KR20220109796A - Automation monitoring system IoT-based traditional maintenance production process for smart factory construction - Google Patents

Automation monitoring system IoT-based traditional maintenance production process for smart factory construction Download PDF

Info

Publication number
KR20220109796A
KR20220109796A KR1020210013242A KR20210013242A KR20220109796A KR 20220109796 A KR20220109796 A KR 20220109796A KR 1020210013242 A KR1020210013242 A KR 1020210013242A KR 20210013242 A KR20210013242 A KR 20210013242A KR 20220109796 A KR20220109796 A KR 20220109796A
Authority
KR
South Korea
Prior art keywords
module
production
iot
transfer
divided
Prior art date
Application number
KR1020210013242A
Other languages
Korean (ko)
Other versions
KR102485960B1 (en
Inventor
감동규
김단아
Original Assignee
농업회사법인 주식회사 솔오토메틱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 농업회사법인 주식회사 솔오토메틱 filed Critical 농업회사법인 주식회사 솔오토메틱
Priority to KR1020210013242A priority Critical patent/KR102485960B1/en
Publication of KR20220109796A publication Critical patent/KR20220109796A/en
Application granted granted Critical
Publication of KR102485960B1 publication Critical patent/KR102485960B1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • G05B19/4187Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow by tool management
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/25Manufacturing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Factory Administration (AREA)

Abstract

The present invention relates to an IoT-based traditional production process automation monitoring system for building a smart factory. Each process required for traditional oil production is divided into modules for building a smart factory. Each module is divided into raw material transfer, roasting, transfer, dust collection, transfer, milking, milk collection, filtering, packaging, capping, labeling, and inspection. Each process divided into modules proceeds sequentially from raw material transfer to inspection. Devices and machines for each unit process operate in IoT-based interlocking. Each process is progressed while monitored. Therefore, the present invention uses a monitor to perform visualization and recording so that an operator can easily recognize and process a process state. By automatically outputting an alarm signal that can respond to abnormality detection, optimal products and production conditions are analyzed. The same is processed with an optimized setting value of a production process and performed automatically. Thus, product quality improvement and standardization are secured through reduction of working hours, productivity improvement, and systematic production management.

Description

스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템{Automation monitoring system IoT-based traditional maintenance production process for smart factory construction}Automation monitoring system IoT-based traditional maintenance production process for smart factory construction

본 발명은 전통유지 생산공정의 자동화 모니터링 시스템에 관한 것으로, 더욱 상세하게는 전통유지 생산을 위한 스마트팩토리 시스템 구축을 위한 각 종 단위별 센서와 그 공정 기준 값의 설정과 작업의 흐름, 그리고 센서간 상호연동을 위한 기준 값과 처리방법에 관한 것으로, 즉 작업 무게 및 량, 온도, 습도, 작동속도 및 반복횟수, 회전수 및 회전속도, 열량조절 및 설정, 공정단위별 기계간 IoT연동 설정 및 제어, 포장단위당 량 설정 및 제어, 원료량과 생산량, 공정별 데이터 값의 빅데이터화 등을 자동으로 처리하면서, 작업자가 공정상태를 쉽게 인지하고 처리할 수 있도록 모니터를 활용하여 시각화 및 기록하고, 이상감지에 대응할 수 있는 경보신호를 자동출력하여, 최적의 제품과 생산조건을 분석하고, 이를 생산공정의 최적화된 설정값으로 처리하고 자동으로 수행하여 작업시간 단축, 생산성 향상, 체계적인 생산관리로 제품의 품질향상 및 표준화를 위한 자동화 생산공정의 모니터링 시스템에 관한 것이다.The present invention relates to an automated monitoring system for the production process of traditional oils and fats, and more particularly, for the establishment of a smart factory system for the production of traditional oils and fats, the sensor for each type of unit, the setting of the process reference value and the flow of work, and between the sensors It relates to the reference value and processing method for interworking, namely, work weight and amount, temperature, humidity, operation speed and repetition number, rotation speed and rotation speed, heat quantity adjustment and setting, IoT interworking setting and control between machines by process unit , setting and controlling the amount per packaging unit, and automatically processing the amount of raw materials and production volume, and big dataization of data values for each process. By automatically outputting an alarm signal that can respond to It relates to a monitoring system of an automated production process for improvement and standardization.

일반적으로 전통유지가 현대화될수록 소비가 커지며, 이러한 전통유지 생산공정은 스마트팩토리 등에 의해 자동화되는 추세이다. 종래 특허기술의 일례로서, 본출원인이 출원등록한 등록특허공보 등록번호 10-2127572호에는 매장에 설치되는 식용유지 판매장치와, 상기 식용유지 판매장치로부터 수집된 실시간 정보를 통합관리하는 서버관리시스템으로 이루어지는 IoT기반 식용유지 산패관리 및 생산예측 스마트 시스템에 있어서, 판매장치는 자판기이며, 상기 자판기에는 식용유지 보관 및 판매 환경에 적합한 착유날짜, 유통기한, 원산지표시, 항산화, 벤조피렌 및 영양표시, 로스팅온도, 착유방법 표시를 하며, 불포화지방산의 보관 조건에 관한 산가, 과산화물가, 요오드가 변화를 설정하며, 토코페롤, 리그난 화합물 항산화변화를 설정하며, 온도, 빛, 열 요소를 차단 했을 때 불포화지방산의 산패를 줄이는 정도를 설정하며, 정제하지 않을 때 유지 속에 포함되어 있는 슬러지인 깨의 속살 단백질 성분의 산패 정도를 설정하며, 유지의 맛이 환경적 요인에 의하여 변화가 있는지도 설정하며, 보관부는 유지별 온도에 따라 5 라인(line)으로 구분하고 각 라인별 온도가 유지에 따라 각각 설정되는 부분으로, 온도는 펠티어 소자나 응축기를 설치하며, 표시부는 2가지의 화면으로 하나는 소비자가 활용하는 파트로 터치 형식으로 화면이 구성되며, 주문과 정보제공을 동시에 할 수 있으며, 다른 하나는 유지가 생산되는 과정을 동영상을 통하여 시각적 이미지로 정보를 전달 받을 수 있고 실시간 영상으로 현재 생산되는 과정을 전달 받을 수 있는 것이며, 유지별 보관 환경 조건을 설정하고 산패를 결정하는 산가, 과산화물가, 요오드가 요인을 제어하며, 불포화지방산의 영양 조성의 변화를 위하여 항산화 검사를 통하여 환경에 따른 산패 요인뿐만 아니라 영양 변화In general, as traditional oils and fats are modernized, consumption increases, and the production process of traditional oils and fats is automated by smart factories. As an example of the prior patent technology, the registered patent publication No. 10-2127572 registered by the present applicant has an edible oil sales device installed in a store, and a server management system that integrates and manages real-time information collected from the edible oil sales device. In the IoT-based edible oil rancidity management and production prediction smart system, the sales device is a vending machine, and the vending machine has milking date, expiration date, country of origin indication, antioxidant, benzopyrene and nutrition label suitable for storage and sales environment of edible oil and fat, and roasting temperature. , milking method, acid value, peroxide value, and iodine value change regarding storage conditions of unsaturated fatty acids, tocopherol and lignan compound antioxidant changes It sets the degree of reduction, sets the degree of rancidity of the flesh protein component of sesame, which is sludge contained in fats and oils, when not refined, and sets whether the taste of fats and oils is changed by environmental factors, and the storage unit is It is divided into 5 lines and each line is set according to the temperature maintenance. The temperature is a Peltier element or a condenser installed. The screen is composed of , and orders and information can be provided at the same time. On the other hand, you can receive information about the production process as a visual image through a video, and you can receive the current production process with a real-time video. , set storage environmental conditions for each oil and fat, control acid value, peroxide value, and iodine value factors that determine rancidity, and perform antioxidant tests to change nutritional composition of unsaturated fatty acids

에 대한 변화를 제어하며, 각각의 유지에 산패를 일으키는 햇빛 또는 형광등 불빛요인을 적용하여 산가, 요오드가, 과산화물가 안전성 검사를 통하여 확인하며, 각 유지의 온도를 조절하여 산가, 요오드가, 과산화물가 실험을 실시하여 산패 정도를 검증하고, 각 유지에 직접적인 열을 가하여 산가, 요오드가, 과산화물가를 실험을 통하여 검증하는 것을 특징으로 하는 IoT기반 식용유지 산패관리 및 생산예측 스마트 시스템이 공개되어 있다.Controls changes in fats and oils, and applies sunlight or fluorescent light factors that cause rancidity to each fat and checks the acid value, iodine value, and peroxide value through safety tests. An IoT-based edible oil rancidity management and production prediction smart system, characterized by verifying the degree of rancidity by conducting an experiment, and verifying the acid value, iodine value, and peroxide value by applying direct heat to each oil and fat, is disclosed.

또한 등록특허공보 등록번호 20-0365315호에는 가압형 식용유 정제장치가 공개되어 있다.In addition, a pressurized edible oil refining device is disclosed in Korean Patent Publication No. 20-0365315.

그러나 상기 종래기술들은 작업자가 공정상태를 쉽게 인지하고 처리할 수 없어서, 이상감지에 신속하게 대응할 수 없어서 제품의 품질향상 및 표준화가 되지 못하는 단점이 여전히 있었다.However, the prior art still had disadvantages in that the quality of the product could not be improved and standardized because the operator could not easily recognize and process the process state, and thus could not quickly respond to abnormal detection.

따라서 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 전통유지 생산공정 중, 로스팅, 착유, 포장공정에서 필수적으로 요구되는 작업 무게 및 량, 온도, 습도, 작동속도 및 반복횟수, 회전수 및 회전속도, 열량조절 및 설정, 공정단위별 기계간 IoT연동 설정 및 제어, 포장단위당 량 설정 및 제어, 원료량과 생산량을 자동으로 처리 및 진행함으로써 작업시간 및 노동력 단축, 특히, 보다 과학적이고 체계적인 생산환경으로 생산성을 향상시키는 것을 목적으로 한다. Therefore, the present invention has been devised to solve the above problems, and the working weight and amount, temperature, humidity, operating speed and number of repetitions, number of rotations and Reduction of working time and labor by automatically processing and proceeding rotation speed, heat quantity control and setting, IoT interlocking setting and control between machines for each process unit, setting and control of the amount per packaging unit, and automatically processing and proceeding with the amount of raw material and production, in particular, more scientific and systematic production It aims to improve productivity with the environment.

또한, 본 발명은 작업자가 공정상태를 쉽게 인지하고 처리할 수 있도록 모니터를 활용하여 시각화 및 기록함으로써 체계적인 생산관리환경을 구축함을 목적으로 한다.In addition, an object of the present invention is to establish a systematic production management environment by visualizing and recording using a monitor so that the operator can easily recognize and process the process state.

또한, 본 발명은 공정별 이상감지에 대응할 수 있는 경보신호를 자동출력하여, 설정 값에 따라 정지 혹은 동작을 진행하면서, 신속하고 체계적인 생산관리로 불량률 감소 및 품질 향상을 위한 것을 목적으로 한다.In addition, an object of the present invention is to automatically output an alarm signal that can respond to abnormal detection for each process, stop or operate according to a set value, and reduce the defect rate and improve quality through rapid and systematic production management.

또한, 본 발명은 공정별 설정 값과 생산결과에 대한 데이터 값을 빅데이터화하여, 작업시간, 품질, 생산량에 따른 공정별 최적의 생산환경조건을 분석하고, 이를 생산공정의 최적화된 설정 값으로 적용하여 체계적인 생산환경을 개선해감으로써 품질향상 및 원가절감을 기하고, 이를 바탕으로 인공지능 생산시스템을 구축할 수 있는 생산공정 및 관리의 빅데이터화를 구축함으로 목적으로 한다.In addition, the present invention converts data values for each process set value and production result into big data, analyzes the optimal production environment conditions for each process according to work time, quality, and production volume, and applies it as an optimized set value for the production process By improving the systematic production environment, quality improvement and cost reduction are achieved, and based on this, the purpose is to establish big data of production process and management that can build an artificial intelligence production system.

본발명은 스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템에 관한 것으로, 전통유지 생산에 요구되는 각 공정은 스마트 팩토리 구축을 위한 모듈로 구분되며,각각의 모듈은 원료이송,로스팅,이송,집진,이송,착유,집유,필터링,포장,캡핑,라벨링,검사로 구분되며,모듈로 구분된 각각의 공정은 원료 이송에서 검사까지 순차적으로 진행되고, 각각의 단위공정별 장치 및 기계는 IoT기반의 상호 연동으로 작동되며,각 공정은 모니터링되면서 진행되는 것을 특징으로 한다.The present invention relates to an IoT-based traditional oil production process automation monitoring system for building a smart factory, and each process required for traditional oil production is divided into modules for building a smart factory, and each module includes raw material transfer, roasting, It is divided into transport, dust collection, transfer, milking, milk collection, filtering, packaging, capping, labeling, and inspection. It operates by interworking based on IoT, and each process is characterized by being monitored.

따라서 본발명은 작업자가 공정상태를 쉽게 인지하고 처리할 수 있도록 모니터를 활용하여 시각화 및 기록하고, 이상감지에 대응할 수 있는 경보신호를 자동출력하여, 최적의 제품과 생산조건을 분석하고, 이를 생산공정의 최적화된 설정값으로 처리하고 자동으로 수행하여 작업시간 단축, 생산성 향상, 체계적인 생산관리로 제품의 품질향상 및 표준화가 되는 현저한 효과가 있다.Therefore, the present invention visualizes and records using a monitor so that the operator can easily recognize and process the process state, and automatically outputs an alarm signal that can respond to abnormal detection, analyzes the optimal product and production conditions, and produces it It has a remarkable effect of reducing work time, improving productivity, and improving product quality and standardization through systematic production management by processing with the optimized set value of the process and performing it automatically.

도 1은 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 1플로우차트
도 2는 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 2플로우차트
도 3은 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 순서도
도 4는 본발명의 생산공정 순서별 모듈 연동 구성도
도 5는 본발명의 생산공정 모듈별 센서, 측정, 제어 기능도
도 6은 본발명의 생산공정 IoT 연동 플로우 챠트
1 is a flow chart of the traditional maintenance production process for building a smart factory of the present invention;
Figure 2 is a 2 flow chart of the traditional maintenance production process for building a smart factory of the present invention
3 is a flow chart of the traditional maintenance production process for building a smart factory of the present invention;
4 is a block diagram of module interlocking according to the production process sequence of the present invention;
5 is a sensor, measurement, and control function diagram for each production process module of the present invention;
6 is a flow chart of the production process IoT interworking of the present invention

본발명은 스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템에 관한 것으로, 전통유지 생산에 요구되는 각 공정은 스마트 팩토리 구축을 위한 모듈로 구분되며,각각의 모듈은 원료이송,로스팅,이송,집진,이송,착유,집유,필터링,포장,캡핑,라벨링,검사로 구분되며,모듈로 구분된 각각의 공정은 원료 이송에서 검사까지 순차적으로 진행되고, 각각의 단위공정별 장치 및 기계는 IoT기반의 상호 연동으로 작동되며,각 공정은 모니터링되면서 진행되는 것을 특징으로 한다.The present invention relates to an IoT-based traditional oil production process automation monitoring system for building a smart factory, and each process required for traditional oil production is divided into modules for building a smart factory, and each module includes raw material transfer, roasting, It is divided into transport, dust collection, transfer, milking, milk collection, filtering, packaging, capping, labeling, and inspection. It operates by interworking based on IoT, and each process is characterized by being monitored.

또한, 각 공정별 모듈에는 공정별 장비 혹은 기계와 상호 IoT연동,품질 향상 및 작업공정환경개선,최적화된 제품 생산 및 공정관리를 위하여 요구되는 센서가 부착되고,In addition, each process module is equipped with sensors required for mutual IoT interworking with process equipment or machines, quality improvement and work process environment improvement, optimized product production and process management,

또한, 센서로부터 입력되는 측정신호를 처리하는 측정모듈,측정모듈의신호값을 설정된 기준신호와비교하여 경보신호를 출력하거나 공정의 진행여부 및 자동보정하는제어모듈,각 공정의 모듈과 상호연동되는 측정신호와 작동신호를 작업자 및 관리자가 처리할 수 있도록 인식가능한 영상으로 출력하고, 현황보고서를 자동으로 생성 및 기록하는 관제모듈,모든 측정자료를 수집 및 관리하여 생산공정의 효율 및 제품향상을 위한 빅 데이터 보관 및 처리모듈,로 구성되어, 단위공정별로 처리되는 각 모듈이 상호연동되어 최적화된 생산공정을 구현함으로써 생산효율성을 높이는 것을 특징으로 한다.In addition, a measurement module that processes the measurement signal input from the sensor, a control module that compares the signal value of the measurement module with a set reference signal and outputs an alarm signal or whether the process is in progress and automatically corrects it, and the module of each process A control module that automatically generates and records a status report and outputs a recognizable image so that operators and managers can process measurement signals and operation signals, collects and manages all measurement data to improve production process efficiency and product It is composed of a big data storage and processing module, and each module processed for each unit process is interlinked to implement an optimized production process, thereby increasing production efficiency.

전통유지 생산에 특화된 본발명을 첨부도면에 의해 상세히 설명하면 다음과 같다. 도 1은 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 1플로우차트, 도 2는 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 2플로우차트, 도 3은 본발명의 스마트 팩토리 구축을 위한 전통유지 생산공정 순서도, 도 4는 본발명의 생산공정 순서별 모듈 연동 구성도, 도 5는 본발명의 생산공정 모듈별 센서, 측정, 제어 기능도, 도 6은 본발명의 생산공정 IoT 연동 플로우 챠트이다.The present invention specialized in the production of traditional oils and fats will be described in detail with reference to the accompanying drawings. Figure 1 is a traditional maintenance production process 1 flowchart for building a smart factory of the present invention, Figure 2 is a traditional maintenance production process 2 flowchart for building a smart factory of the present invention, Figure 3 is a tradition for building a smart factory of the present invention Oil and fat production process flow chart, Figure 4 is a module interlocking configuration diagram for each production process sequence of the present invention, Figure 5 is a sensor, measurement, and control function diagram for each production process module of the present invention, Figure 6 is a production process IoT interlocking flow chart of the present invention .

전통유지 생산에 요구되는 각 공정은 스마트 팩토리 구축을 위한 모듈로 구분되며,각각의 모듈은 원료이송,로스팅,이송,집진,이송,착유,집유,필터링,포장,캡핑,라벨링,검사로 구분되며,모듈로 구분된 각각의 공정은 원료 이송에서 검사까지 순차적으로 진행되고, 각각의 단위공정별 장치 및 기계는 IoT기반의 상호 연동으로 작동되며,각 공정은 모니터링되면서 진행된다.Each process required for traditional oil production is divided into modules for building a smart factory, and each module is divided into raw material transfer, roasting, transfer, dust collection, transfer, milking, milk collection, filtering, packaging, capping, labeling, and inspection. Each process divided into , modules proceeds sequentially from raw material transfer to inspection, and devices and machines for each unit process are operated through IoT-based interworking, and each process is monitored.

각 공정별 모듈에는 공정별 장비 혹은 기계와 상호 IoT연동,품질 향상 및 작업공정환경개선,최적화된 제품 생산 및 공정관리를 위하여 요구되는 센서가 부착되고,센서로부터 입력되는 측정신호를 처리하는 측정모듈,측정모듈의신호값을 설정된 기준신호와비교하여 경보신호를 출력하거나 공정의 진행여부 및 자동보정하는제어모듈,각 공정의 모듈과 상호연동되는 측정신호와 작동신호를 작업자 및 관리자가 처리할 수 있도록 인식가능한 영상으로 출력하고,현황보고서를 자동으로 생성 및 기록하는 관제모듈,모든 측정자료를 수집 및 관리하여 생산공정의 효율 및 제품향상을 위한 빅 데이터 보관 및 처리모듈,빅 데이터로부터 처리되는 자료를 기반으로 최적화된 공정시스템을 스스로 구현하는 인공지능모듈로 구성되어, 단위공정별로 처리되는 각 모듈이 상호연동되어 최적화된 생산공정을 구현함으로써 생산효율성을 극대화시킨다. Each process module is equipped with a sensor required for mutual IoT interworking with process-specific equipment or machines, quality improvement and work process environment improvement, optimized product production and process management, and a measurement module that processes the measurement signal input from the sensor , A control module that compares the signal value of the measurement module with a set reference signal and outputs an alarm signal, or a control module that automatically corrects the progress of the process, and allows the operator and manager to process the measurement and operation signals that are interlocked with the modules of each process A control module that automatically generates and records a status report and outputs a recognizable image so that it can be recognized; It is composed of an artificial intelligence module that implements an optimized process system by itself based on the

각 공정별 모듈의 구성은 크게 각종 측정을 위한 센서와 그 수신 신호를 디지털화 시키는 장치, 각 공정별 진행 및 작업을 최적화시키는 제어 장치로 구분되며 (1)원료이송모듈1은 무게센서,온도센서,습도센서가 부착되어 원료의 기본적인 상태를 측정하며, IoT로 연동된 이송모터에 의하여 다음공정의 로스팅 모듈로 원료를 이송한다.이때,이송량과 속도를 설정 및 제어한다. (2) 로스팅모듈은 온도센서,습도센서,열량센서,타이머가 부착되어 로스팅 작업의 상태를 시간에 따라 측정하고,작동모터의 회전속도 및 로스터의 에너지를 공급하는 열량을 제어하며,배출기준을 설정 및 제어하며,최종 로스팅 시간을 측정한다. (3) 이송모듈2는 버퍼에 적재된 원료를 이송모터가 무게센서에 의해 원하는 량을 다음공정으로 이송하는 데,이때 이송량과 속도를 제어한다. (4) 집진모듈은로스팅된 원료의 불순물을 다시 제거하는 과정으로 무게센서,온도센서,습도센서,풍력센서에 의해 원료의 상태를 측정하고,분진 등을 집진할 때 집진력을 제어한다. (5) 이송모듈3은 온도센서와 습도센서에 의해 정선된 원료의 상태를 측정하고, 버퍼에서 다시 착유모듈로이송되며,이때 무게센서에 의해 이송량 및 속도를 제어한다. (6)착유모듈은 온도센서와 타이머에 의해 기본 작업상태를 측정하며,유지량,무게,유지향,점성,착유시간을 측정한다. (7) 집유모듈은 무게센서,농도센서,향센서에 의해 유지의 량,향,점성을 측정한다. (8) 필터링모듈은 무게센서,농도센서,향센서,타이머에 의해 유지량,유지향,점성,작업시간을 측정하고,작업시간을 제어한다. (9) 포장모듈은충진량센서,타이머,포장단위카운터에 의해 충진량 측정 및 제어를 하고,제품수를 카운터한다. (10) 캡핑모듈은 카운터에 의해 생산된 제품 수를 누적하고,원하는 제품 수를 제어한다. (11) 라벨링모듈은 라벨발행기 및 인쇄기로 제품에 라벨링 및 수량을 체크하고 날짜를 제어한다. (12) 검사모듈은 색채센서,레벨센서,라벨체크,카운터에 의해 생산일정별로 생산된 제품을 검사하고,생산량 및 날짜를 체크한다.The configuration of the module for each process is largely divided into a sensor for various measurements, a device that digitizes the received signal, and a control device that optimizes the progress and operation of each process. A humidity sensor is attached to measure the basic condition of the raw material, and the raw material is transferred to the roasting module of the next process by a transfer motor linked with IoT. At this time, the transfer amount and speed are set and controlled. (2) The roasting module is equipped with a temperature sensor, humidity sensor, heat sensor, and timer to measure the state of the roasting operation over time, control the rotational speed of the operating motor and the amount of heat supplying the roaster’s energy, and meet the emission standards. Set and control, and measure the final roasting time. (3) In the transfer module 2, the transfer motor transfers the desired amount of the raw material loaded in the buffer to the next process by the weight sensor, and at this time, the transfer amount and speed are controlled. (4) The dust collection module is the process of removing impurities from the roasted raw material again, and the state of the raw material is measured by the weight sensor, temperature sensor, humidity sensor, and wind sensor, and the dust collection force is controlled when dust is collected. (5) The transfer module 3 measures the state of the raw material selected by the temperature sensor and the humidity sensor, and is transferred from the buffer to the milking module again, and at this time, the transfer amount and speed are controlled by the weight sensor. (6) The milking module measures the basic working state by the temperature sensor and timer, and measures the amount of maintenance, weight, oil orientation, viscosity, and milking time. (7) The oil collecting module measures the amount, flavor, and viscosity of oil by weight sensor, concentration sensor, and flavor sensor. (8) The filtering module measures the holding amount, the holding direction, the viscosity, and the working time by the weight sensor, the concentration sensor, the flavor sensor, and the timer, and controls the working time. (9) The packaging module measures and controls the filling amount by the filling amount sensor, timer, and packaging unit counter, and counts the number of products. (10) The capping module accumulates the number of products produced by the counter and controls the desired number of products. (11) The labeling module checks the labeling and quantity of products with a label issuing machine and printing machine, and controls the date. (12) Inspection module inspects products produced by production schedule by color sensor, level sensor, label check, and counter, and checks production quantity and date.

각 공정별 기계 및 장비의 IoT 상호연동은 스마트 팩토리 구현에 필수적인 것으로 (1) 원료이송모듈1은 로스팅 모듈의 로스팅 후 배출제어 및 로스팅 시간 시스템과 설정된 작동 값으로 연동하여 이송시간 및 속도를 조율하여 설정된 원료량을로스팅 공정의 로스터에자동공급한다. (2) 로스팅모듈은 원료이송모듈1과 연동되어, 원료이송모듈에서 원료공급이 원할하게 이송되지 않을 때,비상신호를 출력하여작동을 정지하고,로스팅완료 후,그 신호를 버퍼의 용량을 확인하여 배출한다. (3) 이송모듈2는 버퍼에 적재된 원료를 집진모듈의 제어시스템과 연동,이송모터에 의해 이송량 및 속도를 제어하여 집진모듈로 원료를 이송한다. (4) 집진모듈은이송모듈3의 버퍼와 연동,버퍼의 유효용량에맞게 원료를 이송한다. (5) 이송모듈3은 착유모듈 및 이송모듈3과 연동,착유모듈의 버퍼에 정해진 일정의 원료적재량을출력받아일정의 원료를 착유모듈의버퍼에 이송한다. (6) 착유모듈은이송모듈3및 집유모듈과 연동,이송모듈3에서 원료공급이이루어지지 않거나, 집유모듈의유지량이 한계치를 넘어가면,작업을 정지하고,그렇지 않는 경우,작업을 계속하여 집유모듈로착유된 유지를 이송한다. (7) 집유모듈은착유모듈 및 필터링모듈과 연동,착유모듈에서 유지를 생산하는 동안,자신의 유지량을 확인하면서 유지를 집유하고,필터링모듈의 작업공정을 신호받아집유된 유지를 필터링모듈로 이송한다. (8) 필터링모듈은집유모듈 및 포장모듈과 연동,집유모듈에서 일정의 유지가 공급되지 않으면,작업을 정지하고,포장모듈의 충진상태를 확인하여 필터링 작업을 진행한다. (9) 포장모듈은필터링모듈 및 캡핑모듈과 연동,상호 최적의 작업환경을 구축하며,필터링모듈 및 캡핑모듈의 이상신호 시 작업을 중단한다.(10) IoT interconnection of machines and equipment for each process is essential for smart factory implementation. The set amount of raw material is automatically supplied to the roaster in the roasting process. (2) The roasting module is linked with the raw material transfer module 1, and when the raw material supply is not smoothly transferred from the raw material transfer module, it outputs an emergency signal to stop the operation, and after roasting is completed, the signal is used to check the buffer capacity to discharge (3) The transfer module 2 transfers the raw material loaded in the buffer to the dust collecting module by interlocking with the control system of the dust collecting module and controlling the transfer amount and speed by the transfer motor. (4) The dust collection module is interlocked with the buffer of transfer module 3 and transfers the raw material according to the effective capacity of the buffer. (5) The transfer module 3 is linked with the milking module and the transfer module 3, and receives a predetermined amount of raw material loaded in the buffer of the milking module and transfers the predetermined raw material to the buffer of the milking module. (6) The milking module is interlocked with the transfer module 3 and the oil collecting module, and if the raw material supply is not made in the transfer module 3 or the maintenance amount of the oil collecting module exceeds the limit value, the operation is stopped. Transfer the milked oil to the module. (7) The oil collecting module interlocks with the milking module and the filtering module, and while the milking module produces oil, it collects oil while checking its own amount of oil, receives a signal from the filtering module's work process, and transfers the collected oil to the filtering module. transport (8) The filtering module is interlocked with the oil collection module and the packaging module, and if the oil collection module does not supply a constant maintenance, the operation is stopped, and the filling status of the packaging module is checked and the filtering operation is carried out. (9) The packaging module interlocks with the filtering module and the capping module to establish a mutually optimal working environment, and stops work when an abnormal signal is detected between the filtering module and the capping module. (10)

캡핑모듈은 포장모듈 및 라벨링모듈과 연동,충진된 용기에 자동으로 캡핑을 하며,라벨링모듈의 신호에 의해 용기를 전송한다. (11) 라벨링모듈은캡핑모듈 및 검사모듈과 연공,캡핑모듈에서 전송하는 캡핑된 포장용기에 작업일자,유효기간 등을 자동으로 출력 및 라벨부착 작업을 진행하여 검사모듈로 용기를 전송한다. (12) 검사모듈은라벨링모듈과 연동,라벨링 후,전송되는 용기의 내용물 및 라벨링 상태를 검사한 후,생산량과 불량수를 계산하고,완료승인을 출력한다.The capping module automatically caps the filled container by interlocking with the packaging module and the labeling module, and transmits the container by the signal of the labeling module. (11) The labeling module automatically prints the working date, expiration date, etc. on the capped packaging container transmitted from the capping module, the inspection module, and the seniority and capping module, and performs labeling and transfers the container to the inspection module. (12) After interlocking with the labeling module and labeling, the inspection module inspects the contents and labeling status of the container to be transmitted, calculates the production amount and number of defects, and outputs a completion approval.

모든 공정모듈의 정지 및 작동은 각 모듈 중, 어느 한 모듈이 경보신호를 출력하는 순간 관제모듈에 문제의 경보발생 원인이 출력되며,이때,관제모듈은 작업자의 의도를 묻는 메시지가 출력되어,전 공정모듈의 정지 혹은 정지해야 할 모듈을 제어할 수 있도록 한다.한편, 상기 포장모듈은 관제모듈의 제어부에 의해 신속제어모드로 운전할 수 있는 것으로, 피드백 신호를 전단계인 필터링모듈에 전송함과 동시에 이전단계인 착유모델에도 전송할 수 있다. 그러므로 착유모델은 포장모델의 직접적 신호에 의해 착유량을 조절할 수 있고, 집유모듈의 집유비축량을 계산하여, 집유모듈로 착유된 유지를 이송한다. 검사모듈의 경보신호발생시도 착유모듈은 동작을 중지하나, 집유모듈의 비축량이 일정수치 이하일 경우에는 검사모듈의 경보신호발생시도 집유모듈의 비축량이 일정수치가 될 때까지 이미 착유공정에 들어간 원료들을 착유를 하며, 이는 착유기에 들어간 원료들을 효율적으로 관리하기 위함이다.When any one of the modules outputs an alarm signal, the cause of the alarm occurrence is output to the control module for stopping and operating all process modules. At this time, the control module outputs a message asking the operator's intention, The process module can be stopped or the module to be stopped can be controlled. On the other hand, the packaging module can be operated in a quick control mode by the control unit of the control module, and the feedback signal is transmitted to the filtering module, which is the previous step, and transferred at the same time. It can also be transmitted to the milking model, which is a stage. Therefore, the milking model can control the milking amount by the direct signal of the pavement model, calculate the milk collecting stockpile of the milk collecting module, and transfer the milked oil to the milk collecting module. When the alarm signal of the inspection module occurs, the milking module stops operating, but if the stockpile of the oil collecting module is below a certain value, even when the alarm signal of the inspection module occurs, the raw materials that have already entered the milking process are removed. Milking is done in order to efficiently manage the raw materials entered into the milking machine.

각 단위별공정모듈이 상호연동 및 처리되면서 단위공정의 작업현황이 통합되고,작업이 진행 중이거나 종료되었을 때,작업장의 통합 모니터 상황판에는 공정별 진행현황 및 생산종료 후의 생산보고서가 기록 및 출력된다.생산보고서는 각 공정별로 단위기계 및 장비명과 수집하는 데이터자료(생산품목,온도,습도,생산량,생산율,불량률,작업시간,작업자,생산일자)가 공정별로 설정된 입력조건에 의해 출력된다.As the process modules for each unit are interlinked and processed, the work status of the unit process is integrated, and when the work is in progress or when the work is finished, the progress status of each process and the production report after the end of production are recorded and output on the integrated monitor status board of the workplace. .Production report is output according to the input conditions set for each process, with unit machine and equipment names for each process and data data to be collected (products, temperature, humidity, production volume, production rate, defect rate, working hours, workers, production date).

제어모듈은 각 공정단위별 모듈에 의해 설정된 작업조건 값에 의해 처리되며,작업조건 값은 최적화되어 업데이터 된다.제어모듈에서 처리되는 업 데이터 값은 자동수집되어데이터베이스에 보관되며,인공지능모듈이 이를 활용하여 최적화된 공정시스템을 보정한다.The control module is processed according to the working condition value set by the module for each process unit, and the working condition value is optimized and updated. The updated data value processed by the control module is automatically collected and stored in the database, and the AI module It is used to calibrate the optimized process system.

각 공정 장비가 설치된 공간에는 생산 중에 발생 및 순환되는 먼지,가스,연기,분진을 측정하는 대기센서와 미생물센서를 집진설비 및 장비에 부착하여,작업공간의 청결도와 위생환경을 확인 및 개선하는 환경모듈을 별도로 구축한다.환경모듈도 통합 모니터링 시스템에 연동되어,설정된 작업환경 기준에 이상이 발생할 경우,작업을 중단 혹은 강제차단하여 안전관리 우선 작업환경을 유지한다. In the space where each process equipment is installed, atmospheric sensors and microbial sensors that measure dust, gas, smoke, and dust generated and circulated during production are attached to dust collection facilities and equipment to check and improve the cleanliness and sanitary environment of the work space. The module is built separately. The environmental module is also linked to the integrated monitoring system, and when an abnormality occurs in the set work environment standard, the work is stopped or forcibly blocked to maintain the safety management priority work environment.

따라서 본발명은 작업자가 공정상태를 쉽게 인지하고 처리할 수 있도록 모니터를 활용하여 시각화 및 기록하고, 이상감지에 대응할 수 있는 경보신호를 자동출력하여, 최적의 제품과 생산조건을 분석하고, 이를 생산공정의 최적화된 설정값으로 처리하고 자동으로 수행하여 작업시간 단축, 생산성 향상, 체계적인 생산관리로 제품의 품질향상 및 표준화가 되는 현저한 효과가 있다.Therefore, the present invention visualizes and records using a monitor so that the operator can easily recognize and process the process state, and automatically outputs an alarm signal that can respond to abnormal detection, analyzes the optimal product and production conditions, and produces it It has a remarkable effect of reducing work time, improving productivity, and improving product quality and standardization through systematic production management by processing with the optimized set value of the process and performing it automatically.

Claims (3)

전통유지 생산에 요구되는 각 공정은 스마트 팩토리 구축을 위한 모듈로 구분되며,각각의 모듈은 원료이송,로스팅,이송,집진,이송,착유,집유,필터링,포장,캡핑,라벨링,검사로 구분되며,모듈로 구분된 각각의 공정은 원료 이송에서 검사까지 순차적으로 진행되고, 각각의 단위공정별 장치 및 기계는 IoT기반의 상호 연동으로 작동되며,각 공정은 모니터링되면서 진행되는 것을 특징으로 하는 스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템Each process required for traditional oil production is divided into modules for building a smart factory, and each module is divided into raw material transfer, roasting, transfer, dust collection, transfer, milking, milk collection, filtering, packaging, capping, labeling, and inspection. Each process divided into modules proceeds sequentially from raw material transfer to inspection, and devices and machines for each unit process are operated through IoT-based interworking, and each process is monitored while progressing. IoT-based traditional maintenance production process automation monitoring system for construction 각 공정별 모듈에는 공정별 장비 혹은 기계와 상호 IoT연동,품질 향상 및 작업공정환경개선,최적화된 제품 생산 및 공정관리를 위하여 요구되는 센서가 부착되는 것을 특징으로 하는 스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템Each process-specific module is equipped with sensors required for mutual IoT interworking with process-specific equipment or machines, quality improvement and work process environment improvement, and optimized product production and process management. Traditional maintenance production process automation monitoring system 제2항에 있어서, 센서로부터 입력되는 측정신호를 처리하는 측정모듈,측정모듈의신호값을 설정된 기준신호와비교하여 경보신호를 출력하거나 공정의 진행여부 및 자동보정하는제어모듈,각 공정의 모듈과 상호연동되는 측정신호와 작동신호를 작업자 및 관리자가 처리할 수 있도록 인식가능한 영상으로 출력하고, 현황보고서를 자동으로 생성 및 기록하는 관제모듈,모든 측정자료를 수집 및 관리하여 생산공정의 효율 및 제품향상을 위한 빅 데이터 보관 및 처리모듈,로 구성되어, 단위공정별로 처리되는 각 모듈이 상호연동되어 최적화된 생산공정을 구현함으로써 생산효율성을 높이는 것을 특징으로 하는 스마트 팩토리 구축을 위한 IoT기반의 전통유지 생산공정 자동화 모니터링 시스템According to claim 2, wherein the measurement module for processing the measurement signal input from the sensor, the control module for outputting an alarm signal by comparing the signal value of the measurement module with a set reference signal or whether the process is progressing and automatically correcting, and each process module A control module that automatically generates and records a status report and outputs a recognizable image so that the operator and manager can process the measurement and operation signals that are interlocked with the It is composed of big data storage and processing modules for product improvement, and each module processed by unit process is interconnected to implement an optimized production process, thereby increasing production efficiency. IoT-based tradition for building a smart factory Maintenance production process automation monitoring system
KR1020210013242A 2021-01-29 2021-01-29 Automation monitoring system IoT-based traditional maintenance production process for smart factory construction KR102485960B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210013242A KR102485960B1 (en) 2021-01-29 2021-01-29 Automation monitoring system IoT-based traditional maintenance production process for smart factory construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210013242A KR102485960B1 (en) 2021-01-29 2021-01-29 Automation monitoring system IoT-based traditional maintenance production process for smart factory construction

Publications (2)

Publication Number Publication Date
KR20220109796A true KR20220109796A (en) 2022-08-05
KR102485960B1 KR102485960B1 (en) 2023-01-09

Family

ID=82826563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210013242A KR102485960B1 (en) 2021-01-29 2021-01-29 Automation monitoring system IoT-based traditional maintenance production process for smart factory construction

Country Status (1)

Country Link
KR (1) KR102485960B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116757645A (en) * 2023-08-14 2023-09-15 山东兴诺工贸股份有限公司 Intelligent management system for glass processing production based on data analysis
CN117094603A (en) * 2023-10-17 2023-11-21 山东卫康生物医药科技有限公司 Intelligent control-based automatic management system for medical functional food production line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089323A (en) * 2017-01-31 2018-08-08 주식회사 푸드엔텍 Smart factory type for coffee and grain of standard capacity
KR20190134879A (en) * 2018-05-03 2019-12-05 손영욱 Method for cloud service based customized smart factory mes integrated service using ai and speech recognition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089323A (en) * 2017-01-31 2018-08-08 주식회사 푸드엔텍 Smart factory type for coffee and grain of standard capacity
KR20190134879A (en) * 2018-05-03 2019-12-05 손영욱 Method for cloud service based customized smart factory mes integrated service using ai and speech recognition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116757645A (en) * 2023-08-14 2023-09-15 山东兴诺工贸股份有限公司 Intelligent management system for glass processing production based on data analysis
CN116757645B (en) * 2023-08-14 2023-11-10 山东兴诺工贸股份有限公司 Intelligent management system for glass processing production based on data analysis
CN117094603A (en) * 2023-10-17 2023-11-21 山东卫康生物医药科技有限公司 Intelligent control-based automatic management system for medical functional food production line
CN117094603B (en) * 2023-10-17 2024-01-05 山东卫康生物医药科技有限公司 Intelligent control-based automatic management system for medical functional food production line

Also Published As

Publication number Publication date
KR102485960B1 (en) 2023-01-09

Similar Documents

Publication Publication Date Title
KR20220109796A (en) Automation monitoring system IoT-based traditional maintenance production process for smart factory construction
CN105199894B (en) A kind of wine brewing discriminates robot system and its control method with automatic dress
US20110019877A1 (en) Method and Apparatus For Monitoring a Production Line
CN104458749A (en) Real-time aluminum profile surface defect detection system based on machine vision
CN110823917A (en) Machine vision system and method for remote quality inspection of products
WO2005104726A3 (en) Method for on-line machine vision measurement, monitoring and control of organoleptic properties of products for on-line manufacturing processes
CN107363523B (en) A kind of bolt fastening maintenance system and method
CN116700183A (en) Method for monitoring production of filled milk and management system
CN114290073B (en) Intelligent management system of rail welding production line and rail welding production line
CN116241787A (en) Intelligent lubrication management control system and management control method thereof
CN115545435A (en) Low-carbon management system for seasoning factory
KR20210123313A (en) Driving support devices for mills, and mills
CN112834522A (en) Visual detection feedback control system
CN111804421B (en) Unattended system and method for aggregate crushing equipment
CN105946278A (en) Internal high pressure forming hydraulic machine based on cloud data processing
JP4617796B2 (en) Production history management system
JPH10254536A (en) Production line management system
CN111708334A (en) Fault diagnosis system for hub forming hydraulic press production line
KR102452285B1 (en) Apparatus for controlling united to vision employing bath of drug
EP4212858A1 (en) Inspection device
JP2020119194A (en) Drive response monitoring device
EP4212860A1 (en) Inspection device for filling apparatus
CN108275637A (en) A kind of essential oil bottle placer and its accurate quantification control method
WO2020126441A1 (en) Computer-implemented automated system for aseptic quality control in a container processing plant and corresponding method
JP2024058756A (en) Operation management system for automatic egg processing device and method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant