KR20220111520A - Composition for preventing or treating of sepsis comprising Hederacolchiside E - Google Patents

Composition for preventing or treating of sepsis comprising Hederacolchiside E Download PDF

Info

Publication number
KR20220111520A
KR20220111520A KR1020210014886A KR20210014886A KR20220111520A KR 20220111520 A KR20220111520 A KR 20220111520A KR 1020210014886 A KR1020210014886 A KR 1020210014886A KR 20210014886 A KR20210014886 A KR 20210014886A KR 20220111520 A KR20220111520 A KR 20220111520A
Authority
KR
South Korea
Prior art keywords
hmgb1
sepsis
hederacolchiside
hce
composition
Prior art date
Application number
KR1020210014886A
Other languages
Korean (ko)
Other versions
KR102585910B1 (en
Inventor
백주연
윤미영
Original Assignee
백주연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백주연 filed Critical 백주연
Priority to KR1020210014886A priority Critical patent/KR102585910B1/en
Publication of KR20220111520A publication Critical patent/KR20220111520A/en
Application granted granted Critical
Publication of KR102585910B1 publication Critical patent/KR102585910B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pain & Pain Management (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a composition for the prevention or treatment of sepsis containing Hederacolchiside E as an active ingredient, and specifically, it is expected to contribute to prevention and treatment of sepsis through a protective effect of Hederacolchiside E against HMGB1-mediated vascular barrier destruction.

Description

헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물{Composition for preventing or treating of sepsis comprising Hederacolchiside E}Composition for preventing or treating sepsis comprising Hederacolchiside E as an active ingredient

본 발명은 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물에 관한 것으로, 고 이동성 그룹 박스 1 (HMGB1)을 매개로 하는 패혈증의 예방과 치료용 조성물에 관한 것이다. The present invention relates to a composition for preventing or treating sepsis comprising hederacolchiside E as an active ingredient, and to a composition for preventing and treating sepsis mediated by high mobility group box 1 (HMGB1). .

패혈증(sepsis)은 감염에 대한 인체의 비정상적인 전신성 염증 반응이다. 심한 패혈증과 패혈성 쇼크는 염증, 응고 및 신경 내분비계 사이의 균형상실을 일으키며, 항생제와 현대적인 집중 치료에도 중증 패혈증의 사망률은 약 30 %로, 미국에서 매년 약 250,000 명의 사망자가 발생하고 있다. Sepsis is an abnormal systemic inflammatory response of the body to infection. Severe sepsis and septic shock cause an imbalance between inflammation, coagulation, and the neuroendocrine system, and even with antibiotics and modern intensive care, the mortality rate of severe sepsis is about 30%, resulting in about 250,000 deaths each year in the United States.

다기관의 부전(multiorgan failure, MOF)은 대표적인 패혈증 유발 사망의 원인이다 (Lee 등, 2019). 특히, 대부분의 환자는 생명을 위협하는 심각한 저산소 혈증으로 인한 산소 결핍보다는 MOF로 사망하고 있다 (Hotchkiss 등, 2016). 패혈증은 가장 흔하게 폐와 신장에 영향을 미치지만, 급성 신장 손상은 전신 염증 반응으로 인해 심장, 폐, 뇌, 비장, 간 및 장을 포함한 여러 기관에 전신 손상을 초래하게 된다 (Ologunde 등, 2014).Multiorgan failure (MOF) is the leading cause of sepsis-induced death (Lee et al., 2019). In particular, most patients die of MOF rather than oxygen deprivation due to severe, life-threatening hypoxemia (Hotchkiss et al., 2016). Although sepsis most commonly affects the lungs and kidneys, acute kidney injury results in systemic damage to multiple organs, including the heart, lungs, brain, spleen, liver, and intestines due to a systemic inflammatory response (Ologunde et al., 2014). .

현재까지 알려진 패혈증의 진행과정은 다소 복잡하다. 내독소(Endotoxin)가 대식세포 및/또는 단핵구의 자극, 유도를 통해 패혈증 진행을 부분적으로 담당하는 것으로 알려져 있으며, 이들은 초기에는 IL-1β 및 TNF-α와 같은 전염증성 매개체를, 후기에는 고 이동성 그룹 박스 1 (high mobility group box 1, HMGB1)을 연속적으로 분비한다. 초기 IL-1β 및 TNF-α의 감소만을 타겟으로 한 항염증제가 치료제로 시도되었으나 패혈증 진행을 막지 못해 대부분 실패하였고, 기계환기치료, 활성 단백질 C(activated protein C) 투여, 글루코코르티코이드 치료 등이 현재 시도되고 있으나 여러 가지 한계점이 지적되고 있다.The progression of sepsis known to date is rather complicated. It is known that endotoxins are partially responsible for the sepsis progression through stimulation and induction of macrophages and/or monocytes, which initially act as pro-inflammatory mediators such as IL-1β and TNF-α, and later with high mobility Group box 1 (high mobility group box 1, HMGB1) is secreted continuously. Initially, anti-inflammatory drugs targeting only the reduction of IL-1β and TNF-α were attempted as therapeutic agents, but most failed because they failed to prevent the progression of sepsis. However, several limitations have been pointed out.

패혈증 후기에 증가하는 고 이동성 그룹 박스 1 은 거의 모든 진핵세포에 존재하는 핵 단백질로 손상된 세포와 활성화된 면역 세포 모두에서 분비되어 패혈증의 중요한 매개체 역할을 하는 것으로 알려졌다 (Bae 등, 2012). 세포외 환경(extracellular milieu)으로 분비된 HMGB1은 전-염증성 사이토카인의 생성을 위하여 선천 면역 세포들을 자극하는 케모카인 또는 사이토카인으로서 역할을 한다. HMGB1 상호작용에 참여하는 세포 표면 수용체들은 RAGE(receptor for advanced glycation end products), TLR(toll like receptor)-2, 및 TLR-4를 포함한다. HMGB1는 내피의 ICAM( intercellular adhesion molecule), VCAM(vascular celladhesion molecule), 및 E-Selectin과 같은 CMA(cell adhesion molecule)들의 발현을 증가시키며, 이는 백혈구의 소집(recruitment)을 통하여 염증을 촉진한다 (Bae 등, 2012). 이러한 HMGB1의 수준은 장기 기능이상(organ dysfunction) 정도와 연관된 것으로 보인다 (Gibot et al., 2007; Sunden-Cullberg et al., 2005). 초기 사이토 카인과는 달리, 내 독소 혈증 및 패혈증 동물 모델의 순환 혈액에서 1~1.5 일에 고농도 수준을 유지하는 HMGB1는 치명적인 전신 염증 질환의 치료를 위한 잠재적 후보가 될 수 있다.High mobility group box 1, which increases late in sepsis, is a nuclear protein present in almost all eukaryotic cells and is known to play an important mediator role in sepsis as it is secreted by both damaged cells and activated immune cells (Bae et al., 2012). HMGB1 secreted into the extracellular milieu acts as a chemokine or cytokine that stimulates innate immune cells for the production of pro-inflammatory cytokines. Cell surface receptors that participate in the HMGB1 interaction include receptor for advanced glycation end products (RAGE), toll like receptor (TLR)-2, and TLR-4. HMGB1 increases the expression of endothelial intercellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and cell adhesion molecules (CMA) such as E-Selectin, which promotes inflammation through recruitment of leukocytes ( Bae et al., 2012). This level of HMGB1 appears to be associated with the degree of organ dysfunction (Gibot et al., 2007; Sunden-Cullberg et al., 2005). In contrast to early cytokines, HMGB1, which maintains high concentration levels at days 1-1.5 in circulating blood in animal models of endotoxemia and sepsis, could be a potential candidate for the treatment of lethal systemic inflammatory diseases.

한편, 헤데라콜키사이드-E (HCE), 즉 3-O-{α-L-람노피라노실(1→2)-[β-D-글루코피라노실(1→4)]-α-L-아라비노피라노실}-28-O-[α-L-람노피라노실(1→4)-β-D-글루코피라노실(1→6)-β-D-글루코피라노실 에스터( 3-O- α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl(1→4)]-α-L-arabinopyranosyl -28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester)는 1970 년 Hedera colchica의 잎과 Pulsatilla koreana Anemone raddeana 의 뿌리에서 처음 분리된 비데스모이딕 올레난 사포닌으로, 항염증 기능, 항산화 효과, 항알츠하이머 및 신경 보호 활성이 보고되었다 (Gepdiremen 등, 2005; Han 등, 2007; Gulcin 등, 2004). 그러나 HCE의 HMGB1 매개 혈관 장벽 파괴에 대한 HCE의 보호 효과는 알려진 바 없다.On the other hand, hederacolchiside-E (HCE), that is, 3-O-{α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl (1→4)]-α-L- Arabinopyranosyl}-28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl (1→6)-β-D-glucopyranosyl ester ( 3-O- α-L-rhamnopyranosyl (1→2)-[β-D-glucopyanosyl(1→4)]-α-L-arabinopyanosyl -28-O-[α-L-rhamnopyranosyl (1→4)-β-D- glucopyanosyl(1→6)-β-D-glucopyanosyl ester) was discovered in 1970 in leaves of Hedera colchica and Pulsatilla . As a non-desmoidic olenan saponin first isolated from the roots of koreana and Anemone raddeana , anti-inflammatory, antioxidant, anti-Alzheimer's and neuroprotective activities were reported (Gepdiremen et al., 2005; Han et al., 2007; Gulcin et al., 2004). . However, the protective effect of HCE against HMGB1-mediated vascular barrier destruction of HCE is unknown.

종래선행기술인 한국등록특허 제2006659호에는 진세노사이드 Rh1이 HMGB1의 발현을 감소시켜 패혈증에 의한 사망률을 감소시키는 진세노사이드 Rh1을 포함하는 패혈증의 예방 또는 치료용 조성물이 기재되어 있다. 또한 한국등록특허 제2109744호에는 데커신 유도체를 포함하는 패혈증 또는 패혈성 쇼크의 예방 또는 치료용 조성물이 기재되어 있다. 그러나 이들 기술은 본 발명의 구성과 효과에서 차이가 있다. 한국등록특허 제1058587호에는 헤데라콜키사이드(Hederacolchiside) E를 포함하는 뇌기능 개선효과를 갖는 건강식품이 기재되어 있으나, 이 역시 본 발명의 구성과 효과에서 차이가 있다.Korean Patent Registration No. 2006659, which is a prior art, describes a composition for preventing or treating sepsis, including ginsenoside Rh1, in which ginsenoside Rh1 reduces the expression of HMGB1 to reduce mortality due to sepsis. In addition, Korea Patent No. 2109744 discloses a composition for preventing or treating sepsis or septic shock containing a deckercin derivative. However, these techniques are different in configuration and effect of the present invention. Korean Patent No. 1058587 discloses a health food having a brain function improvement effect including Hederacolchiside E, but this is also different in the composition and effect of the present invention.

한국등록특허 제2006659호, 진세노사이드 Rh1을 포함하는 패혈증의 예방 또는 치료용 조성물, 2019. 07. 29. 등록.Korean Patent No. 2006659, a composition for preventing or treating sepsis containing ginsenoside Rh1, registered on July 29, 2019. 한국등록특허 제2109744호, 데커신 유도체를 포함하는 패혈증 또는 패혈성 쇼크의 예방 또는 치료용 조성물, 2020. 05. 06. 등록.Korean Patent No. 2109744, a composition for preventing or treating sepsis or septic shock containing a deckercin derivative, registered on May 06, 2020. 한국등록특허 제1058587호, 치매 및 경도인지장애 치료 및 인지기능 개선에 유효한 올레아난계 트리테르펜 사포닌 화합물, 2011. 08. 16. 등록.Korean Patent No. 1058587, oleanane-based triterpene saponin compound effective for treating dementia and mild cognitive impairment and improving cognitive function, registered on August 16, 2011.

Angus, Derek C. Linde-Zwirble, Walter T., Lidicker, Jeffrey, Clermont Gilles, Carcillo Joseph, Pinsky, Michael R., Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care, Critical Care Medicine, July 2001, Volume 29, Issue 7, p 1303-1310Angus, Derek C. Linde-Zwirble, Walter T., Lidicer, Jeffrey, Clermont Gilles, Carcillo Joseph, Pinsky, Michael R., Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care, Critical Care Medicine, July 2001, Volume 29, Issue 7, p 1303-1310 W. Lee, S.K. Ku, J.E. Kim, G.E. Cho, G.Y. Song, J.S. Bae, Pulmonary protective functions of rare ginsenoside rg4 on particulate matter-induced inflammatory responses, Biotechnol. Bioprocess Eng. 24 (2019) 445-453. W. Lee, S. K. Ku, J.E. Kim, G. E. Cho, G.Y. Song, J.S. Bae, Pulmonary protective functions of rare ginsenoside rg4 on particulate matter-induced inflammatory responses, Biotechnol. Bioprocess Eng. 24 (2019) 445-453. R.S. Hotchkiss, L.L. Moldawer, S.M. Opal, K. Reinhart, I.R. Turnbull, J.L. Vincent, Sepsis and septic shock, Nat. Rev. Dis. Primers 2 (2016) 16045. [2] M.T. Ziesmann, J.C. Marshall, Multiple organ dysfunction: the defining R.S. Hotchkiss, L.L. Moldawer, S. M. Opal, K. Reinhart, I.R. Turnbull, J. L. Vincent, Sepsis and septic shock, Nat. Rev. Dis. Primers 2 (2016) 16045. [2] M.T. Ziesmann, J. C. Marshall, Multiple organ dysfunction: the defining R. Ologunde, H. Zhao, K. Lu, D. Ma, Organ cross talk and remote organ damage following acute kidney injury, Int. Urol. Nephrol. 46 (2014) 2337-2345.R. Ologunde, H. Zhao, K. Lu, D. Ma, Organ cross talk and remote organ damage following acute kidney injury, Int. Urol. Nephrol. 46 (2014) 2337-2345. J.S. Bae, Role of high mobility group box 1 in inflammatory disease: focus on sepsis, Arch. Pharm. Res. 35 (2012) 1511-1523.J.S. Bae, Role of high mobility group box 1 in inflammatory disease: focus on sepsis, Arch. Pharm. Res. 35 (2012) 1511-1523. A. Gepdiremen, V. Mshvildadze, H. Suleyman, R. Elias, Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f in carrageenan-induced rat paw edema, Phytomedicine 12 (2005) 440-444.A. Gepdiremen, V. Mshvildadze, H. Suleyman, R. Elias, Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f in carrageenan-induced rat paw edema , Phytomedicine 12 (2005) 440-444. C.K. Han, W.R. Choi, K.B. Oh, Cognition-enhancing and neuroprotective effects of hederacolchiside-e from pulsatilla koreana, Planta Med. 73 (2007) 665-669.C.K. Han, W. R. Choi, K. B. Oh, Cognition-enhancing and neuroprotective effects of hederacolchiside-e from pulsatilla koreana, Planta Med. 73 (2007) 665-669. I. Gulcin, V. Mshvildadze, A. Gepdiremen, R. Elias, Antioxidant activity of saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f, Planta Med. 70 (2004) 561-563.I. Gulcin, V. Mshvildadze, A. Gepdiremen, R. Elias, Antioxidant activity of saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f, Planta Med. 70 (2004) 561-563. Jonas Sunden-Cullberg, Anna Norrby-Teglund, Carl Johan Treutiger, The role of high mobility group box-1 protein in severe sepsis, Curr Opin Infect Dis., 2006 Jun;19(3):231-6.Jonas Sunden-Cullberg, Anna Norrby-Teglund, Carl Johan Treutiger, The role of high mobility group box-1 protein in severe sepsis, Curr Opin Infect Dis., 2006 Jun;19(3):231-6. Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest 2003; 112:460-467.Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest 2003; 112:460-467. H. Wang, O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, K.J. Tracey, Hmg-1 as a late mediator of endotoxin lethality in mice, Science 285 (1999) 248-251.H. Wang, O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, K.J. Tracey, Hmg-1 as a late mediator of endotoxin lethality in mice, Science 285 (1999) 248-251. E. Abraham, J. Arcaroli, A. Carmody, H. Wang, K.J. Tracey, Hmg-1 as a mediator of acute lung inflammation, J. Immunol. 165 (2000) 2950-2954.E. Abraham, J. Arcaoli, A. Carmody, H. Wang, K.J. Tracey, Hmg-1 as a mediator of acute lung inflammation, J. Immunol. 165 (2000) 2950-2954. Gibot, S., Massin, F., Cravoisy, A., Barraud, D., Nace, L., Levy, B., Bollaert, P.E., 2007. High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med 33, 1347-1353.Gibot, S., Massin, F., Cravoisy, A., Barraud, D., Nace, L., Levy, B., Bollaert, P.E., 2007. High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med 33, 1347-1353. Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A., Rauvala, H., Herman, G., Tracey, K.J., Lee, M.L., Andersson, J., Tokics, L., Treutiger, C.J., 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33, 564-573.Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A., Rauvala, H., Herman, G., Tracey, K.J., Lee, M.L., Andersson, J., Tokics, L., Treutiger, C.J. , 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33, 564-573. B. Jung, H. Kang, W. Lee, H.J. Noh, Y.S. Kim, M.S. Han, M.C. Baek, J. Kim, J.S. Bae, Anti-septic effects of dabrafenib on hmgb1-mediated inflammatory responses, BMB Rep. 49 (2016) 214-219.B. Jung, H. Kang, W. Lee, H.J. Noh, Y.S. Kim, M.S. Han, M.C. Baek, J. Kim, J.S. Bae, Anti-septic effects of dabrafenib on hmgb1-mediated inflammatory responses, BMB Rep. 49 (2016) 214-219. T. Bonaldi, F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M.E. Bianchi, Monocytic cells hyperacetylate chromatin protein hmgb1 to redirect it towards secretion, EMBO J. 22 (2003) 5551-5560.T. Bonaldi, F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M.E. Bianchi, Monocytic cells hyperacetylate chromatin protein hmgb1 to redirect it towards secretion, EMBO J. 22 (2003) 5551-5560. J.H. Youn, J.S. Shin, Nucleocytoplasmic shuttling of hmgb1 is regulated by phosphorylation that redirects it toward secretion, J. Immunol. 177 (2006) 7889-7897.J.H. Youn, J.S. Shin, Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion, J. Immunol. 177 (2006) 7889-7897. M.M. Rabadi, S. Xavier, R. Vasko, K. Kaur, M.S. Goligorksy, B.B. Ratliff, High-mobility group box 1 is a novel deacetylation target of sirtuin1, Kidney Int. 87 (2015) 95-108.M.M. Rabadi, S. Xavier, R. Vasko, K. Kaur, M.S. Goligorksy, B.B. Ratliff, High-mobility group box 1 is a novel deacetylation target of sirtuin1, Kidney Int. 87 (2015) 95-108. S.M. Weis, Vascular permeability in cardiovascular disease and cancer, Curr. Opin. Hematol. 15 (2008) 243-249.S.M. Weis, Vascular permeability in cardiovascular disease and cancer, Curr. Opin. Hematol. 15 (2008) 243-249. W. Lee, S.K. Ku, Y.M. Lee, J.S. Bae, Anti-septic effects of glyceollins in hmgb1- induced inflammatory responses in vitro and in vivo, Food Chem. Toxicol. 63 (2014) 1-8.W. Lee, S. K. Ku, Y.M. Lee, J.S. Bae, Anti-septic effects of glyceollins in hmgb1-induced inflammatory responses in vitro and in vivo, Food Chem. Toxicol. 63 (2014) 1-8. B.S. Lee, C. Lee, S. Yang, S.K. Ku, J.S. Bae, Renal protective effects of zingerone in a mouse model of sepsis, BMB Rep. 52 (2019) 271-276.B.S. Lee, C. Lee, S. Yang, S.K. Ku, J.S. Bae, Renal protective effects of zingerone in a mouse model of sepsis, BMB Rep. 52 (2019) 271-276. Y.H. Qin, S.M. Dai, G.S. Tang, J. Zhang, D. Ren, Z.W. Wang, Q. Shen, Hmgb1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of mapk p38 through receptor for advanced glycation end products, J. Immunol. 183 (2009) 6244-6250.Y.H. Qin, S. M. Dai, G.S. Tang, J. Zhang, D. Ren, Z. W. Wang, Q. Shen, Hmgb1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of mapk p38 through receptor for advanced glycation end products, J. Immunol. 183 (2009) 6244-6250. R. Palumbo, B.G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K.B. Marcu, M. E. Bianchi, Cells migrating to sites of tissue damage in response to the danger signal hmgb1 require nf-kappab activation, J. Cell Biol. 179 (2007) 33-40.R. Palumbo, B.G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K. B. Marcu, M. E. Bianchi, Cells migrating to sites of tissue damage in response to the danger signal hmgb1 require nf-kappab activation, J. Cell Biol. 179 (2007) 33-40. B. Jung, H. Kang, W. Lee, H.J. Noh, Y.S. Kim, M.S. Han, M.C. Baek, J. Kim, J.S. Bae, Anti-septic effects of dabrafenib on hmgb1-mediated inflammatory responses, BMB Rep. 49 (2016) 214-219.B. Jung, H. Kang, W. Lee, H.J. Noh, Y.S. Kim, M.S. Han, M.C. Baek, J. Kim, J.S. Bae, Anti-septic effects of dabrafenib on hmgb1-mediated inflammatory responses, BMB Rep. 49 (2016) 214-219.

본 발명의 목적은 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물을 제공하는 데 있다.An object of the present invention is to provide a composition for preventing or treating sepsis comprising hederacolchiside E (Hederacolchiside E) as an active ingredient.

상기 과제를 해결하기 위하여 본 발명은 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물을 제공한다.In order to solve the above problems, the present invention provides a composition for preventing or treating sepsis comprising hederacolchiside E as an active ingredient.

상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (high mobility group box 1, HMGB1) 매개 패혈증에서 손상된 세포 또는 활성화된 면역 세포의 고 이동성 그룹 박스 1 (HMGB1)의 방출을 억제할 수 있다.The hederacolchiside E can inhibit the release of high mobility group box 1 (HMGB1) from damaged cells or activated immune cells in high mobility group box 1 (HMGB1) mediated sepsis.

또한 상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1)의 수용체인 TLR2 (Toll-like receptor 2), TLR4 (Toll-like receptor 4) 및 RAGE (receptor for advanced glycation end products)로 이루어진 군으로부터 선택된 1 이상의 수용체 발현을 억제할 수 있다.In addition, the hederacolchiside E is a receptor for high mobility group box 1 (HMGB1), TLR2 (Toll-like receptor 2), TLR4 (Toll-like receptor 4) and RAGE (receptor for advanced glycation end products) from the group consisting of Inhibit expression of one or more selected receptors.

상기 헤데라콜키사이드 E는 서투인1(sirtuin 1) 단백질 활성화 또는 고 이동성 그룹 박스 1 (HMGB1)의 탈아세틸화를 유도함으로써 패혈증을 예방 또는 치료할 수 있다.The hederacolchiside E can prevent or treat sepsis by inducing activation of sirtuin 1 protein or deacetylation of high mobility group box 1 (HMGB1).

또한, 상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개 혈관 투과성 증가를 억제하여 혈관 장벽 무결성(vascular barrier integrity)을 유지하할 수 있으며, 상기 혈관 장벽 무결성(vascular barrier integrity)을 유지하는 것은 혈관 내피의 E-selectin, ICAM-1 (Intercellular Adhesion Molecule-1)및 VCAM-1 (Vascular Cell Adhesion Molecule-1) 으로 이루어진 군으로부터 선택된 1 이상의 내피 CAM (cell adhesion molecule) 의 발현을 억제함으로써, 단핵구 또는 백혈구의 혈관 내피의 부착 및 이동을 억제함으로 이루어질 수 있다.In addition, the hederacolchiside E can maintain vascular barrier integrity by inhibiting high mobility group box 1 (HMGB1) mediated increase in vascular permeability, and maintaining the vascular barrier integrity. By inhibiting the expression of one or more endothelial cell adhesion molecules (CAM) selected from the group consisting of vascular endothelial E-selectin, ICAM-1 (Intercellular Adhesion Molecule-1) and VCAM-1 (Vascular Cell Adhesion Molecule-1), It can be achieved by inhibiting the adhesion and migration of monocytes or leukocytes to the vascular endothelium.

상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개로 증가된 TNF-α (Tumor necrosis factor-α), IL-1β (Interleukin-1β), IL-6 (Interleukin-6), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) 및 ERK 1/2 (Extracellular signal-regulated kinases 1/2) 로 이루어진 군으로부터 선택된 1 이상의 발현을 억제할 수 있다.The hederacolchiside E is high mobility group box 1 (HMGB1) mediated increased TNF-α (Tumor necrosis factor-α), IL-1β (Interleukin-1β), IL-6 (Interleukin-6), NF- It is possible to inhibit the expression of one or more selected from the group consisting of κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and ERK 1/2 (Extracellular signal-regulated kinases 1/2).

또한, 상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개로 증가된 아스파르테이트 트랜스아미네이즈 (Aspartate transaminase, AST), 알라닌 트랜스아미네이즈 (Alanine transaminase, ALT), 혈중 유레아 질소 (Blood Urea Nitrogen, BUN) 크레아티닌 및 젖산 탈수소효소 (Lactate dehydrogenase, LDH)로 이루어진 군으로부터 선택된 1 이상을 감소시켜 패혈증 진행 중에 발생하는 전신 염증의 표적 기관인 간과 신장을 보호하여 다기관 부전을 예방 또는 치료함으로써 패혈증 환자의 생존율을 증가시킬 수 있다.In addition, the hederacolchiside E is high mobility group box 1 (HMGB1) mediated increased aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (Blood) Urea Nitrogen, BUN) Reduces one or more selected from the group consisting of creatinine and lactate dehydrogenase (LDH) to protect the liver and kidney, target organs for systemic inflammation that occurs during sepsis, to prevent or treat multi-organ failure in sepsis patients can increase the survival rate of

본 발명의 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물은 약학 조성물로 제공될 수 있다.The composition for preventing or treating sepsis comprising Hederacolchiside E of the present invention as an active ingredient may be provided as a pharmaceutical composition.

상기 헤데라콜키사이드 E (Hederacolchiside E)는 전체 약학 조성물 총 중량에 대하여 바람직하게는 0.001~50중량%, 더 바람직하게는 0.001~40중량%, 가장 바람직하게는 0.001~30중량%로 하여 첨가될 수 있다.The hederacolchiside E (Hederacolchiside E) is preferably added in an amount of 0.001 to 50% by weight, more preferably 0.001 to 40% by weight, and most preferably 0.001 to 30% by weight based on the total weight of the total pharmaceutical composition. can

상기 약학적 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 액제, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균주사용액의 형태로 제형화하여 사용될 수 있다. 상기 약학적 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제, 감미제, 산미제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 가용화된 데커시놀에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로스 또는 락토즈, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제, 산미제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween)-61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.The pharmaceutical composition may be formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, liquids, aerosols, etc., external preparations, suppositories and sterile injection solutions according to conventional methods, respectively can Carriers, excipients and diluents that may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In the case of formulation, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, surfactants, sweeteners, and acidulants. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient, for example, starch, calcium carbonate, and water in the solubilized deckercinol of the present invention. It is prepared by mixing cross or lactose, gelatin, etc. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Liquid formulations for oral use include suspensions, solutions, emulsions, syrups, etc. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweetening agents, fragrances, preservatives, and acidifying agents are included. may be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base of the suppository, witepsol, macrogol, tween-61, cacao butter, laurin fat, glycerogelatin, and the like can be used.

본 발명의 약학적 조성물의 투여량은 치료받을 대상의 연령, 성별, 체중과, 치료할 특정 질환 또는 병리 상태, 질환 또는 병리 상태의 심각도, 투여 경로 및 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 투여량 결정은 당업자의 수준 내에 있으며, 일반적으로 투여량은 0.01㎎/㎏/일 내지 대략 500㎎/㎏/일의 범위이다. 바람직한 투여량은 0.1㎎/㎏/일 내지 200㎎/㎏/일이며, 더 바람직한 투여량은 1㎎/㎏/일 내지 200㎎/㎏/일이다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The dosage of the pharmaceutical composition of the present invention will vary depending on the age, sex, and weight of the subject to be treated, the specific disease or pathological condition to be treated, the severity of the disease or pathology, the route of administration, and the judgment of the prescriber. Dosage determination based on these factors is within the level of one of ordinary skill in the art, and dosages generally range from 0.01 mg/kg/day to approximately 500 mg/kg/day. A preferred dosage is 0.1 mg/kg/day to 200 mg/kg/day, and a more preferred dosage is 1 mg/kg/day to 200 mg/kg/day. Administration may be administered once a day, or may be administered in several divided doses. The above dosage does not limit the scope of the present invention in any way.

본 발명의 약학적 조성물은 쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내 주사 및 피부 도포에 의해 투여될 수 있다. 본 발명의 헤데라콜키사이드 E (Hederacolchiside E)는 독성 및 부작용이 거의 없으므로 예방 목적으로 장기간 복용시에도 안심하고 사용할 수 있는 약제이다.The pharmaceutical composition of the present invention may be administered to mammals such as mice, livestock, and humans by various routes. All modes of administration can be envisaged, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine dural or intracerebrovascular injection and dermal application. Hederacolchiside E (Hederacolchiside E) of the present invention is a drug that can be safely used even when taken for a long period for the purpose of prevention because it has almost no toxicity and side effects.

본 발명은 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 개선용 건강기능식품을 제공한다.The present invention provides a health functional food for preventing or improving sepsis comprising hederacolchiside E (Hederacolchiside E) as an active ingredient.

상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (high mobility group box 1, HMGB1) 매개 패혈증에서 손상된 세포 또는 활성화된 면역 세포의 고 이동성 그룹 박스 1 (HMGB1)의 방출을 억제할 수 있다.The hederacolchiside E can inhibit the release of high mobility group box 1 (HMGB1) from damaged cells or activated immune cells in high mobility group box 1 (HMGB1) mediated sepsis.

상기 건강기능식품은 헤데라콜키사이드 E (Hederacolchiside E) 및 식품학적으로 허용 가능한 식품 보조 첨가제를 포함하는 건강기능식품으로 제공될 수 있다.The health functional food may be provided as a health functional food comprising hederacolchiside E (Hederacolchiside E) and a food pharmaceutically acceptable supplementary additive.

상기 건강기능식품은 가용화된 헤데라콜키사이드 E (Hederacolchiside E)가 전체 식품 총 중량에 대하여 바람직하게는 0.001~50중량%, 더 바람직하게는 0.001~30중량%, 가장 바람직하게는 0.001~10중량%로 하여 첨가될 수 있다.The health functional food is preferably 0.001 to 50% by weight, more preferably 0.001 to 30% by weight, most preferably 0.001 to 10% by weight, based on the total weight of the whole food, solubilized hederacolchiside E (Hederacolchiside E) % can be added.

상기 건강기능식품은 정제, 캡슐제, 환제 또는 액제 등의 형태를 포함하며, 본 발명의 추출물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강기능성식품류 등이 있다.The health functional food includes the form of tablets, capsules, pills or liquids, and the like, and the food to which the extract of the present invention can be added, for example, various foods, beverages, gum, tea, vitamin complex, health Functional foods, etc.

본 발명은 헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물에 관한 것으로, 구체적으로는 헤데라콜키사이드 E 의 HMGB1 매개 혈관 장벽 파괴에 대한 보호 효과를 통하여 패혈증의 예방과 치료에 기여할 것으로 기대된다.The present invention relates to a composition for preventing or treating sepsis comprising hederacolchiside E as an active ingredient. It is expected to contribute to prevention and treatment.

도 1은 표준 헤데라콜키사이드 E (A) 및 정제된 헤데라콜키사이드 E (B)의 HPLC 크로마토그램이다.
도 2는 HCE 가 LPS 처리된 HUVEC (A), CLP 동물모델 (B)의 HMGB1 방출 수준, LPS 처리된 HUVEC에서 TLR2, TLR4 alc RAGE 수준 (C) 및 세포 생존력에 미치는 영향 (D) 을 보여주는 그래프이다.
도 3은 HCE가 SIRT1의 활성화(A) 및 HMGB1의 아세틸화에 미치는 영향(B)을 확인한 것이다. (IP : Immuno Precipitation, WB : Western Blotting)
도 4는 HMGB1 매개 혈관 장벽의 파괴에 대한 HCE의 효과를 나타낸 그래프이다. (A) HUVEC에서 LPS 유도된 투과성에 미치는 HCE의 효과. (B) HUVEC에서 HMGB1 유도된 투과성에 미치는 HCE의 효과. (C) CLP 동물 모델에서 Evans blue efflux에 대한 HCE의 효과. (D) HUVEC에서 HMGB1 유도된 p-38 발현에 미치는 HCE의 효과.
도 5는 HCE가 CAM의 HMGB1 매개 발현, 호중구 부착 및 백혈구 이동에 미치는 영향을 나타낸 것이다. (A) HUVEC에서 HMGB1 매개 VCAM, ICAM, E-Selectin의 증가에 미치는 HCE의 효과. (B) HUVEC에서 HMGB1 매개 호중구의 HUVEC 단층 부착에 미치는 HCE의 효과. (C) HUVEC에서 HMGB1 매개 호중구의 HUVEC 단층 전이에 미치는 HCE의 효과. (D) CLP 동물 모델에서 복강으로 이동하는 백혈구수에 미치는 HCE의 효과. (E) HUVEC에서 HMGB1 매개 호중구의 HUVEC 단층 전이에 미치는 HCE의 효과를 나타낸 광학현미경 사진.
도 6은 HCE가 HMGB1 유도 IL-6, TNF-α 및 IL-1β의 발현 및 NF-κB / ERK 1/2 경로의 활성화에 미치는 효과를 나타낸 것이다. HUVEC에서 TNF-α (A, D), IL-6 (B, D) 및 IL-1β (C)의 HMGB1 매개 생산에 대한 HCE의 효과를 나타낸 ELISA (A-C) 또는 웨스턴 블롯팅 분석 (D). HMGB1 매개 NF-κB p65 (E) 및 ERK 1/2 (F) 의 활성화에 대한 HCE의 효과. (G) 핵 및 세포질 분획에서 NF-κB의 세포 내 수준을 웨스턴 블롯 분석 평가.
도 7은 CLP 후 치사율 및 조직 손상에 대한 HCE의 영향을 나타낸 것이다. (A) CLP에 의해 유도 된 마우스 치사율에 대한 HCE의 억제 효과. (B) CLP에 의해 유도된 폐손상 광학현미경 사진 (화살표는 백혈구 침윤을 나타냄). (C) CLP에 의해 유도된 폐손상에 대한 HCE 효과. (D) 아스파르테이트 트랜스아미네이즈 (AST) 및 알라닌 트랜스아미네이즈 (ALT), (E) 크레아티닌, (F) 혈액 요소 질소 (BUN) 및 (G) 락테이트 탈수소효소 (LDH)에 대한 HCE의 효과.
1 is an HPLC chromatogram of standard hederacolchiside E (A) and purified hederacolchiside E (B).
Figure 2 is a graph showing the effect of HCE on LPS-treated HUVECs (A), HMGB1 release levels of CLP animal models (B), TLR2, TLR4 alc RAGE levels (C) and cell viability in LPS-treated HUVECs (D) to be.
Figure 3 confirms the effect of HCE on the activation of SIRT1 (A) and acetylation of HMGB1 (B). (IP: Immuno Precipitation, WB: Western Blotting)
4 is a graph showing the effect of HCE on the destruction of the HMGB1-mediated vascular barrier. (A) Effect of HCE on LPS-induced permeability in HUVECs. (B) Effect of HCE on HMGB1-induced permeability in HUVECs. (C) Effect of HCE on Evans blue efflux in CLP animal model. (D) Effect of HCE on HMGB1-induced p-38 expression in HUVECs.
Figure 5 shows the effect of HCE on HMGB1-mediated expression of CAM, neutrophil adhesion and leukocyte migration. (A) Effect of HCE on HMGB1-mediated increases in VCAM, ICAM, and E-Selectin in HUVECs. (B) Effect of HCE on HUVEC monolayer adhesion of HMGB1-mediated neutrophils in HUVECs. (C) Effect of HCE on HUVEC monolayer transition of HMGB1-mediated neutrophils in HUVECs. (D) Effect of HCE on the number of leukocytes migrating into the abdominal cavity in an animal model of CLP. (E) Light micrographs showing the effect of HCE on HUVEC monolayer transition of HMGB1-mediated neutrophils in HUVECs.
Figure 6 shows the effect of HCE on the expression of HMGB1-induced IL-6, TNF-α and IL-1β and the activation of the NF-κB / ERK 1/2 pathway. ELISA (AC) or Western blotting analysis (D) showing the effect of HCE on HMGB1-mediated production of TNF-α (A, D), IL-6 (B, D) and IL-1β (C) in HUVECs (D). Effect of HCE on HMGB1-mediated activation of NF-κB p65 (E) and ERK 1/2 (F). (G) Western blot analysis evaluation of intracellular levels of NF-κB in nuclear and cytoplasmic fractions.
7 shows the effect of HCE on mortality and tissue damage after CLP. (A) Inhibitory effect of HCE on CLP-induced mouse lethality. (B) Light micrograph of lung injury induced by CLP (arrows indicate leukocyte infiltration). (C) Effect of HCE on lung injury induced by CLP. HCE for (D) aspartate transaminase (AST) and alanine transaminase (ALT), (E) creatinine, (F) blood urea nitrogen (BUN) and (G) lactate dehydrogenase (LDH). effect.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지고, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.

<< 실시예Example 1. 세포, 동물모델 및 1. Cells, animal models and HederacolchisideHederacolchiside -E의 준비>-E preparation>

1.1 세포 배양 및 시약1.1 Cell Culture and Reagents

인간 제대 정맥 내피 세포 (HUVEC)는 Cambrex Bio Science (Charles City, IA, USA)에서 얻어 유지시키고, 모든 실험은 3~5 계대 배양 단계에서 사용하였다. 진저론, LPS, 크리스탈 바이올렛, 에반스 블루, MTT, 2- 페니실린 G 및 스트렙토 마이신, 머캅토에탄올 및 DMSO는 Sigma Chemical Co. (St. Louis, MO, USA) 에서 구입하였다. DMSO는 대조군 또는 HCE 또는 ZGR의 용매로 사용하였다. HCE는 Abcam (Cambridge, MA, USA) 에서 구입하였으며 인간 재조합 HMGB1은 Abnova (Taipei City, Taiwan) 에서 구입하였다.Human umbilical vein endothelial cells (HUVECs) were obtained and maintained from Cambrex Bio Science (Charles City, IA, USA), and all experiments were used in the 3-5 passage culture steps. Gingeron, LPS, Crystal Violet, Evans Blue, MTT, 2-penicillin G and streptomycin, mercaptoethanol and DMSO were obtained from Sigma Chemical Co., Ltd. (St. Louis, MO, USA). DMSO was used as a control or solvent for HCE or ZGR. HCE was purchased from Abcam (Cambridge, MA, USA) and human recombinant HMGB1 was purchased from Abnova (Taipei City, Taiwan).

1.2 1.2 HederacolchisideHederacolchiside -E (-E ( HCEHCE )의 분리) isolate

HCE는 Hedera colchica의 잎과 Pulsatilla koreana Anemone raddeana 의 뿌리에서 처음 분리되었으며, Pulsatilla koreana가 Carrageenan 에 의해 유도된 염증을 감소시킨다는 보고가 있을 뿐, HCE가 HMGB1 매개의 패혈증 진행을 억제하여 패혈증 환자의 생존률을 증가시킨다는 보고는 없다.HCE is Hedera Colchica leaves and Pulsatilla It was first isolated from the roots of koreana and Anemone raddeana , Pulsatilla There is a report that koreana reduces inflammation induced by Carrageenan, but there is no report that HCE inhibits HMGB1-mediated sepsis progression and increases the survival rate of sepsis patients.

꿩의바람꽃(Anemone raddeana)의 건조된 뿌리 1.0 kg을 증류수 1.5 L와 함께 믹서에 갈아 인큐베이터에서 37 ℃로 4 시간 동안 두었다. 상기 혼합물을 80 % MeOH (6L)에 현탁시키고, 6 시간 동안 교반한 후 여과하였다. 필터 케이크를 동일한 양의 80 % MeOH로 3 회 연속 추출하였다. 생성된 여액을 합하여 진공에서 농축하여 갈색 시럽 (88.86g)을 얻었다. 그 후 상기 암갈색 시럽 (88.86g)을 증류수 (2L)에 현탁하고 에틸 에테르 (0.8L × 2)로 분별하였다. 남은 물 부분 (910 mL)을 수성 EtOH (EtOH-H2O 0%, 10%, 30%, 50%, 70% 및 90%)의 구배로 용리하는 Diaion HP20 수지 670g에서 크로마토그래피하여 TLC (BuOH : AcOH : H2O = 5 : 1 : 1)를 기반으로 한 7 가지 주요 분획 (R1-R7)은 얻어 각각 표준 HCE (우한 켐 노른 바이오텍 (주))와 비교하보는 바와 같이, HCE의 순도는 BDS Hypersil C18 컬럼 (250 × 4.6 mm)에서 분석용 HPLC에 의해 96.9 %로 확인하였다. 이동상 조건은 구배 용매 시스템으로 A (아세토 니트릴) 및 B [(물 중 0.1 % 인산 (v / v)]러 설정하였다. 자세한 구배 용출은 다음과 같다 : 0-28 분, 23 % -36 % A; 28-42 분, 36 % -56 % A; 42-52 분, 56 % -90 % A; 52-54 분, 90 % -90 % A; 54-58 분, 90 % -23 % A; 58-67 분, 23 % -23 % A. 이동상의 유속은 1.0 mL / min, 파장은 203 nm, 컬럼 온도는 30 ℃, 주입량은 10 μL, 분리 된 HCE의 물리 화학적 데이터는 이전 보고서를 참조하여 확인하였다. HCE는 in vitro 분석을 위해 1, 2, 5, 10 또는 20 μM, in vivo 분석을 위해 0.2, 0.5, 1 또는 2 mg / kg으로 사용되었다.Pheasant's wind flower ( Anemone raddeana ) 1.0 kg of dried roots were ground in a mixer with 1.5 L of distilled water and placed in an incubator at 37 ° C for 4 hours. The mixture was suspended in 80 % MeOH (6L), stirred for 6 h and then filtered. The filter cake was extracted three consecutive times with the same amount of 80% MeOH. The resulting filtrates were combined and concentrated in vacuo to give a brown syrup (88.86 g). Then, the dark brown syrup (88.86 g) was suspended in distilled water (2 L) and partitioned with ethyl ether (0.8 L × 2). The remaining water portion (910 mL) was chromatographed on 670 g of Diaion HP20 resin eluting with a gradient of aqueous EtOH (EtOH-H 2 O 0%, 10%, 30%, 50%, 70% and 90%) by TLC (BuOH) Seven major fractions (R1-R7) based on :AcOH:H2O=5:1:1) were obtained and compared with standard HCE (Wuhan Chem Norn Biotech Co., Ltd.), respectively, the purity of HCE was determined by BDS Hypersil It was confirmed to be 96.9% by analytical HPLC on a C18 column (250 x 4.6 mm). Mobile phase conditions were set to A (acetonitrile) and B [(0.1% phosphoric acid (v/v) in water] as gradient solvent system. Detailed gradient elution is as follows: 0-28 min, 23%-36% A 28-42 min, 36%-56% A; 42-52 min, 56%-90% A; 52-54 min, 90%-90% A; 54-58 min, 90%-23% A; 58 -67 min, 23% -23% A. Flow rate of mobile phase is 1.0 mL/min, wavelength is 203 nm, column temperature is 30 °C, injection volume is 10 µL, physicochemical data of separated HCE is confirmed by referring to previous reports HCE was used at 1, 2, 5, 10 or 20 μM for in vitro assays and 0.2, 0.5, 1 or 2 mg/kg for in vivo assays.

1.3 패혈증 동물 모델1.3 Sepsis Animal Model

수컷 C57BL / 6 마우스 (6-7 주령, 27g)는 Orient Bio Co. (Sungnam, Republic of Korea) 에서 구입하였다. CLP 유발 패혈증의 동물 모델은 Jung 등 (2016)의 방법에 따라 준비하였으며, 샴 대조군 동물 그룹은 맹장을 노출하였으나 결찰이나 천공을 만드지 않았다. HCE 화합물 또는 GR와 같은 시료는 CLP 절차 후 24 시간 동안 정맥 주사하고 HMGB1 분비, 세포 투과성 및 백혈구 이동에 대한 영향을 평가하거나, CLP 후 12 시간 및 50 시간에 정맥 내 주사하여 생존율을 평가하였다. 이 프로토콜은 연구를 수행하기 전에 경북 대학교 동물 관리위원회의 승인을 받았다 (IRB No. KNU2017-102).Male C57BL/6 mice (6-7 weeks old, 27 g) were obtained from Orient Bio Co., Ltd. (Sungnam, Republic of Korea). An animal model of CLP-induced sepsis was prepared according to the method of Jung et al. (2016), and the sham control group of animals exposed the cecum but did not make ligation or perforation. Samples such as HCE compounds or GR were injected intravenously for 24 h after CLP procedure and their effects on HMGB1 secretion, cell permeability and leukocyte migration were evaluated, or viability was assessed by intravenous injection at 12 and 50 h after CLP. This protocol was approved by the Animal Care Committee of Kyungpook National University prior to conducting the study (IRB No. KNU2017-102).

1.4 통계처리1.4 Statistical processing

데이터는 3 개의 독립적인 실험에서 평균 ± 표준 편차 (SD)로 표시하였다. ANOVA 및 Tukey의 사후 테스트를 수행하여 서로 다른 그룹을 비교하였다. 0.05 미만의 P 값은 통계적 유의성으로 간주되었다. CLP 유발 패혈증 결과 평가는 위해 Kaplan-Meier 곡선을 만들어 생존 차이를 비교하였다.Data are expressed as mean ± standard deviation (SD) from three independent experiments. ANOVA and Tukey's post-hoc test were performed to compare different groups. P values less than 0.05 were considered statistically significant. To evaluate the outcome of CLP-induced sepsis, a Kaplan-Meier curve was created to compare survival differences.

<< 실시예Example 2. 2. HMGB1의of HMGB1 방출과 emission and HMGB1HMGB1 수용체의 발현 수준에 대한 for the expression level of the receptor HCE의HCE's 효과 확인 > Check the effect >

HCE 처리에 의해 LPS에 의하여 유도된 HMGB1 방출이 조절되는지 확인하였다.It was confirmed whether HMGB1 release induced by LPS was regulated by HCE treatment.

실시예 1.1에서 준비한 HUVEC 를 LPS (100 ng/mL)로 자극하고 HCE를 0, 1, 2, 5, 10, 20 μM, ZGR 20 μM을 각각 처리한 후, 16 시간 동안 방출 된 HMGB1 양을 ELISA로 측정하고 이를 도 2A에 나타내었다. 도 2A에서 보는 바와 같이, LPS에 의하여 HUVEC에서 HMGB1의 분비가 유의하게 증가하였으며, 이러한 증가는 HCE 처리에 의하여 농도의존적으로 억제되었다.HUVECs prepared in Example 1.1 were stimulated with LPS (100 ng/mL) and HCEs were treated with 0, 1, 2, 5, 10, 20 μM, and ZGR 20 μM, respectively, and the amount of HMGB1 released for 16 hours was measured by ELISA. was measured and shown in FIG. 2A. As shown in FIG. 2A , the secretion of HMGB1 in HUVECs was significantly increased by LPS, and this increase was inhibited in a concentration-dependent manner by HCE treatment.

실시예 1.3에서 준비된 패혈증 모델 마우스는 CLP 12시간 후, HCE 또는 ZGR을 정맥주사로 주입한 다음, 24 후, 마우스의 혈청을 수득하여 ELISA로 측정하고 이를 도 2B에 나타내었다. 도 2B에서 보는 바와 같이, CLP 에 의하여 HMGB1의 마우스 혈청 내 농도가 유의하게 증가하였으며, 이러한 증가는 HCE 처리에 의하여 농도의존적으로 억제되었다.The sepsis model mouse prepared in Example 1.3 was injected with HCE or ZGR intravenously after 12 hours of CLP, and then 24 hours later, the serum of the mouse was obtained and measured by ELISA, which is shown in FIG. 2B. As shown in FIG. 2B , the concentration of HMGB1 in mouse serum was significantly increased by CLP, and this increase was inhibited in a concentration-dependent manner by HCE treatment.

이어, 잘 알려진 HMGB1 수용체인 TLR2, TLR4 및 RAGE의 발현 수준에 대한 HCE의 효과를 확인하였다. 실시예 1.1에서 준비한 HUVEC를 HMGB1 (1μg / mL)로 처리한 다음, HEC 5, 10, 20 μM, ZGR 20 μM을 각각 처리한 후, 16 시간 동안 방치하였다. 이후, 전 세포 ELISA를 이용하여 TLR2, TLR4 및 RAGE의 발현수준을 확인하고 도 2C 에 나타내었다. TLR2, TLR4 및 RAGE의 발현수준은 각 수용체에 대한 특이항체 (각각 A-9, H-80 및 A-9; Santa Cruz Biotechnology Inc., 미국 텍사스 주 댈러스)를 구입하여 실험하였다. 도 2C에서 보는 바와 같이, TLR2 (흰색), TLR4 (회색) 및 RAGE (검은색) 의 발현 수준은 HMGB1 처리에 의하여 급격히 증가하였으며, 이러한 증가는 HCE 처리에 의하여 농도 의존적으로 억제되었다.Next, the effect of HCE on the expression level of the well-known HMGB1 receptors TLR2, TLR4 and RAGE was confirmed. The HUVECs prepared in Example 1.1 were treated with HMGB1 (1 μg / mL), then treated with HEC 5, 10, 20 μM, and ZGR 20 μM, respectively, and then left for 16 hours. Then, the expression levels of TLR2, TLR4 and RAGE were confirmed using whole cell ELISA, and it is shown in FIG. 2C. Expression levels of TLR2, TLR4 and RAGE were tested by purchasing specific antibodies for each receptor (A-9, H-80 and A-9, respectively; Santa Cruz Biotechnology Inc., Dallas, Texas, USA). As shown in FIG. 2C , the expression levels of TLR2 (white), TLR4 (grey) and RAGE (black) were rapidly increased by HMGB1 treatment, and this increase was inhibited in a concentration-dependent manner by HCE treatment.

또한, HCE 투여에 따른 세포 생존력은 HUVEC를 사용한 MTT 분석으로 평가하였다. HUVEC를 16 시간 동안 LPS (100ng / mL) 또는 48 시간 동안 HCE와 함께 배양하고 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 분석을 수행하여 도 2D에 나타내었다. 도 2D에서 보는 바와 같이, 16 시간 동안 100ng / mL의 LPS 또는 48 시간 동안 10, 20 또는 50μM 농도로 HCE는 HUVEC의 세포의 생존력에 영향을 미치지 않았으며, 이는 독성이 없음을 나타낸다. 이러한 결과는 HCE가 HMGB1의 방출과 심각한 패혈증으로의 진행을 예방하기 위한 조기 개입에 효과적일 수 있음을 보여준다.In addition, cell viability following HCE administration was evaluated by MTT assay using HUVECs. HUVECs were incubated with LPS (100 ng/mL) or HCE for 48 h for 16 h and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed as shown in Figure 2D. indicated. As shown in Figure 2D, HCE at 100 ng/mL LPS for 16 h or 10, 20 or 50 μM concentration for 48 h did not affect the viability of the cells of HUVECs, indicating no toxicity. These results show that HCE may be effective in early intervention to prevent the release of HMGB1 and progression to severe sepsis.

<< 실시예Example 3. 3. HCE가HCE SIRT1의of SIRT1 활성화 및 activation and HMGB1의of HMGB1 아세틸화에on acetylation 미치는 영향 확인 > Check the impact >

세포질에 DNA를 결합하는 HMGB1의 능력은 HMGB1의 과아세틸화에 의한 것으로 알려져 있다 (Bonaldi 등, 2003). 즉, HMGB1의 세린 잔기의 과아세틸화는 HMGB1의 세포질 분비를 촉진한다 (Youn 등, 2006) 이때 sirtuin 1 (SIRT1)은 HMGB1의 탈아세틸화는 활성화시키는 것으로 알려져 있다 (Rabadi 등, 2015). 따라서, 본 발명자들은 SIRT1의 활성화 및 HMGB1의 아세틸화에 대한 HCE의 효과를 확인하였다.It is known that the ability of HMGB1 to bind DNA to the cytoplasm is due to hyperacetylation of HMGB1 (Bonaldi et al., 2003). That is, hyperacetylation of serine residues in HMGB1 promotes cytoplasmic secretion of HMGB1 (Youn et al., 2006), and sirtuin 1 (SIRT1) is known to activate deacetylation of HMGB1 (Rabadi et al., 2015). Therefore, the present inventors confirmed the effect of HCE on the activation of SIRT1 and the acetylation of HMGB1.

HUVEC 를 0, 2, 4, 6, 8, 10 및 12 시간 동안 HCE (20 μM)로 처리한 후, 세포를 용해하고 웨스턴 블롯팅을 통해 분석하여 SIRT1 의 발현 수준을 측정하여 도 3A에 나타내었다. 도 3A에서 보는 바와 같이, SIRT1의 발현은 4 시간 배양 후 명백했으며, 6 시간 후 정점에 이르렀고 최대 8 시간 동안 유지된 후, 점차 감소하였다.After HUVECs were treated with HCE (20 μM) for 0, 2, 4, 6, 8, 10 and 12 hours, the cells were lysed and analyzed through Western blotting to measure the expression level of SIRT1, which is shown in FIG. 3A. . As shown in FIG. 3A , the expression of SIRT1 was evident after 4 hours of incubation, peaked after 6 hours, maintained for up to 8 hours, and then gradually decreased.

또한 HCE가 HMGB1의 탈아세틸화 및 SIRT1 발현 유도에 미치는 영향을 조사하였다. HUVEC를 HCE (20 μM)를 포함하거나 포함하지 않는 LPS (100 ng/mL)로 처리하였다. 일부 HUVEC는 HCE 처리 전에 1 시간 동안 SIRT1 억제제인 시르티놀(Srtnl), 10mM로 처리하였다. 6 시간 동안 배양한 후, 세포를 용해시켜 항-HMGB1 항체로 면역 침강시키고 아세틸화 HMGB1 및 총 HMGB1 단백질 수준을 각각 항-아세틸-라이신(K) 또는 항-HMGB1 항체를 사용한 면역 블롯 분석으로 측정하는 한편, 동일한 부피의 배지를 수집하고 방출 된 HMGB1을 웨스턴 블롯팅으로 검출하여 도 3B에 나타내었다. 도 3B에서 보는 바와 같이, LPS에 의한 자극은 HMGB1 아세틸화를 증가시켰으며, 이러한 증가는 HCE에 의하여 현저히 감소되었다. 또한 시르티놀 처리는 HCE의 효과를 역전시켜 HMGB1의 아세틸화를 크게 증가시키는 것으로 나타났다. 이러한 결과는 HCE가 HMGB1의 SIRT1 매개 탈아세틸 화를 통해 LPS 에 의한 HUVEC에서의 HMGB1 방출을 유의하게 감소시켰음을 시사한다.In addition, the effect of HCE on the deacetylation of HMGB1 and the induction of SIRT1 expression was investigated. HUVECs were treated with LPS (100 ng/mL) with or without HCE (20 μM). Some HUVECs were treated with the SIRT1 inhibitor sirtinol (Srtnl), 10 mM, for 1 hour before HCE treatment. After incubation for 6 hours, cells were lysed, immunoprecipitated with anti-HMGB1 antibody, and acetylated HMGB1 and total HMGB1 protein levels were measured by immunoblot analysis using anti-acetyl-lysine (K) or anti-HMGB1 antibody, respectively. Meanwhile, the same volume of medium was collected and the released HMGB1 was detected by western blotting, as shown in Fig. 3B. As shown in Figure 3B, stimulation by LPS increased HMGB1 acetylation, and this increase was significantly reduced by HCE. It was also shown that sirtinol treatment reversed the effect of HCE and significantly increased the acetylation of HMGB1. These results suggest that HCE significantly reduced HMGB1 release from HUVECs by LPS through SIRT1-mediated deacetylation of HMGB1.

<< 실시예Example 4. 4. HCE의HCE's 혈관 장벽의 vascular barrier HMGB1HMGB1 매개 파괴에 대한 효과 확인 > Check the effect on mediated destruction >

혈관 장벽 무결성(vascular barrier integrity)을 유지하는 것은 심각한 혈관 염증 질환에서 중요한 역할을 하며, LPS 및 HMGB1는 이러한 혈관 장벽 무결성을 파괴한다.(Weis 등, 2008; Lee 등, 2014). 따라서 본 발명자들은 HUVEC에서 HCE의 혈관 장벽 보호 효능을 평가하기 위해 혈관 투과성을 분석하였다.Maintaining vascular barrier integrity plays an important role in severe vascular inflammatory diseases, and LPS and HMGB1 disrupt this vascular barrier integrity (Weis et al., 2008; Lee et al., 2014). Therefore, we analyzed vascular permeability to evaluate the vascular barrier protective efficacy of HCE in HUVECs.

HUVEC의 단일층에 LPS (100 ng/mL) 또는 HMGB1 (1 μg/mL)를 각각 처리하고, HCE를 0, 1, 2, 5, 10, 20 μM 또는 ZGR 20 μM을 각각 6 시간 처리하였다. 장벽 무결성은 Lee 등(2019)의 방법에 따라 HUVEC의 단일층을 가로지르는 Evans blue 결합 알부민 알부민의 플럭스를 모니터링하여 평가하고 이를 도 4A 및 4B에 나타내었다. 도 4A 및 4B에서 보는 바와 같이, LPS 및 HMGB1는 HUVEC의 단일층의 투과성을 현저히 증가시켰으며, HCE는 농도 의존적으로 LPS 및 HMGB1 매개 과투과성을 모두 억제하였다.A monolayer of HUVEC was treated with LPS (100 ng/mL) or HMGB1 (1 μg/mL), respectively, and HCE was treated with 0, 1, 2, 5, 10, 20 μM or ZGR 20 μM for 6 hours, respectively. Barrier integrity was assessed by monitoring the flux of Evans blue-bound albumin albumin across the monolayer of HUVECs according to the method of Lee et al. (2019) and shown in Figures 4A and 4B. As shown in FIGS. 4A and 4B , LPS and HMGB1 significantly increased the permeability of a monolayer of HUVECs, and HCE inhibited both LPS and HMGB1-mediated permeability in a concentration-dependent manner.

생체 내 실험을 위해, Lee 등(2019)의 방법에 따라, CLP 12시간 후, 수컷 마우스에 HCE 0.2, 0.5, 1.0, 2.0 mg/kg 또는 ZGR 0.7 mg/kg을 HMGB1 (2 μg/마우스)을 정맥 주사하였다. 12시간 후, 마우스를 안락사시켜 이후, 복막 세척으로 Evans blue 염료의 양을 측정하여, 혈관 투과성을 측정하고 이를 도 4C에 나타내었다. 도 4C에서 보는 바와 같이, CLP에 의하여 혈관 투과성이 급격히 증가했으며, 이러한 증가는 HCE 에 의해 농도 의존적으로 감소하였다.For in vivo experiments, according to the method of Lee et al. (2019), HCE 0.2, 0.5, 1.0, 2.0 mg/kg or ZGR 0.7 mg/kg or HMGB1 (2 μg/mouse) was administered to male mice 12 h after CLP. intravenous injection. After 12 hours, the mice were euthanized, and then, the amount of Evans blue dye was measured by peritoneal lavage, and the vascular permeability was measured and shown in FIG. 4C. As shown in FIG. 4C , vascular permeability was rapidly increased by CLP, and this increase was decreased in a concentration-dependent manner by HCE.

HMGB1에 의한 혈관 파괴 반응은 p38의 인산화에 의해 매개된다 (Qin 등, 2009; Palumbo 등, 2007). 따라서 HMGB1에 의하여 매개되는 p38의 인산화에 대한 HCE의 효과를 확인하기 위하여, HCE (1, 2, 5, 10, 20 μM) 또는 ZGR (20 μM)로 처리한 HUVEC를 HMGB1로 자극하였다. 6 시간 후, p38의 인산화 수준에 대한 HCE 또는 ZGR의 효과를 ELISA로 분석하여 도 4D에 나타내었다. 도 4D에서 보는 바와 같이, HMGB1은 p38의 인산화를 증가시켰으며, HCE는 HMGB1에 의해 매개된 p38의 인산화를 억제하였다. HMGB1 매개 장벽 파괴, 증가된 투과성 및 p38의 인산화는 HCE에 의해 회복되었으며, 이는 HCE가 방부제로서의 잠재력을 가지고 있음을 시사한다.The vascular destruction response by HMGB1 is mediated by phosphorylation of p38 (Qin et al., 2009; Palumbo et al., 2007). Therefore, to confirm the effect of HCE on HMGB1-mediated phosphorylation of p38, HUVECs treated with HCE (1,2, 5, 10, 20 μM) or ZGR (20 μM) were stimulated with HMGB1. After 6 hours, the effect of HCE or ZGR on the phosphorylation level of p38 was analyzed by ELISA and shown in FIG. 4D. As shown in FIG. 4D , HMGB1 increased p38 phosphorylation, and HCE inhibited HMGB1 mediated p38 phosphorylation. HMGB1-mediated barrier disruption, increased permeability and phosphorylation of p38 were restored by HCE, suggesting that HCE has potential as a preservative.

<< 실시예Example 5. 5. HCE의HCE's CAM의 CAM's HMGB1HMGB1 매개 발현, 호중구 부착 및 백혈구 이동에 미치는 영향 확인 > Confirmation of effect on mediated expression, neutrophil adhesion and leukocyte migration >

HMGB1은 백혈구가 혈관 내피를 가로 질러 염증 부위로 이동하는데 필요한 E-selectin, ICAM-1 및 VCAM-1을 포함한 다양한 내피 CAM의 표면 발현 수준을 증가시킨다. 따라서 본 발명자들은 HUVEC에서 CAM의 HMGB1 매개 조절, HUVEC에 대한 인간 호중구의 부착 및 HUVEC 단층을 통한 호중구의 전이에 미치는 HCE의 영향을 분석하였다.HMGB1 increases the surface expression levels of various endothelial CAMs, including E-selectin, ICAM-1 and VCAM-1, which are required for leukocytes to cross the vascular endothelium to the site of inflammation. Therefore, we analyzed the effect of HCE on HMGB1-mediated regulation of CAM in HUVECs, adhesion of human neutrophils to HUVECs, and metastasis of neutrophils through HUVEC monolayers.

인간 호중구의 HUVEC로의 이동은 Lee 등(2019)의 방법을 응용하여 8 μm의 포어 크기를 가진 필터를 포함하는 6.5-mm 크기의 Transwell 플레이트에서 수행되었다. 합류 내피 단층을 얻기 위해 HUVEC를 3 일 동안 배양하였으며, 상부 구획에 호중구를 추가하기 전에 HUVEC를 HMGB1 (1 μg/mL)로 16 시간 동안 자극한 다음 ZGR과 함께 20 μM 또는 HCE 각 농도에서 6 시간 동안 배양하였다. 다음으로, Transwell 플레이트를 37 ℃에서 2 시간 동안 인큐베이션하고 상부 챔버 및 필터 멤브레인의 부유 또는 이동되지 않은 호중구와 HUVEC를 제거하였다. 필터 아래쪽으로 이동한 호중구를 8 % 글루타르 알데히드로 고정하고 20 % 메탄올 (w/v)에서 0.25 % 크리스탈 바이올렛으로 염색했다. 이후 무작위로 선택된 9 개의 고출력 현미경 필드 (200X)를 세었다. 모든 실험은 중복 웰에서 웰당 2 회 반복되었으며 결과는 이동지수(migration indix)로 표시하여 도 5A 내지 5C 및 5E에 표시하였다. 도 5A 내지 5C 및 5E에서 보는 바와 같이, HMGB1는 HUVEC에서 E-selectin (검은 색 막대), VCAM-1 (흰색 막대) 및 ICAM-1 (회색 막대)의 발현을 증가시켰으며, 이는 HCE에 의하여 농도의존적으로 억제되었다. 또한, HMGB1에 의한 호중구의 HUVEC 단층으로의 부착(도 5B), HUVEC 단층을 통한 호중구 이동(도 5C, 5E) 증가 또한 HCE에 의하여 농도의존적으로 억제되었다.Migration of human neutrophils to HUVECs was performed in a 6.5-mm Transwell plate containing a filter with a pore size of 8 μm by applying the method of Lee et al. (2019). HUVECs were cultured for 3 days to obtain confluent endothelial monolayers, and HUVECs were stimulated with HMGB1 (1 μg/mL) for 16 h before adding neutrophils to the upper compartment, followed by 6 h at each concentration of 20 μM or HCE with ZGR. incubated during Next, the Transwell plate was incubated at 37 °C for 2 h, and suspended or non-floating neutrophils and HUVECs in the upper chamber and filter membrane were removed. Neutrophils migrating down the filter were fixed with 8% glutaraldehyde and stained with 0.25% crystal violet in 20% methanol (w/v). Nine randomly selected high-power microscopy fields (200X) were then counted. All experiments were repeated twice per well in duplicate wells, and the results were expressed as migration indix and are shown in FIGS. 5A to 5C and 5E. 5A to 5C and 5E, HMGB1 increased the expression of E-selectin (black bars), VCAM-1 (white bars) and ICAM-1 (grey bars) in HUVECs, which were was inhibited in a concentration-dependent manner. In addition, HMGB1 increased neutrophil adhesion to HUVEC monolayers (Fig. 5B) and neutrophil migration through HUVEC monolayers (Figs. 5C, 5E) were also concentration-dependently inhibited by HCE.

HMGB1로 상향 조절된 CAM의 발현은 HCE에 의해 농도 의존적으로 억제되었으며, CAM의 발현 수준 외에도 HCE는 HUVEC에 대한 인간 호중구의 부착과 후속 전이도 감소시키는 것을 확인하였다.The expression of CAM up-regulated by HMGB1 was suppressed in a concentration-dependent manner by HCE, and it was confirmed that, in addition to the expression level of CAM, HCE also reduced the adhesion of human neutrophils to HUVECs and subsequent metastasis.

생체 내 실험을 위하여 수컷 마우스를 2 % 이소플루란 (Forane; JW Pharmaceutical, Seoul, South Korea)이 포함된 산소로 마취시켰다. 산소는 먼저 호흡실에 투여된 다음 작은 설치류 가스 마취 기계 (RC2; Vetequip, Pleasanton, CA, USA)를 통해 안면 마스크로 마취시켰다. 이후, 마우스를 HMGB1 (2 μg/마우스, i.v.)로 16 시간 동안 처리한 다음, HCE (0.2, 0.5, 1.0, 2.0 mg/kg) 또는 ZGR (0.7 mg/kg)를 정맥주사하였다. 6 시간 후, 마우스를 희생시키고 복강을 생리 식염수 (5mL)로 세척 하여 수득된 복막액 (20μl) 샘플을 0.38 mL의 Turk 용액 (3 % 아세트산 중 0.01 % 크리스탈 바이올렛)으로 염색하여 광학 현미경으로 백혈구 수를 세어 도 5D에 나타내었다. 도 5D에서 보는 바와 같이, HMGB1의 처리에 의해 백혈구의 이동이 증가하였으며, HCE는 농도 의존적으로 이를 감소시켰다.For in vivo experiments, male mice were anesthetized with oxygen containing 2% isoflurane (Forane; JW Pharmaceutical, Seoul, South Korea). Oxygen was first administered to the breathing chamber and then anesthetized with a face mask via a small rodent gas anesthesia machine (RC2; Vetequip, Pleasanton, CA, USA). Thereafter, mice were treated with HMGB1 (2 μg/mouse, i.v.) for 16 hours, and then HCE (0.2, 0.5, 1.0, 2.0 mg/kg) or ZGR (0.7 mg/kg) was injected intravenously. After 6 h, mice were sacrificed and a sample of peritoneal fluid (20 μl) obtained by washing the abdominal cavity with physiological saline (5 mL) was stained with 0.38 mL of Turk's solution (0.01% crystal violet in 3% acetic acid) to count leukocytes under an optical microscope. was counted and shown in FIG. 5D. As shown in FIG. 5D , leukocyte migration was increased by HMGB1 treatment, and HCE decreased it in a concentration-dependent manner.

<< 실시예Example 6. 6. HCE의HCE's NFNF -- κBκB / / ERKERK 신호 및 IL- Signal and IL- , IL-6 및 , IL-6 and TNFTNF -α 생성을 억제 확인>-Check to inhibit the production of α>

HMGB1은 NF-κB 및 ERK 1/2을 포함한 다양한 신호 전달 경로를 통해 염증성 사이토카인 생성을 유도하여 패혈증의 병리학적 상태를 악화시킨다 (Jung 등, 2016). 따라서 본 발명자들은 HMGB1에 의해 유도되는 TNF-α, IL-1β 및 IL-6의 생성과 NF-κB 및 ERK1/2 신호 전달의 활성화에 대한 HCE의 억제 효과를 평가하였다.HMGB1 exacerbates the pathological condition of sepsis by inducing inflammatory cytokine production through various signaling pathways, including NF-κB and ERK 1/2 (Jung et al., 2016). Therefore, the present inventors evaluated the inhibitory effect of HCE on the HMGB1-induced production of TNF-α, IL-1β and IL-6 and activation of NF-κB and ERK1/2 signaling.

HUVEC를 HMGB1 1 μg/mL로 16 시간 자극 한 다음, HCE를 6 시간 동안 처리하고, 세포 외 신호 조절 키나아제 (ERK) 1/2 (R & D Systems, Minneapolis, MN, USA), p65 subunit of nuclear factor kappa B (NF-κB)의 총 및 인산화 수준 (Cell Signaling Technology, Danvers, MA, USA), 세포 배양 상청액의 TNF-α, IL-6 및 IL-1β 수준을 ELISA 키트로 분석하여 도 6A 내지 6F에 나타내었다. 도 6A 내지 6F에서 보듯이, HUVEC에서 HMGB1에 의해 강화된 염증성 사이토카인의 생성과 가 HCE 처리에 의해 억제되었다. 또한 HMGB1은 도 6G에서 보는 바와 같이, HUVEC에서 p65 NF-κB의 핵 국소화를 유도했으며, 이는 HCE 처리에 의해 억제되었다.HUVECs were stimulated with HMGB1 1 μg/mL for 16 h, followed by HCE treatment for 6 h, followed by extracellular signal-regulated kinase (ERK) 1/2 (R&D Systems, Minneapolis, MN, USA), p65 subunit of nuclear. Total and phosphorylation levels of factor kappa B (NF-κB) (Cell Signaling Technology, Danvers, MA, USA), and TNF-α, IL-6 and IL-1β levels in cell culture supernatants were analyzed with an ELISA kit to analyze FIG. 6A to FIG. 6F. 6A to 6F, the production of inflammatory cytokines enhanced by HMGB1 in HUVECs and was inhibited by HCE treatment. HMGB1 also induced the nuclear localization of p65 NF-κB in HUVECs, as shown in Fig. 6G, which was inhibited by HCE treatment.

<< 실시예Example 7. 7. HCEHCE 투여가 dosing CLPCLP 유발 패혈증 마우스의 생존율 및 조직 손상 감소에 미치는 영향 확인> Confirmation of effect on survival rate and tissue damage reduction in mice with induced sepsis>

본 발명자들은 실제로 HCE가 패혈증 동물모델의 생존률에 미치는 영향을 확인하였다. HCE 또는 ZGR의 단일 주사는 CLP 유발 치사율로부터 보호하지 못하였다 (데이터 미기재). 따라서 CLP 후 12 시간 및 50 시간에 HCE (1.0 또는 2.0 mg/kg) 또는 ZGR (0.7 mg/kg)을 정맥주사하고 CLP후 132 시간까지 12 시간마다 동물의 생존율을 평가하여 도 7A에 나타내었다. 도 7A에서 보는 바와 같이, HCE의 이중 투여는 CLP 후 마우스의 생존율을 현저히 향상시켰으며, HCE 2.0 mg/kg 투여군의 경우 양성대조군인 ZGR 투여군보다 높은 생존율을 나타내었다 (p <0.00001).The present inventors actually confirmed the effect of HCE on the survival rate of sepsis animal model. A single injection of HCE or ZGR did not protect against CLP-induced lethality (data not shown). Therefore, HCE (1.0 or 2.0 mg/kg) or ZGR (0.7 mg/kg) was injected intravenously at 12 and 50 hours after CLP, and the survival rate of the animals was evaluated every 12 hours until 132 hours after CLP, as shown in FIG. 7A . As shown in FIG. 7A , double administration of HCE significantly improved the survival rate of mice after CLP, and the HCE 2.0 mg/kg administration group showed a higher survival rate than the positive control, ZGR administration group (p <0.00001).

패혈증 진행 중에 발생하는 전신 염증은 간과 신장이 주요 표적 기관인 MOF를 자주 유발한다. 따라서 본 발명자들은 CLP로 인한 폐 손상에 대한 HCE의 잠재적 보호 효과를 평가하였다. 수컷 마우스 (n = 5)를 CLP에 적용한 다음 CLP 후 12 시간 및 50 시간에 HCE (1.0 또는 2.0mg / kg) 또는 ZGR (0.7mg / kg)을 정맥 내로 투여하였다. CLP 4 일 후에 마우스를 희생키고 폐 표본에 대한 광학 현미경 분석으로 맹검 관찰을 수행하고, 상기 폐 표본의 폐 구조, 조직 부종 및 염증 세포의 침윤도을 평가하여 도 7B 및 7C에 나타내었다. 도 7B 및 7C에서 보는 바와 같이, HCE는 CLP로 유발된 간질성 폐 부종과 폐 조직의 심각한 손상을 개선시켰다. 또한, 간 손상의 지표인 ALT 및 AST (도 7D)와 신장 손상의 지표인 BUN 및 크레아티닌의 혈장 수준을 확인하였다. 혈중 요소 질소 (BUN), 크레아티닌, 알라닌 트랜스아미나제 (ALT), 아스파테이트 트랜스아미나제 (AST) 및 젖산 탈수소효소 (LDH)의 혈장 수준은 상용 키트 (Pointe Scientific, Lincoln Park, MI, USA)를 사용하여 결정하였다. 그 결과, CLP에 의해 유의하게 증가된 ALT 및 AST, BUN 및 크레아티닌은 HCE에 의하여 억제되었으며(도 7D 내지 7F), 이러한 모든 증가와 조직 손상의 또 다른 중요한 지표인 LDH의 증가 역시 억제하였다 (도 7G).Systemic inflammation that occurs during sepsis progression frequently triggers MOFs, with the liver and kidneys being the main target organs. Therefore, we evaluated the potential protective effect of HCE on lung damage due to CLP. Male mice (n = 5) were subjected to CLP followed by intravenous administration of HCE (1.0 or 2.0 mg/kg) or ZGR (0.7 mg/kg) at 12 and 50 hours post CLP. After 4 days of CLP, mice were sacrificed, and blind observation was performed by optical microscopic analysis of the lung specimens, and the lung structures, tissue edema, and infiltration of inflammatory cells of the lung specimens were evaluated and shown in FIGS. 7B and 7C. 7B and 7C , HCE improved CLP-induced interstitial lung edema and severe damage to lung tissue. In addition, plasma levels of ALT and AST (FIG. 7D), which are indicators of liver damage, and BUN and creatinine, which are indicators of kidney damage, were confirmed. Plasma levels of blood urea nitrogen (BUN), creatinine, alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) were measured using a commercial kit (Pointe Scientific, Lincoln Park, MI, USA). was used to determine As a result, ALT and AST, BUN, and creatinine significantly increased by CLP were inhibited by HCE ( FIGS. 7D to 7F ), and all these increases and an increase in LDH, another important indicator of tissue damage, were also inhibited ( FIG. 7D to 7F ). 7G).

상기 결과에서 보듯이, 헤데라콜키사이드 E (HCE)는 LPS 활성화 HUVEC의 HMGB1 방출을 줄이고, HMGB1의 CLP 매개 방출을 억제하며, 장벽 무결성을 증가시킴으로써 HMGB1 매개 혈관 장벽 파괴를 감소시키는 것을 확인하였다. 또한, 패혈증 마우스 모델을 사용하여 HCE의 장벽 보호 효과를 확인하였다. 이 모델에서 HCE로 치료하면 CLP 사망률과 다발성 장기부전이 현저히 감소했다. 이는 HCE가 패혈증 및 패혈성 쇼크를 포함한 심각한 혈관염 질환의 예방 또는 치료제로 역할하는 것을 보여준다.As can be seen from the above results, it was confirmed that hederacolchiside E (HCE) reduced HMGB1-mediated vascular barrier destruction by decreasing HMGB1 release of LPS-activated HUVECs, inhibiting CLP-mediated release of HMGB1, and increasing barrier integrity. In addition, the barrier protective effect of HCE was confirmed using a sepsis mouse model. Treatment with HCE in this model significantly reduced CLP mortality and multiple organ failure. This shows that HCE serves as a preventive or therapeutic agent for severe vasculitic diseases including sepsis and septic shock.

<< 제제예Formulation example 1. 약학적 제제> 1. Pharmaceutical preparations>

제제예Formulation example 1-1. 정제의 제조 1-1. manufacture of tablets

본 발명의 헤데라콜키사이드 E 20㎎을 락토즈 175.9g, 감자전분 180g 및 콜로이드성 규산 32g과 혼합하였다. 이 혼합물에 10% 젤라틴 용액을 첨가시킨 후, 분쇄하여 14 메쉬체를 통과시켰다. 이것을 건조시키고 여기에 감자전분 160g, 활성 50g 및 스테아린산 마그네슘 5g을 첨가해서 얻은 혼합물을 정제로 만들었다. 20 mg of hederacolchiside E of the present invention was mixed with 175.9 g of lactose, 180 g of potato starch and 32 g of colloidal silicic acid. After adding a 10% gelatin solution to this mixture, it was ground and passed through a 14 mesh sieve. This was dried and the mixture obtained by adding 160 g of potato starch, 50 g of activity and 5 g of magnesium stearate to this was made into tablets.

제제예Formulation example 1-2. 주사액제의 제조 1-2. Preparation of injectable solution

본 발명의 헤데라콜키사이드 E 10㎎, 염화나트륨 0.6g 및 아스코르브산 0.1g을 증류수에 용해시켜서 100㎖를 만들었다. 이 용액을 병에 넣고 20℃에서 30분간 가열하여 멸균시켰다. 10 mg of hederacolchiside E of the present invention, 0.6 g of sodium chloride and 0.1 g of ascorbic acid were dissolved in distilled water to make 100 ml. This solution was placed in a bottle and sterilized by heating at 20° C. for 30 minutes.

<< 제제예Formulation example 2. 건강기능식품의 제조> 2. Manufacturing of health functional food>

제제예Formulation example 2-1. 건강기능식품의 제조 2-1. Manufacturing of health functional food

본 발명의 헤데라콜키사이드 E 100mg, 비타민 혼합물 적량, 비타민 A 아세테이트 70㎍, 비타민 E 1.0㎎, 비타민 B1 0.13㎎, 비타민 B2 0.15㎎, 비타민 B6 0.5㎎, 비타민 B12 0.2㎍, 비타민 C 10㎎, 비오틴 10㎍, 니코틴산아미드 1.7㎎, 엽산 50㎍, 판토텐산 칼슘 0.5㎎, 무기질 혼합물 적량, 황산제1철 1.75㎎, 산화아연 0.82㎎, 탄산 마그네슘 25.3㎎, 제1인산칼륨 15㎎, 제2인산칼슘 55㎎, 구연산칼륨 90㎎, 탄산칼슘 100㎎, 염화마그네슘 24.8㎎을 섞어 과립으로 제조하였으나, 용도에 따라 다양한 제형으로 변형시켜 제조할 수 있다. 또한, 상기의 비타민 및 미네랄 혼합물의 조성비를 임의로 변형 실시하여도 무방하며, 통상의 건강기능식품 제조방법에 따라 상기의 성분을 혼합하여 제조할 수 있다.Hederacolchiside E of the present invention 100mg, vitamin mixture appropriate amount, vitamin A acetate 70㎍, vitamin E 1.0mg, vitamin B1 0.13mg, vitamin B2 0.15mg, vitamin B6 0.5mg, vitamin B12 0.2㎍, vitamin C 10mg, Biotin 10㎍, nicotinic acid amide 1.7mg, folic acid 50㎍, calcium pantothenate 0.5mg, mineral mixture appropriate amount, ferrous sulfate 1.75mg, zinc oxide 0.82mg, magnesium carbonate 25.3mg, potassium monophosphate 15mg, dicalcium phosphate 55 mg, potassium citrate 90 mg, calcium carbonate 100 mg, and magnesium chloride 24.8 mg were mixed to prepare granules, but it can be prepared by modifying various formulations according to the use. In addition, the composition ratio of the vitamin and mineral mixture may be arbitrarily modified, and it may be prepared by mixing the above ingredients according to a conventional health functional food manufacturing method.

제제예Formulation example 2-2. 건강기능성 음료의 제조 2-2. Manufacture of health functional beverages

본 발명의 헤데라콜키사이드 E 100mg, 구연산 0.1g, 프락토올리고당 100g, 정제수 900g을 섞어 통상의 음료 제조방법에 따라 교반, 가열, 여과, 살균, 냉장하여 음료를 제조하였다.100 mg of hedera colchiside E of the present invention, 0.1 g of citric acid, 100 g of fructooligosaccharide, and 900 g of purified water were mixed and stirred, heated, filtered, sterilized, and refrigerated according to a conventional beverage preparation method to prepare a beverage.

Claims (10)

헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 치료용 조성물.A composition for preventing or treating sepsis comprising Hederacolchiside E (Hederacolchiside E) as an active ingredient. 제1항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (high mobility group box 1, HMGB1) 매개 패혈증에서 손상된 세포 또는 활성화된 면역 세포의 고 이동성 그룹 박스 1 (HMGB1)의 방출을 억제하는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
The method of claim 1,
The hederacolchiside E is sepsis, characterized in that it inhibits the release of high mobility group box 1 (HMGB1) of damaged cells or activated immune cells in high mobility group box 1 (HMGB1) mediated sepsis. A composition for prophylaxis or treatment.
제1항 또는 제2항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1)의 수용체인 TLR2 (Toll-like receptor 2), TLR4 (Toll-like receptor 4) 및 RAGE (receptor for advanced glycation end products)로 이루어진 군으로부터 선택된 1 이상의 수용체 발현을 억제하는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
3. The method of claim 1 or 2,
The hederacolchiside E is selected from the group consisting of Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), and receptor for advanced glycation end products (RAGE), which are receptors of high mobility group box 1 (HMGB1). A composition for preventing or treating sepsis, characterized in that it inhibits the expression of one or more receptors.
제1항 또는 제2항에 있어서,
상기 헤데라콜키사이드 E는 서투인1(sirtuin 1) 단백질 활성화 또는 고 이동성 그룹 박스 1 (HMGB1)의 탈아세틸화를 유도하는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
3. The method of claim 1 or 2,
The hedera colchiside E is a composition for preventing or treating sepsis, characterized in that it induces activation of sirtuin 1 protein or deacetylation of high mobility group box 1 (HMGB1).
제1항 또는 제2항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개 혈관 투과성 증가를 억제하여 혈관 장벽 무결성(vascular barrier integrity)을 유지하는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
3. The method of claim 1 or 2,
The hederacolchiside E is a composition for preventing or treating sepsis, characterized in that it maintains vascular barrier integrity by inhibiting high mobility group box 1 (HMGB1)-mediated increase in vascular permeability.
제5항에 있어서,
상기 혈관 장벽 무결성(vascular barrier integrity)을 유지하는 것은 혈관 내피의 E-selectin, ICAM-1 (Intercellular Adhesion Molecule-1)및 VCAM-1 (Vascular Cell Adhesion Molecule-1) 으로 이루어진 군으로부터 선택된 1 이상의 내피 CAM (cell adhesion molecule) 의 발현 억제로 이루어지는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
6. The method of claim 5,
Maintaining the vascular barrier integrity is at least one endothelium selected from the group consisting of E-selectin, ICAM-1 (Intercellular Adhesion Molecule-1) and VCAM-1 (Vascular Cell Adhesion Molecule-1) of vascular endothelium. A composition for preventing or treating sepsis, characterized in that it consists of suppressing the expression of CAM (cell adhesion molecule).
제1항 또는 제2항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개로 증가된 TNF-α (Tumor necrosis factor-α), IL-1β (Interleukin-1β), IL-6 (Interleukin-6), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) 및 ERK 1/2 (Extracellular signal-regulated kinases 1/2) 로 이루어진 군으로부터 선택된 1 이상의 발현을 억제하는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
3. The method of claim 1 or 2,
The hederacolchiside E is high mobility group box 1 (HMGB1) mediated increased TNF-α (Tumor necrosis factor-α), IL-1β (Interleukin-1β), IL-6 (Interleukin-6), NF- Prevention or treatment of sepsis, characterized in that it suppresses the expression of one or more selected from the group consisting of κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and ERK 1/2 (Extracellular signal-regulated kinases 1/2) for composition.
제1항 또는 제2항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (HMGB1) 매개로 증가된 아스파르테이트 트랜스아미네이즈 (Aspartate transaminase, AST), 알라닌 트랜스아미네이즈 (Alanine transaminase, ALT), 혈중 유레아 질소 (Blood Urea Nitrogen, BUN) 크레아티닌 및 젖산 탈수소효소 (Lactate dehydrogenase, LDH)로 이루어진 군으로부터 선택된 1 이상을 감소시키는 것을 특징으로 하는 패혈증 예방 또는 치료용 조성물.
3. The method of claim 1 or 2,
The hederacolchiside E is high mobility group box 1 (HMGB1) mediated increased aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (Blood Urea Nitrogen) , BUN) a composition for preventing or treating sepsis, characterized in that it reduces at least one selected from the group consisting of creatinine and lactate dehydrogenase (LDH).
헤데라콜키사이드 E (Hederacolchiside E)를 유효성분으로 포함하는 패혈증 예방 또는 개선용 건강기능식품.Health functional food for preventing or improving sepsis containing Hederacolchiside E as an active ingredient. 제1항에 있어서,
상기 헤데라콜키사이드 E는 고 이동성 그룹 박스 1 (high mobility group box 1, HMGB1) 매개 패혈증에서 손상된 세포 또는 활성화된 면역 세포의 고 이동성 그룹 박스 1 (HMGB1)의 방출을 억제하는 것을 특징으로 하는 패혈증 예방 또는 개선용 건강기능식품.
The method of claim 1,
The hederacolchiside E is sepsis, characterized in that it inhibits the release of high mobility group box 1 (HMGB1) of damaged cells or activated immune cells in high mobility group box 1 (HMGB1) mediated sepsis. Health functional food for prevention or improvement.
KR1020210014886A 2021-02-02 2021-02-02 Composition for preventing or treating of sepsis comprising Hederacolchiside E KR102585910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210014886A KR102585910B1 (en) 2021-02-02 2021-02-02 Composition for preventing or treating of sepsis comprising Hederacolchiside E

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210014886A KR102585910B1 (en) 2021-02-02 2021-02-02 Composition for preventing or treating of sepsis comprising Hederacolchiside E

Publications (2)

Publication Number Publication Date
KR20220111520A true KR20220111520A (en) 2022-08-09
KR102585910B1 KR102585910B1 (en) 2023-10-06

Family

ID=82844949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210014886A KR102585910B1 (en) 2021-02-02 2021-02-02 Composition for preventing or treating of sepsis comprising Hederacolchiside E

Country Status (1)

Country Link
KR (1) KR102585910B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058587B1 (en) 2011-03-28 2011-08-23 에스케이케미칼주식회사 Oleanane triterpene saponin compounds which are effective on treatment of dementia and mild cognitive impairment, and improvement of cognitive function
KR102006659B1 (en) 2018-03-22 2019-08-02 농업회사법인 아레즈 주식회사 A composition comprising ginsenoside Rh1 for preventing or treating sepsis
KR102109744B1 (en) 2019-03-04 2020-05-12 충남대학교산학협력단 A composition comprising decursin derivative for preventing or treating sepsis or septic shock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058587B1 (en) 2011-03-28 2011-08-23 에스케이케미칼주식회사 Oleanane triterpene saponin compounds which are effective on treatment of dementia and mild cognitive impairment, and improvement of cognitive function
KR102006659B1 (en) 2018-03-22 2019-08-02 농업회사법인 아레즈 주식회사 A composition comprising ginsenoside Rh1 for preventing or treating sepsis
KR102109744B1 (en) 2019-03-04 2020-05-12 충남대학교산학협력단 A composition comprising decursin derivative for preventing or treating sepsis or septic shock

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
A. Gepdiremen, V. Mshvildadze, H. Suleyman, R. Elias, Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f in carrageenan-induced rat paw edema, Phytomedicine 12 (2005) 440-444.
Angus, Derek C. Linde-Zwirble, Walter T., Lidicker, Jeffrey, Clermont Gilles, Carcillo Joseph, Pinsky, Michael R., Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care, Critical Care Medicine, July 2001, Volume 29, Issue 7, p 1303-1310
B. Jung, H. Kang, W. Lee, H.J. Noh, Y.S. Kim, M.S. Han, M.C. Baek, J. Kim, J.S. Bae, Anti-septic effects of dabrafenib on hmgb1-mediated inflammatory responses, BMB Rep. 49 (2016) 214-219.
B.S. Lee, C. Lee, S. Yang, S.K. Ku, J.S. Bae, Renal protective effects of zingerone in a mouse model of sepsis, BMB Rep. 52 (2019) 271-276.
C.K. Han, W.R. Choi, K.B. Oh, Cognition-enhancing and neuroprotective effects of hederacolchiside-e from pulsatilla koreana, Planta Med. 73 (2007) 665-669.
E. Abraham, J. Arcaroli, A. Carmody, H. Wang, K.J. Tracey, Hmg-1 as a mediator of acute lung inflammation, J. Immunol. 165 (2000) 2950-2954.
Gibot, S., Massin, F., Cravoisy, A., Barraud, D., Nace, L., Levy, B., Bollaert, P.E., 2007. High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med 33, 1347-1353.
H. Wang, O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, K.J. Tracey, Hmg-1 as a late mediator of endotoxin lethality in mice, Science 285 (1999) 248-251.
I. Gulcin, V. Mshvildadze, A. Gepdiremen, R. Elias, Antioxidant activity of saponins isolated from ivy: alpha-hederin, hederasaponin-c, hederacolchiside-e and hederacolchiside-f, Planta Med. 70 (2004) 561-563.
J.H. Youn, J.S. Shin, Nucleocytoplasmic shuttling of hmgb1 is regulated by phosphorylation that redirects it toward secretion, J. Immunol. 177 (2006) 7889-7897.
J.S. Bae, Role of high mobility group box 1 in inflammatory disease: focus on sepsis, Arch. Pharm. Res. 35 (2012) 1511-1523.
Jonas Sunden-Cullberg, Anna Norrby-Teglund, Carl Johan Treutiger, The role of high mobility group box-1 protein in severe sepsis, Curr Opin Infect Dis., 2006 Jun;19(3):231-6.
M.M. Rabadi, S. Xavier, R. Vasko, K. Kaur, M.S. Goligorksy, B.B. Ratliff, High-mobility group box 1 is a novel deacetylation target of sirtuin1, Kidney Int. 87 (2015) 95-108.
PHYTOMEDICINE, 12(6~7), PP.440~444, 2005.03.13 *
R. Ologunde, H. Zhao, K. Lu, D. Ma, Organ cross talk and remote organ damage following acute kidney injury, Int. Urol. Nephrol. 46 (2014) 2337-2345.
R. Palumbo, B.G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K.B. Marcu, M. E. Bianchi, Cells migrating to sites of tissue damage in response to the danger signal hmgb1 require nf-kappab activation, J. Cell Biol. 179 (2007) 33-40.
R.S. Hotchkiss, L.L. Moldawer, S.M. Opal, K. Reinhart, I.R. Turnbull, J.L. Vincent, Sepsis and septic shock, Nat. Rev. Dis. Primers 2 (2016) 16045. [2] M.T. Ziesmann, J.C. Marshall, Multiple organ dysfunction: the defining
Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest 2003; 112:460-467.
S.M. Weis, Vascular permeability in cardiovascular disease and cancer, Curr. Opin. Hematol. 15 (2008) 243-249.
Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A., Rauvala, H., Herman, G., Tracey, K.J., Lee, M.L., Andersson, J., Tokics, L., Treutiger, C.J., 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33, 564-573.
T. Bonaldi, F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M.E. Bianchi, Monocytic cells hyperacetylate chromatin protein hmgb1 to redirect it towards secretion, EMBO J. 22 (2003) 5551-5560.
W. Lee, S.K. Ku, J.E. Kim, G.E. Cho, G.Y. Song, J.S. Bae, Pulmonary protective functions of rare ginsenoside rg4 on particulate matter-induced inflammatory responses, Biotechnol. Bioprocess Eng. 24 (2019) 445-453.
W. Lee, S.K. Ku, Y.M. Lee, J.S. Bae, Anti-septic effects of glyceollins in hmgb1- induced inflammatory responses in vitro and in vivo, Food Chem. Toxicol. 63 (2014) 1-8.
Wonhwa Lee, et al., Barrier protective functions of hederacholchiside-E against HMGB1-mediated septic responses, Pharmacological Research 2021, 163, 105318. *
Y.H. Qin, S.M. Dai, G.S. Tang, J. Zhang, D. Ren, Z.W. Wang, Q. Shen, Hmgb1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of mapk p38 through receptor for advanced glycation end products, J. Immunol. 183 (2009) 6244-6250.

Also Published As

Publication number Publication date
KR102585910B1 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
KR101074158B1 (en) Composition comprising polysaccharide extracted from panax ginseng preventing and treating liver diseases
Xing et al. Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl 3-mediated Alzheimer's disease
Mo et al. Osthole prevents intestinal ischemia-reperfusion–induced lung injury in a rodent model
Jia et al. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr. etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway
Fang et al. Helenine blocks NLRP3 activation by disrupting the NEK7-NLRP3 interaction and ameliorates inflammatory diseases
KR102343728B1 (en) Composition for prevention or treatment of sepsis or septic shock comprising maslinic acid
KR101781083B1 (en) Composition comprising compounds isolated from Salicornia herbacea for preventing or treating vascular inflammation or sepsis
KR101976528B1 (en) Composition comprising extract of Undaria pinnatifida for preventing or treating of Corona virus
KR102585910B1 (en) Composition for preventing or treating of sepsis comprising Hederacolchiside E
Qin et al. Genkwanin improves inflammatory injury in rats with septic lung injury by regulating NF-κB signaling pathway
Kulkarni et al. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses
KR102456307B1 (en) Composition for preventing or treating of multiple organ failure related to infection comprising 3&#39;-Sialyllactose, 6&#39;-Sialyllactose or Derivatives Thereof
KR20090046425A (en) Composition comprising the extract of gastrodia elata blume for the prevention or treatment of gastritis or gastric ulcer
KR20200069965A (en) Pharmaceutical composition comprising the extract of acorn pollen as an effective component for prevention or treatment of thrombosis and health functional food comprising the same
KR101039145B1 (en) A composition containing extract of typha angustata for preventing and treating circulatory diseases
Zhang et al. Mitigation of Paeoniae Radix Alba extracts on H2O2-induced oxidative damage in HepG2 cells and hyperglycemia in zebrafish, and identification of phytochemical constituents
Vieira et al. Gastro-protective effects of isobrucein B, a quassinoid isolated from Picrolemma sprucei
KR20210058760A (en) Composition for preventing or treating renal disease comprising Zizyphus jujuba MILL extract
Chen et al. Anti-thrombotic and anti-tumor effect of water extract of caulis of Sargentodoxa cuneata (Oliv) Rehd et Wils (Lardizabalaceae) in animal models
KR101146718B1 (en) Compositions comprising extracts of Bee Venom as an active ingredient for the angiogenesis?related diseases?lung cancer or pain
KR20200089556A (en) Composition for Anti-Inflammation and Enhancing Immunity comprising Red Ginseng, Jujube, Platycodi radix
US20190093096A1 (en) Comosain and bromelains as immuno-therapy in the treating and/or preventing various types of cancer in a mammal
KR101718357B1 (en) Composition comprising compounds isolated from Salicornia herbacea for preventing or treating vascular inflammation or sepsis
KR102120244B1 (en) Composition for prevention or treatment of sepsis or septic shock comprising Collismycin C
Wang et al. Protective effects of ginsenoside Rg1 on acute myocardial infarction

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right