KR20220097180A - Method for manufacturing magnetic nanoparticles conjugated with chelating ligand and magnetic nanoparticles conjugated with chelating ligand manufactured thereby - Google Patents
Method for manufacturing magnetic nanoparticles conjugated with chelating ligand and magnetic nanoparticles conjugated with chelating ligand manufactured thereby Download PDFInfo
- Publication number
- KR20220097180A KR20220097180A KR1020210125088A KR20210125088A KR20220097180A KR 20220097180 A KR20220097180 A KR 20220097180A KR 1020210125088 A KR1020210125088 A KR 1020210125088A KR 20210125088 A KR20210125088 A KR 20210125088A KR 20220097180 A KR20220097180 A KR 20220097180A
- Authority
- KR
- South Korea
- Prior art keywords
- nta
- magnetite
- magnetic nanoparticles
- particles
- nanoparticles
- Prior art date
Links
- 239000003446 ligand Substances 0.000 title claims abstract description 21
- 239000002122 magnetic nanoparticle Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002245 particle Substances 0.000 claims abstract description 66
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims abstract description 43
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 32
- 229920002125 Sokalan® Polymers 0.000 claims abstract description 23
- 239000013522 chelant Substances 0.000 claims abstract description 19
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 19
- 125000000524 functional group Chemical group 0.000 claims abstract description 14
- 125000003277 amino group Chemical group 0.000 claims abstract description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 11
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 10
- 125000003172 aldehyde group Chemical group 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 abstract description 37
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 230000001268 conjugating effect Effects 0.000 abstract description 3
- 239000004584 polyacrylic acid Substances 0.000 description 18
- 238000007306 functionalization reaction Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000012153 distilled water Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 8
- 239000011247 coating layer Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 229910002808 Si–O–Si Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- IFQUWYZCAGRUJN-UHFFFAOYSA-N ethylenediaminediacetic acid Chemical compound OC(=O)CNCCNCC(O)=O IFQUWYZCAGRUJN-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- -1 unlike the prior art Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Compounds Of Iron (AREA)
Abstract
본 발명은 (a) 마그네타이트(Fe3O4) 입자 표면을 개질해 니트릴로트리아세트산(nitrilotriacetic acid, NTA)과 펩타이드 결합을 형성할 수 있는 기능기를 도입하는 단계, 및 (b) 상기 표면에 기능기가 도입된 마그네타이트 입자를 니트릴로트리아세트산과 반응시켜 마그네이트 입자 표면에 니트릴로트리아세트산을 접합시키는 단계를 포함하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법 및 이에 의해 제조된 킬레이트 리간드가 접합된 자성 나노입자에 대한 것으로서, 본 발명에 의하면, 마그네타이트(magnetite, Fe3O4) 나노입자 표면을, (3-aminopropyl)triethoxysilane (APTES) 또는 polyethylenimine (PEI)를 이용해 아미노기 기능화시키거나 polyacrylic acid (PAA)를 이용해 카로복실기 기능화시킨 후에 킬레이트 리간드(NTA)를 접합시켜 자성 나노입자를 제조함으로써 종래 기술과 달리 대량 합성이 가능하다는 장점을 가진다.The present invention provides (a) magnetite (Fe 3 O 4 ) by modifying the particle surface to introduce a functional group capable of forming a peptide bond with nitrilotriacetic acid (NTA), and (b) the functional group on the surface A method for preparing magnetic nanoparticles conjugated with a chelate ligand comprising the step of conjugating nitrilotriacetic acid to the surface of the magnetite particles by reacting the introduced magnetite particles with nitrilotriacetic acid, and magnetic nanoparticles conjugated with a chelate ligand prepared thereby As for, according to the present invention, magnetite (magnetite, Fe 3 O 4 ) The surface of the nanoparticles, (3-aminopropyl) triethoxysilane (APTES) or polyethylenimine (PEI) using an amino group functionalized or using polyacrylic acid (PAA) Unlike the prior art, mass synthesis is possible by preparing magnetic nanoparticles by conjugating a chelating ligand (NTA) after functionalizing the carboxyl group.
Description
본 발명은 표면에 킬레이트 리간드가 부착된 자성 나노입자의 제조방법 및 이에 의해 제조된 킬레이트 리간드가 접합된 자성 나노입자에 대한 것이다. The present invention relates to a method for preparing magnetic nanoparticles having a chelate ligand attached to the surface and magnetic nanoparticles to which a chelate ligand is conjugated.
킬레이트(chelate) 기반 센서는 금속 및 화학 검출기, 습도 센서, 바이오 센서 등 환경 및 생물학 분야에서 중요한 역할을 한다. Chelate-based sensors play an important role in environmental and biological fields, such as metal and chemical detectors, humidity sensors, and biosensors.
킬레이트 기반 센서에 있어서 금속 이온은 센싱 입자 표면의 킬레이트 리간드에만 부착되어 자극제(stimulator) 역할을 하며, 또한, 센싱 입자는 킬레이트와 금속 이온으로 이루어진 짝에 이차적으로 부착되는 화학 물질에 의해 자극될 수 있다. In a chelate-based sensor, metal ions are attached only to the chelating ligand on the surface of the sensing particle and serve as a stimulator, and the sensing particle can be stimulated by a chemical substance that is secondary to a chelate and metal ion pair. .
이러한 메커니즘은 일반적으로 니트릴로트리아세트산(nitrilotriacetic acid, NTA) , 에틸렌디아민디아세테이트(EDDA), 에틸렌디아민테트라아세트산(EDTA) 등 기능기와 다른 물질에 대한 친화도 서로 다른 킬레이트의 유형에 의해 결정된다. This mechanism is generally determined by the type of chelate with different affinity for functional groups and other substances, such as nitrilotriacetic acid (NTA), ethylenediaminediacetate (EDDA), and ethylenediaminetetraacetic acid (EDTA).
킬레이트 기반 센서의 성능 개선과 센서 입자의 용이한 회수를 위해, Fe3O4/PAM(polyacrylamide)/NTA-Ni2+ 등과 같이 킬레이트로 표면 개질된 자성나노입자를 합성하는 방법에 대한 연구가 보고된 바 있으나, 해당 합성 방법 등 종래 기술에 의하면 장시간의 환류(reflux)와 합성 중 비활성 기체 주입 등 복잡한 반응 조건이 요구되어 대량 합성에 부적합하다는 단점을 가진다. A study on synthesizing magnetic nanoparticles surface-modified with chelates such as Fe 3 O 4 /PAM(polyacrylamide)/NTA-Ni 2+ , etc. is reported for improved performance of chelate-based sensors and easy recovery of sensor particles However, according to the prior art such as the corresponding synthesis method, complex reaction conditions such as reflux for a long time and injection of inert gas during synthesis are required, which makes it unsuitable for mass synthesis.
본 발명은 종래 기술과 달리 킬레이트로 표면 개질된 자성나노입자의 대량 합성이 가능한 새로운 제조방법 및 이에 의해 제조된 킬레이트 리간드가 접합된 자성 나노입자를 제공하는 것을 그 목적으로 한다. An object of the present invention is to provide a novel manufacturing method capable of mass-synthesizing magnetic nanoparticles surface-modified with a chelate, unlike the prior art, and magnetic nanoparticles conjugated with a chelate ligand prepared thereby.
상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 마그네타이트(Fe3O4) 입자 표면을 개질해 니트릴로트리아세트산(nitrilotriacetic acid, NTA)과 펩타이드 결합을 형성할 수 있는 기능기를 도입하는 단계, 및 (b) 상기 표면에 기능기가 도입된 마그네타이트 입자를 니트릴로트리아세트산과 반응시켜 마그네이트 입자 표면에 니트릴로트리아세트산을 접합시키는 단계를 포함하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법을 제안한다. In order to achieve the above technical object, the present invention provides a functional group capable of forming a peptide bond with nitrilotriacetic acid (NTA) by modifying the surface of the magnetite (Fe 3 O 4 ) particle (a) introducing a functional group, and (b) reacting the magnetite particles having the functional group introduced to the surface with nitrilotriacetic acid to bond nitrilotriacetic acid to the surface of the magnetite particles.
또한, 상기 단계 (a)에서, 마그네타이트(Fe3O4) 입자 표면을 (3-아미노프로필)트리에톡시실란(APTES)으로 개질해 아미노기를 도입하고 글루타르알데히드(glutaraldehyde)와 반응시켜 말단에 알데히드기를 형성시키는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법을 제안한다. In addition, in step (a), the magnetite (Fe 3 O 4 ) particle surface is modified with (3-aminopropyl) triethoxysilane (APTES) to introduce an amino group and react with glutaraldehyde to form a terminal A method for preparing magnetic nanoparticles conjugated with a chelate ligand, characterized in that it forms an aldehyde group, is proposed.
또한, 상기 단계 (a)에서, 마그네타이트(Fe3O4) 입자 표면을 폴리에틸렌이민(PEI)으로 개질해 아미노기를 도입하고 글루타르알데히드(glutaraldehyde)와 반응시켜 말단에 알데히드기를 형성시키는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법을 제안한다. In addition, in step (a), the magnetite (Fe 3 O 4 ) particle surface is modified with polyethyleneimine (PEI) to introduce an amino group and react with glutaraldehyde to form an aldehyde group at the end, characterized in that A method for preparing magnetic nanoparticles conjugated with a chelating ligand is proposed.
또한, 상기 단계 (a)에서, 마그네타이트(Fe3O4) 입자 표면을 폴리아크릴산(PAA)으로 개질해 카르복실기를 도입하는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법을 제안한다. In addition, in step (a), magnetite (Fe 3 O 4 ) We propose a method for producing magnetic nanoparticles conjugated with a chelate ligand, characterized in that the particle surface is modified with polyacrylic acid (PAA) to introduce a carboxyl group.
그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 따라 제조된 킬레이트 리간드가 접합된 자성 나노입자를 제안한다. And, in another aspect of the present invention, a magnetic nanoparticle to which a chelating ligand prepared according to the above preparation method is conjugated is proposed.
본 발명에 의하면, 마그네타이트(magnetite, Fe3O4) 나노입자 표면을, (3-aminopropyl)triethoxysilane (APTES) 또는 polyethylenimine (PEI)를 이용해 아미노기 기능화시키거나 polyacrylic acid (PAA)를 이용해 카로복실기 기능화시킨 후에 킬레이트 리간드(NTA)를 접합시켜 자성 나노입자를 제조함으로써 종래 기술과 달리 대량 합성이 가능하다는 장점을 가진다. According to the present invention, magnetite (magnetite, Fe 3 O 4 ) The surface of the nanoparticles, (3-aminopropyl) triethoxysilane (APTES) or polyethylenimine (PEI) to functionalize an amino group, or polyacrylic acid (PAA) to functionalize a carboxyl group Unlike the prior art, mass synthesis is possible by preparing magnetic nanoparticles by conjugating a chelating ligand (NTA) after fusion.
도 1은 합성된 상태 그대로의(as-synthesized) Fe3O4 및 중간 기능화된(intermediate functionalized) Fe3O4 나노입자의 TEM 이미지이다.
도 2는 합성된 상태 그대로의(as-synthesized) Fe3O4 및 중간 기능화된(intermediate functionalized) Fe3O4 나노입자의 FT-IR 스펙트럼이다.
도 3는 다양한 유형의 중간 기능화(intermediate functionalization)를 통해 합성된 NTA 접합 Fe3O4 나노입자의 화학 구조를 보여주는 모식도이다.
도 4는 다양한 유형의 중간 기능화(intermediate functionalization)를 통해 합성된 NTA 접합 Fe3O4 나노입자의 FT-IR 이미지이다.
도 5는 다양한 유형의 중간 기능화(intermediate functionalization)를 통해 합성된 NTA 접합 Fe3O4 나노입자의 TEM 스펙트럼이다.
도 6은 합성된 상태 그대로의(as-synthesized) Fe3O4 나노입자, 중간 기능화된(intermediate functionalized) Fe3O4 나노입자 및 NTA 접합 Fe3O4 나노입자의 표면 전하를 측정한 결과이다.
도 7은 합성된 상태 그대로의(as-synthesized) Fe3O4 나노입자 및 NTA 접합 Fe3O4 나노입자의 히스테리시스 곡선이다. 1 is a TEM image of as-synthesized Fe 3 O 4 and intermediate functionalized Fe 3 O 4 nanoparticles.
2 is an FT-IR spectrum of as-synthesized Fe 3 O 4 and intermediate functionalized Fe 3 O 4 nanoparticles.
3 is a schematic diagram showing the chemical structure of NTA-conjugated Fe 3 O 4 nanoparticles synthesized through various types of intermediate functionalization.
4 is an FT-IR image of NTA-conjugated Fe 3 O 4 nanoparticles synthesized through various types of intermediate functionalization.
5 is a TEM spectrum of NTA-conjugated Fe 3 O 4 nanoparticles synthesized through various types of intermediate functionalization.
6 is a result of measuring the surface charge of as-synthesized Fe 3 O 4 nanoparticles, intermediate functionalized Fe 3 O 4 nanoparticles, and NTA-conjugated Fe 3 O 4 nanoparticles. .
7 is a hysteresis curve of as-synthesized Fe 3 O 4 nanoparticles and NTA-conjugated Fe 3 O 4 nanoparticles.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. In describing the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the embodiment according to the concept of the present invention may have various changes and may have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate that the described feature, number, step, operation, component, part, or a combination thereof exists, but one or more other features or numbers , it should be understood that it does not preclude the possibility of the existence or addition of steps, operations, components, parts, or combinations thereof.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다. Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
<실시예><Example>
1. 중간 기능화된(intermediate functionalized) Fe1. intermediate functionalized Fe 33 OO 44 나노입자 및 NTA 접합 Fe Nanoparticles and NTA-conjugated Fe 33 OO 44 나노입자의 합성 Synthesis of nanoparticles
(1-1) APTES를 사용해 아미노기 기능화한 코어-쉘 Fe(1-1) Core-shell Fe functionalized with amino groups using APTES 33 OO 44 @SiO@SiO 22 나노입자의 합성 Synthesis of nanoparticles
먼저, Fe3O4 나노입자는 공지의 in-situ SiO2 코팅 공정에 따라 합성하였다[G.S. An, S.W. Choi, D.H. Chae, H.S. Lee, H.-J. Kim, Y. Kim, Y.-G. Jung, and S.-C. Choi, Ceram. Int. 43 (2017) 12888-12892.; G.S. An, J.S. Han, J.R. Shin, D.H. Chae, J.U. Hur, H.-Y. Park, Y.-G. Jung, and S.-C. Choi, Ceram. Int. 44 (2018) 12233-12237]First, Fe 3 O 4 nanoparticles were synthesized according to a known in-situ SiO 2 coating process [GS An, SW Choi, DH Chae, HS Lee, H.-J. Kim, Y. Kim, Y.-G. Jung, and S.-C. Choi, Ceram. Int. 43 (2017) 12888-12892.; GS An, JS Han, JR Shin, DH Chae, JU Hur, H.-Y. Park, Y.-G. Jung, and S.-C. Choi, Ceram. Int. 44 (2018) 12233-12237]
450mL 에탄올과 50mL 증류수를 포함하는 혼합 용매에 분산된 Fe3O4 나노입자(2g) 용액을 염기성 pH로 조정한 후, (3-aminopropyl)triethoxysilane (APTES) 4 wt%의 에탄올계 용액을 적가하였다. 8시간 동안 격렬하게 교반한 후, 아미노기 관능화된 나노입자를 자기장에 의해 수집하고 에탄올과 증류수로 수회 세척하였다. After adjusting the solution of Fe 3 O 4 nanoparticles (2g) dispersed in a mixed solvent containing 450mL ethanol and 50mL distilled water to basic pH, (3-aminopropyl)triethoxysilane (APTES) 4 wt% of an ethanol-based solution was added dropwise. . After vigorous stirring for 8 hours, the amino-functionalized nanoparticles were collected by magnetic field and washed several times with ethanol and distilled water.
(1-2) PEI를 사용해 아미노기 기능화한 Fe(1-2) Fe with amino groups functionalized using PEI 33 OO 44 나노입자의 합성 Synthesis of nanoparticles
Fe3O4 나노입자(2g)를 100mL의 증류수와 4 wt%의 polyethylenimine (PEI) 용액에 녹였다. 다음으로, 이 용액을 실온에서 30분 동안 혼합한 후 80℃로 가열한 다음 격렬하게 교반하면서 10시간 동안 반응시키고 실온에 도달할 때까지 냉각시켰다. 얻어진 나노입자는 자기장을 유도하여 수집하고 증류수로 수회 세척한 후 증류수 내에 용액 상태로 보관하였다.Fe 3 O 4 nanoparticles (2g) were dissolved in 100 mL of distilled water and 4 wt% of polyethylenimine (PEI) solution. Next, the solution was mixed at room temperature for 30 minutes, heated to 80° C., reacted for 10 hours with vigorous stirring, and cooled until it reached room temperature. The obtained nanoparticles were collected by inducing a magnetic field, washed several times with distilled water, and then stored as a solution in distilled water.
(1-3) 아미노기 기능화된 Fe(1-3) Fe functionalized with amino groups 33 OO 44 나노입자 표면에 NTA 킬레이트 리간드 형성 Formation of NTA chelate ligands on the surface of nanoparticles
APTES 및 PEI를 포함하는 아미노기 기능화된 Fe3O4 나노입자 총 0.1g을 100mL의 증류수와 함께 용액으로 제조하고 반응 전에 기계적으로 교반하였다. 그런 다음, 글루타르알데히드(glutaraldehyde) 용액을 주입하고 8시간 동안 기계적으로 교반하였다. 자기장을 인가해 입자를 수집하고 증류수로 세척하여 미반응 시약을 제거하고 산성도를 중성으로 조정하였다. 그런 다음, 100mL의 증류수에 재분산하고 Nα,Nα-Bis(carboxymethyl)-Llysine hydrate (ABNTA, C10H18N2O6·xH2O) 용액과 혼합하였다. 반응은 격렬한 교반 조건하에서 실온에서 24시간 동안 이루어졌다. 마지막으로, 킬레이트 리간드가 부착된 Fe3O4 나노입자를 자석을 통해 수집하였다. 그런 다음 세척하고 증류수 내에 용액 상태로 보관하였다.A total of 0.1 g of amino group-functionalized Fe 3 O 4 nanoparticles containing APTES and PEI were prepared as a solution with 100 mL of distilled water and mechanically stirred before reaction. Then, a glutaraldehyde solution was injected and mechanically stirred for 8 hours. The particles were collected by applying a magnetic field, washed with distilled water to remove unreacted reagents, and the acidity was adjusted to neutral. Then, it was redispersed in 100 mL of distilled water and mixed with a solution of Nα,Nα-Bis(carboxymethyl)-Llysine hydrate (ABNTA, C 10 H 18 N 2 O 6· xH 2 O). The reaction was carried out for 24 hours at room temperature under vigorous stirring conditions. Finally, Fe 3 O 4 nanoparticles to which a chelating ligand is attached were collected through a magnet. It was then washed and stored as a solution in distilled water.
(2) PAA를 이용해 카르복실기 기능화시킨 Fe(2) Fe functionalized with a carboxyl group using PAA 33 OO 44 나노입자의 킬레이트 기능화 Chelate Functionalization of Nanoparticles
증류수로 여러 번 세척한 10g의 Fe3O4 나노입자가 포함된 분산용액(300mL)을 제조하고, polyacrylic acid (PAA)는 4 wt%의 100mL 용액으로 제조하였다. 이들 용액을 둥근 바닥 플라스크에서 혼합하고 75℃로 4시간 동안 가열한 후, 실온으로 냉각될 때까지 혼합 용액을 300rpm으로 기계적으로 교반하였다. 다음으로, PAA가 부착된 Fe3O4 0.25g을 증류수 100mL에 재분산하고 ABNTA 100mL와 혼합하여 농도 0.1 wt%의 용액을 얻은 후 기계적 교반을 통해 8시간 동안 반응시켰다. 이후 반응된 Fe3O4 나노입자를 세척하여 증류수 내에 용액 상태로 보관하였다.A dispersion solution (300 mL) containing 10 g of Fe 3 O 4 nanoparticles washed several times with distilled water was prepared, and polyacrylic acid (PAA) was prepared as a 100 mL solution of 4 wt%. These solutions were mixed in a round bottom flask and heated to 75° C. for 4 hours, then the mixed solution was mechanically stirred at 300 rpm until cooled to room temperature. Next, 0.25 g of PAA-attached Fe 3 O 4 was redispersed in 100 mL of distilled water and mixed with 100 mL of ABNTA to obtain a solution having a concentration of 0.1 wt%, followed by reaction for 8 hours through mechanical stirring. Thereafter, the reacted Fe 3 O 4 nanoparticles were washed and stored as a solution in distilled water.
2. Fe2. Fe 33 OO 44 및 중간 기능화(intermediate functionalized) Fe and intermediate functionalized Fe 33 OO 44 의 형태 변화change in shape
합성된 상태 그대로의(as-synthesized) Fe3O4 나노입자, APTES와 PEI로 아미노 기능화된 Fe3O4, PAA로 카르복실기로 기능화된 Fe3O4의 표면과 미세 구조를 조사하기 위해 투과 전자현미경(TEM) 분석을 수행했다(도 1). 합성된 Fe3O4 나노입자는 약 300 nm 크기로 관찰되었다. APTES 개질 입자의 크기 및 형태는 합성된 입자와 거의 동일하였다. 그러나, PEI로 기능화된 Fe3O4 입자는 대략 300 nm 크기의 반구형 형태인 것으로 드러났다. PEI 처리된 Fe3O4 입자의 표면에 3~4 nm 두께의 코팅층이 형성되었다. 이와는 대조적으로, 카르복실기로 기능화하기 위해 PAA 처리된 Fe3O4 나노입자는 표면에 5-6 nm 두께의 매끄럽고 불투명한 층이 형성되어 있었다. PAA 처리된 Fe3O4의 코어 크기는 약 320 nm로 합성된 상태의 Fe3O4보다 약간 크며, PEI 처리된 Fe3O4 입자와 비교하여 거의 완벽한 구형을 이루고 있었다. Transmission electrons to investigate the surface and microstructure of as-synthesized Fe 3 O 4 nanoparticles, Fe 3 O 4 amino-functionalized with APTES and PEI, and Fe 3 O 4 functionalized with carboxyl groups with PAA. Microscopic (TEM) analysis was performed ( FIG. 1 ). The synthesized Fe 3 O 4 nanoparticles were observed to have a size of about 300 nm. The size and shape of the APTES modified particles were almost identical to the synthesized particles. However, the PEI-functionalized Fe 3 O 4 particles were found to have a hemispherical shape with a size of approximately 300 nm. A coating layer with a thickness of 3 to 4 nm was formed on the surface of the PEI-treated Fe 3 O 4 particles. In contrast, Fe 3 O 4 nanoparticles treated with PAA for functionalization with carboxyl groups had a smooth and opaque layer with a thickness of 5-6 nm formed on the surface. The core size of the PAA-treated Fe 3 O 4 was about 320 nm, which was slightly larger than the synthesized Fe 3 O 4 , and had a nearly perfect spherical shape compared to the PEI-treated Fe 3 O 4 particles.
3. Fe3. Fe 33 OO 44 및 중간 기능화(intermediate functionalized) Fe and intermediate functionalized Fe 33 OO 44 의 기능기functional group of
합성된 상태 그대로의(as-synthesized) Fe3O4, APTES와 PEI를 사용한 아미노기 기능화된 Fe3O4, PAA를 사용한 카르복실기 기능화된 Fe3O4의 FT-IR 스펙트럼을 도 2에 도시하였다. 각 입자에 대해 Fe-O 피크는 약 600 cm-1에서 관찰되었다. 표면 개질 후 N-H 굽힘(bending) 결합의 굽힘으로 인해 1,500 ~ 1,700 cm-1에서 두드러진 아민 피크가 관찰되었다. SiO2의 축합(condensation)이 APTES의 기능화에 의해 동반되기 때문에 O-H 신장(stretching) 피크와 Si-O-Si 피크가 각각 약 3,000과 950~1,250 cm-1에서 관찰되었다. PEI를 사용한 또 다른 아미노 기능화의 경우, 고분자 탄소 사슬이 입자 표면에 붙어 있음에 따라 C-H 굽힘 피크가 1,300 cm-1에서 관찰되었다. 또한, PEI가 사용된 입자의 스펙트럼에서 1,000 ~ 1,200 및 3,300 ~ 3,500 cm-1에서 각각 C-N 굽힘 및 N-H 신장 결합이 관찰되었으며, 이 범위는, APTES가 사용된 입자의 스펙트럼에서 O-H 신장 결합 및 Si-O-Si 결합에 따른 강한 피크가 나타나는 범위였다. 약간의 차이가 관찰되었지만, 표면 처리된 두 입자 모두 아민기로 성공적으로 기능화되었음을 확인하였다. 대조적으로, PAA 처리된 입자의 경우, 고분자 탄소 사슬에서 유래한 C-H 굽힘 결합이 1,300 ~ 1,400 cm-1에서 관찰되었으며, 이는 PEI 처리된 입자와 유사하였다. 현저한 카르복실기 결합이 C=O 및 O-H 신장 결합 각각에 대해 1,600 ~ 1,800 및 3,000 cm-1에서 발견되었다. O-H 신장 결합은 2,700 ~ 3,300 cm-1에서 관찰되었으며, 이는 APTES 처리 입자의 범위(3,000 ~ 3,700 cm-1)보다 약간 낮았다. O-H 신장 결합에서의 차이를 고려하여 Fe3O4 표면에 카르복실기가 성공적으로 부착되었으며 O-H 결합의 대부분은 히드록실기가 아닌 카르복실산에서 유래함을 확인했다.FT-IR spectra of as-synthesized Fe 3 O 4 , amino-functionalized Fe 3 O 4 using APTES and PEI, and carboxyl-functionalized Fe 3 O 4 using PAA are shown in FIG. 2 . For each particle, the Fe-O peak was observed at about 600 cm -1 . After surface modification, a prominent amine peak was observed at 1,500 ~ 1,700 cm -1 due to bending of the NH bending bond. Since the condensation of SiO 2 is accompanied by the functionalization of APTES, the OH stretching peak and the Si-O-Si peak were observed at about 3,000 and 950-1,250 cm -1 , respectively. In the case of another amino functionalization using PEI, a CH bending peak was observed at 1,300 cm -1 as a polymer carbon chain was attached to the particle surface. In addition, CN bending and NH stretching bonds were observed at 1,000 ~ 1,200 and 3,300 ~ 3,500 cm -1 , respectively, in the spectra of the particles in which PEI was used, and these ranges were, in the spectrum of the particles in which APTES was used, OH stretching bonding and Si- It was a range in which a strong peak due to O-Si bonding appeared. Although some differences were observed, it was confirmed that both surface-treated particles were successfully functionalized with amine groups. In contrast, in the case of the PAA-treated particles, CH bending bonds derived from polymer carbon chains were observed at 1,300 ~ 1,400 cm -1 , which was similar to that of the PEI-treated particles. Significant carboxyl group bonds were found at 1,600-1,800 and 3,000 cm -1 for C=O and OH extension bonds, respectively. OH extension bonding was observed at 2,700-3,300 cm -1 , which was slightly lower than the range of APTES-treated particles (3,000-3,700 cm -1 ). Considering the difference in OH elongation bonding, it was confirmed that a carboxyl group was successfully attached to the Fe 3 O 4 surface, and most of the OH bonding was derived from a carboxylic acid rather than a hydroxyl group.
4. Fe4. Fe 33 OO 44 의 중간 기능화 과정에 대한 논의Discussion of the intermediate functionalization process of
상기 분석 결과로부터 APTES 및 PEI을 이용해 아미노 관능화된 입자에서 차이가 있음이 관찰되었다. APTES의 기능화 메커니즘은 Stober 방법과 유사한 가수분해 및 축합을 기반으로 한다. APTES 처리시 기존의 SiO2 층을 암모니아 용액으로 식각하고 가수분해 반응을 통해 미반응 수산기를 노출시켰다. 이들 수산기는 APTES와의 축합 지점(condensation site)으로 사용되었으며, 이 기능기는 APTES으로 처리된 Fe3O4의 FT-IR 스펙트럼에서 3,000 ~ 3,700 cm-1에서 관찰되었다. 그러나, PEI 및 PAA로 기능화된 Fe3O4에서 분명히 알 수 있듯이, 기능화 프로세스에는 중간층이 포함되지 않았다. 따라서, 이들 전구체는 Fe3O4 나노입자의 표면에 직접 부착되었다. 그러나, APTES의 분자 구조로 인해 Si-O-Si 결합이 연속적으로 형성될 수 없었다. 따라서, APTES 처리된 입자의 표면에는 코팅층이 관찰되지 않았다. PEI 및 PAA 처리된 입자의 경우 직접 결합된 탄소 사슬이 Fe3O4 나노입자 표면에 불투명한 층을 생성했다. From the above analysis results, it was observed that there was a difference in the amino-functionalized particles using APTES and PEI. The functionalization mechanism of APTES is based on hydrolysis and condensation similar to the Stober method. During APTES treatment, the existing SiO 2 layer was etched with ammonia solution, and unreacted hydroxyl groups were exposed through hydrolysis. These hydroxyl groups were used as condensation sites with APTES, and this functional group was observed at 3,000 to 3,700 cm -1 in the FT-IR spectrum of Fe 3 O 4 treated with APTES. However, as evident in Fe 3 O 4 functionalized with PEI and PAA, no interlayer was involved in the functionalization process. Therefore, these precursors were directly attached to the surface of Fe 3 O 4 nanoparticles. However, due to the molecular structure of APTES, Si-O-Si bonds could not be formed continuously. Therefore, no coating layer was observed on the surface of the APTES-treated particles. For the PEI and PAA treated particles, the directly bound carbon chains produced an opaque layer on the Fe 3 O 4 nanoparticle surface.
5. Fe5. Fe 33 OO 44 의 NTA 접합 및 중간 기능화 과정의 개요Overview of NTA Conjugation and Intermediate Functionalization Processes
도 3은 Fe3O4 나노입자 표면에 대한 NTA 부착 메카니즘과 다양한 방법으로 기능화된 Fe3O4의 화학 구조를 보여준다. NTA 부착 메카니즘은 정전기적 인력을 포함하는 축합 반응을 이용하였기 때문에, 아민의 경우 NTA와의 접합 전에 Fe3O4 입자가 글루타르알데히드(glutaraldehyde)와 부착되었다. FT-IR 스펙트럼에서 알 수 있듯이 중간 SiO2 층 또는 탄소층은 APTES 처리 Fe3O4 와 PEI 처리 Fe3O4 사이에서 가장 큰 차이를 보였다. 이와 같은 차이는 다른 농도의 활성화 부위, 정전기력 및 글루타르알데히드와의 화학적 친화성으로 인해 글루타르알데히드와의 다른 접합 특성을 유도할 수 있다. 글루타르알데히드는 NTA의 아민기와 또 다른 펩타이드 결합을 형성하여 Ni 및 W와 같은 여러 금속 이온과 결합할 수 있다. 그러나, PAA 처리된 Fe3O4 입자에는 아민기와 펩타이드 결합을 형성할 수 있는 카르복실산이 포함되어 있다. 따라서, PAA 처리된 Fe3O4는 NTA와 직접 접합될 수 있으며 가교제(cross-linker)로서 글루타르알데히드가 필요하지 않다.3 shows the mechanism of NTA attachment to the surface of Fe 3 O 4 nanoparticles and the chemical structure of Fe 3 O 4 functionalized in various ways. Since the NTA attachment mechanism used a condensation reaction including electrostatic attraction, in the case of amines, Fe 3 O 4 particles were attached with glutaraldehyde before conjugation with NTA. As can be seen from the FT-IR spectrum, the middle SiO 2 layer or carbon layer showed the greatest difference between APTES-treated Fe 3 O 4 and PEI-treated Fe 3 O 4 . Such differences may lead to different conjugation properties with glutaraldehyde due to different concentrations of activation sites, electrostatic forces and chemical affinity with glutaraldehyde. Glutaraldehyde can form another peptide bond with the amine group of NTA to bind with various metal ions such as Ni and W. However, the PAA-treated Fe 3 O 4 particles contain a carboxylic acid capable of forming a peptide bond with an amine group. Therefore, PAA-treated Fe 3 O 4 can be directly conjugated with NTA and does not require glutaraldehyde as a cross-linker.
6. NTA 접합 Fe6. NTA-conjugated Fe 33 OO 44 의 형태 변화change in shape
다양한 형태의 중간 기능화를 통해 얻은 NTA가 부착된 Fe3O4 입자의 FT-IR 스펙트럼을 도 4에 나타내었다. APTES가 부착된 입자와 대조적으로 NTA가 부착된 입자의 스펙트럼에서 강조된 피크가 관찰되었다. 도 2에 도시한 APTES으로 처리한 Fe3O4의 FT-IR 스펙트럼에서도 관찰된 독특한 피크가 600 cm-1(Fe-O)와 1,300 cm-1(C-H)에서도 관찰되었다. 카르복실기의 대표적인 결합인 C=O 피크는 1,500 ~ 1,700 cm-1에서 N-H 피크와 공존하였다. NTA의 이러한 독특한 피크는 PEI에 NTA가 부착된 입자의 FT-IR 스펙트럼에서도 관찰되었다. 이러한 피크는 PEI가 부착된 Fe3O4 나노입자의 스펙트럼과 대조를 이룬다. 일반적으로 NTA 부착된 각 입자의 FTIR 스펙트럼의 차이 대부분은 아미노 기능화 입자의 스펙트럼 차이와 거의 동일함을 알 수 있었다. 이와는 대조적으로, PAA로 카르복실화 반응을 통해 얻은 NTA가 부착된 Fe3O4 나노입자는, APTES 및 PEI 처리 입자와 유사하게 1,300 cm-1(C-H), 1,395 ~ 1,440 cm-1(O-H), 1,500 ~ 1,700 cm-1(N -H 및 C=O 공존)에서 두드러진 NTA 피크를 나타냈으나, 그 강도는 APTES 및 PEI 처리 입자보다 낮았다. 또한, O-H 신장 결합은 2,700 ~ 3,300 cm-1(PAA 처리 입자)에서 3,000 ~ 3,700 cm-1로 이동하였다. 아미노 또는 카르복실 기능화 입자와 NTA 결합 입자 사이의 이러한 차이는 NTA가 Fe3O4 입자의 표면에 성공적으로 부착되었음을 시사한다. FT-IR spectra of NTA-attached Fe 3 O 4 particles obtained through various types of intermediate functionalization are shown in FIG. 4 . In contrast to the APTES-attached particles, an accentuated peak was observed in the spectrum of the NTA-attached particles. The unique peaks observed in the FT-IR spectrum of Fe 3 O 4 treated with APTES shown in FIG. 2 were also observed at 600 cm -1 (Fe-O) and 1,300 cm -1 (CH). The C = O peak, which is a representative bond of the carboxyl group, coexisted with the NH peak at 1,500 ~ 1,700 cm -1 . This unique peak of NTA was also observed in the FT-IR spectrum of particles with NTA attached to PEI. This peak contrasts with the spectrum of PEI-attached Fe 3 O 4 nanoparticles. In general, it was found that most of the difference in the FTIR spectrum of each particle to which NTA was attached was almost the same as the difference in the spectrum of the amino-functionalized particle. In contrast, NTA-attached Fe 3 O 4 nanoparticles obtained through carboxylation with PAA were 1,300 cm -1 (CH), 1,395 to 1,440 cm -1 (OH) similar to APTES and PEI-treated particles. , showed a prominent NTA peak at 1,500 ~ 1,700 cm -1 (N-H and C=O coexistence), but its intensity was lower than that of APTES and PEI-treated particles. In addition, the OH extension bond shifted from 2,700 to 3,300 cm -1 (PAA-treated particles) to 3,000 to 3,700 cm -1 . This difference between the amino or carboxyl functionalized particles and the NTA-binding particles suggests that NTA was successfully attached to the surface of the Fe 3 O 4 particles.
7. NTA 접합 Fe7. NTA-conjugated Fe 33 OO 44 의 기능기functional group of
도 5에서 APTES으로 처리한 Fe3O4 입자 상에 부착된 NTA의 TEM 이미지에서 코어-쉘(core-shell) 구조는 구형의 Fe3O4 코어와 솜털 같은(fluffy) 쉘을 관찰할 수 있었다. 코어의 크기는 약 300 nm였으며, 코팅층의 표면은 물결 모양으로 관찰되었다. 그러나, 입자 각각이 개별적으로 코팅되지 않고 덩어리 상태에서 코팅층으로 덮였다. 코팅층의 두께는 15 ~ 30 nm로 측정되었으며, 이는 APTES 처리 입자보다 두꺼운 것으로 나타났다. 대조적으로, PEI 처리된 Fe3O4 입자의 이미지에서는 300 nm 크기의 둥근 입자가 다른 작은 입자(크기 150 ~ 250 nm)와 함께 관찰되었다.In the TEM image of NTA attached to the Fe 3 O 4 particles treated with APTES in FIG. 5 , the core-shell structure was observed with a spherical Fe 3 O 4 core and a fluffy shell. . The size of the core was about 300 nm, and the surface of the coating layer was observed to be wavy. However, each of the particles was not individually coated, but covered with a coating layer in the agglomerate state. The thickness of the coating layer was measured to be 15 to 30 nm, which was found to be thicker than the APTES-treated particles. In contrast, in the images of PEI-treated Fe 3 O 4 particles, round particles with a size of 300 nm were observed along with other small particles (size 150-250 nm).
이들 입자들은 응집되어 얇은 코팅층(8 ~ 15 nm)으로 연결되었다. PAA 처리된 입자의 경우 코어 Fe3O4 입자의 크기는 APTES 및 PEI 처리된 입자와 유사하게 약 300nm로 관찰되었다. 그러나, 다른 샘플과 달리 PAA 처리된 입자는 분리된 상태로 유지되었다. 코팅된 층은 Fe3O4 나노입자를 개별적으로 피복했고 약 10 nm의 두께인 것으로 관찰되었다. These particles were agglomerated and connected to a thin coating layer (8-15 nm). In the case of the PAA-treated particles, the size of the core Fe 3 O 4 particles was observed to be about 300 nm, similar to the APTES and PEI-treated particles. However, unlike other samples, the PAA treated particles remained separated. The coated layer covered the Fe 3 O 4 nanoparticles individually and was observed to be about 10 nm thick.
8. 다양한 종류의 중간 기능기를 가지는 NTA 접합 Fe8. NTA-conjugated Fe with various kinds of intermediate functional groups 33 OO 44 의 표면 전하surface charge of
입자에 미치는 반발력을 분석하기 위해, Fe3O4 시료의 각 기능화 단계에서의 표면 전하(surface charge)를 도 6에 도시하였다. 합성된 상태 그대로의 Fe3O4는 안정적인 분산에 충분한 반발력을 생성하기에 부족한 약간의 음전하를 가졌다. 그러나, APTES 처리 후에는 양(+)의 아민기로 인해 표면 전하는 35.4 eV로 증가하였다. 하지만, NTA 접합 후에는 -23.1 eV의 음전하로 바뀌었다. 표면 전하가 33.1eV에서 -28.2eV로 변화된 PEI 처리 입자에 대해서도 유사한 경향이 관찰되었다. 그러나, PAA 처리 후에는 입자 표면에 강한 음전하(-58.7 eV)가 형성되었고 NTA 부착 시 -46.2 eV로 변화하였다. In order to analyze the repulsive force on the particles, the surface charge at each functionalization step of the Fe 3 O 4 sample is shown in FIG. 6 . As-synthesized Fe 3 O 4 had a slight negative charge insufficient to generate sufficient repulsive force for stable dispersion. However, after APTES treatment, the surface charge increased to 35.4 eV due to the positive (+) amine group. However, after NTA conjugation, it was changed to a negative charge of -23.1 eV. A similar trend was observed for the PEI-treated particles whose surface charge was changed from 33.1 eV to -28.2 eV. However, after PAA treatment, a strong negative charge (-58.7 eV) was formed on the particle surface and changed to -46.2 eV when NTA was attached.
9. 다양한 종류의 중간 기능기를 가지는 NTA 접합 Fe9. NTA-conjugated Fe with various kinds of intermediate functional groups 33 OO 44 의 자기적 특성magnetic properties of
APTES, PEI, PAA 처리를 통해 합성된 Fe3O4와 NTA가 부착된 샘플의 히스테리시스 곡선은 도 7에 도시하였다. 어떤 히스테리시스 곡선에서도 보자력이나 잔류 자화가 발견되지 않았으며, 각 입자는 상자성 곡선을 나타냈다. 그러나, 합성된 상태 그대로의 Fe3O4의 포화 자화는 120 emu/g으로 가장 높았다. 그 다음은 각각 106 및 98 emu/g의 값을 나타내는 APTES 및 PEI 처리 샘플이 뒤따랐으며, 이들 값은 포화 자화 최대값의 각각 88.3%와 81.7%였다. PAA 처리된 입자는 94 emu/g으로 가장 낮은 값을 나타내어 합성된 상태 그대로의 Fe3O4의 78.3%였다.A hysteresis curve of the sample to which Fe 3 O 4 and NTA synthesized through APTES, PEI, and PAA treatment is attached is shown in FIG. 7 . No coercive force or residual magnetization was found in any of the hysteresis curves, and each particle exhibited a paramagnetic curve. However, the saturation magnetization of Fe 3 O 4 as it was synthesized was the highest at 120 emu/g. This was followed by the APTES and PEI treated samples, which exhibited values of 106 and 98 emu/g, respectively, which were 88.3% and 81.7% of the saturation magnetization maximum, respectively. The PAA-treated particles showed the lowest value at 94 emu/g, which was 78.3% of the as-synthesized Fe 3 O 4 .
요컨대, NTA 부착 과정을 통해 음(-)의 표면 전하와 함께 NTA가 적절하게 부착되는 것이 관찰되었다. 그러나, APTES 및 PEI에 의해 아미노 기능화된 샘플에서는 표면 전하의 역전(inversion)이 발생했다. 이 역전 과정에서 pH 역전과 기능기의 변화로 인해 정전기력이 약해지고 분산 안정성을 유지하기 어려웠다. 이에 따라, 도 5에 도시된 TEM 이미지에서 관찰할 수 있는 응집이 발생했다. 그러나, PAA로 처리된 입자의 표면 전하는 NTA 접합 과정에서 약간 감소되긴 했으나 분산성 유지 측면에서는 충분히 강했다. In short, it was observed that NTA was properly attached with a negative (-) surface charge through the NTA attachment process. However, an inversion of the surface charge occurred in the samples amino-functionalized by APTES and PEI. In this reversal process, the electrostatic force was weakened due to the pH reversal and the change of functional groups, and it was difficult to maintain dispersion stability. Accordingly, aggregation that can be observed in the TEM image shown in FIG. 5 occurred. However, although the surface charge of the particles treated with PAA was slightly reduced during the NTA bonding process, they were sufficiently strong in terms of maintaining dispersibility.
한편, NTA가 부착된 시편의 자화는 이들 시편의 높은 포화 자화와 낮은 잔류자화를 고려할 때 가역적 분리 및 재분산과 직접적인 관련이 있다. 각 시편의 자기 히스테리시스 곡선은 Fe3O4 코어 입자에서 비롯되었으며 코팅층 또는 외부 환경에 의한 상 변화로 인한 차이를 나타낸다. 아미노 또는 카르복실 기능화를 통한 NTA 접합 과정에서 Fe3O4 나노입자는 염기성 또는 산성 반응 조건을 거치면서 손상되었을 수도 있으나 NTA 부착 후에 상자성 특성은 그대로 유지되었으며 자기 분리(magnetic separation)를 위해 충분히 높은 포화 자화를 나타냈다. On the other hand, the magnetization of NTA-attached specimens is directly related to the reversible separation and redistribution considering the high saturation magnetization and low residual magnetization of these specimens. The magnetic hysteresis curves of each specimen came from the Fe 3 O 4 core particles and show the differences due to the phase change caused by the coating layer or the external environment. In the process of NTA conjugation through amino or carboxyl functionalization, Fe 3 O 4 nanoparticles may have been damaged through basic or acidic reaction conditions, but their paramagnetic properties were maintained after NTA attachment and sufficiently high saturation for magnetic separation showed magnetism.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above embodiments, but can be manufactured in various different forms, and those of ordinary skill in the art to which the present invention pertains can take other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that it can be implemented as Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
Claims (5)
(b) 상기 표면에 기능기가 도입된 마그네타이트 입자를 니트릴로트리아세트산과 반응시켜 마그네이트 입자 표면에 니트릴로트리아세트산을 접합시키는 단계;
를 포함하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법.(a) introducing a functional group capable of forming a peptide bond with nitrilotriacetic acid (NTA) by modifying the magnetite (Fe 3 O 4 ) particle surface; and
(b) reacting the magnetite particles having a functional group introduced thereon with nitrilotriacetic acid to bond nitrilotriacetic acid to the surface of the magnetite particles;
A method for producing magnetic nanoparticles conjugated with a chelate ligand comprising a.
상기 단계 (a)에서,
마그네타이트(Fe3O4) 입자 표면을 (3-아미노프로필)트리에톡시실란(APTES)으로 개질해 아미노기를 도입하고 글루타르알데히드(glutaraldehyde)와 반응시켜 말단에 알데히드기를 형성시키는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법.The method of claim 1,
In step (a),
A chelate characterized in that the surface of the magnetite (Fe 3 O 4 ) particle is modified with (3-aminopropyl) triethoxysilane (APTES) to introduce an amino group and react with glutaraldehyde to form an aldehyde group at the end. A method for manufacturing a magnetic nanoparticle conjugated with a ligand.
상기 단계 (a)에서,
마그네타이트(Fe3O4) 입자 표면을 폴리에틸렌이민(PEI)으로 개질해 아미노기를 도입하고 글루타르알데히드(glutaraldehyde)와 반응시켜 말단에 알데히드기를 형성시키는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법.The method of claim 1,
In step (a),
Magnetite (Fe 3 O 4 ) The surface of the particle is modified with polyethyleneimine (PEI) to introduce an amino group and react with glutaraldehyde to form an aldehyde group at the end of the magnetic nanoparticles conjugated with a chelate ligand. manufacturing method.
마그네타이트(Fe3O4) 입자 표면을 폴리아크릴산(PAA)으로 개질해 카르복실기를 도입하는 것을 특징으로 하는 킬레이트 리간드가 접합된 자성 나노입자의 제조방법.In step (a),
Magnetite (Fe 3 O 4 ) A method for producing magnetic nanoparticles conjugated with a chelate ligand, characterized in that the surface of the particle is modified with polyacrylic acid (PAA) to introduce a carboxyl group.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200189075 | 2020-12-31 | ||
KR1020200189075 | 2020-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220097180A true KR20220097180A (en) | 2022-07-07 |
Family
ID=82397454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210125088A KR20220097180A (en) | 2020-12-31 | 2021-09-17 | Method for manufacturing magnetic nanoparticles conjugated with chelating ligand and magnetic nanoparticles conjugated with chelating ligand manufactured thereby |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20220097180A (en) |
-
2021
- 2021-09-17 KR KR1020210125088A patent/KR20220097180A/en not_active Application Discontinuation
Non-Patent Citations (2)
Title |
---|
H. Guo, M. Li, S. Tu, and H. Sun, IOP Conf. Ser.: Mater. Sci. Eng. 322 (2018) 022017. |
M.T. Gabr and F.C. Pigge, Dalton T. 45 (2016) 14039-14043. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Preparation of IDA-Cu functionalized core–satellite Fe 3 O 4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood | |
US20130089614A1 (en) | Magnetic Nanoparticles and Uses Thereof | |
Li et al. | Preparation of core‐shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin | |
Bloemen et al. | Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications | |
Jang et al. | Characterization and analytical application of surface modified magnetic nanoparticles | |
EP2184262B1 (en) | Process for production of surface-coated inorganic particles | |
Jia et al. | Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin | |
US8557329B2 (en) | Method for silica encapsulation of magnetic particles | |
JP5531232B2 (en) | Polymer-coated inorganic fine particles and method for producing the same | |
Kainz et al. | Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications | |
KR100725855B1 (en) | Hydrophilic metal oxide nano powder with uniform particle size and its manufacturing method | |
Lakshmi et al. | Synthetic modification of silica coated magnetite cored PAMAM dendrimer to enrich branched Amine groups and peripheral carboxyl groups for environmental remediation | |
Wang et al. | Synthesis of hierarchical nickel anchored on Fe 3 O 4@ SiO 2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood | |
Zhang et al. | Quaternized salicylaldehyde Schiff base side-chain polymer-grafted magnetic Fe3O4 nanoparticles for the removal and detection of Cu2+ ions in water | |
Akhlaghi et al. | Surface modification of magnetic MnFe2O4@ SiO2 core-shell nanoparticles with deposited layer of 3-aminopropyl triethoxysilane | |
KR100684629B1 (en) | Method of manufacturing magnetite nano powder | |
Teng et al. | Amine-Functionalized Fe2O3–SiO2 Core–Shell Nanoparticles with Tunable Sizes | |
Manoj et al. | Recent advancements in the surface modification and functionalization of magnetic nanomaterials | |
Peng et al. | Thiol-functionalized Fe 3 O 4/SiO 2 microspheres with superparamagnetism and their adsorption properties for Au (III) ion separation | |
KR20220097180A (en) | Method for manufacturing magnetic nanoparticles conjugated with chelating ligand and magnetic nanoparticles conjugated with chelating ligand manufactured thereby | |
Luan et al. | Self-assembled peptide nanosheets functionalized with Fe 3 O 4 nanoparticles with enhanced nanozymatic activity for sensitive colorimetric detection and selective adsorption of Hg 2+ | |
Durdureanu-Angheluta et al. | Silane covered magnetite particles, preparation and characterization | |
Yu et al. | Functionalized silica coated magnetic nanoparticles with biological species for magnetic separation | |
Tural et al. | Preparation and characterization of Ni-nitrilotriacetic acid bearing poly (methacrylic acid) coated superparamagnetic magnetite nanoparticles | |
Pan et al. | Synthesis and characterization of surface-hyperbranched magnetite nanoparticle for bovine serum albumin immobilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20210917 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20221213 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20230609 Patent event code: PE09021S02D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20230828 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20230609 Comment text: Final Notice of Reason for Refusal Patent event code: PE06011S02I Patent event date: 20221213 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |