KR20220096278A - CNN-based exercise intensity classification system using pulse waves - Google Patents

CNN-based exercise intensity classification system using pulse waves Download PDF

Info

Publication number
KR20220096278A
KR20220096278A KR1020200188562A KR20200188562A KR20220096278A KR 20220096278 A KR20220096278 A KR 20220096278A KR 1020200188562 A KR1020200188562 A KR 1020200188562A KR 20200188562 A KR20200188562 A KR 20200188562A KR 20220096278 A KR20220096278 A KR 20220096278A
Authority
KR
South Korea
Prior art keywords
exercise intensity
cnn
exercise
unit
intensity classification
Prior art date
Application number
KR1020200188562A
Other languages
Korean (ko)
Other versions
KR102570665B1 (en
Inventor
김상하
이지수
서지윤
정상중
정도운
Original Assignee
동서대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동서대학교 산학협력단 filed Critical 동서대학교 산학협력단
Priority to KR1020200188562A priority Critical patent/KR102570665B1/en
Publication of KR20220096278A publication Critical patent/KR20220096278A/en
Application granted granted Critical
Publication of KR102570665B1 publication Critical patent/KR102570665B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations

Abstract

The present invention relates to a CNN-based exercise intensity classification system using pulse waves. The CNN-based exercise intensity classification system using pulse waves comprises: a PPG sensor which is a hardware terminal that measures a pulse wave signal; a monitor which is an output device; and an exercise intensity classification device which is a controller. The exercise intensity classification device comprises: a PPG signal input unit which inputs a signal from the PPG sensor; a data processing unit which extracts a P-peak interval and inputs the P-peak interval to a trained convolution neural network (CNN) unit; the CNN unit; an exercise intensity classification unit which classifies exercise intensity into exercise intensity classification classes according to heartbeats; an output unit which performs monitoring and displays graphs; a storage unit which stores data; and a control unit. Therefore, the present invention carries out preprocessing by measuring a pulse wave signal using a PPG sensor, extracts a P-peak interval, and inputs the extracted P-peak interval to a trained CNN artificial neural network to classify the exercise intensity into the exercise intensity classification classes according to heartbeats. Accordingly, the present invention can accurately calculate heartbeats and classification classes of various kinds of exercises and can be interlocked with an exercise application to be applied to a more objective exercise intensity feedback system.

Description

맥파를 이용한 CNN 기반의 운동 강도 분류 시스템{CNN-based exercise intensity classification system using pulse waves}CNN-based exercise intensity classification system using pulse waves

본발명은 맥파를 이용한 PPG 센서를 통해 맥파 신호를 계측하여 전처리 과정을 수행하고, P-peak의 간격을 추출하고 학습된 CNN 인공신경망에 입력해 심박 수에 따른 운동 강도 분류 클래스로 운동 강도를 분류하여, 다양한 운동의 심박 수 및 분류클래스를 정확하게 산출하고 운동 어플리케이션과 연동하여 더욱 객관적인 운동 강도 피드백 시스템에 대한 적용이 가능한 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템에 관한 것이다.The present invention measures a pulse wave signal through a PPG sensor using a pulse wave, performs a preprocessing process, extracts the interval of P-peak, and inputs it into the learned CNN artificial neural network to classify the exercise intensity into an exercise intensity classification class according to the heart rate Accordingly, it relates to a CNN-based exercise intensity classification system using pulse waves that accurately calculates the heart rate and classification class of various exercises and can be applied to a more objective exercise intensity feedback system by interworking with exercise applications.

최근 의료기술의 발전으로 인해 고령화 사회로 접어들면서 건강에 대한 관심이 증가하고 있다. 문화체육관광부의 2018 국민생활체육참여 실태조사에 따르면 생활체육 참여율은 2013년부터 6년간 45.5%에서 62.2%로 증가하였다. 또한, 많은 사람들이 운동 시 짧은 시간에 높은 효과를 나타내는 고강도 운동을 선호한다. 고강도 운동은 운동 중 산소 및 칼로리 소비량이 매우 높으며, 운동 후에도 산소를 보충하기 위하여 추가적으로 칼로리를 소모하는 후 연소 효과가 있어 운동 효과가 매우 뛰어나다. 하지만 최대치의 고강도 운동을 진행할 경우 심장에 큰 무리가 발생해 심장발작이나 고혈압으로 인한 쇼크 등 위험한 상황으로 이어질 수 있다. 따라서 개인별 적정수준의 고강도 운동을 하는 것이 중요하다. 일반적으로 운동 강도를 추정하기 위한 척도로 심박 수 또는 최대산소섭취량을 이용한다. 최대산소섭취량의 경우 데이터를 측정하기 위해 가스 분석기를 사용해야 하며 계측 마스크 및 신호 처리 시스템이 필요하기 때문에 일상생활에서 최대산소섭취량을 측정하기에는 어려움이 있다. 하지만 심박 수를 이용한 운동 강도 추정의 경우 심박 측정 센서가 다양하고 소형화되어있어 최대산소섭취량보다 일상생활에서 운동 강도 추정이 용이하다. 그리고 운동강도 추정을 위한 종래특허기술의 일례로서, 등록특허공보 등록번호 10-1777312호에는 사용자에게 지급되는 사용자 단말기, 운동기구에 장착되어 있는 운동기구 단말기, 상기 운동기구 단말기를 통합관리하는 운동기구 관리서버를 포함하여 이루어진 운동처방 시스템에 있어서, 운동기구 관리서버는, 개인별 설문 조사 및 기초체력 정보, 개인정보로부터 질환여부를 판단하여, 개인별로 정상군 카테고리와 질환군 카테고리 중 하나를 지정하며, 개인별로 지정된 정상군 카테고리와 질환군 카테고리 중 하나를 저장하고 있으며, 상기 운동기구 단말기는, 운동 중 실시간으로 측정되는 HR(심박수)가 기 설정된 타겟 심박수 영역을 벗어나게 되면 운동강도를 재조정하며, HRV의 PSD 분석을 통해 얻어진 LF/HF ratio의 상태에 따라서 운동강도를 재조정하며, 심전도의 QT간격(QT interval) 안정시 값에 비해 급격한 변화가 생길 경우 운동강도를 재조정하도록 이루어진 운동기구 연산처리부를 구비하며, 상기 운동기구 단말기는, HRV의 PSD 분석을 통해 얻어진 LF/HF ratio의 상태에 따라서 운동강도를 재조정할 경우, LF/HF ratio가 운동 중 실시간으로 1분 단위로 모니터링되며, 2주동안 처방받은 운동에 대해 안정 범위(1.5~2)보다 2배 이상 높거나 낮은 상태가 3회 이상 발생한 경우 처방받은 운동처방보다 낮은 강도로 자동 재설정되도록 이루어진 것을 특징으로 하는 운동처방 시스템이 공개되어 있다.Recently, due to the development of medical technology, as we enter an aging society, interest in health is increasing. According to the 2018 National Life Sports Participation Survey by the Ministry of Culture, Sports and Tourism, the participation rate in daily life sports increased from 45.5% to 62.2% for 6 years from 2013. In addition, many people prefer high-intensity exercise that has a high effect in a short time during exercise. High-intensity exercise consumes very high oxygen and calories during exercise, and it has a burning effect after consuming additional calories to supplement oxygen after exercise, so the exercise effect is very good. However, if you perform high-intensity exercise at the maximum level, a large strain on the heart may occur, which can lead to dangerous situations such as a heart attack or shock due to high blood pressure. Therefore, it is important to perform high-intensity exercise at an appropriate level for each individual. In general, heart rate or maximal oxygen uptake is used as a measure for estimating exercise intensity. In the case of maximal uptake, it is difficult to measure the maximal uptake in daily life because a gas analyzer must be used to measure the data, and an instrumentation mask and signal processing system are required. However, in the case of exercise intensity estimation using heart rate, since the heart rate sensor is diversified and miniaturized, it is easier to estimate the exercise intensity in daily life than the maximum oxygen intake. And as an example of the prior patent technology for estimating exercise intensity, registered Patent Publication No. 10-1777312 discloses a user terminal paid to a user, an exercise equipment terminal mounted on the exercise equipment, and an exercise equipment for integrated management of the exercise equipment terminal. In the exercise prescription system including the management server, the exercise equipment management server determines whether or not a disease is present from an individual survey, basic physical fitness information, and personal information, and designates one of a normal group category and a disease group category for each individual, One of the normal group category and the disease group category designated for each individual is stored, and the exercise equipment terminal readjusts the exercise intensity when the HR (heart rate) measured in real time during exercise is out of the preset target heart rate range, and the HRV It readjusts the exercise intensity according to the state of the LF/HF ratio obtained through PSD analysis, and has an exercise equipment calculation processing unit configured to readjust the exercise intensity when there is a sharp change compared to the QT interval of the electrocardiogram at rest. , when the exercise equipment terminal readjusts the exercise intensity according to the state of the LF/HF ratio obtained through PSD analysis of HRV, the LF/HF ratio is monitored in real time during exercise in units of 1 minute, and the An exercise prescription system, characterized in that it is automatically reset to a lower intensity than the prescribed exercise prescription, is disclosed when a state that is two times higher or lower than the stable range (1.5-2) for exercise occurs three or more times.

또한 등록특허공보 등록번호 10-1277177호에는 사용자의 운동을 보조하는 운동 보조 장치에 있어서, 상기 사용자 또는 개발자로부터 입력받은 운동 프로그램을 저장하는 운동 프로그램 저장부;In addition, Patent Registration No. 10-1277177 discloses an exercise assisting device for assisting a user's exercise, comprising: an exercise program storage unit for storing an exercise program input from the user or developer;

상기 사용자로부터 상기 저장된 운동 프로그램 중, 적어도 하나의 운동 프로그램이 선택되면, 상기 선택된 적어도 하나의 운동 프로그램을 상기 운동 프로그램 저장부로부터 입력받으며, 상기 입력된 적어도 하나의 운동 프로그램을 상기 사용자가 사용할 운동 프로그램으로 설정하는 운동 프로그램 설정부;When at least one exercise program is selected from among the stored exercise programs by the user, the selected at least one exercise program is input from the exercise program storage unit, and the at least one exercise program is used by the user to be used. Exercise program setting unit to set;

적어도 하나의 센서를 통해 상기 사용자의 움직임 관련 정보 및 생체 관련 정보를 수집하는 움직임 및 생체 정보 수집부;a movement and biometric information collection unit configured to collect the user's movement-related information and biometric information through at least one sensor;

상기 수집된 사용자의 움직임 관련 정보 중, 상기 설정된 운동 프로그램에 해당하는 특정 움직임을 검출하고, 상기 검출된 특정 움직임에 대한 결과 정보와 함께 상기 생체 관련 정보를 출력하는 운동 패턴 검출부;an exercise pattern detection unit for detecting a specific motion corresponding to the set exercise program from among the collected user's motion related information, and outputting the biometric information together with result information on the detected specific motion;

상기 검출된 특정 움직임에 대한 결과 정보 및 생체 관련 정보를 입력받아 저장하고, 이 정보들을 이용하여 사용자의 운동 능력 향상 정도를 분석하며, 상기 사용자의 일별, 주별, 월별 및 연별 운동 결과를 저장 관리하고, 일별, 주별, 월별 및 연별 운동 능력 향상 정도를 저장 관리하는 정보 분석부;Receives and stores result information and biometric information for the detected specific movement, analyzes the degree of improvement in the user's exercise ability using this information, stores and manages daily, weekly, monthly and yearly exercise results of the user, , an information analysis unit that stores and manages daily, weekly, monthly and yearly exercise capacity improvement levels;

상기 검출된 특정 움직임에 대한 결과 정보 및 생체 관련 정보 또는 상기 분석된 사용자의 운동 능력 향상 정도를 출력하는 입출력부를 포함하여 구성되는 것을 특징으로 하는 운동 보조 장치가 공개되어 있다.There is disclosed an exercise assistance device comprising an input/output unit for outputting result information and biometric information on the detected specific movement or the analyzed degree of improvement in exercise ability of the user.

그러나 상기 종래기술들은 다양한 운동의 심박 수 및 분류클래스를 산출하는데 불편이 있고 결과가 부정확하여 객관적인 운동 강도 피드백이 되지 못하는 단점이 있었다.However, the prior art has disadvantages in that it is inconvenient to calculate the heart rate and classification class of various exercises, and the results are inaccurate, so that an objective exercise intensity feedback cannot be provided.

따라서 본발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 맥파를 이용한 CNN(Convolutional Neural Network) 기반의 운동 강도 분류 시스템을 구현하며, 구현된 시스템은 PPG 센서를 이용하여 맥파 데이터를 계측하고, 이후 심박 수를 산출해 운동 강도를 추정하고 P-peak의 간격을 추출하여 학습된 인공신경망에 입력해 심박 수에 따른 운동 강도 분류 클래스로 3가지 운동 강도를 분류한다. 분류된 3가지 운동 강도를 CNN에 입력하여 분류 된 운동 강도에 대한 데이터를 학습한다. 이후 사용자의 운동 데이터를 축적하여 학습된 운동 강도와 축적된 데이터를 이용하여 사용자에게 운동 강도에 따른 피드백을 제공하는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템을 제공하고자 하는 것이다.Therefore, the present invention was devised to solve the above problems, and implements a CNN (Convolutional Neural Network)-based exercise intensity classification system using pulse waves, and the implemented system measures pulse wave data using a PPG sensor, and then Estimate the exercise intensity by calculating the heart rate, extract the P-peak interval, and input it into the trained artificial neural network to classify three types of exercise intensity into exercise intensity classification classes according to heart rate. By inputting the three classified exercise intensities into the CNN, data on the classified exercise intensities are learned. Then, it is to provide a CNN-based exercise intensity classification system using pulse waves that accumulates exercise data of the user and provides feedback according to the exercise intensity to the user using the learned exercise intensity and the accumulated data.

본발명은 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템에 관한 것으로, 하드웨어 단말인 맥파 신호를 계측하는 PPG센서, 출력장치인 모니터;와The present invention relates to a CNN-based exercise intensity classification system using pulse waves, a PPG sensor measuring a pulse wave signal as a hardware terminal, a monitor as an output device; and

제어기인 운동 강도 분류장치;로 구성되되It consists of an exercise intensity classification device that is a controller;

상기 운동 강도 분류장치는 PPG센서로부터의 신호를 입력하는 PPG신호 입력부, P-peak의 간격을 추출하여 학습된 합성곱 인공신경망(Convolution Neural Network, CNN)부에 입력하는 데이터 처리부, 합성곱 인공신경망(Convolution Neural Network, CNN)부, 심박 수에 따른 운동 강도 분류 클래스로 운동 강도를 분류하는 운동강도 분류부, 모니터링, 그래프를 표시하는 출력부, 데이터를 저장하는 저장부, 및 제어부;로 이루어지는 것을 특징으로 한다.The exercise intensity classification device includes a PPG signal input unit for inputting a signal from a PPG sensor, a data processing unit for inputting a learned convolutional neural network (CNN) unit by extracting the P-peak interval, and a convolutional artificial neural network. A (Convolution Neural Network, CNN) unit, an exercise intensity classification unit that classifies exercise intensity into exercise intensity classification classes according to heart rate, an output unit that displays monitoring and graphs, a storage unit that stores data, and a control unit; characterized.

따라서 본 발명은 PPG 센서를 통해 맥파 신호를 계측하여 전처리 과정을 수행하고, P-peak의 간격을 추출하고 학습된 CNN 인공신경망에 입력해 심박 수에 따른 운동 강도 분류 클래스로 운동 강도를 분류하여, 다양한 운동의 심박 수 및 분류클래스를 정확하게 산출하고 운동 어플리케이션과 연동하여 더욱 객관적인 운동 강도 피드백 시스템에 대한 적용이 가능한 현저한 효과가 있다.Therefore, the present invention measures the pulse wave signal through the PPG sensor, performs a preprocessing process, extracts the interval of P-peak, and inputs it to the learned CNN artificial neural network to classify the exercise intensity into an exercise intensity classification class according to the heart rate, It has a remarkable effect that it can be applied to a more objective exercise intensity feedback system by accurately calculating the heart rate and classification class of various exercises and linking with the exercise application.

도 1은 본발명의 전체시스템 구성도
도 2는 본발명의 생체신호계측모듈 사용도
도 3은 본발명의 학습데이터 일례 그래프
도 4는 본발명의 CNN 모델 구성도
도 5는 본발명의 훈련 정확도 및 손실률 그래프
1 is an overall system configuration diagram of the present invention;
2 is a diagram showing the use of the biosignal measuring module of the present invention;
3 is a graph of an example of learning data of the present invention
4 is a configuration diagram of a CNN model of the present invention;
5 is a graph of training accuracy and loss rate of the present invention;

본발명은 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템에 관한 것으로, 하드웨어 단말인 맥파 신호를 계측하는 PPG센서, 출력장치인 모니터;와The present invention relates to a CNN-based exercise intensity classification system using pulse waves, a PPG sensor measuring a pulse wave signal as a hardware terminal, a monitor as an output device; and

제어기인 운동 강도 분류장치;로 구성되되It consists of an exercise intensity classification device that is a controller;

상기 운동 강도 분류장치는 PPG센서로부터의 신호를 입력하는 PPG신호 입력부,The exercise intensity classification device is a PPG signal input unit for inputting a signal from the PPG sensor,

P-peak의 간격을 추출하여 학습된 합성곱 인공신경망(Convolution Neural Network, CNN)부에 입력하는 데이터 처리부, 합성곱 인공신경망(Convolution Neural Network, CNN)부, 심박 수에 따른 운동 강도 분류 클래스로 운동 강도를 분류하는 운동강도 분류부, 모니터링, 그래프를 표시하는 출력부, 데이터를 저장하는 저장부, 및 제어부;로 이루어지는 것을 특징으로 한다.A data processing unit that extracts the interval of P-peak and inputs it to the learned Convolution Neural Network (CNN) unit, a Convolution Neural Network (CNN) unit, and an exercise intensity classification class according to heart rate It is characterized in that it consists of; an exercise intensity classifying unit for classifying the exercise intensity, an output unit for monitoring and displaying a graph, a storage unit for storing data, and a control unit.

또한, 상기 운동강도는 3가지 운동 강도로 분류되는 것을 특징으로 한다.In addition, the exercise intensity is characterized in that it is classified into three types of exercise intensity.

또한, 상기 PPG센서에서 계측된 신호는 디지털 필터에 의해 계측된 원신호에 포함된 잡음이 제거되는 것을 특징으로 한다.In addition, the signal measured by the PPG sensor is characterized in that noise included in the original signal measured by the digital filter is removed.

본발명을 첨부도면에 의해 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings as follows.

본발명의 맥파를 이용한 딥러닝 기반의 운동 강도 분류 시스템은 사용자의 효과적인 운동이 가능하도록 하기 위하여 맥파를 계측하고 이를 딥러닝 알고리즘에 입력하여 맥파에 따른 운동 강도를 분류한다. 분류된 운동 강도에 따라 다음 운동 스케줄 및 피드백을 제공한다. 도 1에 시스템 구성도를 나타내었다.The deep learning-based exercise intensity classification system using pulse waves of the present invention measures the pulse waves in order to enable an effective exercise of the user and inputs them into the deep learning algorithm to classify the exercise intensity according to the pulse waves. According to the classified exercise intensity, the following exercise schedule and feedback are provided. 1 shows a system configuration diagram.

본발명의 운동 강도 추정 및 분류 방법에 대해 구체적으로 설명하면, 본발명은 카르보넨 공식을 이용하여 운동 강도를 추정하였다. 카르보넨 공식은 나이, 운동 강도, 안정심박 수, 휴식 심박 수의 사용자 정보를 사용하여 운동 강도를 추정 가능하다. 이를 활용한 식을 수식 (1)에 나타내었다.Specifically, the exercise intensity estimation and classification method of the present invention is described in detail, the present invention estimated the exercise intensity using the carbonene formula. The Karbornen formula can estimate exercise intensity using user information of age, exercise intensity, resting heart rate, and resting heart rate. Equation using this is shown in Equation (1).

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
(1)
Figure pat00003
(One)

운동 강도를 분류하기 위해 미국심장협회(American Heart Association, AHA) 기준으로 총 3가지 클래스로 분류하였다. 운동 강도가 50%이하이면 저 강도, 50~70%면 중 강도, 70% 이상이면 고 강도로 분류하였으며 표 1에 운동 분류 클래스를 나타내었다.In order to classify the exercise intensity, a total of three classes were classified according to the American Heart Association (AHA). If the exercise intensity was less than 50%, it was classified as low-intensity, if it was 50-70%, it was classified as medium-intensity, and if it was more than 70%, it was classified as high-intensity. Table 1 shows the exercise classification classes.

심박수heart rate 운동 강도exercise intensity 1. 저 강도 (L)1. Low strength (L) 125 이하125 or less 50% 이하50% or less 2. 중 강도 (M)2. Medium strength (M) 125 ~ 150125 to 150 50 ~ 70%50 to 70% 3. 고 강도(V)3. High Intensity (V) 150 ~ 170150 to 170 70 ~ 85%70 to 85%

표 1. 운동 강도 분류 클래스Table 1. Exercise Intensity Classification Class

본발명의 데이터 세트 구성에 대해 설명하면, 본발명은 학습 데이터를 구성하기 위해 생체신호 계측모듈(P400, Physiolab Co.)을 사용해 맥파신호를 계측하였으며, 디지털 필터를 이용해 계측된 원신호에 포함된 잡음을 제거하였다. 그림 2는 생체신호계측(P400, Physiolab Co.)모듈을 사용하여 측정한 모습이다.When explaining the data set configuration of the present invention, the present invention measured the pulse wave signal using a biosignal measurement module (P400, Physiolab Co.) to configure the learning data, and included in the original signal measured using a digital filter. Noise was removed. Figure 2 shows the measurement using the biosignal measurement (P400, Physiolab Co.) module.

측정된 데이터를 P-peak의 개수로 심박 수를 산출하고 카르보넨 공식을 통해 운동 강도를 추정하였다. 높은 강도로 운동을 진행할 경우 심박 간격이 짧고 낮은 강도로 운동을 진행할 경우 간격이 길어지기 때문에 심장 박동 충격파인 P-peak의 간격을 이용해 운동 강도를 분류 가능하다. 운동 강도가 추정된 맥파 파형의 양쪽 최댓값 인덱스를 이용해 P-peak의 간격을 산출하였으며, zero-padding 기법으로 학습데이터의 길이를 동일하게 구성하였다. 도 3에 학습데이터의 일례를 나타내었다. The heart rate was calculated from the measured data as the number of P-peaks, and the exercise intensity was estimated using the Carbonen formula. When exercising at high intensity, the heartbeat interval is short, and when exercising at low intensity, the interval becomes longer. The interval of the P-peak was calculated using the indexes of both maximum values of the pulse wave waveform with the estimated exercise intensity, and the length of the training data was equally configured by the zero-padding technique. 3 shows an example of the training data.

그리고 본발명는 합성곱 인공신경망(Convolution Neural Network, CNN)모델을 사용하였다. CNN은 합성곱 연산을 통해 이미지 또는 시계열 데이터의 동일 패턴을 추출하고 분류하는 인공신경망이다. 분류 알고리즘으로 반복적이고 순차적인 데이터 학습에 특화된 순환구조를 이용하여 과거의 학습을 현재학습에 반영 가능한 RNN(Recurrent Neural Network), 스스로 분류레이블을 만들어 내고 공간을 왜곡하고 데이터를 구분짓는 과정을 반복하여 최적의 구번선을 도출해내는 DNN 등이 있다. CNN은 데이터의 특징을 배열형태로 배열끼리의 연관관계를 유지하여 학습시킬 수 있다. 필터에서 특징을 잡아 Convolution의 과정을 통해 데이터를 생성하여 Filter만 사용하는 Pooling작업을 적용하여 크기를 줄일 수 있기에 데이터의 손실을 막을 수 있다. 구현된 CNN 모델은 데이터의 feature map을 추출하는 Convolution Layer, 과적합 방지를 위한 Maxpooling Layer 및 Dropout Layer, 입력과 출력을 연결하는 Dense Layer로 총 15개의 Layer를 구성하였다. And the present invention used a convolutional artificial neural network (CNN) model. CNN is an artificial neural network that extracts and classifies the same pattern of image or time series data through convolution operation. RNN (Recurrent Neural Network) that can reflect past learning to current learning using a cyclic structure specialized for repetitive and sequential data learning as a classification algorithm, creates a classification label by itself, distorts the space, and repeats the process of classifying data There are DNNs, etc. that derive the optimal curve line. CNN can learn the characteristics of data in the form of an array by maintaining the relationship between the arrays. Data loss can be prevented because the size can be reduced by capturing the characteristics of the filter, generating data through the process of convolution, and applying a pooling operation that uses only the filter. The implemented CNN model consists of a total of 15 layers: a convolution layer that extracts feature maps of data, a maxpooling layer and dropout layer to prevent overfitting, and a density layer that connects input and output.

본발명의 실험 및 결과를 기재하면 다음과 같다.Experiments and results of the present invention are described as follows.

본발명의 구현된 모델 성능평가를 위해 분류성능평가지표를 이용하여 정확성을 평가했다. 훈련과 예측성능을 측정하기 위하여 예측 값과 실제 값을 비교하기 위한 오차행렬을 사용하였다.For the performance evaluation of the implemented model of the present invention, the accuracy was evaluated using the classification performance evaluation index. To measure training and prediction performance, an error matrix was used to compare predicted values with actual values.

Predicted ValuesPredicted Values Actual ValuesActual Values Ture PositiveTrue Positive False NegativeFalse Negative False Positivefalse positive True NagativeTrue Negative

표 2. 오차행렬Table 2. Error matrix

오차행렬의 Actual Values는 실제값을 의미하며, Predicted Values는 예측값을 나타낸다. 이를 활용하여 전체 예측 건수에서 정답을 맞힌 비율을 나타낸 정확도, 모델이 참이라 분류한 것 중 실제값이 참인 것을 정밀도, 실제 값이 참인 것 중 모델이 참으로 분류한 재현도를 수식 (2)에 나타내었다.Actual Values of the error matrix represent actual values, and Predicted Values represent predicted values. Using this, the accuracy indicating the percentage of correct answers out of the total number of predictions, the precision of those classified as true by the model as being true, and the reproducibility of the model as being classified as true among the true values are expressed in Equation (2). indicated.

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
(2)
Figure pat00006
(2)

그리고 본 발명에서는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템을 구현하였고, 상기 구현된 시스템은 PPG센서를 통해 맥파 신호를 계측하여 전처리 과정을 수행한 후 P-peak의 간격을 추출하여 학습된 CNN 인공신경망에 입력해 심박 수에 따른 운동 강도 분류 클래스로 3가지 운동 강도를 분류하였고 구성된 CNN 모델을 50번 반복하여 학습을 진행하였다. 구현된 시스템의 성능평가를 진행하여 도 5에 나타내었다.And in the present invention, a CNN-based exercise intensity classification system using pulse waves is implemented, and the implemented system measures a pulse wave signal through a PPG sensor, performs a preprocessing process, and extracts the interval of P-peak to learn CNN artificial Three types of exercise intensity were classified into exercise intensity classification classes according to heart rate by input into the neural network, and the training was performed by repeating the CNN model 50 times. The performance evaluation of the implemented system was performed and shown in FIG. 5 .

본 발명에서 구현된 CNN 인공신경망 모델의 검증평가를 진행하였다. 구현된 시스템의 성능평가를 위해 운동 강도별 데이터를 50개씩 측정하여 총 150개의 데이터를 인공신경망에 입력해 정확도를 분석하였다. 실험결과 L의 정확도는 100%, M의 정확도는 96%, V의 정확도는 100%로 총 98.7%의 정확도를 확인하였다. 일부 오차는 입력된 데이터가 두 가지의 운동 강도 경계선에 근접하여 발생한 것으로 사료된다. 표 3에 분류클래스별 실험 결과를 나타내었다.The validation evaluation of the CNN artificial neural network model implemented in the present invention was performed. To evaluate the performance of the implemented system, 50 data for each exercise intensity were measured, and a total of 150 data were input to the artificial neural network to analyze the accuracy. As a result of the experiment, the accuracy of L was 100%, that of M was 96%, and that of V was 100%, confirming a total accuracy of 98.7%. It is considered that some errors occurred because the input data was close to the boundary between the two types of exercise intensity. Table 3 shows the experimental results for each classification class.

ActualActual LL MM VV PredictionsPredictions LL 5050 22 00 MM 00 4848 00 VV 00 00 5050 Avg.Avg. 100100 9696 100100 98.798.7

표 3. 분류 클래스의 실험 결과Table 3. Experimental results of classification classes

그리고 본발명은 터치키, 터치패드 등 입력수단에 의해 입력된 데이터에 의해 가중치를 곱하여 운동강도를 조절하여 분류할 수 있는 것으로, 심장질환이 있거나, 노약자의 경우 한단계 낮은 운동강도를 제어부는 제시하고, 특히 맥파는 기온이 떨어지면 심박수가 떨어지며 심장이 체온유지를 위해 부담을 더 가지게 되는 등 기온과 연관이 크므로, 온도센서를 설치하여 측정된 신호를 제어부에서 저장부의 온도에 따른 가중지수를 선택하여 곱하여, 운동강도를 제시한다. 특히 기상청의 기상공공데이타를 이용하여, API로 실시간으로 지역에 따른 온도를 받아서 가중지수를 곱하여 적절한 운동강도를 제시할 수 있다. 실내습도도 기온과 마찬가지로 습도센서나 기상청 공공데이타를 이용하여 가중치를 산정한다.And the present invention can be classified by adjusting the exercise intensity by multiplying the weight by the data input by input means such as a touch key or a touch pad. , In particular, as the pulse wave is highly related to temperature, such as when the temperature drops, the heart rate drops and the heart takes more pressure to maintain body temperature. Multiply it to give the exercise intensity. In particular, by using the public weather data of the Korea Meteorological Administration, it is possible to receive the temperature according to the region in real time with the API and multiply it by a weighting index to present the appropriate exercise intensity. Similar to temperature, indoor humidity is weighted using a humidity sensor or public data from the Korea Meteorological Administration.

그러므로, 본 발명에서는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템을 구현하였다. 구현된 시스템은 PPG 센서를 통해 맥파 신호를 계측하여 전처리 과정을 수행한다. 이후 P-peak의 간격을 추출하고 학습된 CNN 인공신경망에 입력해 심박 수에 따른 운동 강도 분류 클래스로 3가지 운동 강도를 분류한다. 구현된 시스템의 실험결과 98.7%의 정확도를 확인하였다. 그리고 다양한 운동의 심박 수 및 분류클래스를 추가하고 운동 어플리케이션과 연동하여 더욱 객관적인 운동 강도 피드백 시스템에 대한 적용이 가능하다.Therefore, in the present invention, a CNN-based exercise intensity classification system using pulse waves was implemented. The implemented system measures the pulse wave signal through the PPG sensor and performs a pre-processing process. After that, the interval of P-peak is extracted and input into the trained CNN artificial neural network to classify three types of exercise intensity into exercise intensity classification classes according to heart rate. As a result of the experiment of the implemented system, the accuracy of 98.7% was confirmed. In addition, it is possible to apply to a more objective exercise intensity feedback system by adding the heart rate and classification class of various exercises and linking with the exercise application.

Claims (3)

하드웨어 단말인 맥파 신호를 계측하는 PPG센서, 출력장치인 모니터;와
제어기인 운동 강도 분류장치;로 구성되되
상기 운동 강도 분류장치는 PPG센서로부터의 신호를 입력하는 PPG신호 입력부,
P-peak의 간격을 추출하여 학습된 합성곱 인공신경망(Convolution Neural Network, CNN)부에 입력하는 데이터 처리부,
합성곱 인공신경망(Convolution Neural Network, CNN)부,
심박 수에 따른 운동 강도 분류 클래스로 운동 강도를 분류하는 운동강도 분류부,
모니터링, 그래프를 표시하는 출력부,
데이터를 저장하는 저장부,
및 제어부;로 이루어지는 것을 특징으로 하는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템
A PPG sensor that measures a pulse wave signal, which is a hardware terminal, and a monitor that is an output device; and
It consists of an exercise intensity classification device that is a controller;
The exercise intensity classification device is a PPG signal input unit for inputting a signal from the PPG sensor,
A data processing unit that extracts the interval of P-peak and inputs it to the learned Convolution Neural Network (CNN) unit;
Convolution Neural Network (CNN) unit,
Exercise intensity classification unit that classifies exercise intensity into exercise intensity classification classes according to heart rate;
Output unit to display monitoring, graph,
a storage unit for storing data;
And a control unit; CNN-based exercise intensity classification system using pulse waves, characterized in that consisting of
제1항에 있어서, 상기 운동강도는 3가지 운동 강도로 분류되는 것을 특징으로 하는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템The CNN-based exercise intensity classification system using pulse waves according to claim 1, wherein the exercise intensity is classified into three types of exercise intensities. 제2항에 있어서, 상기 PPG센서에서 계측된 신호는 디지털 필터에 의해 계측된 원신호에 포함된 잡음이 제거되는 것을 특징으로 하는 맥파를 이용한 CNN 기반의 운동 강도 분류 시스템[Claim 3] The CNN-based exercise intensity classification system using pulse waves according to claim 2, wherein noise included in the original signal measured by a digital filter is removed from the signal measured by the PPG sensor.
KR1020200188562A 2020-12-30 2020-12-30 CNN-based exercise intensity classification system using pulse waves KR102570665B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200188562A KR102570665B1 (en) 2020-12-30 2020-12-30 CNN-based exercise intensity classification system using pulse waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200188562A KR102570665B1 (en) 2020-12-30 2020-12-30 CNN-based exercise intensity classification system using pulse waves

Publications (2)

Publication Number Publication Date
KR20220096278A true KR20220096278A (en) 2022-07-07
KR102570665B1 KR102570665B1 (en) 2023-08-23

Family

ID=82398180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200188562A KR102570665B1 (en) 2020-12-30 2020-12-30 CNN-based exercise intensity classification system using pulse waves

Country Status (1)

Country Link
KR (1) KR102570665B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044911A (en) * 2017-10-23 2019-05-02 이준우 IoT FITNESS EQUIPMENT, EXERCISE INSTRUCTION SYSTEM, AND EXERCISE INSTRUCTION METHOD USING THEREOF
KR20200130006A (en) * 2019-05-10 2020-11-18 주식회사 엔플러그 Health care system and method using lighting device based on IoT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044911A (en) * 2017-10-23 2019-05-02 이준우 IoT FITNESS EQUIPMENT, EXERCISE INSTRUCTION SYSTEM, AND EXERCISE INSTRUCTION METHOD USING THEREOF
KR20200130006A (en) * 2019-05-10 2020-11-18 주식회사 엔플러그 Health care system and method using lighting device based on IoT

Also Published As

Publication number Publication date
KR102570665B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US8139822B2 (en) Designation of a characteristic of a physical capability by motion analysis, systems and methods
KR102033065B1 (en) System and method for providing individual customized health management
KR102008196B1 (en) Apparatus for generating of Potassium level determination model using ECG and method thereof
EP2470076A2 (en) Characterizing a physical capability by motion analysis
CN114224296B (en) Parkinson's motion symptom quantitative evaluation system based on wearable sensing device
Boateng et al. ActivityAware: an app for real-time daily activity level monitoring on the amulet wrist-worn device
CN110659677A (en) Human body falling detection method based on movable sensor combination equipment
CN113171080B (en) Energy metabolism evaluation method and system based on wearable sensing information fusion
US7409373B2 (en) Pattern analysis system and method
CN114512239A (en) Cerebral apoplexy risk prediction method and system based on transfer learning
US20230355135A1 (en) Intelligent gait analyzing apparatus
CN110414590A (en) Physical activity recognition methods based on Intelligent mobile equipment and convolutional neural networks
CN110811638A (en) SVM classifier construction method, system and method for monitoring sleep
CN113128585B (en) Deep neural network based multi-size convolution kernel method for realizing electrocardiographic abnormality detection and classification
Tiwari et al. Stress and anxiety measurement" in-the-wild" using quality-aware multi-scale hrv features
KR101744691B1 (en) Method and Apparatus for Detecting Heartbeat using Ballistocardiogram
KR102570665B1 (en) CNN-based exercise intensity classification system using pulse waves
CN110598789A (en) Human fatigue state prediction method and system based on fuzzy perceptron
CN113876316B (en) System, method, device, equipment and medium for detecting abnormal lower limb flexion and extension activities
CN111466877B (en) LSTM network-based oxygen reduction state prediction method
Dandu et al. Determining physiological significance of inertial gait features in multiple sclerosis
Vathsangam et al. Towards a generalized regression model for on-body energy prediction from treadmill walking
Yardimci Fuzzy logic based gait classification for hemiplegic patients
US20220151531A1 (en) Heart failure predictor and heart failure predicting method
US11737695B2 (en) Method for determining a membership function, intended to be applied to estimate a stressed state of a person

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant