220114748A (en) 2021-02-09 2021-02-09 Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array

Publications (1)

Publication Number Publication Date
KR20220114748A true KR20220114748A (en) 2022-08-17

Family

ID=83110976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210018116A KR20220114748A (en) 2021-02-09 2021-02-09 Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array

Country Status (1)

Country Link
KR (1) KR20220114748A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103462A (en) 2017-03-10 2018-09-19 현대자동차주식회사 System for localization by accummulation of LiDAR scanned data use for a automatic driving car and method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103462A (en) 2017-03-10 2018-09-19 현대자동차주식회사 System for localization by accummulation of LiDAR scanned data use for a automatic driving car and method therefor

Similar Documents

Publication Publication Date Title
US20170328990A1 (en) Scalable field of view scanning in optical distance measurement systems
US10261187B2 (en) Optical phasograms for LADAR vibrometry
US7450251B2 (en) Fanned laser beam metrology system
US20230341524A1 (en) Multiple beam, single mems lidar
CN105445748A (en) Electro-optical distance gauge and distance measuring method
CN108375762B (en) Laser radar and working method thereof
US11366200B2 (en) Techniques to compensate for mirror doppler spreading in coherent LiDAR systems by power spectrum density
US20230258802A1 (en) LiDAR APPARATUS USING INTERRUPTED CONTINUOUS WAVE LIGHT
CN109116322A (en) A kind of displacement and the light echo removing method apart from laser radar system
WO2020146057A1 (en) Context aware real-time power adjustment for steerable lidar
CN210155331U (en) Laser radar
CN106643305A (en) Target ship miss distance measuring system based on optical fiber hydrophone
CA2070185A1 (en) Detector of suspended cables for avionic applications
CN204188808U (en) A kind of overlength distance Space Object Detection device
KR20220114748A (en) Fmcw lidar scanner control method based on horizontal vertical stacked multichannel fiber array
CN102590822A (en) Chirped modulation mechanism-based laser radar
KR20220114325A (en) Interferometer based fmcw lidar noise processing system
KR20220069442A (en) Artificial intelligence based fmcw ridar multi-channel signal processing method
KR20220113115A (en) Fmcw lidar signal processing method with psd-based cfar algorithm
KR20220069443A (en) Artificial intelligence based fmcw ridar high-speed signal processing method
KR20220071457A (en) System and method for applying polygon scanner in artificial intelligence-based fmcw lidar
CN111257907A (en) Polarization defogging detection device and method based on laser radar
KR20220113070A (en) Up/down chirp peak pattern matching based fmcw lidar signal processing method
CN102508254B (en) Square output laser beam projectile launching track test system
US20230003833A1 (en) Radar system, and signal processing method and apparatus