KR20220097065A - 백색 유기 발광 소자 및 이를 이용한 표시 장치 - Google Patents

백색 유기 발광 소자 및 이를 이용한 표시 장치 Download PDF

Info

Publication number
KR20220097065A
KR20220097065A KR1020200190047A KR20200190047A KR20220097065A KR 20220097065 A KR20220097065 A KR 20220097065A KR 1020200190047 A KR1020200190047 A KR 1020200190047A KR 20200190047 A KR20200190047 A KR 20200190047A KR 20220097065 A KR20220097065 A KR 20220097065A
Authority
KR
South Korea
Prior art keywords
light emitting
dopant
electrode
level
layer
Prior art date
Application number
KR1020200190047A
Other languages
English (en)
Inventor
이유정
송욱
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020200190047A priority Critical patent/KR20220097065A/ko
Priority to US17/546,396 priority patent/US20220209138A1/en
Priority to CN202111590250.1A priority patent/CN114695769A/zh
Publication of KR20220097065A publication Critical patent/KR20220097065A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H01L51/5024
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • H01L51/5278
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • H01L2251/55
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 백색 유기 발광 소자 및 이를 이용한 표시 장치에 관한 발명으로, 서로 접한 이종 발광층의 구성을 변경하여 저전류 밀도에서 색반전되는 현상을 방지할 수 있으며 또한 수명 특성을 개선하고자 한다.

Description

백색 유기 발광 소자 및 이를 이용한 표시 장치 {White Organic Light Emitting Element and Display Device Using the Same}
본 발명은 발광 소자에 관한 것으로, 서로 접한 이종 발광층의 구성을 변경하여 저전류 밀도에서 색반전되는 현상을 방지할 수 있는 백색 유기 발광 소자 및 이를 이용한 표시 장치에 관한 것이다.
최근 별도의 광원을 요구하지 않으며 장치의 컴팩트화 및 선명한 컬러 표시를 위해 유기 발광 표시 장치가 경쟁력 있는 어플리케이션(application)으로 고려되고 있다.
한편, 유기 발광 표시 장치에서는 복수개의 서브 화소를 구비하고, 별도의 광원없이 각 서브 화소에 유기 발광 소자를 구비하여, 광을 출사하고 있다.
최근에는 유기 발광 소자의 구성에 증착 마스크없이 공통적으로 유기층 및 발광층을 구성하는 탠덤(tandem) 소자가 공정성 측면에서 부각되며 이에 대한 연구가 이루어지고 있다.
복수개의 발광층을 구비하는 탠덤 소자 중 특히 이종 발광층을 구비한 스택은, 스택 내의 발광층들을 한 스택 내에서 모두 발광시키기 위해 그 계면에서 발광이 일어나야 하는데, 적색 발광층과 녹색 발광층을 이루는 재료가 달라 발광 영역의 조정이 어렵다. 이로 인해 전류 밀도가 변화함에 따라 녹색이 강세로 보이는 색 반전 현상도 발생한다.
또한, 백색의 휘도에 가장 큰 기여를 하는 녹색 발광층의 발광 효율이 높게 설계시 발광 영역 테일이 전자 수송층에 인접하여 발생되어 전자 수송층과 녹색 발광층의 계면에 전자가 적체되고, 이로 인해 수명이 급격히 떨어지는 문제가 있다.
본 발명의 백색 유기 발광 소자 및 이를 포함한 표시 장치는 녹색 발광층을 변경하여 상술한 문제점을 해결하도록 안출된 발명이다.
본 발명의 백색 유기 발광 소자 및 이를 포함한 표시 장치는 녹색 발광층에 비발광성 도펀트를 포함하여 이를 통해 효율 증가와 저전류 밀도에서의 색반전 현상을 해소하고, 수명을 증가시키고자 한다.
본 발명의 일 실시예에 따른 백색 유기 발광 소자는 서로 대향한 제 1 전극과 제 2 전극 및 상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며, 상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고, 상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함할 수 있다.
본 발명의 일 실시예에 따른 표시 장치는 각 서브 화소에 박막 트랜지스터를 구비한 기판과, 상기 각 서브 화소에 박막 트랜지스터 접속된 제 1 전극 및 상기 제 1 전극과 이격하며 상기 서브 화소들에 걸쳐 구비된 제 2 전극 및 상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며, 상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고, 상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함할 수 있다.
본 발명의 백색 유기 발광 소자 및 이를 포함한 표시 장치는 다음과 같은 효과가 있다.
적색 발광층과 접합되어 있는 녹색 발광층에 발광성의 제 1 도펀트와 비발광성으로 스스로는 여기하지 않고 발광에 기여하지 않으며, 제 1 도펀트(GD1)로 원활히 에너지를 전달하여 줄 수 있다.
또한, 제 2 도펀트는 녹색 발광층 내 전자의 수송을 통해 발광 영역을 제한하여 인접한 전자 수송층의 계면에 전자가 적체됨을 방지하여 장치의 효율을 향상시키고 수명을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 백색 유기 발광 소자를 나타낸 단면도이다.
도 2는 도 1의 녹색 발광층 내 구성들의 밴드 다이어그램이다.
도 3은 도 1의 녹색 발광층에서 발광 원리를 나타낸 도면이다.
도 4는 제 2 도펀트의 골격을 나타낸 도면이다.
도 5는 본 발명의 제 1 실험예에 따른 녹색 발광층 내 구성들의 밴드 다이어그램이다.
도 6은 제 1 내지 제 3 실험예의 J-V 곡선을 나타낸 그래프이다.
도 7은 제 1 내지 제 3 실험예의 EL 스펙트럼을 나타낸 그래프이다.
도 8은 제 1 내지 제 3 실험예의 적색 95 수명을 나타낸 그래프이다.
도 9는 제 1 내지 제 3 실험예의 녹색 95 수명을 나타낸 그래프이다.
도 10은 제 1 내지 제 3 실험예들에서 적색 발광층과 녹색 발광층에서 발광 영역을 나타낸 도면이다.
도 11은 제 1 내지 제 3 실험예들에서, 적색 발광층과 녹색 발광층의 저전류 상태에서 엑시톤 비율을 나타낸 도면이다.
도 12는 제 1 내지 제 3 실험예들의 전류 밀도에 대한 녹색 효율을 나타낸 그래프이다.
도 13a 및 도 13b는 본 발명의 제 4 실험예에 따른 녹색 발광층의 구성과 이의 발광 원리를 나타낸 도면이다.
도 14는 제 1 및 제 4 실험예의 J-V 곡선을 나타낸 그래프이다.
도 15는 제 1 및 제 4 실험예의 EL 스펙트럼을 나타낸 그래프이다.
도 16은 제 1 및 제 4 실험예의 적색 95 수명을 나타낸 그래프이다.
도 17은 제 1 및 제 4 실험예의 녹색 95 수명을 나타낸 그래프이다.
도 18a는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 PL 세기를 나타낸 그래프이다.
도 18b는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 트랜지언트 PL 세기를 나타낸 그래프이다.
도 19a 내지 도 19c는 본 발명의 다른 실시예에 따른 백색 유기 발광 소자를 나타낸 단면도이다.
도 20은 본 발명의 백색 유기 발광 소자를 포함한 표시 장치를 나타낸 단면도이다.
이하, 첨부된 도면들을 참조하여, 본 발명의 바람직한 실시예들을 설명한다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 실질적으로 동일한 구성 요소들을 의미한다. 이하의 설명에서, 본 발명과 관련된 기술 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다. 또한, 이하의 설명에서 사용되는 구성요소 명칭은 명세서 작성의 용이함을 고려하여 선택된 것으로, 실제 제품의 부품 명칭과 상이할 수 있다.
본 발명의 다양한 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 본 명세서 전체에 걸쳐 동일한 도면 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
본 발명의 다양한 실시예에 포함된 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 발명의 다양한 실시예를 설명함에 있어, 위치 관계에 대하여 설명하는 경우에, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
본 발명의 다양한 실시예를 설명함에 있어, 시간 관계에 대한 설명하는 경우에, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
본 발명의 다양한 실시예를 설명함에 있어, '제 1~', '제 2~' 등이 다양한 구성 요소를 서술하기 위해서 사용될 수 있지만, 이러한 용어들은 서로 동일 유사한 구성 요소 간에 구별을 하기 위하여 사용될 따름이다. 따라서, 본 명세서에서 '제 1~'로 수식되는 구성 요소는 별도의 언급이 없는 한, 본 발명의 기술적 사상 내에서 '제 2~' 로 수식되는 구성 요소와 동일할 수 있다.
본 발명의 여러 다양한 실시예의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 다양한 실시예가 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
본 명세서에서 어떠한 층의 'LUMO(Lowest Unoccupied Molecular Orbitals Level) 에너지 준위' 및 'HOMO(Highest Occupied Molecular Orbitals Level) 에너지 준위'라 함은, 해당 층에 도핑된 도펀트(dopant) 물질의 LUMO 에너지 준위 및 HOMO 에너지 준위이라고 지칭하지 않는 한, 해당 층의 대부분의 중량비를 차지하는 물질, 예를 들어 호스트(host) 물질의 LUMO 에너지 준위 및 HOMO 에너지 준위를 의미한다.
본 명세서에서 'HOMO 에너지 준위'이란, UV 를 조사하여 표면에서 전자가 튀어나오는데 필요한 에너지를 측정하여 산출한 것이다. 즉, 방축된 광전자를 일렉트로미터(electrometer)로 측정하여, 얻어진 광전자 방출의 조사 광자 에너지 곡선으로부터 광전자 방출의 임계 값을 외삽하여 측정할 수 있다.
그리고, 에너지 밴드갭(Eg)은 UV 흡수 스펙트럼을 측정하여, 흡수 스펙트럼의 장파장의 라이징 에지(rising edge)에 대해 접선을 그어 횡축과의 교점인 파장을 에너지 값(E = hν/λ =h*C/λ, 여기서, h 는 플랑크 상수, C는 빛의 속도, λ 는 광의 파장)으로 환산하여 구한다.
본 명세서에서 '도핑된'이란, 어떤 층의 대부분의 중량비를 차지하는 물질에, 대부분의 중량비를 차지하는 물질과 다른 물성(서로 다른 물성이란, 예를 들어, N-타입과 P-타입, 유기물질과 무기물질)을 가지는 물질이 중량비 30 vol% 이하로 첨가가 되어 있음을 의미한다. 달리 말하면, '도핑된' 층이란, 어떤 층의 호스트 물질과 도펀트 물질을 중량비의 비중을 고려하여 분별해 낼 수 있는 층을 의미한다. 그리고 '비도핑된'이란, 도핑된'에 해당하는 경우 이외의 모든 경우를 칭한다. 예를 들어, 어떤 층이 단일 물질로 구성되었거나, 서로 성질이 동일 유사한 물질들이 혼합되어 구성되는 경우, 그 층은'비도핑된' 층에 포함된다. 예를 들어, 어떤 층을 구성하는 물질들 중 적어도 하나가 P-타입이고, 그 층을 구성하는 물질 모두가 N-타입이 아니라면, 그 층은 '비도핑된' 층에 포함된다. 예를 들어, 어떤 층을 구성하는 물질들 중 적어도 하나가 유기 물질이고, 그 층을 구성하는 물질 모두가 무기 물질은 아니라면, 그 층은 '비도핑된'층에 포함된다. 예를 들어, 어떤 층을 구성하는 물질들이 모두 유기 물질인데, 그 층을 구성하는 물질들 중 적어도 어느 하나가 N-타입이고 또 다른 적어도 어느 하나가 P-타입인 경우에, N-타입인 물질이 중량비 30 vol% 이하이거나 또는 P-타입인 물질이 중량비 30vol% 이하인 경우에 '도핑된'층에 포함된다.
한편, 본 명세서에서 EL (전계발광, electroluminescence) 스펙트럼이라 함은, (1) 유기 발광층에 포함되는 도펀트 물질이나 호스트 물질과 같은 발광 물질의 고유한 특성을 반영하는 PL(광발광, photoluminescence) 스펙트럼과, (2) 전자 수송층 등과 같은 유기층들의 두께를 포함한 유기 발광 소자의 구조와 광학적 특성에 따라 결정되는, 아웃 커플링(out coupling) 에미턴스(emittance) 스펙트럼 커브의 곱으로써 산출된다.
도 1은 본 발명의 제 1 실시예에 따른 백색 유기 발광 소자를 나타낸 단면도이며, 도 2는 도 1의 녹색 발광층 내 구성들의 밴드 다이어그램이고, 도 3은 도 1의 녹색 발광층에서 발광 원리를 나타낸 도면이다. 도 4는 제 2 도펀트의 골격을 나타낸 도면이다.
도 1과 같이, 본 발명의 제 1 실시예에 따른 백색 유기 발광 소자는, 기판(100) 상에 서로 대향한 제 1 전극(110)과 제 2 전극(240) 및 상기 제 1 전극과 제 2 전극 사이에 구비된 유기 스택(OS)을 포함하여 이루어진다.
상기 유기 스택(OS)은 복수개의 발광 스택(BS1, RGS, BS2) 및 상기 발광 스택들 사이의 전하 생성층(150, 190)을 포함한다.
본 발명의 유기 스택(OS)에 구비되는 각 층은 유기 성분을 주 성분으로 포함되는 층들이며, 필요에 따라 캐리어의 전송 혹은 발광 특성을 향상하기 위해 금속 등의 무기물을 포함할 수 있다.
또한, 유기 스택(OS)에 구비되는 발광 스택(BS1, RGS, BS2)의 각 발광층에서 나오는 광이 제 1 전극(110) 및/또는 제 2 전극(240)의 어느 일측으로 합산되어 출사되어 백색을 표현한다. 제 1 전극(110)이 반사 전극을 포함하고 제 2 전극(240)이 투명 전극일 때는 광은 제 2 전극(240)으로 출사되며, 제 1 전극(110)이 투명 전극이고 제 2 전극(240)이 반사 전극을 포함할 때는 제 1 전극(110)으로 출사된다. 경우에 따라, 상기 제 1, 제 2 전극(110, 240)이 모두 투명 전극일 때, 광이 양 방향으로 통과될 수 있다.
도 1에 도시된 예는 제 1 전극(110)에서 제 2 전극(240)까지의 발광 스택의 순서가 제 1 청색 발광 스택(BS1), 인광 발광 스택 (RGS) 및 제 2 청색 발광 스택(BS2)인 점을 나타냈으나, 그 순서는 변경될 수 있다. 또한, 제 1, 제 2 전극(110, 240)의 사이에는 백색을 표현하기 위해, 청색 발광 스택과 인광 발광 스택의 2 스택만으로만 구비될 수 있으며, 경우에 따라 4개 이상의 발광 스택을 포함하여 이루어질 수도 있다. 요구되는 색온도에 따라 상기 발광 스택의 구비 수를 달리하여 구현하고자 하는 백색 유기 발광 소자의 백색 표현의 색온도에 상응하여 색 좌표 값을 달리할 수 있다. 발광 스택이 동일 조건일 때, 발광 스택의 수를 더 많이 포함할수록 색온도는 올라갈 수 있다.
한편, 제 1, 제 2 전극(110, 240) 사이에 발광 스택이 3개 이상 구비시 청색 발광 스택(BS)은 2개 이상 구비될 수 있다.
청색 발광 스택(BS1, BS2)은 440nm 내지 480nm의 파장에서 발광 피크를 가지며, 인광 발광 스택(RGS)는 이보다 장파장에서 발광 피크를 갖는 것으로, 예를 들어, 이종 발광층을 구비하여 서로 다른 녹색 파장과 적색 파장에서 발광 피크를 갖는다. 녹색 파장은 녹색 발광층에 이용되는 녹색 도펀트의 발광 특성에 따라 500nm 내지 540mm에서 발광 피크를 가져 순수 녹색의 광으로 출사될 수도 있고, 혹은 540nm 내지 580nm에서 발광 피크를 가져 황녹색에 가까운 광으로 출사될 수도 있다. 그리고, 적색 파장은 600nm 내지 640nm에서 발광 피크를 갖는다.
따라서, 제 1 전극(110) 및/또는 제 2 전극(240)의 어느 쪽으로는 청색 발광 스택(BS1, BS2)에서 나온 청색 광과 인광 발광 스택(RGS)에서 나온 녹색 및 적색 광이 합산되어 출사되어 백색 광이 최종적으로 구현된다.
각 발광 스택(BS1, RGS, BS2)은 각각 정공 수송 유닛(120, 160, 210) 및 발광층(130, 173/175, 220) 및 전자 수송 유닛(140, 180, 230)을 포함한다.
도 1에서, 제 1 청색 발광 스택(BS1)의 정공 수송 유닛(120)은 정공 주입층(121), 제 1 정공 수송층(122) 및 제 2 정공 수송층(123)을 포함한다.
정공 주입층(121)은 유기 스택(OS) 중 투명 전극 혹은 반사 전극 성분의 무기물인 제 1 전극(110)과 바로 접하는 층으로, 제 1 전극(110)과의 계면에서 정공이 유입됨에 있어 계면 스트레스를 낮추며 에너지 배리어를 낮추어 정공이 원활히 유기 스택(OS)으로 주입되도록 하는 층이다. 만일 제 1 전극(110)에 접하는 층이 다른 발광 유닛, 예를 들어, 인광 발광 유닛일 때, 인광 발광 유닛에 정공 주입층이 구비될 수 있다. 여기서, 제 1 전극(110)은 애노드(anode)로 기능한다.
제 1 청색 발광 유닛(BS1)에서 정공 수송 유닛(120)에 제 1, 제 2 정공 수송층(122, 123)을 포함한 이유는 제 1 전극(110)으로부터 적절한 청색의 제 1 광학 거리를 조성하기 위한 것으로, 이는 제 1 전극(110)과 제 2 전극(240)과의 거리 내에 최적으로 반사 및 재반사가 반복되는 공진을 발생시키기 위한 것으로, 제 1 전극(110) 및 제 2 전극(240) 중 반사 전극의 위치와, 제 1 전극(110), 제 2 전극(240) 중 이용되는 투명 전극의 두께 등에 의해서, 변경될 수 있다. 구비된 정공 수송 유닛(120)에서 제 1, 제 2 정공 수송층(122, 123)의 두께가 변동되거나 이 중 어느 하나가 생략될 수도 있다.
또한, 제 1 청색 발광 유닛(BS1)은 정공 수송 유닛(120) 상에 제 1 청색 발광층(130)과 제 1 전자 수송층(140)을 포함한다.
제 1 청색 발광 유닛(BS1)에 구비된 발광층인 제 1 청색 발광층(130)은 호스트와, 호스트에서 발생된 여기자에 의한 에너지를 전달받아 발광을 하는 청색 도펀트를 포함한다. 상기 청색 도펀트는 인광 도펀트일 수도 있고, 혹은 형광 도펀트일 수 있고 혹은 양자를 모두 포함할 수 있다. 이하의 실험예들에서 백색 색좌표를 판단할 때, 이용되는 제 1, 제 2 청색 발광 유닛(BS1, BS2)의 제 1, 제 2 청색 발광층(130)은 각각 형광 청색 도펀트를 포함하여 실험하였다. 그러나, 이는 현재 개발된 청색 계열의 도펀트로 형광 청색 도펀트가 일정 수준의 이상의 수명과 효율을 갖는 것을 확인하였기 때문으로, 만일 동일 또는 유사 수준의 수명 및 효율을 갖는 인광 청색 도펀트라면 형광 도펀트를 대체할 수 있다. 본 발명의 백색 유기 발광 소자에서 청색 발광 스택을 청색보다 장파장을 발광하는 인광 발광 스택과 분리하여 구비된 이유는 청색의 시각적 인지 효율이 타색 대비 적어 표시 장치에서 고른 색 표현을 요구할 때, 충분한 청색 구현을 위해 인광 발광 스택과 구분하여 청색 발광 스택을 갖게 한 것이다.
제 1 청색 발광 유닛(BS1) 상에 위치하는 인광 발광 스택(RGS)은 이종의 인광 발광층을 포함하여 이루어진다. 상기 인광 발광 스택(RGS)은 제 3 정공 수송층(160), 적색 발광층(173), 녹색 발광층(175) 및 제 2 전자 수송층(180)으로 이루어진다.
인광 발광 스택(RGS)에서, 적색 발광층(173)과 녹색 발광층(175)은 서로 접하며, 각각 적색 발광층(173)은 제 3 정공 수송층(160)과 접하고 녹색 발광층(175)은 제 2 전자 수송층(180)과 접한다. 적색 발광층(173)과 녹색 발광층(175)은 각각 인광 발광층이며, 인광 발광 스택에서 적색과 녹색의 발광에 이용되는 여기자의 효율을 최대로 하기 위해서는, 제 1 전극(110)이나 제 2 전극(240)측으로 캐리어나 여기자(일중항 및 삼중항 포함)가 치우지지 않고 적색 발광층(173)과 녹색 발광층(175)의 계면으로 여기자 및 정공과 전자가 집중되도록 하는 것이 바람직하다.
본 발명의 백색 유기 발광 소자는 이를 위해 녹색 발광층(175)의 구성이 제안된 것으로, 도 2와 같이, 녹색 발광층(175)은 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 녹색의 발광 피크를 갖는 제 1 도펀트(GD1) 및 비발광의 제 2 도펀트(ND)를 포함한다.
여기서, 녹색 발광층(175)은 서로 다른 2개의 도펀트를 포함하는데, 비발광성의 제 2 도펀트(ND)가 자체적으로 발광하지 않고, 녹색 발광층(175) 내 포함되어 있는 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)로부터 받은 에너지를 제 1 도펀트(GD1)에 전달시켜 제 1 도펀트(GD)에서 여기가 일어나며 발광이 이루어진다. 또한, 상기 제 2 도펀트(ND)는 일중항 준위(S1)와 삼중항 준위(T1) 차(ΔEst=S1-T1)이 0.6eV 이상으로, 삼중항 준위(T1)에서 일중항 준위(S1)로 역전 계간 전이가 일어나기 힘들며, 또한, HOMO Highest Occupied Molecular Orbital) -LUMO(Lowest Unoccupied Molecular Orbital) 준위 간 에너지 밴드갭이 커 엑시톤(exciton)이 형성되지 않고, 받은 에너지를 제 1 도펀트(GD1)로 전달하는 기능을 한다. 또한, 이러한 기능을 위해 이를 위해 상기 제 2 도펀트(ND)의 일중항 준위(S1)는 상기 정공 수송성 호스트(GHH), 상기 전자 수송성 호스트(GEH) 및 상기 제 1 도펀트(GD1) 모두의 일중항 준위(S1)보다 크다. 또한, 상기 정공 수송성 호스트(GHH) 및 상기 전자 수송성 호스트(GEH) 각각의 일중항 준위는 2.7eV 이상으로, 제 2 도펀트(ND)는 정공 수송성 호스트(GHH) 및 상기 전자 수송성 호스트(GEH) 각각의 일중항 준위보다 큰 일중항 준위를 갖기 때문에, 제 2 도펀트(ND)는 2.7eV 보다 큰 일중항 준위를 갖는다.
한편, 녹색 발광층(175)에서 제 2 도펀트(ND)는 낮은 HOMO (Highest Occupied Molecular Orbital) 에너지 준위를 갖는 것으로, 또한, 상기 제 2 도펀트는 전자 이동도가 정공 이동도보다 높을 수 있다. 이 경우, 제 2 도펀트(ND)는 정공 이동도가 매우 느려, 자체로 녹색 발광층(175) 내에서 정공 수송을 하지 않으며, 전자 수송 특성을 가져, 녹색 발광층(175)에서 정공과 전자의 재결합 영역을 녹색 발광층(175)과 적색 발광층(173)의 계면으로 조정하여, 발광 효율을 높일 수 있다. 또한, 상기 제 2 도펀트(ND)는, 발광 영역의 테일이 제 2 전자 수송층(ETL2)(180)과 접하지 않도록 하여, 전자와 정공의 재결합에 이용되지 못한 전자가 제 2 전자 수송층(ETL2)(180)과 녹색 발광층(175)의 계면에서 적체되어 제 2 전자 수송층(ETL2)(180)의 수명을 저하시키는 문제를 해결할 수 있다.
상기 제 1, 제 2 도펀트(GD1, ND)는 합산하여 0.02vol% 내지 30vol%으로 녹색 발광층(175) 내에 포함되어 있어 주 재료로서의 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)와 구분된다. 또한, 제 2 도펀트(ND)의 자체 농도는 0.01vol% 내지 20vol%의 저농도를 가져 제 1 도펀트(GD1)로 에너지 전달 기능을 갖는다.
한편, 제 2 도펀트(ND)의 삼중항 준위(T1)는 도 3과 같이, 상기 정공 수송성 호스트(GHH) 및 상기 전자 수송성 호스트(GEH) 각각의 삼중항 준위(T1)보다 작고, 상기 제 1 도펀트(GD1)의 삼중항 준위보다 크며, 상기 제 1 도펀트(GD1)의 삼중항 준위는 2.4eV 이상일 수 있다. 이러한 제 2 도펀트(ND)의 일중항 및 삼중항 준위가 호스트들 (GHH, GEH) 및 제 1 도펀트(GD1)의 일중항 및 삼중항 준위와 갖는 관계는 효과적으로 제 2 도펀트(ND)로 전달된 에너지를 제 1 도펀트(GD1)로 전달할 수 있다.
한편, 상기 제 2 도펀트(ND)는 일예로, 400nm의 이하의 파장에서 발광 피크를 갖는 도펀트 물질일 수 있다.
예를 들어, 제 2 도펀트(ND)는 도 4와 같이, 제 1 그룹과 제 2 그룹 사이에 연결 그룹을 갖고, 제 1 그룹의 타측(제 2 그룹과 연결되지 않는)이 치환 그룹과 연결된 화합물로 형성할 수 있다. 여기서, 제 1 그룹은 화합물 내에 코어로 기능할 수 있으며, 주로 큰 에너지 밴드갭을 조성할 수 있는 성분을 포함할 수 있다. 제 1 그룹을 이루는 성분의 예로, 하기 화학식 1 내지 4와 같이, 약한 도우너(weak donor)-약한 억셉터(weak acceptor)를 갖는 모이어티(moiety)일 수 있다.
[화학식 1]
Figure pat00001
[화학식 2]
Figure pat00002
[화학식 3]
Figure pat00003
[화학식 4]
Figure pat00004
또한, 제 2 그룹은, 낮은 삼중항 준위(T1)와 큰 ΔEst 값을 갖도록 분자의 컨쥬게이션(conjugation) 확장이 요구되는 것으로, 예를 들어, 화학식 5 내지 7의 성분을 포함할 수 있다.
[화학식 5]
Figure pat00005
[화학식 6]
Figure pat00006
[화학식 7]
Figure pat00007
한편, 제 2 도펀트(ND)로서 ΔEst 를 크게 하기 위해서 HOMO-LUMO 중첩이 클수록 유리하는 것으로, 치환기로서는 입체 장해(steric hinderance)를 유도하는 치환기는 제외하는 것이 바람직하다.
상기 제 2 도펀트(ND)의 HOMO 에너지 준위는 상기 전자 수송성 호스트(GEH)의 HOMO 에너지 준위보다 낮고, 상기 제 2 도펀트(ND)의 LUMO 에너지 준위는 상기 제 1 도펀트(GD1)의 LUMO 준위보다 높을 수 있다.
그리고, 상기 제 2 도펀트(ND)의 에너지 밴드갭(Eg)이 3 eV 이상이며, HOMO 에너지 준위는 -6.0eV 이하일 수 있다.
상기 제 2 도펀트의 삼중항 준위는 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 삼중항 준위보다 작고, 상기 제 1 도펀트의 삼중항 준위보다 크며, 상기 제 1 도펀트의 삼중항 준위는 2.4eV 이상일 수 있다.
상기 제 2 도펀트(ND)는 일예로 400nm의 이하의 파장에서 발광 피크를 갖는 도펀트일 수 있다. 이 경우, 제 2 도펀트(ND) 자체가 가시 광 이하의 단파장에서 발광 피크를 갖지만, 본 발명의 녹색 발광층(175)에서는 큰 값의 ΔEst 와 큰 에너지 밴드갭 및 제 1 도펀트(GD1)로 에너지를 전달하여야 하기 때문에, 녹색 발광층(175) 내에서는 엑시톤을 형성하지 않고 발광하지 않는다.
상기 제 1 도펀트(GD1)는 스스로 엑시톤(exciton) 형성이 가능하고, 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)의 엑시톤으로부터 에너지 전달을 제 2 도펀트(ND) 대비 크게 받을 수 있다. 상기 제 1 도펀트(GD1)는 삼중항 준위에서 그라운드 상태로 떨어지며 인광 여기하여 발광하는 것으로, 비발광 소광을 방지하도록 그 농도는 0.01vol% 내지 10vol%로 하는 것이 바람직하다.
본 발명의 녹색 발광층(175) 내 각각의 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)는 각각 삼중항(triplet) 엑시톤(exciton)이 형성되나 제 1, 제 2 도펀트(GD1, ND)로 에너지를 전달하기 때문에, 발광은 일어나지 않는다.
녹색 발광층(175) 및 적색 발광층(173)은 각각 인광 발광층으로, 그 호스트로, 호스트들에서 수명 저하를 일으키는 TPA(Triplet-Polaron Annihilation)을 방지하기 위해 주로 발광층(173, 175)내 정공 및 전자의 수송 위치를 조절할 수 있는 정공 수송성 호스트와 전자 수송성 호스트를 소정 비로 혼합하여 이용할 수 있다. 녹색 발광층(175)에서 정공 수송성 호스트와 전자 수송성 호스트의 비는 2:8~8:2로 조절할 수 있다.
녹색 발광층(173)과 적색 발광층(173)은 정공과 전자의 주입 효율을 제어하는 정공 수송성 호스트 및 전자 수송성 호스트를 함께 포함하여 정공과 전자의 주입 효율을 개선하여 낮은 구동 전압을 달성할 수 있으며, 정공과 전자의 수송성을 개별적으로 제어할 수 있어 호스트의 스트레스 감소로 수명을 개선하며, 정공과 전자를 도펀트에 차지 트랩핑하여 효율을 증가시킬 수 있다.
인광 발광 스택(RGS) 내 적색 발광층(173)와 녹색 발광층(175)에서 공통의 재료로 전자 수송성 호스트 및 정공 수송성 호스트가 분산되어 있으며, 제 3 정공 수송층(160)에서 넘어온 정공이 적색 발광층(173)에서 정체되지 않고 일정한 전송률을 유지한다. 특히 정공과 전자간 전계 의존성 상이에 의해 저계조 (저전류 밀도)에서 정공이 이종 발광층의 후단, 즉, 제 1 전극(110)에서 먼 쪽으로 밀려 발광 영역(emission zone)이 변경되는 현상을 방지하고 발광 영역이 적색 발광층(173)과 녹색 발광층(175)의 경계에 유지될 수 있는 이점을 갖게 한다. 따라서, 표시 장치가 영역별 저계조와 고계조의 차이를 갖더라도, 혹은 시간 차를 갖는 저계조 혹은 고계조 표현에서 모두 백색 색좌표의 균일도를 확보할 수 있어 안정적인 표시가 가능하다.
제 2 청색 발광 유닛(BS2)은 제 4, 제 5 정공 수송층(213, 215)이 적층된 정공 수송 유닛(210), 제 2 청색 발광층(220) 및 제 3 전자 수송층(230)을 포함하여 이루어진다.
도시된 도 1에서 제 2 전극(240)은 무기 화합물 성분의 LiF와 Al을 포함하는데, LiF는 전자 주입층으로 기능하며, 실질적으로 Al 성분이 캐소드(cathode)로서 제 2 전극으로 기능한다.
전자 주입층은 알칼리 금속 또는 알칼리 토금속과 할로겐과의 화합물의 화합물로 LiF가 아닌 다른 재료로 변경될 수 있다. 혹은 상기 전자 주입층은 경우에 따라 생략될 수 있다.
또한, 제 2 전극(240)의 예로 제시된 Al는 일예이며, 전자의 주입이 용이한 다른 금속으로 변경될 수 있다. 경우에 따라 복수개의 금속층의 적층으로 이루어질 수 있으며, 이 중 어느 하나만이 반사성 금속이며 나머지는 투명 금속으로 하여 반사성 금속과 투명 금속의 적층을 포함할 수도 있다.
한편, 전하 생성층(150, 190)은 도시된 바와 같이, 각각 인접한 하부 발광 스택과 접한 n형 전하 생성층(151, 191)과 인접한 상부 발광 스택과 접한 p형 전하 생성층(153, 193)의 적층으로 이루어질 수도 있다. 그러나, 이는 일예이며, 하나 이상의 호스트에 각각 n형 도펀트와 p형 도펀트를 포함하여 전자 및 정공을 생성하여 인접한 스택으로 공급하는 전하 생성층을 구비할 수도 있다.
도 1에 도시된 예에서는, 제 1, 제 2 청색 발광 스택(BS1, BS2)이 각각 인광 발광 스택(RGS)의 하부와 상부에 위치한 것을 나타내었으나, 이에 한정되지 않고, 필요에 따라 그 위치는 변경될 수 있다.
이하, 본 발명의 백색 유기 발광 소자의 기능 및 효과를 여러 실험을 통해 검증한다.
도 5는 본 발명의 제 1 실험예에 따른 녹색 발광층 내 구성들의 밴드 다이어그램이다. 그리고, 도 6은 제 1 내지 제 3 실험예의 J-V 곡선을 나타낸 그래프이며, 도 7은 제 1 내지 제 3 실험예의 EL 스펙트럼을 나타낸 그래프이다. 또한, 도 8은 제 1 내지 제 3 실험예의 적색 95 수명을 나타낸 그래프이며, 도 9는 제 1 내지 제 3 실험예의 녹색 95 수명을 나타낸 그래프이다. 그리고, 도 10은 제 1 내지 제 3 실험예들에서 적색 발광층과 녹색 발광층에서 발광 영역을 나타낸 도면이다. 또한, 도 11은 제 1 내지 제 3 실험예들에서, 적색 발광층과 녹색 발광층의 저전류 상태에서 엑시톤 비율을 나타낸 도면이다.
도 5와 같이, 제 1 실험예(Ex1)는 도 1의 스택 구조의 백색 유기 발광 소자에 있어서, 녹색 발광층(75)만 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)에 단일의 발광성 녹색 도펀트(GD1)를 포함한 것이다. 제 1 실험예(Ex1)에서, 정공 수송성 호스트(GHH)와 전자 수송성 호스트(GEH)의 비는 7:3으로 하고, 이에 녹색 도펀트(GD1)는 10vol%로 포함한다. 그리고, 인접한 적색 발광층(173)은 150Å, 녹색 발광층(75)은 350Å의 두께로 형성하였다.
제 2 실험예(Ex2)는 도 1 및 도 2에서 설명한 녹색 발광층(175)에 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 발광성의 제 1 도펀트(GD1), 비발광성의 제 2 도펀트(ND)를 포함하여 구성한 것이다. 제 1 도펀트(GD1)와 제 2 도펀트(ND)가 녹색 발광층(175) 내 정공 수송성 호스트(GHH) 및 전자 수송성 호스트(GEH)를 합한 총 부피비에 대해 각각 10vol% 씩 포함된다. 제 2 실험예(Ex2)는 제 1, 제 2 도펀트(GD1, ND)에서만 차이를 갖고 나머지 인접층과의 관계 및 두께는 상술한 제 1 실험예(Ex1)와 동일하다.
제 3 실험예(Ex3)는 제 2 실험예와 동일하게 녹색 발광층(175)에 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 발광성의 제 1 도펀트(GD1), 비발광성의 제 2 도펀트(ND)를 포함하여 구성한 것이다. 단, 제 1 도펀트(GD1)와 제 2 도펀트(ND)가 녹색 발광층(175) 내 정공 수송성 호스트(GHH) 및 전자 수송성 호스트(GEH)를 합한 총 부피비에 대해 각각 10vol%, 20vol%씩 포함된다.
한편, 실험에 이용된 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 제 1 및 제 2 도펀트(GD1, ND)의 HOMO 준위는 하기 표 1과 같다.
재료 HOMO 준위(eV)
정공 수송성 호스트(GHH) -5.37
전자 수송성 호스트(GEH) -5.99
제 1 도펀트(GD1) -5.10
제 2 도펀트(ND) -6.16
그리고, 하기 표 2에 따른 실험에서 제 1 실험예(Ex1)를 기준으로, 제 2 및 제 3 실험예들(Ex2, Ex3)에서 구동 전압의 차이를 비교하였고, 외부 양자 효율(EQE)와 적색 및 녹색 수명에 대해서는 제 1 실험예(Ex1)이 값을 100%으로 하여 이와 비교하여, 제 2 및 제 3 실험예들(Ex2, Ex3)의 값을 산출하였다.
구분 IVL @ 10 mA/cm2 T95
구동전압(V) 전압(V) @ 100J EQE(%) 적색수명(%) 녹색수명(%)
Ex1 0 0 100 100 100
Ex2 +0.05 -0.1 103 122 155
Ex3 -0.1 -0.22 101 100 134
표 2 및 도 6과 같이, 제 1 실험예(Ex1)에 비해 제 2 실험예(Ex2)는 10 mA/cm2 에서 0.05V 구동 전압이 상승하나 그 수준이 미약하고, 오히려 100J 의 고계조 구동시 구동 전압이 줄어듦을 알 수 있다. 제 3 실험예(Ex3)에서는 10 mA/cm2 에서 구동 전압이 줄어들고, 또한, 100J의 고계조 구동시에도 구동 전압이 줄어든 것을 확인할 수 있어, 본 발명이 구조를 적용한 제 2, 제 3 실험예(Ex2, Ex3)가 효과적임을 알 수 있다.또한, 도 7과 같이, 제 1 내지 제 3 실험예(Ex1, Ex2, Ex3)의 파장별 EL 스펙트럼을 살펴보면, 제 2, 제 3 실험예(Ex2, Ex3) 적용시 인광 발광 스택(RGS)이발광하는 장파장에서 세기(Intensity)가 증가함을 확인할 수 있다.
또한, 도 8 내지 도 11과 같이, 적색 및 녹색의 95 수명(초기 상태에서 95%의 휘도가 나오기까지의 수명)이 제 2, 제 3 실험예(Ex2, Ex3)에서 제 1 실험예(Ex1)의 동등 이상의 수명을 갖거나 수명이 개선된 점을 확인할 수 있다.
이는 본 발명의 녹색 발광층(175)이 제 2 도펀트(ND)를 더 도핑함에 의해 고효율을 유지하도록 주 발광으로서 적색 및 녹색의 엑시톤 분포를 방해하지 않고, 또한, 적색 발광층이나 제 2 전자 수송층(180)으로 넘어가는 과도한 정공 량을 제어함으로써 적녹색 스택(RGS)의 수명을 개선한 것이다.
도 12는 제 1 내지 제 3 실험예들의 전류 밀도에 대한 녹색 효율을 나타낸 그래프이다.
도 12와 같이, 제 1 실험예(Ex1)는 10 mA/cm2 이하의 저계조 전류 밀도 변화에 대해 선형적으로 녹색 효율이 변화함을 확인할 수 있다. 반대 제 2 및 제 3 실험예(Ex2, Ex3)는 저계조 전류 밀도 변화에 대해서는 거의 녹색 효율의 변동성이 없는 점을 확인할 수 있다.
이는 제 1 실험예(Ex1)는 저계조에서, 녹색이 강하게 보이는 현상을 나타남을 의미하고, 패널의 색반전으로 관찰된다.
본 발명에 따른 제 2 및 제 3 실험예(Ex2, Ex3)는 이러한 저계조시 색반전없이 고른 효율을 갖는 점을 확인할 수 있다.
즉, 제 2, 제 3 실험예(Ex2, Ex3)는 저전류 구동시 제 2 도펀트(GD) 가 정공이 녹색 발광층으로 과도하게 넘어오는 것을 방지하여, 저전류 정공 거동을 제어하여 저전류 밀도에서의 녹색 반전을 방지한 것이다.
이하에서는 본 발명의 제 2 도펀트(ND)의 ΔEst 값이 큰 점에 의해 얻어지는 효과를 설명하기 위해 녹색 발광층에 제 2 도펀트(ND)를 대체하여 ΔEst 값이 작은 제 3 도펀트(AD)를 추가 도핑하는 구조와 비교하여 본 발명의 의의를 설명한다.
도 13a 및 도 13b는 제 4 실험예에 따른 녹색 발광층의 구성과 이의 발광 원리를 나타낸 도면이다.
도 13a 와 같이, 제 4 실험예에 따른 녹색 발광층(275)은 제 2 실험예(Ex2)는 도 1 및 도 2에서 설명한 녹색 발광층(175)에 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 발광성의 제 1 도펀트(GD1)와 제 3 도펀트(AD)를 포함한 것이다.
제 3 도펀트(AD)는 도 13b와 같이, 정공 수송성 도펀트(GHH)와 전자 수송성 호스트(GEH)의 일중항 (S1)보다 낮은 일중항 준위를 가져, 제 3 도펀트(AD) 자체의 삼중항 준위(T1)와의 차이(ΔEst)가 작은 성분이다. 이러한 제 3 도펀트(AD)는 정공 수송성 특징과 전자 수송성 특징을 함께 갖는 것이며, 낮은 일중항 준위(S1)로 정공 수송성 호스트(GHH) 및 전자 수송성 호스트(GEH)로부터 제 3 도펀트(AD)의 일중항 준위로 에너지가 일부 전달되고 있으나, 이는 발광에 이용되지 않고 소멸하고 있다.
이하의 표 3은 제 1 내지 제 4 실험예(Ex1~Ex4)에서 공통으로 이용되고 있는 정공 수송성 호스트(GHH), 전자 수송성 호스트(GEH), 제 1 도펀트(GD1)와 함께, 제 2 및 제 3 실험예(Ex2, Ex3)에서 추가 이용되는 제 2 도펀트(ND)와, 제 4 실험예(Ex4)에서 추가 이용되는 제 3 도펀트(AD)의 물성적 차이를 나타낸다.
호스트 도펀트
GHH GEH GD1 ND AD
정공수송성 X Δ X Δ
전자 수송성 X Δ Δ Δ
엑시톤형성 X
발광 X X X X
GD1로 에너지전이 X
또한, 하기 표 4는 제 1 실험예(Ex1)와 제 4 실험예(Ex4) 및 구동 전압 특성, 외부 양자 효율(EQE)와 95 수명을 검토한 것이다.도 14는 제 1 및 제 4 실험예의 J-V 곡선을 나타낸 그래프이며, 도 15는 제 1 및 제 4 실험예의 EL 스펙트럼을 나타낸 그래프이다. 도 16은 제 1 및 제 4 실험예의 적색 95 수명을 나타낸 그래프이며, 도 17은 제 1 및 제 4 실험예의 녹색 95 수명을 나타낸 그래프이다.
구분 IVL @ 10 mA/cm2 T95
구동전압(V) 전압(V) @ 100J EQE(%) 적색수명(%) 녹색수명(%)
Ex1 0 0 100 100 100
Ex4 +0.03 +0.04 96 56 82
표 4에 따른 실험에서 제 1 실험예(Ex1)를 기준으로, 제 4 실험예(Ex4)에서 구동 전압의 차이를 비교하였고, 외부 양자 효율(EQE)와 적색 및 녹색 수명에 대해서는 제 1 실험예(Ex1)이 값을 100%으로 하여 이와 비교하여, 제 4 실험예(Ex4)의 값을 산출하였다.제 4 실험예(Ex4)는 제 2 실험예(Ex2)와 비교하여, 제 2 도펀트(ND) 대신 제 3 도펀트(AD)를 포함시킨 것이다. 이 경우, 제 3 도펀트(AD)의 농도는 제 1 도펀트(GD1)와 동량으로 2개의 호스트(GHH, GEH) 내에서 10vol%로 한다.
표 4 및 도 14와 같이, 제 4실험예(Ex4) 적용시 제 1 실험예(Ex1) 대비 구동 전압이 상승하며, 도 15와 같이, 파장에 따른 발광 세기가 저하되며, 도 16 및 도 17과 같이, 수명 또한 저하됨을 확인할 수 있다.
이는 제 4 실험예와 같이, 작은 ΔEst 값을 갖는 제 3 도펀트(GD)가 발광 도펀트와 함께 호스트 내에 포함되었을 때, 오히려 백색 유기 발광 소자의 효율이 저하되고 안정하지 않음을 의미한다.
이에 대비하여 본 발명의 제 2 및 제 3 실험예에 따른 백색 유기 발광 소자는 발광 도펀트를 단일로 구비한 제 1 실험예에 비해 구동 전압을 감소시키고, 외부 양자 효율의 향상과 함께, 수명에서 현저한 효과를 갖는 것을 확인할 수 있다.
도 18a는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 PL 세기를 나타낸 그래프이다. 또한, 도 18b는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 트랜지언트 PL(transient PL) 세기를 나타낸 그래프이다.
이하에서는 녹색 발광층에 포함되는 재료의 일중항 및 삼중항 특성을 파장 특성과 연관하여 살펴본다.
도 18a는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 PL 세기를 나타낸 그래프이며, 도 18b는 본 발명의 실험예들에서 이용된 제 1 녹색 호스트(GHH), 제 2 녹색 호스트(GEH)와 제 1 내지 제 3 녹색 도펀트별 트랜지언트(transient) PL 세기를 나타낸 그래프이다.
도 18a는 재료별 일중항 준위(S1) 특성을 살펴보기 위해 상온에서 재료별 PL(photoluminescence) 특성을 살펴본 것이며, 도 18b는 재료별 삼중항 준위(T1) 특성을 살펴보기 위해, 절대 온도 77K 에서 강한 전기장이 걸린 상태에서 빛 조사로, 여기 상태를 형성 후 빛이 나오는 지연 시간 1㎲으로 하여, 여기 상태를 나타낸 것이다.
각각 재료들의 일중항 준위(S1)와 삼중항 준위(T1)는 재료별 그래프의 곡선이 파장과 접선을 이루는 지점을 에너지 환산하여 산출한다.
여기서, 도 18a 와 도 18b를 비교하면 제 2 도펀트(GD)가 트랜지언트 PL 스펙트럼이 PL 스펙트럼보다 대략 100nm 이상 쉬프트됨을 보이는데, 이는 제 2 도펀트가 큰 ΔEst 값을 갖기 때문에 나타나는 현상으로 해석된다.
이와 같이, 본 발명의 백색 유기 발광 소자는 녹색 발광층에 발광성의 제 1 도펀트와 비발광성으로 스스로는 여기하지 않고 발광에 기여하지 않으며, 제 1 도펀트(GD1)로 에너지를 전달하여 주고 녹색 발광층 내 전자의 수송을 통해 발광 영역을 제한하여 인접한 전자 수송층의 계면에 전자가 적체됨을 방지하여 장치의 효율을 향상시키고 수명을 향상시킬 수 있다.
도 19a 내지 도 19c는 본 발명의 다른 실시예에 따른 백색 유기 발광 소자를 나타낸 단면도이다.
도 19a는 본 발명의 다른 일 실시예에 따른 백색 유기 발광 소자를 나타낸 것으로, 이는 제 1 전극(110)과 제 2 전극(240) 사이에, 차례로 제 1 청색 발광 스택(BS1), 제 2 청색 발광 스택(BS2) 및 인광 발광 스택(RGS)의 순서로 발광 스택이 포함되어 있다.
이 경우에도 인광 발광 스택(RGS)은 도 1에서 설명한 적색 발광층(173)과 녹색 발광층(175)의 이종 발광층을 갖고, 녹색 발광층(175)에 발광성 제 1 도펀트 외에 큰 ΔEst 값을 갖는 비발광성 제 2 도펀트를 가져, 비발광성으로 스스로는 여기하지 않고 발광에 기여하지 않으며, 제 1 도펀트(GD1)로 원활히 에너지를 전달하여 주어 효율을 높이며 구동 전압을 낮출 수 있다.
또한, 제 2 도펀트는 녹색 발광층 내 전자의 수송을 통해 발광 영역을 제한하여 인접한 전자 수송층의 계면에 전자가 적체됨을 방지하여 장치의 효율을 향상시키고 수명을 향상시킬 수 있다.
또한, 도 19b와 같이, 본 발명의 다른 실시예에 따른 백색 유기 발광 소자는 제 1 전극(110)과 제 2 전극(240) 사이에, 차례로 인광 발광 스택(RGS), 제 1 청색 발광 스택(BS1), 및 제 2 청색 발광 스택(BS2)의 순서로 발광 스택이 포함되어 있다.
이러한 제 3 실시예에 따른 백색 유기 발광 소자 또한 인광 발광 스택(RGS)은 도 1에서 설명한 적색 발광층(173)과 녹색 발광층(175)의 이종 발광층 가져, 전류 밀도에 관계없이 적색 발광층(173)과 녹색 발광층(175)의 계면에서 발광이 집중되며 균일한 백색 색좌표 특성을 보일 수 있다.
각 발광 스택들(BS1, BS2, RGS) 사이에는 앞서 설명한 전하 생성층이 포함될 수 있다.
또한, 도 19c와 같이, 제 1 전극(110)과 제 2 전극(240) 사이에 4개 이상의 스택을 구비하고 이중 적어도 3개 이상의 스택을 청색 발광 스택(BS1, BS2, BS3)으로 구비하고, 적어도 하나의 스택을 상술한 인광 발광 스택(RGS)로 구비할 수 있다.
각 발광 스택들 사이에는 전하 생성층(CGL1, CGL2, CGL3)을 포함할 수 있다.
한편, 상술한 실시예들의 백색 유기 발광 소자에서, 각 발광 스택에서 발광층 위치는 구비된 발광층이 발광하는 파장의 광이 최적으로 공진이 일어나는 위치로 정해지는 것이 바람직하며, 청색 발광층과 이와 다른 색의 발광층은 제 1, 제 2 전극(110, 240) 사이에서 도 1과 순서를 달리하는 스택에 위치할 때, 인접한 전하 생성층(150 또는 190) 혹은 구비되는 정공 수송 유닛(120, 210)의 두께를 변경하여 제 1 전극과의 거리를 조정할 수 있다.
한편, 도 1 및 도 19a 내지 도 19c는 3 발광 스택 구조 또는 제 4 발광 스택 구조를 제 1 전극(110)과 제 2 전극(240) 사이에 포함된 예를 나타냈지만, 발광 효율을 더 향상시키기 위해 이 보다 청색 발광 스택 및/ 또는 인광 발광 스택 구조를 더 첨가할 수 있다.
도 20은 본 발명의 백색 유기 발광 소자를 포함한 표시 장치를 나타낸 단면도이다.
도 20과 같이, 본 발명의 표시 장치는 복수개의 서브 화소(R_SP, G_SP, B_SP, W_SP)를 갖는 기판(100)과, 상기 기판(100)의 서브 화소들(R_SP, G_SP, B_SP, W_SP)에 공통적으로 구비되는 도 1에 따른 백색 유기 발광 소자(OLED)와, 상기 서브 화소 각각에 구비되며, 백색 유기 발광 소자(OLED)의 상기 제 1 전극(110) 과 접속된 박막 트랜지스터(TFT) 및 상기 서브 화소 중 적어도 어느 하나의 상기 제 1 전극(110) 하측에 구비된 컬러 필터층(109R, 109G, 109B)을 포함할 수 있다.
도시된 예는 백색 서브 화소(W_SP)를 포함한 예를 설명하였으나, 이에 한하지 않고, 백색 서브 화소(W_SP)가 생략되고, 적색, 녹색 및 청색 서브 화소(R_SP, G_SP, B_SP)만 구비한 구조도 가능할 것이다. 경우에 따라, 적색, 녹색 청색 서브 화소를 대체하여 조합하여 백색을 표현할 수 있는 시안(cyan) 서브 화소, 마젠타(magenta) 서브 화소 및 옐로우(yellow) 서브 화소의 조합도 가능하다.
상기 박막 트랜지스터(TFT)는 일 예로, 게이트 전극(102)과, 반도체층(104), 및 상기 반도체층(104)의 양측과 접속된 소스 전극(106a) 및 드레인 전극(106b)을 포함한다.
상기 게이트 전극(102)과 반도체층(104) 사이에는 게이트 절연막(103)이 구비된다.
상기 반도체층(104)은 예를 들어, 비정질 실리콘, 다결정 실리콘, 산화물 반도체 혹은 열거된 이들 중 2개 이상의 조합으로 이루어질 수도 있다. 예를 들어, 상기 반도체층(104)이 산화물 반도체인 경우, 상기 반도체층(104)의 채널 부위의 손상을 방지하도록 에치 스타퍼(105)가 상기 반도체층(104) 상에 바로 접하여 더 구비될 수 있다.
또한, 상기 박막 트랜지스터(TFT)의 드레인 전극(106b)은 제 1 전극(110)과 제 1, 제 2 보호막(107, 108) 내에 구비된 콘택홀(CT) 영역에서 접속될 수 있다.
상기 제 1 보호막(107)은 일차적으로 상기 박막 트랜지스터(TFT)를 보호하기 위해 구비되며, 그 상부에 컬러 필터(109R, 109G, 109B)가 구비될 수 있다.
상기 복수개의 서브 화소는 적색 서브 화소, 녹색 서브 화소, 청색 서브 화소 및 백색 서브 화소를 포함할 때, 상기 컬러 필터층은 백색 서브 화소(W_SP)를 제외한 나머지 서브 화소들에 제 1 내지 제 3 컬러 필터(109R, 109G, 109B)로 나뉘어 구비되어, 상기 제 1 전극(110)을 통과하여 출사되는 백색 광을 각 파장별로 통과시킨다. 그리고, 상기 제 1 내지 제 3 컬러 필터(109R, 109G, 109B)를 덮으며, 상기 제 1 전극(110) 하측에 제 2 보호막(108)이 형성된다. 제 1 전극(110)은 콘택홀(CT)을 제외하여 제 2 보호막(108) 표면에 형성된다.
여기서, 백색 유기 발광 소자(OLED)는 투명한 제 1 전극(110)과, 이에 대향된 반사성 전극의 제 2 전극(240)과 상기 제 1, 제 2 전극(110, 240) 사이에 청색 발광 스택(S1)및 장파장(R/G 또는 YG)(인광) 발광 스택(S2)의 2 스택 적층 구조 혹은 도 1, 도 19a 내지 도 19b와 같이, 제 1 청색 발광 스택(BS1), 인광 발광 스택(RGS) 및 제 2 청색 발광 스택(BS2)의 3 스택 적층 구조를 지칭할 수 있다. 혹은 유기 스택(OS)의 구성으로, 상술한 청색 발광 스택(BS1, BS2…) 및 인광 발광 스택(RGS) 중 적어도 어느 하나를 복수개 구비하되, 각 발광 스택들 사이에 전하 생성층을 구비하여 형성할 수 있다. 이 경우, 복수개 구비된 발광 스택은 동일 구조일 수 있다.
여기서 설명하지 않은 119는 뱅크(Bank)를 나타내는 것으로, 뱅크 사이의 BH는 뱅크 홀을 의미한다. 뱅크 홀을 통해 개구된 영역에 발광이 이루어지는 것으로, 상기 뱅크 홀은 각 서브 화소의 발광부를 정의한다.
한편, 도 20의 표시 장치는 일예로 하부 발광 방식에 따른 표시 장치를 나타낸 것이다.
그러나, 본 발명의 표시 장치는 이러한 예에 한하지 않으며, 도 18의 표시 장치의 구조에서 컬러 필터층을 제 2 전극(240) 상측에 위치시키고, 제 1 전극(110)을 반사성 금속을 포함하도록 하고, 제 2 전극(240)을 투명 전극 혹은 반투과성 금속으로 구성하여 상부 발광 방식으로 구현할 수도 있다.
혹은 상기 컬러 필터층을 생략하거나 구비하고, 상기 제 1, 제 2 전극(110, 240) 모두 투명 전극으로 하여 투명 유기 발광 소자를 구현할 수도 있다.
본 발명의 백색 유기 발광 소자 및 이를 적용한 표시 장치는 특히, 이종 발광층을 접하여 구비한 인광 발광 스택에서 변화를 갖는 것으로, 이는 전계 변화에서 정공과 전자의 서로 다른 이동도 경향을 보상하기 위한 것이다. 만일 전계 변화에서 정공보다 전자 의존성이 큰 경향을 보상하지 않고, 백색 소자를 구동할 경우 전류밀도에 따라 발광 영역이 뒤바뀌게 되고, 결과적으로 전류 밀도에 따라 고른 백색 스펙트럼 혹은 일정한 색좌표를 얻을 수 없게 되어 결국 패널 불량으로 이어진다. 본 발명을 이를 보상하기 위해, 이종 발광층에서 적색 발광층과 녹색 발광층의 계면에서의 발광 영역 생성이 항상성을 갖고 유지되도록 적색 발광층 내 특정 영역에 정공이 트랩되지 않도록 적색 도펀트의 HOMO 준위가 인접한 정공 수송층의 HOMO 준위보다 낮게 한다. 따라서, 적색 발광층에서 정공 수송층과 인접한 영역의 적색 도펀트에 캐리어가 트랩되지 않고, 캐리어가 녹색 발광층과의 계면측으로 원활히 전송되도록 할 수 있다.
그리고, 적색 발광층에 포함되는 호스트로 전자 수송성 호스트를 이용하여 적색 발광층에서 정공 및 전자의 캐리어 전송률의 변화를 효과적으로 줄여 전류 밀도의 변화에 관계없이 발광 영역을 균일하게 유지할 수 있다.
따라서, 발광 영역을 적색 발광층과 녹색 발광층의 계면에서 변동성 없이 유지될 수 있어 전류 밀도 변화에도 백색 색좌표의 균일성을 확보할 수 있다.
본 발명의 일 실시예에 따른 백색 유기 발광 소자는 서로 대향한 제 1 전극과 제 2 전극 및 상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며, 상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고, 상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함할 수 있다.
상기 제 2 도펀트의 일중항 준위와 삼중항 준위 차(ΔEst)가 0.6eV 이상일 수 있다.
상기 제 2 도펀트의 일중항 준위는 상기 정공 수송성 호스트, 상기 전자 수송성 호스트 및 상기 제 1 도펀트 모두의 일중항 준위보다 크며, 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 일중항 준위는 2.7eV 이상일 수 있다.
상기 제 2 도펀트의 삼중항 준위는 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 삼중항 준위보다 작고, 상기 제 1 도펀트의 삼중항 준위보다 크며, 상기 제 1 도펀트의 삼중항 준위는 2.4eV 이상일 수 있다.
상기 제 2 도펀트는 400nm의 이하의 파장에서 발광 피크를 가질 수 있다.
상기 제 2 도펀트의 HOMO 에너지 준위는 상기 전자 수송성 호스트의 HOMO 에너지 준위보다 낮고, 상기 제 2 도펀트의 LUMO 에너지 준위는 상기 제 1 도펀트의 LUMO 준위보다 높을 수 있다.
상기 제 2 도펀트의 에너지 밴드갭이 3 eV 이상이며, HOMO 에너지 준위는 -6.0eV 이하일 수 있다.
상기 제 2 도펀트는 전자 이동도가 정공 이동도보다 높을 수 있다.
상기 제 1 및 제 2 도펀트는 합산하여 상기 녹색 발광층 내에 0.02vol% 내지 30vol% 로 포함되며, 상기 제 2 도펀트는 상기 녹색 발광층 내에 0.01vol% 내지 20vol%으로 포함될 수 있다.
상기 청색 발광 스택은, 상기 제 1 전극과 제 2 전극 사이에 복수개 구비될 수 있다.
상기 복수개 구비된 청색 발광 스택은 상기 인광 발광 스택의 상하에 각각 있거나 상기 제 1 전극 혹은 제 2 전극에 인접하여, 사이에 전하 생성층을 포함하여 구비될 수 있다.
상기 적색 발광층은 발광 피크가 600nm 내지 640nm에 있으며, 상기 녹색 발광층은 발광 피크가 500nm 내지 540nm에 있을 수 있다.
혹은 상기 적색 발광층은 발광 피크가 600nm 내지 640nm에 있으며, 상기 녹색 발광층은 발광 피크가 540nm 내지 580nm에 있을 수 있다.
본 발명의 일 실시예에 따른 표시 장치는 각 서브 화소에 박막 트랜지스터를 구비한 기판과, 상기 각 서브 화소에 박막 트랜지스터 접속된 제 1 전극 및 상기 제 1 전극과 이격하며 상기 서브 화소들에 걸쳐 구비된 제 2 전극 및 상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며, 상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고, 상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함할 수 있다.
상기 제 2 도펀트의 일중항 준위와 삼중항 준위 차(ΔEst)가 0.6eV 이상일 수 있다.
상기 제 2 도펀트의 일중항 준위는 상기 정공 수송성 호스트, 상기 전자 수송성 호스트 및 상기 제 1 도펀트 모두의 일중항 준위보다 크며, 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 일중항 준위는 2.7eV 이상일 수 있다.
상기 제 2 도펀트의 삼중항 준위는 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 삼중항 준위보다 작고, 상기 제 1 도펀트의 삼중항 준위보다 크며, 상기 제 1 도펀트의 삼중항 준위는 2.4eV 이상일 수 있다.
한편, 이상에서 설명한 본 발명은 상술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
100: 기판 110: 제 1 전극
120: 제 1 정공 수송 유닛 130: 제 1 청색 발광층
140: 제 1 전자 수송층 150: 제 1 전하 생성층
160: 제 3 정공 수송층 173: 적색 발광층
175: 녹색 발광층 180: 제 2 전자 수송층
190: 제 2 전하 생성층 210: 제 2 정공 수송 유닛
220: 제 2 청색 발광층 230: 제 3 전자 수송층
240: 제 2 전극
BS, BS1, BS2: 청색 발광 유닛 RGS: 인광 발광 유닛

Claims (20)

  1. 서로 대향한 제 1 전극과 제 2 전극; 및
    상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며,
    상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고,
    상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함한 백색 유기 발광 소자.
  2. 제 1항에 있어서,
    상기 제 2 도펀트의 일중항 준위와 삼중항 준위 차(ΔEst)가 0.6eV 이상인 백색 유기 발광 소자.
  3. 제 1항에 있어서,
    상기 제 2 도펀트의 일중항 준위는 상기 정공 수송성 호스트, 상기 전자 수송성 호스트 및 상기 제 1 도펀트 모두의 일중항 준위보다 크며,
    상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 일중항 준위는 2.7eV 이상인 백색 유기 발광 소자.
  4. 제 3항에 있어서,
    상기 제 2 도펀트의 삼중항 준위는 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 삼중항 준위보다 작고, 상기 제 1 도펀트의 삼중항 준위보다 크며,
    상기 제 1 도펀트의 삼중항 준위는 2.4eV 이상인 백색 유기 발광 소자.
  5. 제 1항에 있어서,
    상기 제 2 도펀트는 400nm의 이하의 파장에서 발광 피크를 갖는 백색 유기 발광 소자.
  6. 제 1항에 있어서,
    상기 제 2 도펀트의 HOMO 에너지 준위는 상기 전자 수송성 호스트의 HOMO 에너지 준위보다 낮고,
    상기 제 2 도펀트의 LUMO 에너지 준위는 상기 제 1 도펀트의 LUMO 준위보다 높은 백색 유기 발광 소자.
  7. 제 1항에 있어서,
    상기 제 2 도펀트의 에너지 밴드갭이 3 eV 이상이며, HOMO 에너지 준위는 -6.0eV 이하인 백색 유기 발광 소자.
  8. 제 1항에 있어서,
    상기 제 2 도펀트는 전자 이동도가 정공 이동도보다 높은 백색 유기 발광 소자.
  9. 제 1항에 있어서,
    상기 제 1 및 제 2 도펀트는 합산하여 상기 녹색 발광층 내에 0.02vol% 내지 30vol% 로 포함되며,
    상기 제 2 도펀트는 상기 녹색 발광층 내에 0.01vol% 내지 20vol%으로 포함된 백색 유기 발광 소자.
  10. 제 1항에 있어서,
    상기 청색 발광 스택은, 상기 제 1 전극과 제 2 전극 사이에 복수개 구비된 백색 유기 발광 소자.
  11. 제 10항에 있어서,
    상기 복수개 구비된 청색 발광 스택은 상기 인광 발광 스택의 상하에 사이에 전하 생성층을 포함하여 구비된 있거나
    상기 제 1 전극 혹은 제 2 전극에 인접하여 구비된 백색 유기 발광 소자.
  12. 제 1항에 있어서,
    상기 적색 발광층은 발광 피크가 600nm 내지 640nm에 있으며,
    상기 녹색 발광층은 발광 피크가 500nm 내지 540nm에 있는 백색 유기 발광 소자.
  13. 제 1항에 있어서,
    상기 적색 발광층은 발광 피크가 600nm 내지 640nm에 있으며,
    상기 녹색 발광층은 발광 피크가 540nm 내지 580nm에 있는 백색 유기 발광 소자.
  14. 각 서브 화소에 박막 트랜지스터를 구비한 기판;
    상기 각 서브 화소에 박막 트랜지스터 접속된 제 1 전극 및 상기 제 1 전극과 이격하며 상기 서브 화소들에 걸쳐 구비된 제 2 전극; 및
    상기 제 1 전극과 제 2 전극 사이에 구비되고, 전하 생성층을 사이에 두어 구분된 청색 발광 스택과 인광 발광 스택을 포함하며,
    상기 인광 발광 스택은 정공 수송층, 적색 발광층, 녹색 발광층 및 전자 수송층을 포함하고,
    상기 녹색 발광층은 정공 수송성 호스트, 전자 수송성 호스트, 녹색의 발광 피크를 갖는 제 1 도펀트 및 비발광의 제 2 도펀트를 포함한 표시 장치.
  15. 제 14항에 있어서,
    상기 제 2 도펀트의 일중항 준위와 삼중항 준위 차(ΔEst)가 0.6eV 이상인 표시 장치.
  16. 제 14항에 있어서,
    상기 제 2 도펀트의 일중항 준위는 상기 정공 수송성 호스트, 상기 전자 수송성 호스트 및 상기 제 1 도펀트 모두의 일중항 준위보다 크며,
    상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 일중항 준위는 2.7eV 이상인 표시 장치.
  17. 제 14항에 있어서,
    상기 제 2 도펀트의 삼중항 준위는 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트 각각의 삼중항 준위보다 작고, 상기 제 1 도펀트의 삼중항 준위보다 크며,
    상기 제 1 도펀트의 삼중항 준위는 2.4eV 이상인 표시 장치.
  18. 제 14항에 있어서,
    상기 제 2 도펀트는 400nm의 이하의 파장에서 발광 피크를 갖는 표시 장치.
  19. 제 1항에 있어서,
    상기 제 2 도펀트의 HOMO 에너지 준위는 상기 전자 수송성 호스트의 HOMO 에너지 준위보다 낮고,
    상기 제 2 도펀트의 LUMO 에너지 준위는 상기 제 1 도펀트의 LUMO 준위보다 높은 표시 장치.
  20. 제 14항에 있어서,
    상기 제 2 도펀트의 에너지 밴드갭이 3 eV 이상이며, HOMO 에너지 준위는 -6.0eV 이하인 표시 장치.
KR1020200190047A 2020-12-31 2020-12-31 백색 유기 발광 소자 및 이를 이용한 표시 장치 KR20220097065A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200190047A KR20220097065A (ko) 2020-12-31 2020-12-31 백색 유기 발광 소자 및 이를 이용한 표시 장치
US17/546,396 US20220209138A1 (en) 2020-12-31 2021-12-09 White organic light-emitting device and display device using the same
CN202111590250.1A CN114695769A (zh) 2020-12-31 2021-12-23 白色有机发光装置及使用其的显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200190047A KR20220097065A (ko) 2020-12-31 2020-12-31 백색 유기 발광 소자 및 이를 이용한 표시 장치

Publications (1)

Publication Number Publication Date
KR20220097065A true KR20220097065A (ko) 2022-07-07

Family

ID=82119693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200190047A KR20220097065A (ko) 2020-12-31 2020-12-31 백색 유기 발광 소자 및 이를 이용한 표시 장치

Country Status (3)

Country Link
US (1) US20220209138A1 (ko)
KR (1) KR20220097065A (ko)
CN (1) CN114695769A (ko)

Also Published As

Publication number Publication date
US20220209138A1 (en) 2022-06-30
CN114695769A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
KR101929040B1 (ko) 유기전계발광표시장치 및 이의 제조방법
KR101682967B1 (ko) 유기 발광 소자 및 이를 포함하는 조명 장치
CN1905205B (zh) 有机电致发光元件和有机电致发光显示装置
US20180047927A1 (en) Organic light-emitting device and display device
KR102408906B1 (ko) 유기 발광 소자 및 이를 이용한 유기 발광 표시 장치
US20210151703A1 (en) Organic light emitting device and display device using the same
US11950439B2 (en) White organic light-emitting device and display device using the same
KR101223615B1 (ko) 인버티드 유기 발광 소자 및 이를 포함하는 평판 표시 장치
KR20210083012A (ko) 유기 발광 소자 및 이를 이용한 표시 장치
US11974446B2 (en) White organic light emitting element and display device using the same
KR102295796B1 (ko) 유기전계발광소자 및 이를 구비한 표시소자
CN116390529A (zh) 发光装置和包含其的发光显示装置
KR20220092168A (ko) 발광 소자 및 이를 포함한 발광 표시 장치
KR20220044179A (ko) 유기전계발광 표시소자
KR20220097065A (ko) 백색 유기 발광 소자 및 이를 이용한 표시 장치
KR20210086355A (ko) 유기 발광 소자 및 이를 이용한 표시 장치
KR20200058838A (ko) 유기발광다이오드 표시장치
EP4207968A1 (en) Light-emitting device and light-emitting display device including the same
US20220209154A1 (en) White light emitting device and light emitting display device including the same
US20230217668A1 (en) Light-emitting device and light-emitting display device including the same
US20230217824A1 (en) Light emitting device and light emitting display device including the same
KR102672009B1 (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
CN116437685A (zh) 发光器件和包括该发光器件的发光显示设备
KR20220095028A (ko) 백색 발광 소자 및 이를 포함한 발광 표시 장치
KR20230103708A (ko) 발광 소자 및 이를 포함한 표시 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal