KR20220102801A - 유기발광 화합물 및 이를 포함하는 유기발광소자 - Google Patents

유기발광 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
KR20220102801A
KR20220102801A KR1020210005177A KR20210005177A KR20220102801A KR 20220102801 A KR20220102801 A KR 20220102801A KR 1020210005177 A KR1020210005177 A KR 1020210005177A KR 20210005177 A KR20210005177 A KR 20210005177A KR 20220102801 A KR20220102801 A KR 20220102801A
Authority
KR
South Korea
Prior art keywords
group
light emitting
layer
organic light
substituted
Prior art date
Application number
KR1020210005177A
Other languages
English (en)
Inventor
현서용
윤석근
이인호
Original Assignee
(주)피엔에이치테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엔에이치테크 filed Critical (주)피엔에이치테크
Priority to KR1020210005177A priority Critical patent/KR20220102801A/ko
Publication of KR20220102801A publication Critical patent/KR20220102801A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/5012
    • H01L51/5056
    • H01L51/5072
    • H01L51/5088
    • H01L51/5096
    • H01L51/5262
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 하기 [화학식 Ⅰ]로 표시되는 유기발광 화합물로서, 이를 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 채용하거나, 광효율 개선층에 채용하는 경우, 구동 전압, 발광 효욜 등의 발광 특성이 매우 우수한 유기발광소자의 구현이 가능하다.
[화학식 Ⅰ]

Description

유기발광 화합물 및 이를 포함하는 유기발광소자{An electroluminescent compound and an electroluminescent device comprising the same}
본 발명은 유기발광 화합물에 관한 것으로서, 보다 구체적으로는 유기발광소자 내 발광층 등의 유기층 또는 유기발광소자에 구비되는 광효율 개선층에 채용되는 유기발광 화합물 및 이를 채용하여 구동 전압, 발광 효율 등의 발광 특성이 현저히 향상된 유기발광소자에 관한 것이다.
유기발광소자는 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 플라즈마 디스플레이 패널 (Plasma Display Panel)이나 무기전계발광 (EL) 디스플레이에 비해 10 V 이하의 저전압 구동이 가능하고, 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있고, 녹색, 청색, 적색의 3가지 색을 나타낼 수가 있어 최근에 차세대 디스플레이 소자로 많은 관심의 대상이 되고 있다.
다만, 이러한 유기발광소자가 상기와 같은 특징으로 발휘하기 위해서는 소자 내 유기층을 이루는 물질인 정공주입 물질, 정공수송 물질, 발광물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지는 안정하고 효율적인 유기발광소자용 유기층 재료의 개발이 충분히 이루어지지 않은 상태이다.
따라서, 더욱 안정적인 유기발광소자를 구현하고, 소자의 고효율, 장수명, 대형화 등을 위해서는 효율 및 수명 특성 측면에서 추가적인 개선이 요구되고 있는 상황이고, 특히 유기발광소자의 각 유기층을 이루는 소재에 대한 개발이 절실히 필요한 실정이다.
이와 관련하여 최근에 상기 유기발광소자의 구조 중 정공수송층 소재에 대하여는 기존 유기 소재의 도전율 (mobility)을 향상시키기 위한 연구가 활발히 이루어지고 있다.
또한, 최근에는 각 유기층 재료의 성능 변화를 주어 유기발광소자의 특성을 향상시키는 연구뿐만 아니라, 애노드 (anode)와 캐소드 (cathode) 사이에서 최적화된 광학 두께에 의한 색순도 향상 및 발광 효율 증대 기술이 소자 성능을 향상시키는데 중요한 요소 중의 하나로 착안되고 있으며, 이러한 방법의 일 예로 전극에 캡핑층 (capping layer)을 사용하여 광효율 증가와 우수한 색순도를 거두기도 한다.
따라서, 본 발명은 유기발광소자 내 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 채용되거나, 유기발광소자에 구비되는 광효율 개선층에 채용되어 발광 효율 등의 발광 특성을 현저히 향상시킬 수 있는 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 Ⅰ]로 표시되는 유기발광 화합물 및 이를 소자 내 발광층 등의 유기층 또는 소자에 구비되는 광효율 개선층에 포함하는 유기발광소자를 제공한다.
[화학식 Ⅰ]
Figure pat00001
상기 [화학식 Ⅰ]의 구조와 이에 의하여 구현되는 구체적인 화합물 및 R1 내지 R4에 대해서는 후술한다.
본 발명에 따른 유기발광 화합물을 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 채용하거나, 광효율 개선층에 채용한 유기발광소자는 종래 소자에 비하여 구동 전압, 발광 효율 등의 발광 특성이 현저히 우수하여 다양한 디스플레이 소자에 유용하게 사용될 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 하기 [화학식 Ⅰ]로 표시되는 유기발광 화합물로서, 유기발광소자 내의 유기층, 특히 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 채용하거나, 유기발광소자에 구비되는 광효율 개선층에 채용하는 경우에 구동 전압, 발광 효율 등의 발광 특성이 현저히 향상된 유기발광소자의 구현이 가능하다.
[화학식 Ⅰ]
Figure pat00002
상기 [화학식 Ⅰ]에서,
R1 내지 R4는 각각 독립적으로 수소, 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬실릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 아릴실릴기 중에서 선택된다.
단, 상기 R1 내지 R4가 모두 수소인 경우는 제외하는 것으로서, 본 발명에 따른 [화학식 Ⅰ]로 표시되는 유기발광 화합물은 상기와 같은 골격 구조에서 R1 내지 R4 위치에서 수소가 아닌 적어도 하나 이상의 특징적인 치환기를 도입한 것을 특징으로 한다.
한편, 상기 치환 또는 비치환이란 상기 R1 내지 R4가 각각 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 알킬기, 할로겐화된 알킬기, 알콕시기, 실릴기, 아릴기 및 플루오레닐기 중에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
구체적인 예를 들면, 치환된 아릴기라 함은, 페닐기, 비페닐기, 나프탈렌기, 플루오레닐기, 파이레닐기, 페난트레닐기, 페릴렌기, 테트라세닐기, 안트라센닐기 등이 다른 치환기로 치환된 것을 의미한다.
본 발명에 있어서, 상기 치환기들의 예시들에 대해서 아래에서 구체적으로 설명하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥틸메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 발명에 있어서, 알콕시기는 직쇄 또는 분지쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 입체적 방해를 주지 않는 범위인 1 내지 20개인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, i-프로필옥시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 사용되는 실릴기의 구체적인 예로는 트리메틸실릴, 트리에틸실릴, 트리페닐실릴, 트리메톡시실릴, 디메톡시페닐실릴, 디페닐메틸실릴, 디페닐비닐실릴, 메틸사이클로뷰틸실릴, 디메틸퓨릴실릴 등을 들 수 있다.
본 발명에 있어서, 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 30인 것이 바람직하다. 단환식 아릴기의 예로는 페닐기, 비페닐기, 터페닐기, 스틸벤기 등이 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오안트렌(fluoranthrene)기 등이 있으나, 본 발명의 범위가 이들 예로만 한정되는 것은 아니다.
또한, 상기 아릴기 역시 1종 이상의 치환기로 더 치환될 수 있으며, 보다 구체적으로 아릴기 중 하나 이상의 수소 원자는 중수소 원자, 할로겐 원자, 히드록시기, 니트로기, 시아노기, 실릴기, 아미노기(-NH2, -NH(R), -N(R')(R''), R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기이며, 이 경우 "알킬아미노기"라 함), 아미디노기, 히드라진기, 히드라존기, 카르복실기, 술폰산기, 인산기, 탄소수 1 내지 24의 알킬기, 탄소수 1 내지 24의 할로겐화된 알킬기, 탄소수 1 내지 24의 알케닐기, 탄소수 1 내지 24의 알키닐기, 탄소수 1 내지 24의 헤테로알킬기, 탄소수 6 내지 24의 아릴기, 탄소수 6 내지 24의 아릴알킬기 등으로 치환될 수 있다.
본 발명에 있어서, 시클로알킬기는 단환, 다환 및 스피로 알킬 라디칼을 지칭하고, 이를 포함하며, 바람직하게는 탄소수 3 내지 20의 고리 탄소 원자를 함유하는 것으로서, 시클로프로필, 시클로펜틸, 시클로헥실, 비시클로헵틸, 스피로데실, 스피로운데실, 아다만틸 등을 포함하며, 시클로알킬기는 임의로 치환될 수 있다.
본 발명에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
또한, 본 발명에 따른 치환기의 다양한 구체적인 예는 하기 기재된 구체적인 화합물에서 명확하게 확인할 수 있다.
상기 [화학식 Ⅰ]로 표시되는 본 발명에 따른 유기발광 화합물은 상술한 바와 같이 그 구조적 특이성으로 인하여 유기발광소자의 유기층으로 사용될 수 있고, 보다 구체적으로는 특징적인 골격에 도입되는 다양한 치환기의 특성에 따라 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로, 그리고 유기발광소자에 구비되는 광효율 개선층 재료로 사용될 수 있다.
본 발명에 따른 [화학식 Ⅰ]로 표시되는 화합물의 바람직한 구체예로 하기 [화합물 1] 내지 [화합물 102]를 들 수 있으며, 본 발명의 범위가 이들에만 한정되는 것은 아니다.
Figure pat00003
Figure pat00004
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
Figure pat00011
상기와 같은 구조의 코어 구조에서 특징적 위치에 치환기를 도입함으로써 골격 구조 및 도입된 치환기의 고유 특성을 갖는 유기발광 화합물을 합성할 수 있다. 예컨대, 유기발광소자의 제조시 사용되는 정공 주입층 물질, 정공 수송층 물질, 발광층 물질, 전자 수송층 물질 및 전자 저지층 물질에 사용되는 치환기를 상기 구조에 도입함으로써 각 유기층에서 요구하는 조건들을 충족시키는 물질을 제조할 수 있으며, 특히, 본 발명에 따른 [화학식 Ⅰ]의 화합물을 발광층 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 채용한 경우에, 그리고 유기발광소자에 구비되는 광효율 개선층에 채용한 경우에 소자의 발광 효율 등의 발광 특성을 더욱 향상시킬 수 있다.
본 발명에 따른 유기발광 화합물은 통상의 제조방법에 따라 유기발광소자에 적용할 수 있다.
본 발명의 하나의 실시예에 따른 유기발광소자는 제1 전극과 제2 전극 및 이 사이에 배치된 유기층을 포함하는 구조로 이루어질 수 있으며, 본 발명에 따른 유기발광 화합물을 소자의 유기층에 사용한다는 것을 제외하고는 통상의 소자의 제조 방법 및 재료를 사용하여 제조될 수 있다.
본 발명에 따른 유기발광소자의 유기층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전자저지층 등을 포함하는 구조를 가질 수 있다. 그러나, 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수도 있다.
따라서, 본 발명에 따른 유기발광소자에서, 상기 유기층은 정공수송층, 전자저지층 및 발광층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 유기발광 화합물을 포함할 수 있으며, 바람직하게는 발광층 내 호스트 또는 도판트 (Thermally Activated Delayed Fluorescence, TADF) 화합물로 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 유기전기발광소자는 기판, 제1 전극 (양극), 유기층, 제2 전극 (음극) 및 광효율 개선층 (Capping layer)을 포함하며, 상기 광효율 개선층에 상기 [화학식 Ⅰ]로 표시되는 유기발광 화합물을 포함할 수 있고, 상기 광효율 개선층은 제1 전극 하부 (Bottom emission) 또는 제2 전극 상부 (Top emission)에 형성될 수 있다.
제2 전극 상부 (Top emission)에 형성되는 방식은 발광층에서 형성된 빛이 캐소드쪽으로 방출되는데 캐소드쪽으로 방출되는 빛이 굴절률이 상대적으로 높은 본 발명에 따른 화합물로 형성된 광효율 개선층 (CPL)을 통과하면서 빛의 파장이 증폭되고 따라서 광효율이 상승하게 된다 또한, 제1 전극 하부 (Bottom emission)에 형성되는 방식 역시 마찬가지 원리에 의해 본 발명에 따른 화합물을 광효율 개선층에 채용하여 유기전기소자의 광효율이 향상된다.
본 발명에 따른 바람직한 유기발광소자의 유기층 구조 등에 대해서는 후술하는 실시예에서 보다 상세하게 설명한다.
또한, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 전자 저지층, 발광층, 전자 수송층을 포함하는 유기층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다. 상기 유기층은 정공 주입층, 정공 수송층, 전자 저지층, 발광층 및 전자 수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기층은 다양한 고분자 소재를 사용하여 증착법이 아닌 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
양극 물질로는 통상 유기층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 물질로는 통상 유기층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하며, 본 발명에 따른 화합물일 수 있고, 또한 이와 함께 구체적인 예로서 8-히드록시-퀴놀린 알루미늄 착물(Alq3), 카르바졸 계열 화합물, 이량체화 스티릴(dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자, 스피로(spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 발명에 따른 유기발광 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
합성예 1 : 화합물 6의 합성
(1) 제조예 1 : 화합물 6의 합성
Figure pat00012
Et2O에 녹인 2-Bromo-3'-isopropyl-biphenyl (9.3 g, 0.034 mol)에 n-BuLi (2.5 M, in hexane) (2.4 g, 0.037 mol)을 -78 ℃에서 적가하여 1시간 동안 교반하였다. 그 후, Et2O에 녹인 Chlorotriphenylsilane (10.0 g, 0.034 mol)을 첨가하여 실온에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 6>을 6.2 g (수율 40.2 %) 수득하였다.
LC/MS: m/z=454[(M+1)+]
합성예 2 : 화합물 27의 합성
(1) 제조예 1 : 중간체 27-1의 합성
Figure pat00013
1-Bromo-2-iodobenzene (10.0 g, 0.035 mol), (4-(9,9-Dimethyl-9H-fluoren-2-yl)phenyl)boronic acid (13.3 g, 0.042 mol), K2CO3 (14.7 g, 0.106 mol), Pd(PPh3)4 (0.8 g, 0.001 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 27-1>을 11.4 g (수율 75.8 %) 수득하였다.
(2) 제조예 2 : 화합물 27의 합성
Figure pat00014
Et2O에 녹인 중간체 27-1 (14.4 g, 0.034 mol)에 n-BuLi (2.5M, in hexane) (2.4 g, 0.037 mol)을 -78 ℃에서 적가하여 1시간 동안 교반하였다. 그 후, Et2O에 녹인 Chlorotriphenylsilane (10.0 g, 0.034 mol)을 첨가하여 실온에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 27>을 6.8 g (수율 33.2 %) 수득하였다.
LC/MS: m/z=604[(M+1)+]
합성예 3 : 화합물 57의 합성
(1) 제조예 1 : 화합물 57의 합성
Figure pat00015
Et2O에 녹인 2-(2-Bromophenyl)naphthalene (22.4 g, 0.079 mol)에 n-BuLi (2.5 M, in hexane) (5.3 g, 0.083 mol)을 -78 ℃에서 적가하여 1시간 동안 교반하였다. 그 후, Et2O에 녹인 Dichlorodiphenylsilane (10.0 g, 0.040 mol)을 첨가하여 실온에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 57>을 10.1 g (수율 43.4 %) 수득하였다.
LC/MS: m/z=588[(M+1)+]
합성예 4 : 화합물 73의 합성
(1) 제조예 1 : 중간체 73-1의 합성
Figure pat00016
1-Bromo-2-iodobenzene (10.0 g, 0.035 mol), 4'-Tert-butylbiphenyl-2-ylboronic acid (10.8 g, 0.042 mol), K2CO3 (14.7 g, 0.106 mol), Pd(PPh3)4 (0.8 g, 0.001 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 100 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 73-1>을 9.4 g (수율 72.8 %) 수득하였다.
(2) 제조예 2 : 화합물 73의 합성
Figure pat00017
Et2O에 녹인 중간체 73-1 (51.8 g, 0.142 mol)에 n-BuLi (1.6 M, in hexane) (9.7 g, 0.151 mol)을 적가하여 -78 ℃에서 1시간 동안 교반하였다. 그 후, Et2O에 녹인 Trichloro(phenyl)silane (10.0 g, 0.047 mol)을 첨가하여 실온에서 2시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 73>을 14.6 g (수율 32.1 %) 수득하였다.
LC/MS: m/z=960[(M+1)+]
합성예 5 : 화합물 89의 합성
(1) 제조예 1 : 화합물 89의 합성
Figure pat00018
Et2O에 녹인 2'-Bromo-3,5-bistrifluoromethylbiphenyl (86.9 g, 0.235 mol)에 n-BuLi (2.5 M, in hexane) (15.8 g, 0.247 mol)을 -78 ℃에서 적가하여 1시간 동안 교반하였다. 그 후, Et2O에 녹인 Silicon tetrachloride (10.0 g, 0.059 mol)을 첨가하여 실온에서 12시간 동안 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 89>를 18.2 g (수율 26.1 %) 수득하였다.
LC/MS: m/z=1184[(M+1)+]
소자 실시예 (capping layer)
본 발명에 따른 실시예에서 ITO 투명 전극은 25 mm × 25 mm × 0.7 mm의 Ag를 포함하는 ITO 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 기판을 진공 챔버에 장착한 후 공정 압력이 1 × 10-6 torr 이상 되도록 한 후 기판 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 1 내지 10
본 발명에 따른 화합물을 광효율 개선층에 채용하여 하기와 같은 소자 구조를 갖는 유기발광소자를 제작하여 발광 효율을 포함한 발광 특성을 측정하였다.
Ag/ITO / 정공주입층 (HAT-CN, 5 nm) / 정공수송층 (α-NPB, 100 nm) / 전자저지층 (TCTA, 10 nm) / 발광층 (20 nm) / 전자수송층 (201:Liq, 30 nm) / LiF (1 nm) / Mg:Ag (15 nm) / 광효율 개선층 (70 nm)
유리 기판상에 Ag를 포함하는 ITO 투명 전극에 정공주입층을 형성하기 위해 [HAT-CN]을 5 nm 두께로 성막하고, 이후 정공수송층을 [α-NPB]를 사용하여 100 nm의 두께로 성막하였다. 전자저지층은 TCTA를 10 nm 두께로 성막하였다. 또한, 발광층에는 호스트 화합물 [BH1], 도판트 화합물로는 [BD1]을 사용하여 20 nm의 두께로 성막하였다. 추가로 전자수송층(하기 [201] 화합물 Liq 50% 도핑) 30 nm 및 LiF 1 nm의 두께로 성막하였다. 이어서 Mg:Ag (1:9) 15 nm의 두께로 성막하였다. 그리고 광효율 개선층 (capping layer) 화합물로는 본 발명에 따른 화합물 1, 10, 27, 43, 49, 73, 75, 82, 89, 95를 70 nm의 두께로 성막하여 유기발광소자를 제작하였다.
소자 비교예 1
소자 비교예 1을 위한 유기발광소자는 상기 실시예 1 내지 10 의 소자구조에서 광효율 개선층을 사용하지 않는 점을 제외하고 동일하게 제작하였다.
소자 비교예 2
소자 비교예 2를 위한 유기발광소자는 상기 실시예 1 내지 10의 소자구조에서 광효율 개선층 화합물로 본 발명에 따른 화합물 대신에 하기 Alq3를 사용한 것을 제외하고 동일하게 제작하였다.
실험예 1: 소자 실시예 1 내지 10의 발광 특성
상기 실시예에 따라 제조된 유기발광소자는 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 구동 전압, 전류 효율 및 색좌표를 측정하였고, 1,000 nit 기준의 결과값은 하기 [표 1]과 같다.
실시예 광효율 개선층 V cd/A CIEx CIEy
1 화학식 1 3.9 8.0 0.140 0.045
2 화학식 10 3.8 8.4 0.135 0.052
3 화학식 27 3.5 8.8 0.134 0.056
4 화학식 43 3.8 8.3 0.137 0.050
5 화학식 49 3.9 8.0 0.135 0.049
6 화학식 73 3.7 8.5 0.131 0.057
7 화학식 75 3.8 8.3 0.133 0.052
8 화학식 82 3.6 8.7 0.141 0.044
9 화학식 89 3.7 8.5 0.131 0.055
10 화학식 95 3.7 8.6 0.142 0.043
비교예 1 사용 안함 4.6 7.0 0.150 0.141
비교예 2 Alq3 4.3 7.8 0.147 0.058
상기 [표 1]에 나타낸 결과를 살펴보면, 본 발명에 따른 화합물을 유기발광소자에 구비되는 광효율 개선층에 채용한 경우, 광효율 개선층을 구비하지 않은 소자 및 종래 광효율 개선층 재료로 사용된 화합물을 채용한 소자 (비교예 1 및 2)에 비하여 구동 전압이 감소하고, 전류 효율이 향상되는 것을 확인할 수 있다.
Figure pat00019
[HAT-CN] [α-NPB] [BH1] [BD1] [201]
Figure pat00020
[TCTA]
소자 실시예 (TADF Green Dopant)
본 발명에 따른 실시예에서 ITO 투명 전극은 25 mm × 25 mm × 0.7 mm의 ITO 투명 전극이 부착된 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 기판을 진공 챔버에 장착한 후 베이스 압력이 1 × 10-6 torr 이상 되도록 한 후 상기 ITO 기판 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 11 내지 20
본 발명에 따라 구현되는 화합물을 발광층의 도판트 화합물로 사용하였으며, 하기와 같은 소자 구조를 갖는 유기발광소자를 제작하여, 전류 효율을 포함한 발광 특성을 측정하였다.
ITO / 정공수송층 (TAPC, 35 nm) / 전자저지층(CBP, 5 nm) / 발광층 (5 nm) / 전자수송층 (B4PyPPM, 65 nm) / LiF (0.8 nm) / Al (100 nm)
ITO 투명 전극 상부에 정공수송층을 형성하기 위해 TAPC를 사용하여 35 nm 성막하였다. 이 후, 전자저지층으로 CBP를 5 nm 증착하였다. 또한, 발광층은 CBP를 호스트로 사용하고, 본 발명에 따른 화합물 6, 7, 22, 28, 42, 57, 66, 80, 86, 93을 사용하여 5 wt % 농도로 5 nm 공증착하였다. 추가로 B4PyPPM을 전자수송층으로 65 nm 적층하고, 전자수송층 상부층에 LiF와 Al을 각각 1 nm, 100 nm를 성막하여 유기발광소자를 제작하였다.
소자 비교예 3
소자 비교예 3을 위한 유기발광소자는 상기 실시예 11 내지 20의 소자구조에서 발광층의 도판트 물질로 본 발명에 따른 화합물 대신 4CzIPN을 사용한 것을 제외하고 동일하게 제작하였다.
실험예 2 : 소자 실시예 11 내지 20의 발광 특성
상기 실시예에 따라 제조된 유기발광소자는 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 구동 전압, 전류 효율 및 색좌표를 측정하였으며 1000 nit 기준의 결과값은 하기 [표 2]와 같다.
실시예 도판트 V cd/A CIEx CIEy
11 화학식 6 3.1 82.6 0.251 0.520
12 화학식 7 3.0 85.4 0.263 0.534
13 화학식 22 3.1 86.2 0.260 0.543
14 화학식 28 3.2 82.8 0.258 0.530
15 화학식 42 3.0 83.4 0.261 0.544
16 화학식 57 3.1 84.1 0.258 0.526
17 화학식 66 3.2 83.3 0.255 0.523
18 화학식 80 3.1 81.2 0.271 0.582
19 화학식 86 3.0 83.4 0.271 0.582
20 화학식 93 3.2 84.2 0.271 0.582
비교예 3 4CzIPN 3.2 80.1 0.271 0.582
상기 [표 2]에 나타낸 결과를 살펴보면, 본 발명에 따른 화합물을 발광층의 도판트에 적용한 소자의 경우 종래 사용된 화합물을 채용한 소자 (비교예 3)에 비하여 전류 효율이 증가하고, 색순도가 현저히 향상됨을 확인할 수 있다.
Figure pat00021
Figure pat00022
Figure pat00023
[TAPC] [CBP] [B4PyPPM]
Figure pat00024
[4CzIPN]

Claims (7)

  1. 하기 [화학식 Ⅰ]로 표시되는 유기발광 화합물:
    [화학식 Ⅰ]
    Figure pat00025

    상기 [화학식 Ⅰ]에서,
    R1 내지 R4는 각각 독립적으로 수소, 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알킬기, 치환 또는 비치환된 탄소수 1 내지 20의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 20의 할로겐화된 알콕시기, 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 1 내지 20의 알킬실릴기 및 치환 또는 비치환된 탄소수 6 내지 30의 아릴실릴기 중에서 선택되고 (단, 상기 R1 내지 R4가 모두 수소인 경우는 제외함),
    상기 치환 또는 비치환이란 상기 R1 내지 R4가 각각 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 알킬기, 할로겐화된 알킬기, 알콕시기, 실릴기, 아릴기 및 플루오레닐기 중에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
  2. 제1항에 있어서,
    상기 [화학식 Ⅰ]로 표시되는 유기발광 화합물은 하기 [화학식 1] 내지 [화학식 102] 중에서 선택되는 어느 하나인 것을 특징으로 하는 유기발광 화합물:
    Figure pat00026

    Figure pat00027

    Figure pat00028

    Figure pat00029

    Figure pat00030

    Figure pat00031

    Figure pat00032

    Figure pat00033

    Figure pat00034
  3. 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기층을 포함하는 유기발광소자로서,
    상기 유기층 중 1 층 이상은 제1항에 따른 [화학식 Ⅰ]로 표시되는 유기발광 화합물을 하나 이상 포함하는 것을 특징으로 하는 유기발광소자.
  4. 제3항에 있어서,
    상기 유기층은 전자주입층, 전자수송층, 정공주입층, 정공수송층, 전자저지층, 정공저지층 및 발광층 중 1층 이상을 포함하고,
    상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 유기발광 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  5. 제4항에 있어서,
    상기 [화학식 Ⅰ]로 표시되는 발광 화합물은 상기 발광층에 포함되는 것을 특징으로 하는 유기발광소자.
  6. 제3항에 있어서,
    상기 제1 전극과 제2 전극의 상부 또는 하부 중에서 상기 유기층과 반대되는 적어도 일측에 형성되는 광효율 개선층 (Capping layer)을 더 포함하고,
    상기 광효율 개선층은 상기 [화학식 Ⅰ]로 표시되는 유기발광 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  7. 제6항에 있어서,
    상기 광효율 개선층은 상기 제1 전극의 하부 또는 상기 제2 전극의 상부 중 적어도 하나에 형성되는 것을 특징으로 하는 유기발광소자.
KR1020210005177A 2021-01-14 2021-01-14 유기발광 화합물 및 이를 포함하는 유기발광소자 KR20220102801A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210005177A KR20220102801A (ko) 2021-01-14 2021-01-14 유기발광 화합물 및 이를 포함하는 유기발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210005177A KR20220102801A (ko) 2021-01-14 2021-01-14 유기발광 화합물 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
KR20220102801A true KR20220102801A (ko) 2022-07-21

Family

ID=82610124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210005177A KR20220102801A (ko) 2021-01-14 2021-01-14 유기발광 화합물 및 이를 포함하는 유기발광소자

Country Status (1)

Country Link
KR (1) KR20220102801A (ko)

Similar Documents

Publication Publication Date Title
KR20210089294A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR102170558B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR102251836B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210090389A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210112608A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210048018A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR102356004B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220089912A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR102301612B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220102801A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220071769A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210113775A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220098454A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220004334A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220136600A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220009035A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220094825A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220084564A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220100224A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220005264A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220098455A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220120148A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220098887A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20210146628A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20220086804A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
A201 Request for examination