KR20220102427A - 모터 구동 장치 및 이를 구비하는 공기조화기 - Google Patents

모터 구동 장치 및 이를 구비하는 공기조화기 Download PDF

Info

Publication number
KR20220102427A
KR20220102427A KR1020210004777A KR20210004777A KR20220102427A KR 20220102427 A KR20220102427 A KR 20220102427A KR 1020210004777 A KR1020210004777 A KR 1020210004777A KR 20210004777 A KR20210004777 A KR 20210004777A KR 20220102427 A KR20220102427 A KR 20220102427A
Authority
KR
South Korea
Prior art keywords
motor
connection
winding
control unit
phase
Prior art date
Application number
KR1020210004777A
Other languages
English (en)
Other versions
KR102478880B1 (ko
Inventor
이용화
양송희
오정언
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020210004777A priority Critical patent/KR102478880B1/ko
Priority to CN202210009908.3A priority patent/CN114765433A/zh
Priority to EP22150865.8A priority patent/EP4030615B1/en
Priority to US17/574,879 priority patent/US11923797B2/en
Publication of KR20220102427A publication Critical patent/KR20220102427A/ko
Application granted granted Critical
Publication of KR102478880B1 publication Critical patent/KR102478880B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

본 발명은 모터 구동 장치 및 이를 구비하는 공기조화기는 모터의 권선 절환 장치의 수명을 늘리고, 고장을 방지하기 위해, 권선 절환 장치가 열화될 가능성이 생기는 경우, 권선 절환 장치의 절환을 제한하는 것을 특징으로 한다.

Description

모터 구동 장치 및 이를 구비하는 공기조화기{Motor driving apparatus and air conditioner including the same}
본 발명은 모터 구동 장치 및 이를 구비하는 공기조화기에 관한 것으로, 더욱 상세하게는, 모터의 권선을 절환하는 장치의 고장을 방지하는 모터 구동 장치 및 이를 구비하는 공기조화기에 관한 것이다.
공기조화기는 쾌적한 실내 환경을 조성하기 위해 실내로 냉온의 공기를 토출하여, 실내 온도를 조절하고, 실내 공기를 정화하도록 함으로서 인간에게 보다 쾌적한 실내 환경을 제공하기 위해 설치된다. 일반적으로 공기조화기는 열교환기로 구성되어 실내에 설치되는 실내기와, 압축기 및 열교환기 등으로 구성되어 실내기로 냉매를 공급하는 실외기를 포함한다.
한편, 압축기 내의 압축기 모터 구동시, 전력 변환 효율 또는 모터 구동 효율을 상승시키기 위해, 국제특허출원공보 WO19-008756(이하 '선행 문헌"이라 함)에는, 모터의 권선을 Y 결선과 Δ 결선으로 변환하는 절환 장치가 개시된다.
그러나, 선행 문헌에 의하면, 모터의 권선을 Y 결선 또는 Δ 결선으로 변환하기 위해, 절환 장치로, 기계식 또는 전기적 스위치가 필요하며, 이러한 스위치의 반복 사용에 의해, 파손되거나, 수명이 열화될 수 있다.
본 발명의 목적은, 모터의 권선 절환 장치의 수명을 늘리고, 고장을 방지하기 위해, 권선 절환 장치가 열화될 가능성이 생기는 경우, 권선 절환 장치의 절환을 제한 하는 모터 구동 장치 및 이를 구비하는 공기조화기를 제공함에 있다.
본 발명의 다른 목적은, 모터의 결선을 변환하는 절환 장치의 이상 유무를 결정할 수 있는 모터 구동 장치 및 이를 구비하는 공기조화기를 제공함에 있다.
본 발명의 또 다른 목적은, 절환 장치의 동작에 따른 제1 결선에서의 권선 저항과 제2 결선에서의 권선 저항에 기초하여 절환 장치의 이상 유무를 결정할 수 있는 모터 구동 장치 및 이를 구비하는 공기조화기를 제공함에 있다.
본 발명의 또 다른 목적은, 절환 장치가 정상 동작하는 경우 전력 변환 효율 또는 모터 구동 효율을 증가시킬 수 있는 모터 구동 장치 및 이를 구비하는 공기조화기을 제공함에 있다.
본 발명의 또 다른 목적은, 절환 장치가 이상인 경우, 절환 장치를 제1 결선 또는 제2 결선 중 어느 하나로 동작시킬 수 있는 모터 구동 장치 및 이를 구비하는 공기조화기를 제공함에 있다.
본 발명의 또 다른 목적은, 모터의 고장 유무를 결정할 수 있는 모터 구동 장치 및 이를 구비하는 공기조화기을 제공함에 있다.
본 발명은 권선을 반복적으로 절환해야 하는 상황에서 절환장치의 절환을 제한하는 것을 특징으로 한다.
구체적으로, 본 발명에 따른 모터 구동 장치 및 이를 구비하는 공기조화기는, 복수의 스위칭 소자를 구비하고, 스위칭 동작에 기초하여 교류 전원을 모터로 출력하는 인버터; 상기 인버터와 상기 모터 사이에 배치되며, 상기 모터의 권선을 제1 결선 또는 제2 결선으로 변환하는 절환 장치 및 상기 인버터 및 상기 절환 장치를 제어하는 제어부;를 포함하고, 상기 제어부는 상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 상기 모터의 권선의 결선 변환을 제한하는 것을 특징으로 한다.
상기 제어부는, 상기 모터 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 상기 모터 권선의 결선 변환을 허용할 수 있다.
상기 제어부는, 상기 모터 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 상기 저속 이상 운전 횟수에 대한 누적 값을 초기화 할 수 있다.
또한, 본 발명은 상기 인버터에서 출력되는 출력 전류를 검출하는 출력 전류 검출부를 더 포함하고, 상기 제한 주파수에서, 상기 제1 결선 상태에서 출력 전류 값은 상기 제2 결선 상태에서 출력 전류 값 보다 작은 것을 특징으로 할 수 있다.
상기 제한 주파수에서, 상기 제1 결선 상태에서 출력 전류 값은 상기 제2 결선 상태에서 출력 전류의 최고 값의 1/ sqrt(3) 배 보다 작을 수 있다.
상기 제어부는 상기 모터의 운전 주파수가 제1 운전 주파수 이하인 경우, 상기 모터의 권선을 상기 제1 결선 상태가 되도록 제어할 수 있다.
상기 제어부는 상기 모터의 운전 주파수가 제1 운전 주파수 초과인 경우, 상기 모터의 권선을 상기 제2 결선 상태가 되도록 제어할 수 있다.
상기 제어부는, 상기 모터의 권선을 상기 제1 결선에서 상기 제2 결선으로 변환하는 동안, 상기 모터를 정지시키지 않고, 계속 동작하도록 제어할 수 있다.
상기 제어부는 상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우, 상기 모터의 운전 주파수에 따라 상기 모터의 권선을 상기 제1 결선 또는 제2 결선으로 변환할 수 있다.
상기 제어부는 상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우, 상기 모터의 운전 속도에 따라 상기 모터의 권선을 상기 제1 결선 또는 제2 결선으로 변환할 수 있다.
상기 제어부는 상기 모터의 운전 주파수가 제1 속도 이하인 경우, 상기 모터의 권선을 상기 제1 결선 상태가 되도록 제어할 수 있다.
상기 제어부는, 상기 모터의 운전 주파수가 제1 속 초과인 경우, 상기 모터의 권선을 상기 제2 결선 상태가 되도록 제어할 수 있다.
또한, 본 발명은 상기 인버터에서 출력되는 출력 전류를 검출하는 출력 전류 검출부를 더 포함하고, 상기 제어부는, 상기 절환 장치 점검 모드에 따라, 제1 기간 동안, 상기 절환 장치의 동작에 따라 상기 모터의 권선이 상기 제1 결선인 상태에서 제1 레벨의 출력 전류가 상기 인버터에서 출력되며, 상기 제1 기간 이후 제2 기간 동안, 상기 절환 장치의 동작에 따라 상기 모터의 권선이 상기 제2 결선인 상태에서 상기 제1 레벨의 출력 전류가 상기 인버터에서 출력될 수 있다.
상기 제어부는, 상기 제1 결선에서의 상기 모터의 권선 저항과, 상기 제2 결선에서의 상기 모터의 권선 저항에 기초하여, 상기 절환 장치의 이상 동작 유무를 결정할 수 있다.
상기 제어부는, 상기 제1 권선 저항과, 상기 제2 권선 저항을 각 상 별로 연산하고, 각 상 별 상기 제1 권선 저항의 범위가 제1 범위를 벗어나고, 각 상 별 상기 제2 권선 저항의 범위가 제2 범위를 벗어난 경우, 상기 모터의 고장으로 결정하고, 각 상 별 상기 제1 권선 저항의 범위가 상기 제1 범위 이내이며, 각 상 별 상기 제2 권선 저항의 범위가 상기 제2 범위 이내인 경우, 상기 절환 장치가 정상인 것으로 결정하고, 상기 모터의 운전 주파수에 따라, 상기 절환 장치가, 상기 모터의 권선을 상기 제1 결선에서 상기 제2 결선으로 변환하도록 제어할 수 있다.
한편, 또 다른 본 발명의 실시예는 복수의 스위칭 소자를 구비하고, 스위칭 동작에 기초하여 교류 전원을 모터로 출력하는 인버터; 상기 인버터와 상기 모터 사이에 배치되며, 상기 모터의 권선을 제1 결선 또는 제2 결선으로 변환하는 절환 장치; 상기 인버터 및 상기 절환 장치를 제어하는 제어부;를 포함하고, 상기 제어부는, 상기 모터의 권선이 상기 제2 결선된 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 상기 제2 결선을 유지할 수 있다.
본 발명의 실시예에 따른 모터 구동 장치 및 이를 구비하는 공기조화기는, 상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 상기 모터의 권선의 결선 변환을 제한하여서, 절환 장치가 반복적으로 사용되는 상황을 방지하고, 절환 장치의 반복적인 사용으로 인해 발생하는 수명열화 및 고장을 방지할 수 있다.
또한, 본 발명은 결선 변환 제한을 판단하기 위해 저속 이상 운전 횟수만 판단하므로, 컨트롤러에 제어부담이 줄고, 신속한 제어가 가능하며, 공조기의 성능 저하를 방지할 수 있다.
본 발명은 모터의 결선을 변환하는 절환 장치의 이상 유무를 결정할 수 있게 되어서, 절환 장치의 이상을 신속하게 인지할 수 있고, 절환장치의 고장으로 다른 공조기의 장치가 고장나는 것을 방지할 수 있다.
또한, 본 발명은 제1 결선에서의 모터의 권선 저항과, 제2 결선에서의 모터의 권선 저항에 기초하여, 절환 장치의 이상 동작 유무를 결정하므로, 저항에 기초하여 절환 장치의 이상 유무를 간편하게 결정할 수 있다.
도 1은 본 발명의 일실시예에 따른 공기조화기의 구성을 예시하는 도면이다.
도 2는 도 1의 실외기와 실내기의 개략도이다.
도 3은 도 1의 공기조화기의 간략한 내부 블록도이다.
도 4는 본 발명의 실시예에 따른 모터 구동 장치의 내부 블록도의 일예를 예시한다.
도 5는 도 4의 모터 구동 장치의 내부 회로도의 일예이다.
도 6은 도 5의 인버터 제어부의 내부 블록도이다.
도 7은 도 4의 절환 장치의 동작 설명에 참조되는 도면이다.
도 8a 및 도 8b는 도 7의 절환 장치의 권선 절환 동작을 나타내는 타이밍도이다.
도 9a는 본 발명의 일실시에에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
도 9b는 본 발명의 다른 실시에에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
도 10a 내지 도 14c는 도 9a 또는 도 9b의 동작방법 설명에 참조되는 도면이다.
도 15는 본 발명의 다른 실시예에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
도 16a 내지 도 16c는 도 15의 동작 설명에 참조되는 도면이다.
도 17은 본 발명의 또 다른 실시예에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
도 1은 본 발명의 일실시예에 따른 공기조화기의 구성을 예시하는 도면이다.
본 발명에 따른 공기조화기는 도 1에 도시된 바와 같이, 대형의 공기조화기(100)로서, 복수의 실내기(31 내지 35), 복수의 실내기에 연결되는 복수의 실외기(21, 22), 복수의 실내기 각각과 연결되는 리모컨(41 내지 45), 그리고 복수의 실내기 및 실외기를 제어하는 원격제어기(10)를 포함할 수 있다.
원격제어기(10)는 복수의 실내기(31 내지 36) 및 복수의 실외기(21, 22)와 연결되어 그 동작을 모니터링하고 제어한다. 이때, 원격제어기(10)는 복수의 실내기에 연결되어 실내기에 대한 운전설정, 잠금설정, 스케줄제어, 그룹제어 등을 수행할 수 있다.
공기조화기(100)는 스탠드형 공기조화기, 벽걸이형 공기조화기 및 천장형 공기조화기 중 어느 것이라도 적용 가능하나, 이하 설명의 편의를 위하여 천장형 공기조화기를 예로 설명한다.
또한, 공기조화기는 환기장치, 공기청정장치, 가습장치 및 히터 중 적어도 하나를 더 포함할 수 있으며, 실내기 및 실외기의 동작에 연동하여 동작할 수 있다.
실외기(21, 22)는 냉매를 공급받아 압축하는 압축기(미도시)와, 냉매와 실외공기를 열교환하는 실외 열교환기(미도시)와, 공급되는 냉매로부터 기체 냉매를 추출하여 압축기로 공급하는 어큐뮬레이터(미도시)와, 난방운전에 따른 냉매의 유로를 선택하는 사방밸브(미도시)를 포함한다. 또한, 다수의 센서, 밸브 및 오일회수기 등을 더 포함하나, 그 구성에 대한 설명은 하기에서 생략하기로 한다.
실외기(21, 22)는 구비되는 압축기 및 실외 열교환기를 동작시켜 설정에 따라 냉매를 압축하거나 열교환하여 실내기(31 내지 35)로 냉매를 공급한다. 실외기(21,22)는 원격제어기(10) 또는 실내기(31 내지 35)의 요구에 의해 구동되고, 구동되는 실내기에 대응하여 냉/난방 용량이 가변 됨에 따라 실외기의 작동 개수 및 실외기에 설치된 압축기의 작동 개수가 가변 된다.
이때, 실외기(21, 22)는 복수의 실외기가, 각각 연결된 실내기로 각각 냉매를 공급하는 것을 기본으로 하여 설명하나, 실외기 및 실내기의 연결구조에 따라 복수의 실외기가 상호 연결되어 복수의 실내기로 냉매를 공급할 수도 있다.
실내기(31 내지 35)는 복수의 실외기(21, 22) 중 어느 하나에 연결되어, 냉매를 공급받아 실내로 냉온의 공기를 토출한다. 실내기(31 내지 35)는 실내 열교환기(미도시)와, 실내기팬(미도시), 공급되는 냉매가 팽창되는 팽창밸브(미도시), 다수의 센서(미도시)를 포함한다.
이때, 실외기(21, 22) 및 실내기(31 내지 35)는 통신선으로 연결되어 상호 데이터를 송수신하고, 실외기 및 실내기는 원격제어기(10)와 별도의 통신선으로 연결되어 원격제어기(10)의 제어에 따라 동작한다.
리모컨(41 내지 45)는 실내기에 각각 연결되어, 실내기로 사용자의 제어명령을 입력하고, 실내기의 상태정보를 수신하여 표시할 수 있다. 이때 리모컨은 실내기와의 연결 형태에 따라 유선 또는 무선으로 통신하며, 경우에 따라 복수의 실내기에 하나의 리모컨이 연결되어 하나의 리모컨 입력을 통해 복수의 실내기의 설정이 변경될 수 있다.
또한, 리모컨(41 내지 45)은 내부에 온도감지센서를 포함할 수 있다.
도 2는 도 1의 실외기와 실내기의 개략도이다.
도면을 참조하여 설명하면, 공기조화기(100)는, 크게 실내기(31)와 실외기(21)로 구분된다.
실외기(21)는, 냉매를 압축시키는 역할을 하는 압축기(102)와, 압축기를 구동하는 압축기용 전동기(102b)와, 압축된 냉매를 방열시키는 역할을 하는 실외측 열교환기(104)와, 실외 열교환기(104)의 일측에 배치되어 냉매의 방열을 촉진시키는 실외팬(105a)과 실외팬(105a)을 회전시키는 전동기(105b)로 이루어진 실외 송풍기(105)와, 응축된 냉매를 팽창하는 팽창기구(106)와, 압축된 냉매의 유로를 바꾸는 냉/난방 절환밸브(110)와, 기체화된 냉매를 잠시 저장하여 수분과 이물질을 제거한 뒤 일정한 압력의 냉매를 압축기로 공급하는 어큐뮬레이터(103) 등을 포함한다.
실내기(31)는 실내에 배치되어 냉/난방 기능을 수행하는 실내측 열교환기(109)와, 실내측 열교환기(109)의 일측에 배치되어 냉매의 방열을 촉진시키는 실내팬(109a)과 실내팬(109a)을 회전시키는 전동기(109b)로 이루어진 실내 송풍기(109) 등을 포함한다.
실내측 열교환기(109)는 적어도 하나가 설치될 수 있다. 압축기(102)는 인버터 압축기, 정속 압축기 중 적어도 하나가 사용될 수 있다.
또한, 공기조화기(100)는 실내를 냉방시키는 냉방기로 구성되는 것도 가능하고, 실내를 냉방시키거나 난방시키는 히트 펌프로 구성되는 것도 가능하다.
한편, 도 2에서는 실내기(31)와 실외기(21)를 각각 1개씩 도시하고 있으나, 본 발명의 실시예에 따른 공기조화기의 구동장치는 이에 한정되지 않으며, 복수개의 실내기와 실외기를 구비하는 멀티형 공기조화기, 한 개의 실내기와 복수개의 실외기를 구비하는 공기조화기 등에도 적용이 가능함은 물론이다.
도 1의 실외기(21) 내의 압축기(102)는, 압축기 모터(230)를 구동하는 압축기 고둥을 위한 모터 구동장치(200)에 의해 구동될 수 있다.
도 3은 도 1의 공기조화기의 간략한 내부 블록도이다.
도면을 참조하여 설명하면, 도 3의 공기조화기(100)는, 압축기(102), 실외 팬(105a), 실내 팬(109a), 제어부(170), 토출 온도 감지부(118), 실외 온도 감지부(138), 실내 온도 감지부(158), 메모리(140)를 포함한다.
또한, 공기조화기(100)는, 압축기 구동부(220), 실외 팬 구동부(200), 실내 팬 구동부(300), 절환 밸브(110), 팽창 밸브(106), 표시부(130), 및 입력부(120)를 더 포함할 수 있다.
압축기(102), 실외 팬(105a), 실내 팬(109a)에 대한 설명은 도 2를 참조한다.
입력부(120)는, 다수개의 조작 버튼을 구비하여, 입력되는 공기조화기(100)의 운전 목표 온도에 대한 신호를 제어부(170)로 전달한다.
표시부(130)는, 공기조화기(100)의 동작 상태를 표시할 수 있다.
메모리(140)는, 공기조화기(100) 동작에 필요한 데이터를 저장할 수 있다.
토출 온도 감지부(118)는, 압축기(102)에서의 냉매 토출 온도(Tc)를 감지할 수 있으며, 감지된 냉매 토출 온도(Tc)에 대한 신호를 제어부(170)로 전달할 수 있다.
실외 온도 감지부(138)는, 공기조화기(100)의 실외기(21) 주변의 온도인, 실외 온도(To)를 감지할 수 있으며, 감지된 실외 온도(To)에 대한 신호를 제어부(170)로 전달할 수 있다.
실내 온도 감지부(158)는, 공기조화기(100)의 실내기(31) 주변의 온도인, 실내 온도(Ti)를 감지할 수 있으며, 감지된 실내 온도(Ti)에 대한 신호를 제어부(170)로 전달할 수 있다.
제어부(170)는, 감지된 냉매 토출 온도(Tc), 감지된 실외 온도(To), 감지된 실내 온도(Ti) 중 적어도 하나, 및 입력된 목표 온도에 기초하여, 공기조화기(100)가 운전하도록 제어할 수 있다. 예를 들어, 최종 목표 과열도를 산출하여, 공기조화기(100)가 운전하도록 제어할 수 있다.
한편, 제어부(170)는, 압축기(102), 실내팬(109a), 실외팬(105a)의 동작 제어를 위해, 도면에서 도시된 바와 같이, 각각, 압축기 구동부(220), 실외 팬 구동부(200), 실내 팬 구동부(300)를 제어할 수 있다.
예를 들어, 제어부(170)는, 압축기 구동부(220), 실외 팬 구동부(200), 또는 실내 팬 구동부(300)에, 목표 온도에 기초하여, 각각 해당하는 속도 지령치 신호를 출력할 수 있다.
그리고, 각각의 속도 지령치 신호에 기초하여, 압축기 모터(미도시), 모터(230), 실내 팬 모터(109b)는, 각각, 목표 회전 속도로 동작될 수 있다.
한편, 제어부(170)는, 압축기 구동부(220), 실외 팬 구동부(200), 또는 실내 팬 구동부(300)에 대한 제어 이외에, 공기조화기(100) 전반의 동작을 제어할 수 있다.
예를 들어, 제어부(170)는, 냉/난방 절환밸브(110) 또는 사방밸브의 동작을 제어할 수 있다.
또는, 제어부(170)는, 팽창기구 또는 팽창 밸브(106)의 동작을 제어할 수 있다.
도 4는 본 발명의 실시예에 따른 모터 구동 장치의 내부 블록도의 일예를 예시하고, 도 5는 도 4의 모터 구동 장치의 내부 회로도의 일예이다.
도면을 참조하여 설명하면, 본 발명의 실시예에 따른 모터 구동 장치(220)는, 센서리스(sensorless) 방식으로 모터를 구동하기 위한 것으로서, 전력 변환 장치라 명명될 수도 있다.
본 발명의 실시예에 따른 모터 구동 장치(220)는, 컨버터(410), 인버터(420), 인버터 제어부(430), 절환 장치(450), dc 단 전압 검출부(B), dc단 커패시터(C), 출력전류 검출부(E), 출력전압 검출부(F)를 포함할 수 있다. 또한, 모터 구동 장치(220)는, 입력 전류 검출부(A) 등을 더 포함할 수도 있다.
입력 전류 검출부(A)는, 상용 교류 전원(405)으로부터 입력되는 입력 전류(is)를 검출할 수 있다. 이를 위하여, 입력 전류 검출부(A)로, CT(current trnasformer), 션트 저항 등이 사용될 수 있다. 검출되는 입력 전류(is)는, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.
컨버터(410)는, 리액터(L)를 거친 상용 교류 전원(405)을 직류 전원으로 변환하여 출력한다. 도면에서는 상용 교류 전원(405)을 삼상 교류 전원으로 도시하고 있으나, 단상 교류 전원일 수도 있다. 상용 교류 전원(405)의 종류에 따라 컨버터(410)의 내부 구조도 달라진다.
한편, 컨버터(410)는, 스위칭 소자 없이 다이오드 등으로 이루어져, 별도의 스위칭 동작 없이 정류 동작을 수행할 수도 있다.
예를 들어, 삼상 교류 전원인 경우, 컨버터(410)는 브릿지 형태의 6개의 다이오드를 구비할 수 있으며, 단상 교류 전원인 경우, 컨버터(410)는 브릿지 형태의 4개의 다이오드를 구비할 수 있다.
한편, 컨버터(410)는, 삼상 교류 전원의 경우, 6개의 스위칭 소자 및 6개의 다이오드를 구비할 수 있으며, 단상 교류 전원의 경우, 2개의 스위칭 소자 및 4개의 다이오드를 구비하는 하프 브릿지형의 컨버터일 수도 있다.
컨버터(410)가, 스위칭 소자를 구비하는 경우, 해당 스위칭 소자의 스위칭 동작에 의해, 승압 동작, 역률 개선 및 직류전원 변환을 수행할 수 있다.
dc단 커패시터(C)는, dc단에 배치되며 컨버터(410)에서 출력되는 전원을 저장한다. 도면에서는, dc단 커패시터(C)로 하나의 소자를 예시하나, 복수개가 구비되어, 소자 안정성을 확보할 수도 있다.
한편, 도면에서는, 컨버터(410)의 출력단에 접속되는 것으로 예시하나, 이에 한정되지 않고, 직류 전원이 바로 입력될 수도 있다.,
예를 들어, 태양 전지로부터의 직류 전원이 dc단 커패시터(C)에 바로 입력되거나 직류/직류 변환되어 입력될 수도 있다. 이하에서는, 도면에 예시된 부분을 위주로 기술한다.
한편, dc단 커패시터(C) 양단은, 직류 전원이 저장되므로, 이를 dc 단 또는 dc 링크단이라 명명할 수 있다.
dc 단 전압 검출부(B)는 dc단 커패시터(C)의 양단인 dc 단 전압(Vdc)을 검출할 수 있다. 이를 위하여, dc 단 전압 검출부(B)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 dc 단 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.
인버터(420)는, 복수개의 인버터 스위칭 소자(Sa~Sc,S'a~S'c)를 구비하고, 스위칭 소자의 온/오프 동작에 의해 dc단의 직류 전원(Vdc)을 삼상 교류 전원(va,vb,vc)으로 변환하여, 삼상 동기 모터(230)에 출력할 수 있다.
인버터(420)는, 각각 서로 직렬 연결되는 상암 스위칭 소자(Sa,Sb,Sc) 및 하암 스위칭 소자(S'a,S'b,S'c)가 한 쌍이 되며, 총 세 쌍의 상,하암 스위칭 소자가 서로 병렬(Sa&S'a,Sb&S'b,Sc&S'c)로 연결된다. 각 스위칭 소자(Sa,S'a,Sb,S'b,Sc,S'c)에는 다이오드가 역병렬로 연결된다.
인버터(420) 내의 스위칭 소자들은 인버터 제어부(430)로부터의 인버터 스위칭 제어신호(Sic)에 기초하여 각 스위칭 소자들의 온/오프 동작을 하게 된다. 이에 의해, 소정 주파수를 갖는 삼상 교류 전원이 삼상 동기 모터(230)에 출력되게 된다.
인버터 제어부(430)는, 센서리스 방식을 기반으로, 인버터(420)의 스위칭 동작을 제어할 수 있다. 이를 위해, 인버터 제어부(430)는, 출력전류 검출부(E)에서 검출되는 출력전류(io)를 입력받을 수 있다.
인버터 제어부(430)는, 인버터(420)의 스위칭 동작을 제어하기 위해, 인버터 스위칭 제어신호(Sic)를 인버터(420)에 출력한다. 인버터 스위칭 제어신호(Sic)는 펄스폭 변조 방식(PWM)의 스위칭 제어신호로서, 출력전류 검출부(E)에서 검출되는 출력전류(io)을 기초로 생성되어 출력된다. 인버터 제어부(430) 내의 인버터 스위칭 제어신호(Sic)의 출력에 대한 상세 동작은 도 6를 참조하여 후술한다.
출력전류 검출부(E)는, 인버터(420)와 삼상 모터(230) 사이에 흐르는 출력전류(io)를 검출한다. 즉, 모터(230)에 흐르는 전류를 검출한다. 출력전류 검출부(E)는 각 상의 출력 전류(ia,ib,ic)를 모두 검출할 수 있으며, 또는 삼상 평형을 이용하여 두 상의 출력 전류를 검출할 수도 있다.
출력전류 검출부(E)는 인버터(420)와 모터(230) 사이에 위치할 수 있으며, 전류 검출을 위해, CT(current trnasformer), 션트 저항 등이 사용될 수 있다.
션트 저항이 사용되는 경우, 3개의 션트 저항이, 인버터(420)와 동기 모터(230) 사이에 위치하거나, 인버터(420)의 3개의 하암 스위칭 소자(S'a,S'b,S'c)에 일단이 각각 접속되는 것이 가능하다.
한편, 삼상 평형을 이용하여, 2개의 션트 저항이 사용되는 것도 가능하다. 한편, 1개의 션트 저항이 사용되는 경우, 상술한 커패시터(C)와 인버터(420) 사이에서 해당 션트 저항이 배치되는 것도 가능하다.
검출된 출력전류(io)는, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 인가될 수 있으며, 검출된 출력전류(io)에 기초하여 인버터 스위칭 제어신호(Sic)가 생성된다. 이하에서는 검출된 출력전류(io)가 삼상의 출력 전류(ia,ib,ic)인 것으로 병행하여 기술할 수도 있다.
출력 전압 검출부(F)는, 인버터(420)에서 출력되는 출력 전압(vo)을 검출할 수 있다. 구체적으로 인버터(420)에서 출력되는 각 상의 출력 전압(vo)을 검출할 수 있다. 이를 위하여, 출력 전압 검출부(F)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 출력 전압(vo)은, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.
한편, 삼상 모터(230)는, 고정자(stator)와 회전자(rotar)를 구비하며, 각상(a,b,c 상)의 고정자의 코일에 소정 주파수의 각상 교류 전원이 인가되어, 회전자가 회전을 하게 된다.
이러한 모터(230)는, 예를 들어, 표면 부착형 영구자석 동기전동기(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기전동기(Interior Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 전동기(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다. 이 중 SMPMSM과 IPMSM은 영구자석을 적용한 동기 전동기(Permanent Magnet Synchronous Motor; PMSM)이며, Synrm은 영구자석이 없는 것이 특징이다.
한편, 절환 장치(450)는, 인버터(420)와 모터(230) 사이에 배치되며, 모터(230)의 권선을 제1 결선 또는 제2 결선으로 변환할 수 있다.
여기서, 제1 결선은, Y 결선을 나타낼 수 있으며, 제2 결선은, Δ 결선일 수 있다.
이를 위해, 절환 장치(450)는, 인버터(420)의 삼상 출력단과 모터(230)의 삼상 코일(CA,Cb,CC)의 사이에 각각 접속되는 3개의 릴레이 소자(SW1~SW3)를 구비할 수 있다.
즉, 절환 장치(450)는, 각 상 출력에 전기적으로 접속되는 제1 내지 제3 릴레이 소자(SW1~SW3)를 구비할 수 있다.
절환 장치(450)는, 모터(230)가 제1 속도 또는 제1 운전 주파수 이하인 경우, 모터(230)가 제1 결선이 되도록 동작하고, 상기 제1 속도 또는 제1 운전 주파수 초과인 경우, 모터(230)가 제2 결선이 되도록 동작할 수 있다. 이에 따라, 전력 변환 효율 또는 모터 구동 효율을 증가시킬 수 있게 된다.
특히, 제1 속도 또는 제1 운전 주파수 이하의 저속의 경우의 전력 변환 효율 또는 모터 구동 효율을 증가시킬 수 있게 된다.
한편, 본 발명의 실시예에 따른 모터 구동 장치(220)는, 복수의 스위칭 소자(Sa~Sc,S'a~S'c)(Sa~Sc,S'a~S'c)를 구비하고, 스위칭 동작에 기초하여 교류 전원을 모터(230)로 출력하는 인버터(420)와, 인버터(420)와 모터(230) 사이에 배치되며, 모터(230)의 권선을 제1 결선 또는 제2 결선으로 변환하는 절환 장치(450)와, 인버터(420)에서 출력되는 출력 전류(io)를 검출하는 출력 전류 검출부(E)와, 인버터(420) 및 절환 장치(450)를 제어하는 제어부(170) 또는 인버터 제어부(430)를 포함하고, 절환 장치(450) 점검 모드에 따라, 제1 기간(Pn1) 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제1 결선인 상태에서 제1 레벨(Lvn1)의 출력 전류(io)가 인버터(420)에서 출력되며, 제1 기간(Pn1) 이후 제2 기간(Pn2) 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제2 결선인 상태에서 제1 레벨(Lvn1)의 출력 전류(io)가 인버터(420)에서 출력된다. 이에 따라, 모터(230)의 결선을 변환하는 절환 장치(450)의 이상 유무를 결정할 수 있게 된다. 이에 대해서는 도 7 이하를 참조하여 상세히 기술한다.
도 6은 도 5의 인버터 제어부의 내부 블록도이다.
도 6를 참조하면, 인버터 제어부(430)는, 축변환부(310), 속도 연산부(320), 전류 지령 생성부(330), 전압 지령 생성부(340), 축변환부(350), 및 스위칭 제어신호 출력부(360)를 포함할 수 있다.
축변환부(310)는, 출력 전류 검출부(E)에서 검출된 삼상 출력 전류(ia,ib,ic)를 입력받아, 정지좌표계의 2상 전류(iα,iβ)로 변환한다.
한편, 축변환부(310)는, 정지좌표계의 2상 전류(iα,iβ)를 회전좌표계의 2상 전류(id,iq)로 변환할 수 있다.
속도 연산부(320)는, 축변환부(310)에서 축변화된 정지좌표계의 2상 전류(iα,iβ)에 기초하여, 연산된 위치(
Figure pat00001
)와 연산된 속도(
Figure pat00002
)를 출력할 수 있다.
한편, 전류 지령 생성부(330)는, 연산 속도(
Figure pat00003
)와 속도 지령치(ω* r)에 기초하여, 전류 지령치(i* q)를 생성한다. 예를 들어, 전류 지령 생성부(330)는, 연산 속도(
Figure pat00004
)와 속도 지령치(ω* r)의 차이에 기초하여, PI 제어기(335)에서 PI 제어를 수행하며, 전류 지령치(i* q)를 생성할 수 있다. 도면에서는, 전류 지령치로, q축 전류 지령치(i* q)를 예시하나, 도면과 달리, d축 전류 지령치(i* d)를 함께 생성하는 것도 가능하다. 한편, d축 전류 지령치(i* d)의 값은 0으로 설정될 수도 있다.
한편, 전류 지령 생성부(330)는, 전류 지령치(i* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
다음, 전압 지령 생성부(340)는, 축변환부에서 2상 회전 좌표계로 축변환된 d축, q축 전류(id,iq)와, 전류 지령 생성부(330) 등에서의 전류 지령치(i* d,i* q)에 기초하여, d축, q축 전압 지령치(v* d,v* q)를 생성한다. 예를 들어, 전압 지령 생성부(340)는, q축 전류(iq)와, q축 전류 지령치(i* q)의 차이에 기초하여, PI 제어기(344)에서 PI 제어를 수행하며, q축 전압 지령치(v* q)를 생성할 수 있다. 또한, 전압 지령 생성부(340)는, d축 전류(id)와, d축 전류 지령치(i* d)의 차이에 기초하여, PI 제어기(348)에서 PI 제어를 수행하며, d축 전압 지령치(v* d)를 생성할 수 있다. 한편, 전압 지령 생성부(340)는, d 축, q축 전압 지령치(v* d,v* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
한편, 생성된 d축, q축 전압 지령치(v* d,v* q)는, 축변환부(350)에 입력된다.
축변환부(350)는, 속도 연산부(320)에서 연산된 위치(
Figure pat00005
)와, d축, q축 전압 지령치(v* d,v* q)를 입력받아, 축변환을 수행한다.
먼저, 축변환부(350)는, 2상 회전 좌표계에서 2상 정지 좌표계로 변환을 수행한다. 이때, 속도 연산부(320)에서 연산된 위치(
Figure pat00006
)가 사용될 수 있다.
그리고, 축변환부(350)는, 2상 정지 좌표계에서 3상 정지 좌표계로 변환을 수행한다. 이러한 변환을 통해, 축변환부(1050)는, 3상 출력 전압 지령치(v*a,v*b,v*c)를 출력하게 된다.
스위칭 제어 신호 출력부(360)는, 3상 출력 전압 지령치(v*a,v*b,v*c)에 기초하여 펄스폭 변조(PWM) 방식에 따른 인버터용 스위칭 제어 신호(Sic)를 생성하여 출력한다.
출력되는 인버터 스위칭 제어 신호(Sic)는, 게이트 구동부(미도시)에서 게이트 구동 신호로 변환되어, 인버터(420) 내의 각 스위칭 소자의 게이트에 입력될 수 있다. 이에 의해, 인버터(420) 내의 각 스위칭 소자들(Sa,S'a,Sb,S'b,Sc,S'c)이 스위칭 동작을 하게 된다.
한편, 상술한 바와 같이, 모터 구동장치(100)는, 인버터(420) 제어를 통하여, 모터(230)를 구동하는 벡터(vector) 제어를 하기 위해서, 모터(motor)에 흐르는 츨력 전류(io), 특히, 상전류(Phase current)를 감지하는 것이 필수적이다.
인버터 제어부(430)는, 감지된 상전류를 이용하여, 전류 지령 생성부(330), 전압 지령 생성부(340)를 이용하여, 모터(230)를, 원하는 속도와 토크(torque)로 제어할 수 있게 된다.
도 7은 도 4의 절환 장치의 동작 설명에 참조되는 도면이다.
도면을 참조하면, 도 7의 (a)는, 절환 장치(450)의 동작에 따라, 제1 결선인 Y 결선으로 모터(230)가 동작하는 것을 예시하며, 도 7의 (b)는, 절환 장치(450)의 동작에 따라, 제2 결선인 Δ 결선으로 모터(230)가 동작하는 것을 예시한다.
절환 장치(450)는, 인버터(420)의 각 상 출력에 전기적으로 접속되는 제1 내지 제3 릴레이 소자(SW1~SW3)를 구비한다.
제1 릴레이 소자(SW1)의 제1 단(naa), 제2 릴레이 소자(SW2)의 제1 단(nba), 제3 릴레이 소자(SW3)의 제1 단(nca)은 병렬로 접속되고, 모터(230)의 제1 권선(CA)의 일단(nA)이 제1 릴레이 소자(SW1)의 제2 단(nab)에 접속되고, 모터(230)의 제2 권선(CB)의 일단(nB)이 제2 릴레이 소자(SW2)의 제2 단(nbb)에 접속되고, 모터(230)의 제3 권선(CC)의 일단(nC)이 제3 릴레이 소자(SW3)의 제2 단(ncb)에 접속되고, 모터(230)의 제1 권선(CA)의 타단(na)이, 제3 릴레이 소자(SW3)의 공통단(n3)에 접속되고, 모터(230)의 제2 권선(CB)의 타단(nb)이, 제1 릴레이 소자(SW1)의 공통단(n1)에 접속되고, 모터(230)의 제3 권선(CC)의 타단(nc)이, 제2 릴레이 소자(SW2)의 공통단(n2)에 접속된다.
한편, 제1 릴레이 소자(SW1)의 제2 단(nab)은, 인버터(420)의 u상 출력단(ru)에 접속되고, 제2 릴레이 소자(SW2)의 제2 단(nbb)은, 인버터(420)의 v상 출력단(rv)에 접속되고, 제3 릴레이 소자(SW3)의 제2 단(ncb)은, 인버터(420)의 w상 출력단(rw)에 접속된다.
도 7의 (a)와 같이, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선을 위해, 제1 내지 제3 릴레이 소자(SW1~SW3)의 공통단(n1,n2,n3)이, 각각 제1 내지 제3 릴레이 소자(SW1~SW3)의 제1 단(naa,nba,nca)과 전기적으로 접속되도록 제어할 수 있다.
이에 따라, 인버터(420)의 u,v,w 상의 출력 전류가, Y 결선인 모터(230) 내의 각각 a상 코일(Ca), b상 코일(CB), c상 코일(CC)에 흐르게 된다.
도 7의 (b)와 같이, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선을 위해, 제1 내지 제3 릴레이 소자(SW1~SW3)의 공통단(n1,n2,n3)이, 각각 제1 내지 제3 릴레이 소자(SW1~SW3)의 제2 단(nab,nbb,ncb)과 전기적으로 접속되도록 제어할 수 있다.
이에 따라, 인버터(420)의 u,v,w 상의 출력 전류가, Δ 결선인 모터(230) 내의 각각 b상 코일(CB), c상 코일(CC), a상 코일(Ca)에 흐르게 된다.
결국, 절환 장치(450)를 통해 제1 결선 또는 제2 결선으로 모터(230)가 동작하도록 제어할 수 있으며, 나아가, 전력 변환 효율 또는 모터(230) 구동 효율을 증가시킬 수 있게 된다.
도 8a 및 도 8b는 도 7의 절환 장치의 권선 절환 동작을 나타내는 타이밍도이다.
먼저, 도 8a는 절환 장치의 권선 절환 동작의 일예를 나타내는 타이밍도이다.
도면을 참조하면, 모터(230)의 운전 주파수가 f1 이하인 경우, 절환 장치(450)는, 도 7의 (a)와 같이, 모터(230)가 Y 결선인 상태가 되도록 동작할 수 있다.
도면에서는, Txa 시점까지인 P1x 기간 동안, 모터(230)가 Y 결선인 상태가 되도록 절환 장치(450)가 동작하는 것을 예시한다.
다음, Txa 시점부터 Txb 시점 사이의 Px 기간 동안, 모터(230)는 정지할 수 있다.
다음, Txb 시점 이후의 P2x 기간 동안, 절환 장치(450)는, 도 7의 (b)와 같이, 모터(230)가 Δ 결선인 상태가 되도록 동작할 수 있다.
예를 들어, 모터(230)의 운전 주파수가 f1 초과인 경우, 절환 장치(450)는 모터(230)가 Δ 결선인 상태가 되도록 동작하며, Y 결선에서 Δ 결선으로의 변환을 위해, Px 기간 동안, 모터(230)는 정지할 수 있다.
다음, 도 8b는 절환 장치의 권선 절환 동작의 다른 예를 나타내는 타이밍도이다.
도면을 참조하면, 모터(230)의 운전 주파수가 f1 이하인 경우, 절환 장치(450)는, 도 7의 (b)와 같이, 모터(230)가 Y 결선인 상태가 되도록 동작할 수 있다.
도면에서는, Ta 시점까지인 P1 기간 동안, 모터(230)가 Y 결선인 상태가 되도록 절환 장치(450)가 동작하는 것을 예시한다.
다음, Ta 시점부터 Tb 시점 사이의 P2 기간 동안, 제어부(170) 또는 인버터 제어부(430)는, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하도록 제어할 수 있다.
특히, 제어부(170) 또는 인버터 제어부(430)는, P2 기간 동안, 모터(230)가 정지하지 않고, 모터(230)의 운전 주파수 는 제1 주파수(f1)에서 제2 주파수(f2) 까지 일시적으로 하강하도록 제어할 수 있다.
다음, Tb 시점 이후의 P3 기간 동안, 절환 장치(450)는, 도 7의 (b)와 같이, 모터(230)가 Δ 결선인 상태가 되어 동작할 수 있다.
예를 들어, 제어부(170) 또는 인버터 제어부(430)는, 모터(230)의 운전 주파수가 f1 초과인 경우, 절환 장치(450)는 모터(230)가 Δ 결선인 상태가 되도록 동작하도록 제어할 수 있다.
구체적으로, P3 기간 동안, 제어부(170) 또는 인버터 제어부(430)는, 제2 주파수(f2)까지 일시적으로 하강한 모터(230)의 운전 주파수가 다시 상승하도록 제어할 수 있다.
제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하는 동안, 모터(230)는 정지하지 않고, 계속 동작하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 절환 동작시에 모터(230)가 정지하지 않으므로, 모터(230)의 동작 효율을 향상시킬 수 있게 된다.
한편, 도 8b의 P2 기간은, 도 8a의 Px 기간 보다 짧은 것이 바람직하다. 이에 따라, 모터(230)의 속도를 일시 하강시키면서, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환할 수 있게 된다.
도 9a는 본 발명의 일실시에에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
도면을 참조하면, 제어부(170) 또는 인버터 제어부(430)는, 모터 구동 장치(220) 내의 절환 장치 점검 모드인 지 여부를 판단한다(S910).
예를 들어, 제어부(170) 또는 인버터 제어부(430)는, 모터(230)의 구동 전에, 절환 장치 점검 모드가 수행되도록 제어할 수 있다.
다른 예로, 제어부(170) 또는 인버터 제어부(430)는, 모터(230) 구동 중, 운전 주파수의 변화가 소정치 이상인 경우, 절환 장치 점검 모드가 수행되도록 제어할 수 있다.
제어부(170) 또는 인버터 제어부(430)는, 절환 장치 점검 모드인 경우, 제1 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제1 결선인 상태에서, 인버터(420)가 제1 레벨의 출력 전류를 출력하도록 제어한다(S920).
다음, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치 점검 모드인 경우, 제1 기간 이후의 제2 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제2 결선인 상태에서, 인버터(420)가 제1 결선인 상태와 동일한 제1 레벨의 출력 전류를 출력하도록 제어한다(S930).
다음, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 모터(230)의 권선 저항과, 제2 결선에서의 모터(230)의 권선 저항에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정한다(S940).
예를 들어, 제어부(170) 또는 인버터 제어부(430)는, 제1 기간(Pn1) 동안의 제1 레벨(Lvn1)의 출력 전류(io)의 출력에 따라 검출되는 제1 출력 전압(Lvn3)에 기초하여, 모터(230)의 제1 권선 저항을 연산하고, 제2 기간(Pn2) 동안의 제1 레벨(Lvn1)의 출력 전류(io)의 출력에 따라 검출되는 제2 출력 전압(Lvn4)에 기초하여, 모터(230)의 제2 권선 저항을 연산하고, 제1 권선 저항과, 제2 권선 저항에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정할 수 있다. 이에 따라, 모터(230)의 결선을 변환하는 절환 장치(450)의 이상 유무를 간편하게 결정할 수 있게 된다.
구체적으로, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항의 비율을 연산하고, 연산된 비율에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정할 수 있다. 이에 따라, 모터(230)의 결선을 변환하는 절환 장치(450)의 이상 유무를 간편하게 결정할 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항의 비율을 각 상 별로 연산하고, 연산된 비율 중 모든 상의 비율이 소정 범위 이내인 경우, 절환 장치(450)가 정상인 것으로 결정하고, 모터(230)의 운전 주파수에 따라, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하도록 제어할 수 있다. 이에 따라, 절환 장치(450)가 정상 동작하는 경우 전력 변환 효율 또는 모터(230) 구동 효율을 증가시킬 수 있게 된다.
도 9b는 본 발명의 다른 실시에에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이다.
도면을 참조하면, 도 9b의 동작방법은 도 9a의 동작방법과 유사하나, 제1 레벨의 출력 전류만 출력하는 것이 아닌 복수 레벨의 출력 전류를 출력하는 것에 그 차이가 있다.
이에, 제910 단계(S910), 제920 단계(S920), 제930 단계(S930), 제940 단계(S940)는, 도 9a의 설명을 참조한다.
제920 단계(S920)에서, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치 점검 모드인 경우, 제1 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제1 결선인 상태에서, 인버터(420)가 제1 레벨의 출력 전류를 출력하도록 제어한다.
다음, 제어부(170) 또는 인버터 제어부(430)는, 제1 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제1 결선인 상태에서, 제1 레벨 출력 전류의 출력 이후, 인버터(420)가 제1 레벨과 다른 제2 레벨의 출력 전류를 출력하도록 제어한다(S922).
예를 들어, 제2 레벨은 제1 레벨 보다 높은 레벨일 수 있다.
다음, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치 점검 모드인 경우, 제2 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제2 결선인 상태에서, 인버터(420)가 제1 레벨의 출력 전류를 출력하도록 제어한다(S930).
다음, 제어부(170) 또는 인버터 제어부(430)는, 제2 기간 동안, 절환 장치(450)의 동작에 따라 모터(230)의 권선이 제2 결선인 상태에서, 제1 레벨 출력 전류의 출력 이후, 인버터(420)가 제1 레벨과 다른 제2 레벨의 출력 전류를 출력하도록 제어한다(S932).
제2 결선인 상태에서의 제1 레벨과 제2 레벨은, 제1 결선인 상태에서의 제1 레벨, 제2 레벨과 각각 동일한 레벨일 수 있다.
다음, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 모터(230)의 권선 저항과, 제2 결선에서의 모터(230)의 권선 저항에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정한다(S940).
예를 들어, 제어부(170) 또는 인버터 제어부(430)는, 제1 기간(Pm1) 동안의 제1 레벨(Lvm1)의 출력 전류의 출력에 따라 검출되는 출력 전압(Lvm3)과 제2 레벨(Lvm2)의 출력 전류의 출력에 따라 검출되는 출력 전압(Lvm4)에 기초하여, 모터(230)의 제1 권선 저항을 연산하고, 제2 기간(Pn2) 동안의 제1 기간(Pm1) 동안의 제1 레벨(Lvm1)의 출력 전류의 출력에 따라 검출되는 출력 전압(Lvm5)과 제2 레벨(Lvm2)의 출력 전류의 출력에 따라 검출되는 출력 전압(Lvm6)에 기초하여, 모터(230)의 제2 권선 저항을 연산하고, 제1 권선 저항과, 제2 권선 저항에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정할 수 있다. 이에 따라, 모터(230)의 결선을 변환하는 절환 장치(450)의 이상 유무를 간편하게 결정할 수 있게 된다.
구체적으로, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항의 비율을 연산하고, 연산된 비율에 기초하여, 절환 장치(450)의 이상 동작 유무를 결정할 수 있다. 이에 따라, 모터(230)의 결선을 변환하는 절환 장치(450)의 이상 유무를 간편하게 결정할 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항의 비율을 각 상 별로 연산하고, 연산된 비율 중 모든 상의 비율이 소정 범위 이내인 경우, 절환 장치(450)가 정상인 것으로 결정하고, 모터(230)의 운전 주파수에 따라, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하도록 제어할 수 있다. 이에 따라, 절환 장치(450)가 정상 동작하는 경우 전력 변환 효율 또는 모터(230) 구동 효율을 증가시킬 수 있게 된다.
도 10a 내지 도 14c는 도 9a 또는 도 9b의 동작방법 설명에 참조되는 도면이다.
먼저, 도 10a는 도 9a의 동작방법 설명에 참조되는 도면이다.
도면을 참조하면, 도 10a의 (a)는, 인버터(420)에서 출력되는 출력 전류(ina), 특히 상 전류(phase current)를 예시한다.
Pn1 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제1 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvn1)의 출력 전류가 출력되도록 제어할 수 있다.
P1 기간 이후의 Pns 기간은, 제1 결선에서 제2 결선으로의 변환 구간으로서, 인버터(420)에서 전류가 출력되지 않을 수 있다.
한편, 도면과 달리, Pns 기간 동안, 제1 레벨(Lvn1)의 출력 전류 보다 낮은 레벨의 전류가 출력되는 것도 가능하다. 이러한 출력 전류의 출력에 의해, 도 8b의 P2 기간과 같이, 모터(230)의 속도가 일시적으로 하강할 수 있게 된다.
다음, Pns 기간 이후의 P2 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제2 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvn1)의 출력 전류가 출력되도록 제어할 수 있다.
도 10a의 (b)는, 인버터(420)에서 출력되는 출력 전류(ina)에 대응하는 스위칭 전압(Sna)과 실효 전압인 출력 전압(Snb)을 예시한다.
한편, 출력 전압(Snb)은, 상 전압(phase voltage)에 대응할 수 있다.
Pn1 기간의 종료 시점인 Tn1 시점까지, 스위칭 전압(Sna)의 펄스 폭은 상승하다가 일정하게 유지되며, 출력 전압은, 상승하다가 제3 레벨(Lvn3)을 유지한다.
Pn1 기간 이후의 Pns 기간 동안, 출력 전압은 제로가 되며, Pns 기간 이후의, Tn2 시점부터의 P2 기간 동안, 스위칭 전압(Sna)의 펄스 폭은 상승하다가 일정하게 유지되며, 출력 전압은, 상승하다가 제3 레벨(Lvn3) 보다 작은 제4 레벨(Lvn4)을 유지한다.
제어부(170) 또는 인버터 제어부(430)는, 도 10a의 (b)와 같이, 제1 결선에서와 제2 결선에서의 출력 전압(Snb)의 차이에 따라, 제1 결선에서의 제1 권선 저항을 연산하고, 제2 결선에서의 제2 권선 저항을 연산할 수 있다.
한편, 인버터(420)에서 출력되는 출력 전류가 동일하므로, 절환 장치(450)의 동작이 정상이라면, 출력 전압(Snb)의 레벨이 더 큰, 제1 권선 저항이 제2 권선 저항 보다 크게된다.
이러한 특성에 기초하여, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)의 동작 이상 유무룰 판단할 수 있다.
한편, 도 10a에서는, 하나의 상 전류(ina)를 예시하였으나, 이와 달리, 제어부(170) 또는 인버터 제어부(430)는, 인버터(420)의 각 상의 출력단인 u 상 전류, v 상 전류, w 상 전류가 각각 순차적으로, 도 10a의 파형을 가지도록 제어할 수도 있다.
제어부(170) 또는 인버터 제어부(430)는, R=V/I 의 관계를 이용하여, 제1 결선에서의 제1 권선 저항을 연산하고, 제2 결선에서의 제2 권선 저항을 연산할 수 있다.
이때, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 제1 권선 저항과, 제2 결선에서의 제2 권선 저항의 비율이 일정한 범위를 유지하는 경우, 정상으로 판단하고, 일정한 범위를 벗어나는 경우, 절환 장치(450)의 이상으로 판단할 수 있다.
또한, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 제1 권선 저항이 제1 범위 이내인지 여부에 따라, 절환 장치(450)의 이상 또는 정상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 제2 권선 저항이 제2 범위 이내인지 여부에 따라, 절환 장치(450)의 이상 또는 정상으로 판단할 수도 있다.
다음, 도 10b는 도 9b의 동작방법 설명에 참조되는 도면이다.
도면을 참조하면, 도 10b의 (a)는, 인버터(420)에서 출력되는 출력 전류(ima), 특히 상 전류(phase current)를 예시한다.
Pm1 기간 중 Pm1a 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제1 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvm1)의 출력 전류가 출력되도록 제어할 수 있다.
다음, Pm1 기간 중 Pm1b 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제1 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvm1) 보다 큰 제2 레벨(LVm2)의 출력 전류가 출력되도록 제어할 수 있다.
Pm1 기간 이후의 Pms 기간은, 제1 결선에서 제2 결선으로의 변환 구간으로서, 인버터(420)에서 전류가 출력되지 않을 수 있다.
한편, 도면과 달리, Pms 기간 동안, 제1 레벨(Lvm1)의 출력 전류 보다 낮은 레벨의 전류가 출력되는 것도 가능하다. 이러한 출력 전류의 출력에 의해, 도 8b의 P2 기간과 같이, 모터(230)의 속도가 일시적으로 하강할 수 있게 된다.
다음, Pms 기간 이후의 Pm2 기간 중 Pm2a 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제2 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvm1)의 출력 전류가 출력되도록 제어할 수 있다.
다음, Pm2 기간 중 Pm2b 기간 동안, 절환 장치(450)의 동작에 의해 모터(230)가 제2 결선인 상태에서, 인버터 제어부(430)는 인버터(420)에서 제1 레벨(Lvm1) 보다 큰 제2 레벨(LVm2)의 출력 전류가 출력되도록 제어할 수 있다.
도 10b의 (b)는, 인버터(420)에서 출력되는 출력 전류(ima)에 대응하는 스위칭 전압(Sma)과 실효 전압인 출력 전압(Smb)을 예시한다.
한편, 출력 전압(Smb)은, 상 전압(phase voltage)에 대응할 수 있다.
Pm1 기간 중 Pm1a 기간 동안, 스위칭 전압(Sma)의 펄스 폭은 상승하다가 일정하게 유지되며, 출력 전압은, 상승하다가 제3 레벨(Lvm3)을 유지하며, Pm1 기간 중 Pm1b 기간 동안, 스위칭 전압(Sma)의 펄스 폭은 다시 상승하다가 일정하게 유지되며, 출력 전압은, 다시 상승하다가 제4 레벨(Lvm4)을 유지한다.
Pm1 기간 이후의 Pms 기간 동안, 출력 전압은 제로가 된다.
Pms 기간 이후의, Tm2 시점부터의 P2 기간 중 Pm2a 기간 동안, 스위칭 전압(Sma)의 펄스 폭은 상승하다가 일정하게 유지되며, 출력 전압은, 상승하다가 제5 레벨(Lvm5)을 유지하며, Pm2 기간 중 Pm2b 기간 동안, 스위칭 전압(Sma)의 펄스 폭은 다시 상승하다가 일정하게 유지되며, 출력 전압은, 다시 상승하다가 제6 레벨(Lvm6)을 유지한다.
이때, 제5 레벨(Lvm5)은, 제3 레벨(Lvm3) 보다 작으며, 제6 레벨(Lvm6)은, 제4 레벨(Lvm4) 보다 작을 수 있다.
제어부(170) 또는 인버터 제어부(430)는, 도 10b의 (b)와 같이, 제1 결선에서와 제2 결선에서의 출력 전압(Smb)의 차이에 따라, 제1 결선에서의 제1 권선 저항을 연산하고, 제2 결선에서의 제2 권선 저항을 연산할 수 있다.
도 10a에 비해, 다양한 레벨의 출력 전류를 출력하고, 이에 기초하여 권선 저항을 연산함으로써, 연산되는 권선 저항의 정확성이 더 향상될 수 있게 된다.
특히, 도 10a에 비해, 다양한 레벨의 출력 전류를 출력함으로써, 고정자 저항 이외의 성분에 의한 영향을 제거가 가능할 수 있으므로, 결국 연산되는 권선 저항의 정확성이 더 향상될 수 있게 된다.
한편, 인버터(420)에서 출력되는 출력 전류가 동일하므로, 절환 장치(450)의 동작이 정상이라면, 출력 전압(Smb)의 레벨이 더 큰, 제1 권선 저항이 제2 권선 저항 보다 크게된다.
이러한 특성에 기초하여, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)의 동작 이상 유무룰 판단할 수 있다.
한편, 도 10b에서는, 하나의 상 전류(ima)를 예시하였으나, 이와 달리, 제어부(170) 또는 인버터 제어부(430)는, 인버터(420)의 각 상의 출력단인 u 상 전류, v 상 전류, w 상 전류가 각각 순차적으로, 도 10b의 파형을 가지도록 제어할 수도 있다.
도 11은 제1 결선과 제2 결선에서의 모터의 간략한 등가 회로도를 도시한 도면이다.
도면을 참조하면, 도 11의 (a)는, 제1 결선인 Y 결선으로서, 모터(230)의 등가 회로도를 예시한다.
한편, Y 결선에서 Ia라는 전류를 제어하기 위하여 Va 전압이 인가되었을 경우, 고정자 권선은 3/2Ra가 된다.
다음, 도 11의 (b)는, 제1 결선인 Δ 결선으로서, 모터(230)의 등가 회로도를 예시한다.
한편, △ 결선에서, Ia라는 출력 전류 출력시, Va는 Y 결선 대비 1/3배로 줄게 된다. 그 이유는 권선 저항이 1/2Ra로 작아지기 때문이다.
이에 제어부(170) 또는 인버터 제어부(430)는, 이 차이를 이용하여, 절환 장치(450)에 의해 정상적으로 결선이 변경되었는지 확인할 수 있다.
도 12a는 제1 결선, 및 제2 결선에서 제1 레벨 및 제2 레벨의 상 전류가 순차적을 인가됨에 따라, 검출되는 출력 전압을 예시하는 도면이다.
도면을 참조하면, 도 12a의 Poa 기간은, 제1 결선에서, 제1 레벨(Lvm1) 및 제2 레벨(LVm2)의 U상 출력 전류, V상 출력 전류, W상 출력 전류가 출력됨에 따라, Poa1 기간 동안의 U상 출력 전압, Poa2 기간 동안의 V상 출력 전압, Poa3 기간 동안의 W상 출력 전압을 예시한다.
도면에서와 같이, Poa 기간 동안의 U상 출력 전압, Poa 기간 동안의 V상 출력 전압, Poa 기간 동안의 W상 출력 전압은, 각각 2개의 전압 레벨을 가질 수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서, 제1 레벨(Lvm1) 및 제2 레벨(LVm2)의 각 상(U,V,W) 출력 전류와, 각 상(U,V,W) 출력 전압에 기초하여, 각 상(U,V,W)의 제1 권선 저항을 연산할 수 있다.
다음, 도 12a의 Pob 기간은, 제2 결선에서, 제1 레벨(Lvm1) 및 제2 레벨(LVm2)의 U상 출력 전류, V상 출력 전류, W상 출력 전류가 출력됨에 따라, Pob1 기간 동안의 U상 출력 전압, Pob2 기간 동안의 V상 출력 전압, Pob3 기간 동안의 W상 출력 전압을 예시한다.
도면에서와 같이, Pob 기간 동안의 U상 출력 전압, Pob 기간 동안의 V상 출력 전압, Pob 기간 동안의 W상 출력 전압은, 각각 2개의 전압 레벨을 가질 수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서, 제1 레벨(Lvm1) 및 제2 레벨(LVm2)의 각 상(U,V,W) 출력 전류와, 각 상(U,V,W) 출력 전압에 기초하여, 각 상(U,V,W)의 제2 권선 저항을 연산할 수 있다.
그리고, 제어부(170) 또는 인버터 제어부(430)는, 각 상(U,V,W)의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항에 기초하여, 절환 장치(450)의 이상 유무를 결정할 수 있다.
도 12b는, 절환 장치(450)의 동작이 정상인 경우의, 각 상(U,V,W)의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.96, 0.96, 0.97Ω일 수 있다.
한편, U상의 권선 저항, V상의 권선 저항, W상의 권선 저항 각각은, 도 7의 a상 권선(CA)에 대응하는 권선 저항, b상 권선(CB)에 대응하는 권선 저항, c상 권선(CC)에 대응하는 권선 저항에 대응할 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.41, 0.42, 0.42Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 2.3, 2.3, 2.3 일수 있다.
즉, 절환 장치(450)의 동작이 정상인 경우에, 제1 결선에서의 권선 저항의 정상 범위인 제1 범위는 대략 0.7 내지 1.2Ω인 것이 바람직하며, 제2 결선에서의 권선 저항의 정상 범위인 제2 범위는 대략 0.3 내지 0.6Ω인 것이 바람직하며, 제2 결선 대비 제1 결선의 권선 저항비의 정상 범위인 제3 범위는, 대략 2.0 내지 2.5인 것이 바람직하다.
이러한 도 12b의 데이터를 기초로, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)의 이상 유무를 결정할 수 있다.
예를 들어, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항의 비율을 각 상(U,V,W) 별로 연산하고, 연산된 비율 중 적어도 한 상의 비율이 소정 범위를 벗어난 경우, 절환 장치(450)가 이상인 것으로 결정하고, 모터(230)의 권선을 제1 결선 또는 제2 결선 중 어느 하나로 동작하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 이상시, 어느 하나의 결선 상태로만 동작하도록 함으로써, 모터(230)의 비상 운전이 가능하게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항을 각 상(U,V,W) 별로 연산하고, 각 상(U,V,W) 별 제1 권선 저항의 범위가 제1 범위를 벗어나고, 각 상(U,V,W) 별 제2 권선 저항의 범위가 제2 범위를 벗어난 경우, 모터(230)의 고장으로 결정할 수 있다. 이에 따라, 모터(230) 고장 여부를 간편하게 결정할 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항을 각 상(U,V,W) 별로 연산하고, 각 상(U,V,W) 별 제1 권선 저항의 범위가 제1 범위 이내이며, 각 상(U,V,W) 별 제2 권선 저항의 범위가 제2 범위 이내인 경우, 절환 장치(450)가 정상인 것으로 결정하고, 모터(230)의 운전 주파수에 따라, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하도록 제어할 수 있다. 이에 따라, 절환 장치(450)가 정상 동작하는 경우 전력 변환 효율 또는 모터(230) 구동 효율을 증가시킬 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항을 각 상(U,V,W) 별로 연산하고, 각 상(U,V,W) 별 제1 권선 저항의 범위가 제1 범위 이내이며, 각 상(U,V,W) 별 제2 권선 저항의 범위가 제2 범위를 벗어난 경우, 절환 장치(450)가 이상인 것으로 결정하고, 모터(230)의 권선이 제1 결선으로만 동작하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 이상시, 어느 하나의 결선 상태로만 동작하도록 함으로써, 모터(230)의 비상 운전이 가능하게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항과, 제2 권선 저항을 각 상(U,V,W) 별로 연산하고, 각 상(U,V,W) 별 제1 권선 저항의 범위가 제1 범위를 벗어나며, 각 상(U,V,W) 별 제2 권선 저항의 범위가 제2 범위 이내인 경우, 절환 장치(450)가 이상인 것으로 결정하고, 모터(230)의 권선이 제2 결선으로만 동작하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 이상시, 어느 하나의 결선 상태로만 동작하도록 함으로써, 모터(230)의 비상 운전이 가능하게 된다.
도 13a 내지 도 13c는, 제1 결선에서 제2 결선으로의 전환시의, 각 상(U,V,W)의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
먼저, 도 13a의 (a)는 절환 장치(450) 중 1 개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 13a의 (b)는, 도 13a의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.97, 0.97, 0.97Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.71, 0.41, 0.72Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 1.4, 2.4, 1.4 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, V상에 대해서만 정상 범위인 제3 범위 이내이므로, V상의 저항비만 정상이고, U상, W상의 저항비는 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위 이내이므로, 제1 결선에서의 동작은 정상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항 중 V상의 경우만 정상 범위인 제2 범위 이내 이며, U상, W상의 경우 제2 범위를 벗어나므로, 제2 결선에서의 동작은 이상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 13a의 (a)의 경우, 절환 장치(450)를 제어하여, 제2 결선이 아닌 제1 결선으로만 동작하도록 제어할 수 있다.
도 13b의 (a)는 절환 장치(450) 중 2개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 13b의 (b)는, 도 13b의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.89, 0.89, 0.90Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 1.20, 0.47, 0.64Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 0.7, 1.9, 1.4 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, 모든 상에 대해 정상 범위인 제3 범위를 벗어나므로, 절환 장치(450) 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위 이내이므로, 제1 결선에서의 동작은 정상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항 중 V상의 경우만 정상 범위인 제2 범위 이내 이며, U상, W상의 경우 제2 범위를 벗어나므로, 제2 결선에서의 동작은 이상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 13b의 (a)의 경우, 절환 장치(450)를 제어하여, 제2 결선이 아닌 제1 결선으로만 동작하도록 제어할 수 있다.
도 13c의 (a)는 절환 장치(450) 중 3 개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 13c의 (b)는, 도 13c의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.97, 0.97, 0.97Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.96, 0.98, 0.97Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 1.0, 0.99, 1.0 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, 모든 상에 대해 정상 범위인 제3 범위를 벗어나므로, 절환 장치(450) 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위 이내이므로, 제1 결선에서의 동작은 정상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제2 범위를 벗어나므로, 제2 결선에서의 동작은 이상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 13c의 (a)의 경우, 절환 장치(450)를 제어하여, 제2 결선이 아닌 제1 결선으로만 동작하도록 제어할 수 있다.
도 14a 내지 도 14c는, 제2 결선에서 제2 결선으로의 전환시의, 각 상(U,V,W)의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
먼저, 도 14a의 (a)는 절환 장치(450) 중 1 개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 14a의 (b)는, 도 14a의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 1.23, 0.48, 0.67Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.40, 0.40, 0.40Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 3.1, 1.2, 1.7 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, 모든 상에 대해 정상 범위인 제3 범위를 벗어나므로, 절환 장치(450) 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위를 벗어나므로, 제1 결선에서의 동작은 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제2 범위 이내 이므로, 제2 결선에서의 동작은 정상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 14a의 (a)의 경우, 절환 장치(450)를 제어하여, 제1 결선이 아닌 제2 결선으로만 동작하도록 제어할 수 있다.
도 14b의 (a)는 절환 장치(450) 중 2개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 14b의 (b)는, 도 14b의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.68, 0.68, 0.41Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.4, 0.4, 0.41Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 1.7, 1.7, 1.0 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, 모든 상에 대해 정상 범위인 제3 범위를 벗어나므로, 절환 장치(450) 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위를 벗어나므로, 제1 결선에서의 동작은 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제2 범위 이내 이므로, 제2 결선에서의 동작은 정상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 14b의 (a)의 경우, 절환 장치(450)를 제어하여, 제1 결선이 아닌 제2 결선으로만 동작하도록 제어할 수 있다.
도 14c의 (a)는 절환 장치(450) 중 3 개의 릴레이가 이상 동작하는 경우의 모터(230)의 등가 회로도를 예시한다.
다음, 도 14c의 (b)는, 도 14c의 (a)의 경우의 제1 권선 저항과, 각 상(U,V,W)의 제2 권선 저항, 및 그 비율을 나타내는 도면이다.
도면을 참조하면, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.39, 0.41, 0.41Ω일 수 있다.
한편, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항은, 각각 0.4, 0.4, 0.41Ω일 수 있다.
이와 관련하여, 제2 결선 대비 제1 결선에서의 권선 저항의 비율인, U상의 권선 저항비, V상의 권선 저항비, W상의 권선 저항비는, 각각 0.98, 1.0, 1.0 일수 있다.
제어부(170) 또는 인버터 제어부(430)는, 제2 결선 대비 제1 결선에서의 권선 저항비가, 모든 상에 대해 정상 범위인 제3 범위를 벗어나므로, 절환 장치(450) 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제1 범위를 벗어나므로, 제1 결선에서의 동작은 이상으로 판단할 수 있다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제2 결선에서의 U상의 권선 저항, V상의 권선 저항, W상의 권선 저항이, 모두 정상 범위인 제2 범위 이내 이므로, 제2 결선에서의 동작은 정상으로 판단할 수 있다.
이에 따라, 제어부(170) 또는 인버터 제어부(430)는, 도 14c의 (a)의 경우, 절환 장치(450)를 제어하여, 제1 결선이 아닌 제2 결선으로만 동작하도록 제어할 수 있다.
도 15는 본 발명의 다른 실시에에 따른 모터 구동 장치의 동작방법을 나타내는 순서도이고, 도 16a 내지 도 16c는 도 15의 동작 설명에 참조되는 도면이다.
도 15를 참조하면, 도 15의 동작방법은, 도 9a의 동작방법과 유사하나, 제930 단계(S930) 이후에, 제950 단계(S950) 내지 제965(S965)가 더 수행되는 것에 그 차이가 있다.
이에, 제910 단계(S910), 제920 단계(S920), 제930 단계(S930)는 도 9a의 설명을 참조한다.
한편, 도며에서는, 제910 단계(S910), 제920 단계(S920), 제930 단계(S930)만을 도시하나, 이에 한정되지 않고, 도 9b의 제910 단계(S910), 제920 단계(S920), 제922 단계(S922), 제930 단계(S930), 제932 단계(S932)가 수행된 이후, 제950 단계(S950)가 수행되는 것도 가능하다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 제1 결선에서의 제1 권선 저항과, 제2 결선에서의 제2 권선 저항을 연산한다. 특히, 각 상(U,V,W) 별로 제1 결선에서의 제1 권선 저항과, 제2 결선에서의 제2 권선 저항을 연산할 수 있다.
다음, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위 이내인지 여부를 판단한다(S950).
상술한 바와 같이, 제1 범위는, 0.7 내지 1.2이고, 제2 범위는 0.3 내지 0.6으로 예시될 수 있다.
다음, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위 이내인 경우, 모터(230)의 운전 주파수에 따라, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하도록 제어할 수 있다(S952).
이에 따라, 절환 장치(450)가 정상 동작하는 경우 전력 변환 효율 또는 모터(230) 구동 효율을 증가시킬 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하는 동안, 모터(230)는 정지하지 않고, 계속 동작하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 절환 동작시에 모터(230)가 정지하지 않으므로, 모터(230)의 동작 효율을 향상시킬 수 있게 된다.
한편, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)가, 모터(230)의 권선을 제1 결선에서 제2 결선으로 변환하는 동안, 모터(230)의 운전 주파수가, 제1 주파수에서 제2 주파수 까지 하강하다가, 다시 상승하도록 제어할 수 있다. 이와 같이, 절환 장치(450)의 절환 동작시에 모터(230)가 정지하지 않으므로, 모터(230)의 동작 효율을 향상시킬 수 있게 된다.
한편, 제950 단계(S950)가 충족하지 않은 경우, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위를 벗어난 것인지 여부를 판단한다(S955).
그리고, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위를 벗어난 경우, 절환 장치(450)가, 제1 결선으로만 동작하고 제2 결선으로는 동작하지 않도록 제어할 수 있다(S957). 이와 같이, 절환 장치(450)의 이상시, 어느 하나의 결선 상태로만 동작하도록 함으로써, 모터(230)의 비상 운전이 가능하게 된다.
한편, 제955 단계(S955)가 충족하지 않은 경우, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위를 벗어나고, 제2 권선 저항이 제2 범위 이내인지 여부를 판단한다(S960).
그리고, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위를 벗어나고, 제2 권선 저항이 제2 범위 이내인 경우, 절환 장치(450)가, 제2 결선으로만 동작하고 제1 결선으로는 동작하지 않도록 제어할 수 있다(S957). 이와 같이, 절환 장치(450)의 이상시, 어느 하나의 결선 상태로만 동작하도록 함으로써, 모터(230)의 비상 운전이 가능하게 된다.
한편, 제960 단계(S960)가 충족하지 않은 경우, 제어부(170) 또는 인버터 제어부(430)는, 제1 권선 저항이 제1 범위를 벗어나고, 제2 권선 저항이 제2 범위를 벗어난 것으로 판단하고, 모터(230)의 고장으로 결정할 수 있다(S965). 이에 따라, 모터(230) 고장 여부를 간편하게 결정할 수 있게 된다.
아울러, 제어부(170) 또는 인버터 제어부(430)는, 모터(230) 고장시, 모터(230)의 동작 정지는 물론, 인버터(420)의 동작 등도 정지시킴으로써, 모터 구동 장치(220) 내의 회로 소자의 손상 등을 방지할 수 있게 된다.
도 16a는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위 이내인 경우의, 모터(230)의 등가 회로도의 다양한 예를 예시한다.
도 16a의 (a)는, Y 결선인 제1 결선의 모터(230)의 등가 회로도를 나타내며, 도 16a의 (b)는, Δ 결선인 제2 결선의 모터(230)의 등가 회로도를 나타낸다.
도 15에서의 제952 단계(S952)와 같이, 제어부(170) 또는 인버터 제어부(430)는, 모터(230)의 운전 주파수에 따라, 제1 결선과 제2 결선 사이에서 가변되도록 제어할 수 있다.
도 16b는, 제1 권선 저항이 제1 범위 이내이고, 제2 권선 저항이 제2 범위 를 벗어난 경우의, 모터(230)의 등가 회로도의 다양한 예를 예시한다.
도 16b의 (a)는, 도 13c 와 같이, 3개의 릴레이 소자가 이상인 경우에 대응하며, 도 16b의 (b)는, 도 13b 와 같이, 2개의 릴레이 소자가 이상인 경우에 대응하며, 도 16b의 (c)는, 도 13a 와 같이, 1개의 릴레이 소자가 이상인 경우에 대응한다.
이에 따라, 도 16b의 경우, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)가, 제1 결선으로만 동작하고 제2 결선으로는 동작하지 않도록 제어할 수 있다.
도 16c는, 제1 권선 저항이 제1 범위를 벗어나고, 제2 권선 저항이 제2 범위 이내인 경우의, 모터(230)의 등가 회로도의 다양한 예를 예시한다.
도 16c의 (a)는, 도 13c 와 같이, 3개의 릴레이 소자가 이상인 경우에 대응하며, 도 16c의 (b)는, 도 13b 와 같이, 2개의 릴레이 소자가 이상인 경우에 대응하며, 도 16c의 (c)는, 도 13a 와 같이, 1개의 릴레이 소자가 이상인 경우에 대응한다.
이에 따라, 도 16c의 경우, 제어부(170) 또는 인버터 제어부(430)는, 절환 장치(450)가, 제2 결선으로만 동작하고 제1 결선으로는 동작하지 않도록 제어할 수 있다.
한편, 본 발명은 절환 장치(450)의 반복적 사용으로 절환 장치(450)의 수명이 열화되어 고장이 발생하게 되는 것을 방지하기 위해, 결선 변환을 제한하는 운전을 수행할 수 있다.
구체적으로, 제어부(170)는 제2 결선 상태에서, 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 모터(230)의 권선의 결선 변환을 제한할 수 있다. 따라서, 절환 장치(450)에 무리가 가지 않고, 절환 장치(450)의 고장이 방지된다. 여기서, 소정의 시간은 기 설정된 시간일 수 있다.
여기서, 모터(230)의 권선의 결선 변환을 제한하는 것은 절환 장치(450)가 제1 결선 또는 제2 결선으로 절환하지 않고, 제2 결선 상태를 유지하는 것을 의미한다.
제어부(170)는, 모터(230) 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 모터(230) 권선의 결선 변환을 허용할 수 있다. 제어부(170)는, 모터(230) 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 저속 이상 운전 횟수에 대한 누적 값을 초기화할 수 있다. 결선 상태 변경 제한을 무제한으로 유지하는 것이 아니라 일정 시간이 경과한 후, 다시 결선 변경을 허용하여서 압축기의 효율 향상을 도모할 수 있다.
제한 주파수에서, 제1 결선 상태에서 출력 전류 값은 제2 결선 상태에서 출력 전류 값 보다 작을 수 있다. 제한 주파수에서, 제1 결선 상태에서 출력 전류 값은 제2 결선 상태에서 출력 전류의 최고 값의 1/ sqrt(3) 배 보다 작을 수 있다.
또한, 제한 주파수는 제1 결선 상태에서 출력 전류 값은 제2 결선 상태에서 출력 전류 값 보다 작고, 제1 결선 상태에서 출력 전류 값은 제2 결선 상태에서 출력 전류의 최고 값의 1/ sqrt(3) 배 보다 작을 때 주파수로 정의될 수 있다.
제어부(170)는 제2 결선 상태에서, 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우, 모터(230)의 운전 주파수에 따라 모터(230)의 권선을 제1 결선 또는 제2 결선으로 변환할 수 있다.
구체적으로, 제2 결선 상태에서, 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우, 제어부(170)는, 모터(230)의 운전 주파수가 제1 운전 주파수 이하인 경우, 모터(230)의 권선을 제1 결선 상태가 되도록 제어하고, 모터(230)의 운전 주파수가 제1 운전 주파수 초과인 경우, 모터(230)의 권선을 제2 결선 상태가 되도록 제어할 수 있다.
다른 예로, 제어부(170)는 제2 결선 상태에서, 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우, 모터(230)의 운전 속도에 따라 모터(230)의 권선을 제1 결선 또는 제2 결선으로 변환할 수 있다.
구체적으로, 제2 결선 상태에서, 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만이면, 제어부(170)는 모터(230)의 운전 주파수가 제1 속도 이하인 경우, 모터(230)의 권선을 제1 결선 상태가 되도록 제어하고, 모터(230)의 운전 주파수가 제1 속도 초과인 경우, 모터(230)의 권선을 제2 결선 상태가 되도록 제어할 수 있다.
이하, 도 17을 참고하여, 결선 변환을 제한하는 모터(230) 구동 장치의 동작방법을 상술한다.
도 17은 본 발명의 또 다른 실시예에 따른 모터(230) 구동 장치의 동작방법을 나타내는 순서도이다. 도 17은 결선 변환을 제한하는 운전의 동작을 도시하고 있다.
도 17을 참조하면, 도 17의 동작방법은, 제160 단계(S160), 제170 단계(S170)는 서로 순서를 바꾸어 수행될 수도 있다.
먼저, 제어부(170)는 모터(230)의 권선이 제2 결선 상태인지 판단한다(S110). 제어부(170)는 모터(230)의 권선이 제2 결선 상태가 아니라고 판단되면 결선 변환 제한 운전의 수행을 종효한다.
이후, 제어부(170)는 모터(230)의 권선이 제2 결선 상태라고 판단되는 경우, 저속 이상 운전 횟수를 카운팅한다(S120).
이후, 제어부(170)는 소정의 시간 내에 저속 이상 운전 횟수가 제1 임계 값을 초과하는 지 판단한다(S130). 제어부(170)는 소정의 시간 내에 모터(230)의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 모터(230)의 권선의 결선 변환을 제한한다(S140). 물론, 제어부(170)는 제어부(170)는 소정의 시간 내에 저속 이상 운전 횟수가 제1 임계 값을 초과하지 않는 경우, 모터(230)의 권선의 결선 변환을 허용한다.
이후, 제어부(170)는 모터(230) 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과하는 지 판단한다(S150).
이후, 제어부(170)는 제1 시간이 경과했다고 판단되는 경우, 모터(230) 권선의 결선 변환을 허용한다(S160).
이후, 제어부(170)는 제1 시간이 경과했다고 판단되는 경우, 저속 이상 운전 횟수에 대한 누적 값을 초기화한다(S170).
한편, 도 4 내지 도 17에서 기술한 본 발명의 실시예에 따른 모터 구동 장치(220)는, 도 1의 공기조화기(100) 외에 다양한 홈 어플라이언스에 적용이 가능하다. 예를 들어, 세탁물 처리기기(세탁기, 건조기 등), 냉장고, 정수기, 로봇 청소기, 로봇, 차량, 드론 등 다양한 분야에서 적용가능하다.
한편, 본 발명의 모터 구동 장치 또는 공기조화기의 동작방법은, 모터 구동 장치 또는 공기조화기에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (16)

  1. 복수의 스위칭 소자를 구비하고, 스위칭 동작에 기초하여 교류 전원을 모터로 출력하는 인버터;
    상기 인버터와 상기 모터 사이에 배치되며, 상기 모터의 권선을 제1 결선 또는 제2 결선으로 변환하는 절환 장치; 및
    상기 인버터 및 상기 절환 장치를 제어하는 제어부;를 포함하고,
    상기 제어부는,
    상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 상기 모터의 권선의 결선 변환을 제한하는 것을 특징으로 하는 모터 구동 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 모터 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 상기 모터 권선의 결선 변환을 허용하는 모터 구동 장치.
  3. 제1항에 있어서,
    상기 제어부는, 상기 모터 권선의 결선 상태 변경 제한 상태에서, 제1 시간이 경과한 후, 상기 저속 이상 운전 횟수에 대한 누적 값을 초기화 하는 모터 구동 장치.
  4. 제1항에 있어서,
    상기 인버터에서 출력되는 출력 전류를 검출하는 출력 전류 검출부를 더 포함하고,
    상기 제한 주파수에서, 상기 제1 결선 상태에서 출력 전류 값은 상기 제2 결선 상태에서 출력 전류 값 보다 작은 것을 특징으로 하는 모터 구동 장치.
  5. 제4항에 있어서,
    상기 제한 주파수에서, 상기 제1 결선 상태에서 출력 전류 값은 상기 제2 결선 상태에서 출력 전류의 최고 값의 1/ sqrt(3) 배 보다 작은 것을 특징으로 하는 모터 구동 장치.
  6. 제1항에 있어서,
    상기 제어부는,
    상기 모터의 운전 주파수가 제1 운전 주파수 이하인 경우, 상기 모터의 권선을 상기 제1 결선 상태가 되도록 제어하는 모터 구동 장치.
  7. 제1항에 있어서,
    상기 제어부는,
    상기 모터의 운전 주파수가 제1 운전 주파수 초과인 경우, 상기 모터의 권선을 상기 제2 결선 상태가 되도록 제어하는 모터 구동 장치.
  8. 제1항에 있어서,
    상기 제어부는,
    상기 모터의 권선을 상기 제1 결선에서 상기 제2 결선으로 변환하는 동안, 상기 모터를 정지시키지 않고, 계속 동작하도록 제어하는 모터 구동 장치.
  9. 제1항에 있어서,
    상기 제어부는,
    상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우,
    상기 모터의 운전 주파수에 따라 상기 모터의 권선을 상기 제1 결선 또는 제2 결선으로 변환하는 모터 구동 장치.
  10. 제1항에 있어서,
    상기 제어부는,
    상기 제2 결선 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값 미만인 경우,
    상기 모터의 운전 속도에 따라 상기 모터의 권선을 상기 제1 결선 또는 제2 결선으로 변환하는 모터 구동 장치.
  11. 제10항에 있어서,
    상기 제어부는,
    상기 모터의 운전 주파수가 제1 속도 이하인 경우, 상기 모터의 권선을 상기 제1 결선 상태가 되도록 제어하는 모터 구동 장치.
  12. 제10항에 있어서,
    상기 제어부는,
    상기 모터의 운전 주파수가 제1 속도 초과인 경우, 상기 모터의 권선을 상기 제2 결선 상태가 되도록 제어하는 모터 구동 장치.
  13. 제1항에 있어서,
    상기 인버터에서 출력되는 출력 전류를 검출하는 출력 전류 검출부를 더 포함하고,
    상기 제어부는,
    상기 절환 장치 점검 모드에 따라, 제1 기간 동안, 상기 절환 장치의 동작에 따라 상기 모터의 권선이 상기 제1 결선인 상태에서 제1 레벨의 출력 전류가 상기 인버터에서 출력되며, 상기 제1 기간 이후 제2 기간 동안, 상기 절환 장치의 동작에 따라 상기 모터의 권선이 상기 제2 결선인 상태에서 상기 제1 레벨의 출력 전류가 상기 인버터에서 출력되는 것을 특징으로 하는 모터 구동 장치.
  14. 제1항에 있어서,
    상기 제어부는,
    상기 제1 결선에서의 상기 모터의 권선 저항과, 상기 제2 결선에서의 상기 모터의 권선 저항에 기초하여, 상기 절환 장치의 이상 동작 유무를 결정하는 것을 특징으로 하는 모터 구동 장치.
  15. 제14항에 있어서,
    상기 제어부는,
    상기 제1 권선 저항과, 상기 제2 권선 저항을 각 상 별로 연산하고,
    각 상 별 상기 제1 권선 저항의 범위가 제1 범위를 벗어나고, 각 상 별 상기 제2 권선 저항의 범위가 제2 범위를 벗어난 경우, 상기 모터의 고장으로 결정하고,
    각 상 별 상기 제1 권선 저항의 범위가 상기 제1 범위 이내이며, 각 상 별 상기 제2 권선 저항의 범위가 상기 제2 범위 이내인 경우, 상기 절환 장치가 정상인 것으로 결정하고, 상기 모터의 운전 주파수에 따라, 상기 절환 장치가, 상기 모터의 권선을 상기 제1 결선에서 상기 제2 결선으로 변환하도록 제어하는 것을 특징으로 하는 모터 구동 장치.
  16. 복수의 스위칭 소자를 구비하고, 스위칭 동작에 기초하여 교류 전원을 모터로 출력하는 인버터;
    상기 인버터와 상기 모터 사이에 배치되며, 상기 모터의 권선을 제1 결선 또는 제2 결선으로 변환하는 절환 장치; 및
    상기 인버터 및 상기 절환 장치를 제어하는 제어부;를 포함하고,
    상기 제어부는,
    상기 모터의 권선이 상기 제2 결선된 상태에서, 소정의 시간 내에 상기 모터의 운전 주파수가 제한 주파수 이하로 운전되는 저속 이상 운전 횟수가 제1 임계 값을 초과하는 경우, 상기 제2 결선을 유지하는 것을 특징으로 하는 모터 구동 장치.
KR1020210004777A 2021-01-13 2021-01-13 모터 구동 장치 및 이를 구비하는 공기조화기 KR102478880B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020210004777A KR102478880B1 (ko) 2021-01-13 2021-01-13 모터 구동 장치 및 이를 구비하는 공기조화기
CN202210009908.3A CN114765433A (zh) 2021-01-13 2022-01-06 马达驱动装置以及包括其的空调机
EP22150865.8A EP4030615B1 (en) 2021-01-13 2022-01-11 Motor driving device
US17/574,879 US11923797B2 (en) 2021-01-13 2022-01-13 Motor driving device and air conditioner including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210004777A KR102478880B1 (ko) 2021-01-13 2021-01-13 모터 구동 장치 및 이를 구비하는 공기조화기

Publications (2)

Publication Number Publication Date
KR20220102427A true KR20220102427A (ko) 2022-07-20
KR102478880B1 KR102478880B1 (ko) 2022-12-16

Family

ID=79316709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210004777A KR102478880B1 (ko) 2021-01-13 2021-01-13 모터 구동 장치 및 이를 구비하는 공기조화기

Country Status (4)

Country Link
US (1) US11923797B2 (ko)
EP (1) EP4030615B1 (ko)
KR (1) KR102478880B1 (ko)
CN (1) CN114765433A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985863A4 (en) * 2019-06-14 2023-07-05 Hitachi, Ltd. DRIVING DEVICE FOR THREE-PHASE AC MOTORS, RAILWAY VEHICLE EQUIPPED THEREOF, AND DRIVING METHOD FOR THREE-PHASE AC MOTORS
WO2022140610A1 (en) * 2020-12-22 2022-06-30 Premier Energy Holdings, Inc. Converting solar pv energy into thermal energy storage using heat-pump and resistive heating elements in water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190040288A (ko) * 2016-10-31 2019-04-17 미쓰비시덴키 가부시키가이샤 공기 조화기 및 구동 장치
KR20200007045A (ko) * 2017-07-25 2020-01-21 미쓰비시덴키 가부시키가이샤 구동 장치, 압축기, 공기 조화기 및 구동 방법
KR20200112505A (ko) * 2019-03-22 2020-10-05 엘지전자 주식회사 압축기 모터 제어 장치 및 그것의 제어방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69721817D1 (de) * 1996-12-03 2003-06-12 Elliott Energy Systems Inc Elektrische anordnung für turbine/alternator auf gemeinsamer achse
US8390221B2 (en) * 2010-09-27 2013-03-05 Emerson Climate Technology, Inc. Systems and methods for protecting three-phase motors
EP2884203B1 (en) * 2012-06-29 2019-11-13 Mitsubishi Electric Corporation Heat pump device
KR102278117B1 (ko) * 2016-10-31 2021-07-15 미쓰비시덴키 가부시키가이샤 구동 장치, 공기 조화기 및 전동기의 구동 방법
CN109863691B (zh) * 2016-10-31 2023-04-04 三菱电机株式会社 空气调和机以及空气调和机的控制方法
CN110915130B (zh) 2017-07-07 2023-12-08 三菱电机株式会社 马达驱动系统以及空调机
WO2019021448A1 (ja) * 2017-07-28 2019-01-31 三菱電機株式会社 空気調和機
EP3703247B1 (en) * 2017-10-24 2023-02-01 Mitsubishi Electric Corporation Electric motor driving apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190040288A (ko) * 2016-10-31 2019-04-17 미쓰비시덴키 가부시키가이샤 공기 조화기 및 구동 장치
KR20200007045A (ko) * 2017-07-25 2020-01-21 미쓰비시덴키 가부시키가이샤 구동 장치, 압축기, 공기 조화기 및 구동 방법
KR20200112505A (ko) * 2019-03-22 2020-10-05 엘지전자 주식회사 압축기 모터 제어 장치 및 그것의 제어방법

Also Published As

Publication number Publication date
US11923797B2 (en) 2024-03-05
EP4030615B1 (en) 2024-04-03
CN114765433A (zh) 2022-07-19
US20220224276A1 (en) 2022-07-14
KR102478880B1 (ko) 2022-12-16
EP4030615A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
EP3093584B1 (en) Outdoor fan motor driving device and air conditioner including the same
EP4030615B1 (en) Motor driving device
US11940194B2 (en) Power converting apparatus and air conditioner including the same
KR102478881B1 (ko) 모터 구동 장치 및 이를 구비하는 공기조화기
KR102074777B1 (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR102315586B1 (ko) 공기조화기 및 그 동작 방법
KR20190130763A (ko) 공기조화기의 제어 방법
KR20190051331A (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR101591326B1 (ko) 공기조화기의 전동기 구동장치
US20220220966A1 (en) Motor driving apparatus and air conditioner including the same
KR102010388B1 (ko) 모터 구동장치 및 이를 구비하는 공기조화기
KR102101730B1 (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
KR20210108251A (ko) 모터 구동 장치 및 이를 구비하는 공기조화기
KR102080519B1 (ko) 모터 구동장치 및 이를 구비하는 공기조화기
KR102010387B1 (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR102201563B1 (ko) 모터 구동 장치 및 이를 구비하는 홈 어플라이언스
KR20190108000A (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR102017150B1 (ko) 압축기 구동장치 및 이를 구비하는 공기조화기
KR102402836B1 (ko) 공기조화기 및 그 동작 방법
KR102080517B1 (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
KR102063633B1 (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
KR20210088344A (ko) 전자팽창밸브 구동장치 및 이를 구비하는 공기조화기
KR20210108252A (ko) 모터 구동 장치 및 그 동작 방법
KR20190107997A (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR20210108253A (ko) 모터 구동 장치 및 이를 구비하는 공기조화기

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant