KR20220095313A - Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof - Google Patents

Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof Download PDF

Info

Publication number
KR20220095313A
KR20220095313A KR1020200185799A KR20200185799A KR20220095313A KR 20220095313 A KR20220095313 A KR 20220095313A KR 1020200185799 A KR1020200185799 A KR 1020200185799A KR 20200185799 A KR20200185799 A KR 20200185799A KR 20220095313 A KR20220095313 A KR 20220095313A
Authority
KR
South Korea
Prior art keywords
simulation
distributed resource
information
unit
power
Prior art date
Application number
KR1020200185799A
Other languages
Korean (ko)
Other versions
KR102544181B1 (en
Inventor
신복덕
송은우
김상호
Original Assignee
주식회사 그리드위즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그리드위즈 filed Critical 주식회사 그리드위즈
Priority to KR1020200185799A priority Critical patent/KR102544181B1/en
Publication of KR20220095313A publication Critical patent/KR20220095313A/en
Application granted granted Critical
Publication of KR102544181B1 publication Critical patent/KR102544181B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention relates to an operation planning system and operation planning method for efficient operation and optimization. The system includes: a bigdata system for collecting various driving information from a distributed resource system; a machine learning system performing prediction for a power system and renewable generation through machine learning for the driving information; a digital twin system that can perform simulation like an actual environment by using the driving information and the prediction information; and a data link channel intermediating and managing communication for connection of all of the systems.

Description

디지털 트윈 기반의 분산 자원 및 전력 계통 운영 계획 시스템 및 운영 계획 방법{Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof}Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof

본 발명은 마이크로그리드 환경하에서 분산 자원을 연계하고 디지털 트윈 기반의 시뮬레이션을 통해 효율적인 운영 및 최적화를 위한 분산 자원 및 전력 계통 운영 계획 시스템 및 운영 계획 방법에 관한 것이다. The present invention relates to a distributed resource and power system operation planning system and operation planning method for efficient operation and optimization through digital twin-based simulation and linking distributed resources in a microgrid environment.

디지털 트윈 기술은 실제 산업 현장과 완전히 동일한 환경을 소프트웨어로 복제하여 디지털 환경에 구현한 디지털 가상 객체를 말하는 것으로, 실제 산업 현장과 연동되어 산업 현장에 포함된 각종 장치, 부품, 기기, 센서 등에서 발생하는 데이터를 실시간으로 수집하여 현장 운영자에게 제공하며, 실제 환경에서 확인이 어려운 복합적인 설계 및 운영의 모사를 통해 기술적인 검토화 효율성을 검증하는 솔루션을 의미할 수 있다.Digital twin technology refers to a digital virtual object implemented in a digital environment by replicating the exact same environment as the actual industrial site with software. It can mean a solution that collects data in real time and provides it to field operators, and verifies the effectiveness of technical review through simulation of complex design and operation that is difficult to confirm in the real environment.

현장 운영자는 실제 현장을 가상으로 구현한 디지털 트윈을 통해 현장 작동 상태를 실시간으로 확인할 수 있으며, 시뮬레이션을 통하여 설계와 운영에 대한 최적화 및 타당성을 검토하고, 예측되는 고장이나 사고 발생 등 현장 작동 데이터를 디지털 트윈을 통해 확인한 후 바로 대응할 수 있으므로, 현장을 최적의 상태에서 운영할 수 있는 장점이 있다.Site operators can check the field operation status in real time through a digital twin that implements the actual field virtually, review optimization and feasibility for design and operation through simulation, and collect field operation data such as predicted failures or accidents. It has the advantage of being able to operate the site in an optimal state because it can respond immediately after checking through the digital twin.

사회 정책, 기업 윤리, 경제성 등 여러 환경적 요인으로 인해 에너지 절감에 대한 필요성이 높아지고 있다. 따라서, 전력 소비가 높은 기업, 기관, 공장 등에서는 에너지 절감을 위한 ESS(에너지 저장 시스템), PV(태양광 발전 시스템), DR(수요 관리 시스템) 등과 같은 여러 에너지 절감 설비 및 수요 관리 시스템을 도입하고 있다.The need for energy conservation is increasing due to various environmental factors such as social policies, business ethics, and economic feasibility. Therefore, companies, institutions, and factories with high power consumption introduce various energy saving facilities and demand management systems such as ESS (Energy Storage System), PV (Solar Power Generation System), and DR (Demand Management System) for energy saving. are doing

에너지 절감을 위한 수요가 증가함에 따라 각 설비에 대한 제조사 및 개발 업체가 다양해짐으로써 관리 비용이 증가하고 시스템 변경에 능동적으로 대응할 수 없는 실정이다.As the demand for energy saving increases, manufacturers and developers for each facility diversify, which increases management costs and makes it impossible to actively respond to system changes.

다양한 환경에서 개발 구축된 설비 및 시스템을 효율적으로 통합하여 관리할 수 있도록 표준화된 인터페이스를 통하여 각 독립된 설비 및 시스템을 유연하게 연계할 수 있는 환경이 필요하며, 가상의 설비를 설계하거나 조합하여 시뮬레이션 해봄으로써 운영의 효율성을 높일 수 있는 방안의 필요성이 대두되고 있다.In order to efficiently integrate and manage the facilities and systems developed and built in various environments, an environment that can flexibly link each independent facility and system through a standardized interface is required. As a result, the need for measures to increase operational efficiency is emerging.

이에 본 발명은 사용자의 요구에 따라 ESS, PV, DR 등의 에너지 절감 설비 및 관리 장치와 같은 분산 자원에 대한 운전 정보를 수집하고, 수집된 분산 자원의 운전 정보를 분석하여 분산 자원의 위험을 미리 감지하며, 사용자가 원하는 복합적인 환경의 운전 시뮬레이션과 최적화를 통해 전략적인 운영 계획을 수립하기 위한 시스템 및 방법을 제공하는 것이다. Accordingly, the present invention collects operation information on distributed resources such as energy saving facilities and management devices such as ESS, PV, DR, etc. according to the user's request, and analyzes the operation information of the collected distributed resources to predict the risk of distributed resources in advance. It is to provide a system and method for establishing a strategic operation plan through driving simulation and optimization of a complex environment desired by the user.

본 발명의 해결 수단은 분산 자원 시스템으로부터 다양한 운전 정보를 수집하기 위한 빅데이터 시스템; 상기 빅데이터 시스템을 통해 수집된 운전 정보에 대한 머신 러닝을 통해 전력 계통 및 신재생 발전에 대한 예측 정보를 도출하는 머신 러닝 시스템; 상기 분산 자원 시스템의 운전 정보와 상기 머신 러닝 시스템의 예측 정보를 통해 실제 환경과 같이 시뮬레이션할 수 있는 디지털 트윈 시스템; 상기 빅데이터 시스템, 상기 머신 러닝 시스템 및 상기 디지털 트윈 시스템이 상기 분산 자원 시스템과 서로 통신하여 정보를 주고받기 위한 데이터 연동 채널을 포함하는 분산 자원 및 전력 계통 운영 계획 시스템이 제공될 수 있다. The solution means of the present invention is a big data system for collecting various driving information from a distributed resource system; a machine learning system for deriving predictive information on the electric power system and renewable power generation through machine learning on the driving information collected through the big data system; a digital twin system capable of simulating like a real environment through driving information of the distributed resource system and prediction information of the machine learning system; A distributed resource and power system operation planning system including a data interworking channel for the big data system, the machine learning system, and the digital twin system to communicate with each other and exchange information with the distributed resource system may be provided.

또한, 본 발명은 분산 자원 시스템으로부터 다양한 운전 정보를 빅데이터 시스템에서 수집하는 단계; 상기 빅데이터 시스템을 통해 수집된 운전 정보에 대한 머신 러닝 시스템을 통해 분산 자원 및 전력 계통에 대한 예측 정보를 도출하는 단계; 상기 분산 자원 시스템의 운전 정보와 상기 머신 러닝 시스템의 예측 정보를 통해 디지털 트윈 시스템으로 실제 환경과 같이 시뮬레이션하는 단계를 포함하는 분산 자원 및 전력 계통 운영 계획 방법이 제공될 수 있다.In addition, the present invention comprises the steps of collecting various driving information from a distributed resource system in a big data system; deriving prediction information on distributed resources and power systems through a machine learning system for driving information collected through the big data system; A distributed resource and power system operation planning method including the step of simulating like a real environment with a digital twin system through the operation information of the distributed resource system and the prediction information of the machine learning system may be provided.

본 발명은 마이크로그리드 환경하에서 산업용 신재생 에너지 설비의 운전 상황에 대한 데이터를 기반으로 실제 신재생 에너지 발전 설비 및 ESS와 동기화되는 디지털 트윈 기반의 시스템을 통해 신재생 에너지의 설비 용량 최적화 및 안정적인 운영을 위한 정보를 제공해줄 수 있고, 설치된 신재생 에너지 발전 자원을 효율적으로 유지 보수하고, 운전 효율을 높일 수 있다.The present invention is based on data on the operation status of industrial new and renewable energy facilities in a microgrid environment, through a digital twin-based system that is synchronized with actual new and renewable energy power generation facilities and ESS It is possible to provide information for the purpose of efficient maintenance of installed renewable energy generation resources and to increase operation efficiency.

본 발명은 다양한 분산 자원으로부터 수집한 많은 양의 운전 정보를 빅데이터 시스템에 적재 및 분석하고, 분석된 내용을 기반으로 분산 자원의 위험을 미리 감지하여 분산 자원 시스템의 고가용성을 보장할 수 있으며, 사용자가 원하는 복합적인 환경의 운전 시뮬레이션과 최적화를 통한 전략적인 운영 계획을 수립할 수 있다. The present invention can ensure high availability of a distributed resource system by loading and analyzing a large amount of driving information collected from various distributed resources in a big data system, and detecting the risk of distributed resources in advance based on the analyzed contents, It is possible to establish a strategic operation plan through driving simulation and optimization of the complex environment desired by the user.

도 1은 본 발명의 운영 계획 시스템을 구현하기 위한 구성을 나타낸 블럭도이다.
도 2는 본 발명의 시뮬레이션부의 구성을 나타낸 블럭도이다.
도 3은 본 발명의 운영 계획 방법을 구현하기 위한 시뮬레이션 과정을 설명하는 순서도이다.
1 is a block diagram showing a configuration for implementing the operation planning system of the present invention.
2 is a block diagram showing the configuration of a simulation unit of the present invention.
3 is a flowchart illustrating a simulation process for implementing the operation planning method of the present invention.

이하, 본 발명을 실시하기 위한 구체적인 내용을 첨부된 예시 도면에 의거 상세하게 설명한다.Hereinafter, specific contents for carrying out the present invention will be described in detail based on the accompanying exemplary drawings.

도 1은 본 발명의 운영 계획 시스템을 구현하기 위한 구성을 나타낸 블럭도이다. 도 1을 참조하면, 본 발명의 운영 계획 시스템(10)은 분산 자원 시스템(100)으로부터 다양한 운전 정보를 수집하기 위한 빅데이터 시스템(200), 빅데이터 시스템(200)을 통해 수집된 운전 정보에 대한 머신 러닝을 통해 분산 자원 및 전력 계통에 대한 예측 정보를 도출하는 머신 러닝 시스템(300), 분산 자원 시스템(100)의 운전 정보와 머신 러닝 시스템(300)의 예측 정보를 통해 실제 환경과 같이 시뮬레이션할 수 있는 디지털 트윈 시스템(400)을 포함하여 구성될 수 있다.1 is a block diagram showing a configuration for implementing the operation planning system of the present invention. Referring to FIG. 1 , the operation planning system 10 of the present invention provides a big data system 200 for collecting various driving information from the distributed resource system 100 , the driving information collected through the big data system 200 . The machine learning system 300 for deriving prediction information about distributed resources and power system through machine learning about It may be configured to include a digital twin system 400 that can do this.

또한, 관리 시스템(10)은 빅데이터 시스템(200), 머신 러닝 시스템(300) 및 디지털 트윈 시스템(400)이 분산 자원 시스템(100)과 서로 통신하여 정보를 주고받기 위한 데이터 연동 채널(500)을 포함할 수 있다. In addition, the management system 10 is a data interworking channel 500 for the big data system 200 , the machine learning system 300 , and the digital twin system 400 to communicate with the distributed resource system 100 and exchange information with each other. may include

데이터 연동 채널(500)은 다양하고 이질적인 분산 자원을 효율적으로 통합하고 관리하기 위한 것일 수 있다. 필요에 따라 시스템간 요청 및 응답이 필요한 경우, 데이터가 자주 발생하며, 다수의 시스템에 전달해야 하는 경우, 데이터가 자주 발생하지 않지만 다수의 시스템에 전달해야 하는 경우 등에 적용될 수 있다. The data interworking channel 500 may be for efficiently integrating and managing various and heterogeneous distributed resources. When a request and response between systems is required as needed, data frequently occurs and needs to be delivered to multiple systems, data is not frequently generated but needs to be delivered to multiple systems, and the like.

다시 말해서, 데이터 연동 채널(500)은 간단하고 플러그형 시스템을 구현하여 확장성을 보장하기 위해 마련되는 것일 수 있다. In other words, the data interworking channel 500 may be provided to ensure scalability by implementing a simple and pluggable system.

분산 자원 시스템(100)은 에너지 저장 관리 시스템(ESS)(110), 신재생 발전 시스템인 태양광 발전 관리 시스템(PVMS)(120), 풍력 발전 관리 시스템(WMS)(130), 수요 반응 관리 시스템(DRMS)(140), 전력 수요 관리 시스템(EMS)(150)중 적어도 어느 하나를 포함할 수 있다. 각각의 분산 자원 시스템(100)은 독립적으로 개별 목적 설비 또는 시스템을 운전할 수 있고, 빅데이터 시스템(200)에 독립된 데이터로서 적재(저장)할 수 있다. The distributed resource system 100 includes an energy storage management system (ESS) 110 , a photovoltaic power generation management system (PVMS) 120 , a wind power generation management system (WMS) 130 , and a demand response management system as a renewable power generation system. (DRMS) 140 and may include at least one of the power demand management system (EMS) (150). Each distributed resource system 100 may independently operate an individual target facility or system, and may be loaded (stored) as independent data in the big data system 200 .

에너지 저장 관리 시스템(110)은 전력을 충전 및 방전하는 에너지 저장 장치일 수 있고, 하나 또는 복수로 마련될 수 있다. The energy storage management system 110 may be an energy storage device for charging and discharging power, and may be provided in one or a plurality.

태양광 발전 관리 시스템(120)은 신재생 에너지 발전 모듈로서 태양 에너지를 이용하여 전력을 발전시키는 태양광 발전 설비를 관리하는 태양광 관리 시스템로 이루어질 수 있다. The photovoltaic power generation management system 120 may be a photovoltaic management system that manages a photovoltaic power generation facility that generates electric power using solar energy as a renewable energy power generation module.

풍력 발전 관리 시스템(130)은 풍력을 관리하는 장치일 수 있다. The wind power generation management system 130 may be a device for managing wind power.

수요 반응 관리 시스템(140)은 사용자에게 수요 반응 서비스를 제공하고 관리하는 시스템일 수 있다. The demand response management system 140 may be a system for providing and managing a demand response service to a user.

수요 반응 관리 시스템(140)은 사용자의 소비 전력량 정보를 토대로 수요 반응 정보를 생성하고, 상기 생성된 수요 반응 정보를 기초로 상기 수용가에 수요 반응 서비스를 제공할 수 있다. 여기서, 상기 수요 반응 정보는 소비 전력 감축 요청량, 실적 수요 감축량, 감축 참여율, 실질 감축 참여율 등을 포함할 수 있다.The demand response management system 140 may generate demand response information based on the user's power consumption information, and may provide a demand response service to the consumers based on the generated demand response information. Here, the demand response information may include a power consumption reduction request amount, an actual demand reduction amount, a reduction participation rate, an actual reduction participation rate, and the like.

전력 계통은 각 사업장의 부하 등이 될 수 있다. The power system may be a load of each business site, etc.

빅데이터 시스템(200)은 각 분산 자원 시스템(100)으로부터 많은 양의 운전 정보를 수집하는 운전 정보 수집부(210), 수집된 운전 정보 데이터를 전처리 및 적재하는 데이터 전처리 및 적재부(220), 전처리 및 적재된 운전 정보 데이터를 분석하는 데이터 분석부(230), 분석한 데이터를 디지털 트윈 시스템(400)에 제공하기 위한 데이터 제공 API(Application Programming Interface)(240)를 포함할 수 있다. The big data system 200 includes a driving information collection unit 210 that collects a large amount of driving information from each distributed resource system 100, a data preprocessing and loading unit 220 that preprocesses and loads the collected driving information data, It may include a data analysis unit 230 for analyzing the pre-processed and loaded driving information data, and a data providing API (Application Programming Interface) 240 for providing the analyzed data to the digital twin system 400 .

머신 러닝 시스템(300)은 각 분산 자원 시스템(100)의 운전 정보에 대하여 학습하고, 이러한 학습을 통해 머신 러닝 모델을 설정하여 각종 부하로 이루어진 전력 계통에 대한 소비 전력량, 태양광 발전량, 풍력 발전량을 예측하는 것일 수 있다.The machine learning system 300 learns about the operation information of each distributed resource system 100, and sets a machine learning model through this learning to determine the amount of power consumption, solar power generation, and wind power generation for the power system composed of various loads. It could be predictable.

머신 러닝 시스템(300)은 분산 자원 시스템(100)을 이루는 각각의 시스템에 대한 고장 및 점검 시기를 예측하는 고장 및 점검 시기 예측부(310), 각 전력 계통의 소비 전력량 예측부(320), 태양광 발전 설비의 발전량을 예측하는 태양광 발전량 예측부(330), 풍력 발전 설비의 발전량을 예측하는 풍력 발전량 예측부(340)를 적어도 하나 이상 포함하여 구성될 수 있다. The machine learning system 300 includes a failure and maintenance time prediction unit 310 for predicting failure and maintenance times for each system constituting the distributed resource system 100 , a power consumption prediction unit 320 for each power system, and solar The solar power generation amount prediction unit 330 for predicting the amount of power generation of the photovoltaic facility may be configured to include at least one or more of the wind power generation amount prediction unit 340 for predicting the generation amount of the wind power generation facility.

머신 러닝 시스템(300)의 고장 및 점검 시기 예측부(310)는 PCS 및 배터리의 기대 수명에 대한 예측과 배터리 셀의 온도 및 전압 이상 발생 횟수에 대한 분석을 통하여 설비에 대한 고장 예측 및 점검 시점을 산출할 수 있다.The failure and inspection time prediction unit 310 of the machine learning system 300 predicts the failure prediction and inspection time for the facility through the prediction of the expected lifespan of the PCS and battery and the analysis of the number of occurrences of temperature and voltage abnormalities of the battery cells. can be calculated.

머신 러닝 시스템(300)은 소비 전력량에 대한 패턴 분류 및 인식 정보를 제공받아서 학습하고, 머신 러닝 모델을 설정한 다음, 소비 전력량 예측부(320)를 통해 미래의 소비 전력량에 대하여 예측할 수 있다. The machine learning system 300 may receive and learn pattern classification and recognition information on the amount of power consumption, set the machine learning model, and then predict the amount of power consumption in the future through the power consumption prediction unit 320 .

머신 러닝 시스템(300)에서의 학습 내용을 보면, 전력 사용량 패턴 분류는 예를 들어 복수의 부하 패턴중 동일한 부하 증감량을 가지는 부하 패턴끼리 분류하고, 이러한 분류된 패턴중에서 대표 패턴을 추출하며, 대표 패턴이 설정된 오차율 초과 여부를 판단한 다음, 설정된 오차율을 초과하지 않는 경우에는 대표 패턴으로 산정하며, 설정된 오차율을 초과하는 경우에는 다시 재분류 작업을 반복해서 수행할 수 있다. Looking at the learning contents in the machine learning system 300, the power usage pattern classification is, for example, classifying load patterns having the same load increase/decrease among a plurality of load patterns, extracting a representative pattern from these classified patterns, and representing After determining whether the pattern exceeds the set error rate, if it does not exceed the set error rate, it is calculated as a representative pattern, and if it exceeds the set error rate, the reclassification operation can be repeatedly performed.

따라서, 이러한 머신 러닝 시스템(300)은 학습하여 머신 러닝 모델을 설정한 다음, 이러한 머신 러닝 모델을 토대로 소비 전력량 예측부(320)에서는 미래 소비 전력량에 대하여 예측할 수 있다. Accordingly, the machine learning system 300 learns to set the machine learning model, and then the power consumption prediction unit 320 may predict the future power consumption based on the machine learning model.

태양광 발전량 예측부(330)는 태양광 발전 관리 시스템(120)의 태양광 발전 정보에 대한 데이터를 통해 태양광 발전량을 예측할 수 있다. The photovoltaic power generation amount prediction unit 330 may predict the photovoltaic power generation amount through data on the photovoltaic power generation information of the photovoltaic power generation management system 120 .

풍력 발전량 예측부(340)는 풍력 발전 관리 시스템(130)의 풍력 발전 정보에 대한 데이터를 통해 풍력 발전량을 예측할 수 있다. The wind power generation amount prediction unit 340 may predict the wind power generation amount through data on the wind power generation information of the wind power generation management system 130 .

디지털 트윈 시스템(400)은 빅데이터 시스템(200) 및 머신 러닝 시스템(300)으로부터 정보를 제공받아서 시뮬레이션을 진행하고 결과를 도출할 수 있다. The digital twin system 400 may receive information from the big data system 200 and the machine learning system 300 to perform simulations and derive results.

이러한 디지털 트윈 시스템(400)은 시뮬레이션하기 위한 대상의 조건을 설정하는 시뮬레이션 설정부(410), 각 분산 자원 시스템(100)의 운전 정보에 대한 데이터를 수집한 빅데이터 시스템(200)의 운전 정보 수집부(210)를 통해 운전 정보 데이터를 조회하는 운전 정보 조회부(420), 조회한 운전 정보를 토대로 머신 러닝 시스템(300)에 의한 예측 정보를 조회하는 예측 정보 조회부(430), 시뮬레이션을 수행하는 시뮬레이션부(440), 시뮬레이션부(440)에 의해 시뮬레이션한 결과를 사용자에게 전송하는 시뮬레이션 결과 전송부(450)를 포함할 수 있다. The digital twin system 400 collects driving information of the simulation setting unit 410 that sets the conditions for the object to be simulated, and the big data system 200 that collects data on driving information of each distributed resource system 100 . The driving information inquiry unit 420 that inquires the driving information data through the unit 210, the prediction information inquiry unit 430 that inquires the prediction information by the machine learning system 300 based on the inquiry driving information, performs a simulation The simulation unit 440 may include a simulation unit 440 and a simulation result transmission unit 450 for transmitting the simulation result by the simulation unit 440 to the user.

도 2는 본 발명의 시뮬레이션부의 구성을 나타낸 블럭도이다. 2 is a block diagram showing the configuration of a simulation unit of the present invention.

도 2를 참조하면, 시뮬레이션부(440)는 예를 들어, 전력 수요 관리 시스템(xEMS)(150)으로부터 전력 정보를 요청하는 전력 정보 요청부(4401), 입수한 전력 정보에 대한 패턴을 분류 및 인식하는 분류 인식부(442), 태양광 발전 요청부(443), 태양광 발전 예측 정보부(444), 충방전량 계산부(445), ESS 제어 요청부(446), ESS 제어 결과 알림부(447), ESS 제어 결과 조회부(448), 이벤트 정보를 알려주는 이벤트 정보 알림부(449)로 이루어질 수 있다. Referring to FIG. 2 , the simulation unit 440 classifies, for example, a power information request unit 4401 requesting power information from the power demand management system (xEMS) 150 , and a pattern for the obtained power information. Recognized classification recognition unit 442, solar power generation request unit 443, solar power generation prediction information unit 444, charge/discharge amount calculation unit 445, ESS control request unit 446, ESS control result notification unit 447 ), an ESS control result inquiry unit 448 , and an event information notification unit 449 for notifying event information.

실제 전력 수요 관리 시스템(150)은 ESS 제어 요청부(446)로부터 요청받는 ESS 제어 명령부, 데이터 정보를 수집하는 ESS 정보 수집부, 전력정보 요청부(441)로부터 전력 정보를 요청받는 사용량 정보부 등으로 이루어질 수 있다. The actual power demand management system 150 includes an ESS control command unit that receives a request from the ESS control request unit 446, an ESS information collection unit that collects data information, a usage information unit that receives power information from the power information request unit 441, etc. can be made with

실제 에너지 저장 관리 시스템(110)은 ESS 제어 명령부를 통해 ESS를 제어하는 ESS 제어부, 데이터 연동 채널(500)를 거쳐서 ESS 운전 정보 공유부상의 운전 정보를 ESS 제어 결과 알림부(447)에 제공하는 ESS 운전 정보 공유부, ESS 장치 이상 등과 같은 이벤트 정보를 저장하고 이벤트 정보 알림부(449)에 제공하는 이벤트 공유부로 이루어질 수 있다. The actual energy storage management system 110 provides the operation information on the ESS operation information sharing unit to the ESS control result notification unit 447 through the ESS control unit that controls the ESS through the ESS control command unit, and the data interworking channel 500 . It may consist of an event sharing unit that stores event information such as a driving information sharing unit and an ESS device abnormality and provides it to the event information notification unit 449 .

실제 태양광 발전 관리 시스템(120)은 태양광 발전 정보부와, 태양광 발전 장치의 이상 등과 같은 이벤트를 공유하는 이벤트 공유부로 이루어질 수 있다. The actual photovoltaic power generation management system 120 may include a photovoltaic power generation information unit and an event sharing unit that shares events such as abnormalities in the photovoltaic device.

시뮬레이션부(440)에 의한 시뮬레이션시 발생되는 충방전량 및 전력 사용량, 태양광 발전량 등과 같은 실시간 정보는 실제 디지털 트윈 시스템(400)의 실시간 연동과 동일한 경로 및 인터페이스를 통해 전송되며, PMS와 같은 상위 제어 시스템에 의해 분 단위 데이터를 초 단위로 전송할 수 있다. Real-time information such as charge/discharge amount, power usage, and solar power generation amount generated during simulation by the simulation unit 440 is transmitted through the same path and interface as the real-time interlocking of the actual digital twin system 400, and higher-level control such as PMS The system can transmit minute-by-minute data in seconds.

시뮬레이션부(440)에 의한 결과는 화면부를 통해 볼 수 있고, 시뮬레이션 전/후 최대 부하 비교, 소비 전력량 요금 및 편익과 경제성 분석, ESS 충방전 및 PV 발전으로 인한 소비 전력량 변화 등을 확인할 수 있다. The results of the simulation unit 440 can be viewed through the screen unit, and it is possible to check the maximum load comparison before and after the simulation, the electricity consumption rate and benefits and economic feasibility analysis, and the change in the power consumption due to ESS charging and discharging and PV power generation.

시뮬레이션 결과를 활용하여 설비의 동작을 분석하고, 주요 부품들의 수명 및 상태를 기준으로 고장 예측을 통한 점검 시점을 산출할 수 있다. It is possible to analyze the operation of the facility by using the simulation result, and calculate the inspection time through failure prediction based on the lifespan and condition of major parts.

도 3은 본 발명의 디지털 트윈 시스템(400)에 의한 시뮬레이션을 수행하기 위한 방법을 나타낸 순서도이다. 3 is a flowchart showing a method for performing a simulation by the digital twin system 400 of the present invention.

도 3을 참조하면, 본 발명의 시뮬레이션을 수행하기 위한 방법은 시뮬레이션 설정부(410)를 통해 시뮬레이션할 대상 및 범위를 설정한 다음, 시뮬레이션을 실행하는 단계를 포함할 수 있다. Referring to FIG. 3 , the method for performing a simulation of the present invention may include setting an object and a range to be simulated through the simulation setting unit 410 and then executing the simulation.

시뮬레이션 설정시 시뮬레이션을 초기화하고 시뮬레이션 기간 및 부하를 선택하는 단계, 사용자의 커스텀(custom) 데이터를 통해 분산 자원을 선택하는 단계, 선택된 분산 자원이 태양광 시스템인지 여부를 판단하는 단계, 태양광 시스템인 경우, 태양광 패널 인버터 용량을 설정하는 단계, 태양광 시스템이 아닌 경우 풍력 시스템인지 여부를 판단하는 단계, 풍력 시스템인 경우, 풍력 터빈의 인버터 용량을 설정하는 단계, 풍력 시스템이 아닌 경우 ESS인지 여부를 판단하는 단계, ESS인 경우, 배터리 및 PCS 용량, 운전 알고리즘을 설정하는 단계, ESS가 아닌 경우 수요 반응 시스템인지 여부를 판단하는 단계, 수요 반응 시스템인 경우, 감축 이행률 및 목표 감축량을 설정하는 단계, 시뮬레이션 설정을 완료하는 단계를 포함할 수 있다. When setting the simulation, initializing the simulation and selecting the simulation period and load, selecting a distributed resource through the user's custom data, determining whether the selected distributed resource is a solar system, a solar system case, setting the solar panel inverter capacity, if not a solar system, determining whether it is a wind power system, if it is a wind system, setting the inverter capacity of the wind turbine, if not a wind power system, whether it is an ESS In the case of ESS, setting the battery and PCS capacity and operation algorithm, in the case of non-ESS, determining whether the system is a demand response system, in the case of a demand response system, setting the reduction implementation rate and target reduction step, it may include the step of completing the simulation setting.

커스텀 데이터는 사용자에 의해 수정되거나 생성된 전력 데이터일 수 있다. The custom data may be power data modified or generated by the user.

만일, 사용자 커스텀 데이터를 이용하지 않는 경우에는 선택 부하 고객사의 분산 자원을 통해 수요 반응 시스템을 이용할지 여부를 판단하는 단계를 포함할 수 있다. 수요 반응 시스템을 이용하는 경우, 감축 이행률과 목표 감축량을 설정하고 수요 반응 시스템을 이용하지 않는 경우에는 다음 설정으로 감축 이행률과 목표 감축량을 설정하지 않고 시뮬레이션 설정을 완료하고 시뮬레이션을 실행하는 단계를 포함할 수 있다. If the user custom data is not used, the method may include determining whether to use the demand response system through the distributed resources of the selected load customer. In the case of using the demand response system, set the reduction fulfillment rate and target reduction, and when not using the demand response system, complete the simulation setting and run the simulation without setting the reduction implementation rate and target reduction as the next setting can do.

시뮬레이션 실행 단계는, 시뮬레이션 설정에 대한 정보를 조회하고 분산 자원 운전 정보 및 전력 정보를 조회하며, 예측 소비 전력량을 조회하는 단계, 태양광 시스템인지 여부를 판단하는 단계, 태양광 시스템인 경우 예측한 태양광 발전량, 고장 예측 및 점검 시기를 조회하는 단계, 태양광 시스템이 아닌 경우 풍력 시스템인지 여부를 판단하는 단계, 풍력 시스템인 경우 예측 풍력 발전량, 고장 예측 및 점검 시기를 조회하는 단계, 풍력 시스템이 아닌 경우, ESS인지 여부를 판단하는 단계, ESS인 경우 알고리즘 수행 여부를 판단하는 단계, 알고리즘을 수행하는 단계인 경우 알고리즘 수행후 피크컷 충방전 알고리즘을 수행하고, 충전량 및 방전량을 산출하고 소비 전력량을 산출하는 단계, 이후 시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계를 포함할 수 있다. The simulation execution step is a step of inquiring information about the simulation setting, inquiring distributed resource operation information and power information, inquiring the predicted power consumption, determining whether it is a solar system, and in the case of a solar system, the predicted solar Inquiring the amount of photovoltaic power generation, failure prediction and inspection timing, determining whether it is a wind power system if it is not a solar system, inquiring the predicted wind power generation amount, failure prediction and inspection time in case of a wind power system, In the case of ESS, determining whether or not the ESS is an ESS, determining whether to perform the algorithm in the case of ESS, and in the case of performing the algorithm, perform the peak cut charge/discharge algorithm after performing the algorithm, calculate the amount of charge and discharge, and calculate the amount of power consumption It may include the step of calculating, then transmitting the simulation result and completing the simulation execution.

만일, ESS가 아닌 경우, 소비 전력량을 산출하고 시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계를 포함할 수 있다.If it is not the ESS, calculating the amount of power consumption, transmitting the simulation result, and completing the simulation execution may be included.

또한, 알고리즘을 수행하지 않는 경우, 피크컷 충방전 알고리즘을 수행하지 않고 충전량 및 방전량을 산출하고, 소비 전력량을 산출하여 시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계를 포함할 수 있다. In addition, when the algorithm is not performed, the method may include calculating the amount of charge and discharge without performing the peak-cut charge/discharge algorithm, calculate the amount of power consumption, transmit the simulation result, and complete the simulation execution.

분산 자원 및 전력 계통 관리 시스템은 관리 서버에 탑재될 수 있고, 관리 서버에서 화면부를 통해 시뮬레이션 결과를 보여줄 수 있다. The distributed resource and power system management system may be mounted on the management server, and the management server may show the simulation result through the screen unit.

10... 운영 계획 시스템 100... 분산 자원 시스템
110... 에너지 저장 관리 시스템 120... 태양광 발전 시스템
130... 풍력 발전 관리 시스템 140... 수요 반응 관리 시스템
150... 전력 수요 관리 시스템
200... 빅데이터 시스템 210... 운전 정보 수집부
220... 데이터 전처리 및 적재부 230... 데이터 분석부
240... 데이터 제공 API부
300... 머신 러닝 시스템 310... 고장 및 점검 시기 예측부
320... 소비 전력량 예측부 330... 태양광 발전량 예측부
340... 풍력 발전량 예측부 400... 디지털 트윈 시스템
410... 시뮬레이션 설정부 420... 운전 정보 조회부
430... 예측 정보 조회부 440... 시뮬레이션부
441... 전력정보 요청부 442... 전력정보 패턴 분류 인식부
443... 태양광 발전 정보 요청부 444... 태양광 발전 예측 정보 요청부
445... ESS 충방전량 계산부 446... ESS 제어 요청부
447... ESS 제어 결과 알림부 448... ESS 제어 결과 조회부
449... 이벤트 정보 알림부
450... 시뮬레이션 결과 전송부 500... 데이터 연동 채널
10... Operational Planning System 100... Distributed Resource System
110... Energy storage management system 120... Solar power system
130... wind power management system 140... demand response management system
150... power demand management system
200... Big data system 210... Driving information collection unit
220... Data preprocessing and loading section 230... Data analysis section
240... Data providing API part
300... Machine learning system 310... Failure and maintenance time prediction unit
320... Power consumption prediction unit 330... Solar power generation prediction unit
340... Wind power generation forecasting unit 400... Digital twin system
410... Simulation setting unit 420... Driving information inquiry unit
430... Forecast information inquiry unit 440... Simulation unit
441... Power information request unit 442... Power information pattern classification recognition unit
443... Solar power generation information request unit 444... Solar power generation forecast information request unit
445... ESS charge/discharge calculation unit 446... ESS control request unit
447... ESS control result notification unit 448... ESS control result inquiry unit
449... Event information notification unit
450... Simulation result transmission unit 500... Data linkage channel

Claims (8)

분산 자원 시스템으로부터 다양한 운전 정보를 수집하기 위한 빅데이터 시스템;
상기 빅데이터 시스템을 통해 수집된 운전 정보에 대한 머신 러닝을 통해 전력 계통 및 신재생 발전에 대한 예측 정보를 도출하는 머신 러닝 시스템;
상기 분산 자원 시스템의 운전 정보와 상기 머신 러닝 시스템의 예측 정보를 통해 실제 환경과 같이 시뮬레이션할 수 있는 디지털 트윈 시스템;
상기 빅데이터 시스템, 상기 머신 러닝 시스템 및 상기 디지털 트윈 시스템이 상기 분산 자원 시스템과 서로 통신하여 정보를 주고받기 위한 데이터 연동 채널;
을 포함하는 분산 자원 및 전력 계통 운영 계획 시스템.
Big data system for collecting various driving information from distributed resource system;
a machine learning system for deriving predictive information on the electric power system and renewable power generation through machine learning on the driving information collected through the big data system;
a digital twin system capable of simulating like a real environment through driving information of the distributed resource system and prediction information of the machine learning system;
a data interworking channel through which the big data system, the machine learning system, and the digital twin system communicate with each other to exchange information with the distributed resource system;
Distributed resource and power system operation planning system that includes.
제1 항에 있어서,
상기 분산 자원 시스템은,
에너지 저장 관리 시스템(ESS), 태양광 발전 관리 시스템(PVMS), 풍력 발전 관리 시스템, 수요 반응 관리 시스템(DRMS), 전력 수요 관리 시스템(EMS)중 적어도 하나를 포함하고,
상기 빅데이터 시스템은,
각 분산 자원 시스템의 운전 정보를 수집하는 운전 정보 수집부, 수집된 운전 정보 데이터를 전처리 및 적재하는 데이터 전처리 및 적재부, 전처리 및 적재된 운전 정보 데이터를 분석하는 데이터 분석부, 분석한 데이터를 디지털 트윈 시스템에 제공하기 위한 데이터 제공 API를 포함하는 분산 자원 및 전력 계통 운영 계획 시스템.
According to claim 1,
The distributed resource system,
including at least one of an energy storage management system (ESS), a photovoltaic power generation management system (PVMS), a wind power generation management system, a demand response management system (DRMS), and an electric power demand management system (EMS),
The big data system is
A driving information collection unit that collects driving information of each distributed resource system, a data preprocessing and loading unit that pre-processes and loads the collected driving information data, a data analysis unit that analyzes the pre-processed and loaded driving information data, and digitally analyzes the analyzed data. A distributed resource and power grid operation planning system with data provisioning APIs to provide to the twin system.
제1 항에 있어서,
상기 머신 러닝 시스템은,
상기 분산 자원 시스템에 대한 고장 및 점검 시기를 예측하는 고장 및 점검 시기 예측부,
각 전력 계통의 소비 전력량 예측부,
태양광 발전 설비의 발전량을 예측하는 태양광 발전량 예측부,
풍력 발전 설비의 발전량을 예측하는 풍력 발전량 예측부중 적어도 하나를 포함하는 분산 자원 및 전력 계통 운영 계획 시스템.
According to claim 1,
The machine learning system is
A failure and inspection time prediction unit for predicting a failure and inspection time for the distributed resource system;
Power consumption prediction unit for each power system,
A solar power generation prediction unit that predicts the generation amount of the solar power generation facility,
A distributed resource and power system operation planning system comprising at least one of a wind power generation amount prediction unit for predicting the generation amount of a wind power generation facility.
제1 항에 있어서,
상기 디지털 트윈 시스템은,
시뮬레이션하기 위한 대상의 조건을 설정하는 시뮬레이션 설정부,
각 분산 자원 시스템의 운전 정보에 대한 데이터를 수집한 상기 빅데이터 시스템의 운전 정보 수집부를 통해 운전 정보 데이터를 조회하는 운전 정보 조회부,
조회한 운전 정보를 토대로 예측한 정보를 조회하는 예측 정보 조회부,
시뮬레이션을 수행하는 시뮬레이션부,
상기 시뮬레이션부에 의해 시뮬레이션한 결과를 전송하는 시뮬레이션 결과 전송부를 포함하는 분산 자원 및 전력 계통 운영 계획 시스템.
According to claim 1,
The digital twin system is
A simulation setting unit that sets conditions for the object to be simulated;
a driving information inquiry unit that inquires about driving information data through the driving information collection unit of the big data system that has collected data on driving information of each distributed resource system;
Prediction information inquiry unit that inquires information predicted based on the inquired driving information;
a simulation unit that performs a simulation;
Distributed resource and power system operation planning system including a simulation result transmission unit for transmitting the simulation result by the simulation unit.
분산 자원 시스템으로부터 다양한 운전 정보를 빅데이터 시스템에서 수집하는 단계;
상기 빅데이터 시스템을 통해 수집된 운전 정보에 대한 머신 러닝 시스템을 통해 분산 자원 및 전력 계통에 대한 예측 정보를 도출하는 단계;
상기 분산 자원 시스템의 운전 정보와 상기 머신 러닝 시스템의 예측 정보를 통해 디지털 트윈 시스템으로 실제 환경과 같이 시뮬레이션하는 단계;
를 포함하는 분산 자원 및 전력 계통 운영 계획 방법.
collecting various driving information from a distributed resource system in a big data system;
deriving prediction information on distributed resources and power systems through a machine learning system for driving information collected through the big data system;
simulating like a real environment with a digital twin system through the operation information of the distributed resource system and the prediction information of the machine learning system;
Distributed resource and power system operation planning method comprising a.
제5 항에 있어서,
상기 시뮬레이션 단계는,
시뮬레이션 설정부를 통해 시뮬레이션할 대상 및 범위를 설정한 다음, 시뮬레이션을 실행하는 단계,
시뮬레이션 설정시 시뮬레이션을 초기화하고 시뮬레이션 기간 및 부하를 선택하는 단계,
사용자의 커스텀 데이터를 통해 분산 자원을 선택하는 단계,
선택된 분산 자원이 태양광 시스템인지 여부를 판단하는 단계,
태양광 시스템인 경우, 태양광 패널 인버터 용량을 설정하는 단계,
태양광 시스템이 아닌 경우 풍력 시스템인지 여부를 판단하는 단계,
풍력 시스템인 경우, 풍력 터빈의 인버터 용량을 설정하는 단계,
풍력 시스템이 아닌 경우 ESS인지 여부를 판단하는 단계,
ESS인 경우, 배터리 및 PCS 용량, 운전 알고리즘을 설정하는 단계,
ESS가 아닌 경우 수요 반응 시스템인지 여부를 판단하는 단계,
수요 반응 시스템인 경우, 감축 이행률 및 목표 감축량을 설정하는 단계, 시뮬레이션 설정을 완료하는 단계를 포함하는 분산 자원 및 전력 계통 운영 계획 방법.
6. The method of claim 5,
The simulation step is
Setting the target and scope to be simulated through the simulation setting unit, and then executing the simulation;
Initializing the simulation and selecting the simulation duration and load when setting up the simulation;
selecting a distributed resource through the user's custom data;
determining whether the selected distributed resource is a solar system;
In the case of a solar system, setting the solar panel inverter capacity;
determining whether it is a wind system if not a solar system;
In the case of a wind system, setting the inverter capacity of the wind turbine;
If it is not a wind power system, determining whether it is an ESS;
In case of ESS, setting the battery and PCS capacity, operation algorithm,
If it is not an ESS, determining whether it is a demand response system;
In the case of a demand response system, a distributed resource and power system operation planning method comprising the steps of setting a reduction implementation rate and a target reduction amount, and completing simulation settings.
제5 항에 있어서,
상기 시뮬레이션 단계는,
시뮬레이션 설정부를 통해 시뮬레이션할 대상 및 범위를 설정한 다음, 시뮬레이션을 실행하는 단계,
시뮬레이션 실행 단계는,
시뮬레이션 설정에 대한 정보를 조회하고 분산 자원 운전 정보 및 전력 정보를 조회하며, 예측 소비 전력량을 조회하는 단계, 태양광 시스템인지 여부를 판단하는 단계,
태양광 시스템인 경우 예측한 태양광 발전량, 고장 예측 및 점검 시기를 조회하는 단계,
태양광 시스템이 아닌 경우 풍력 시스템인지 여부를 판단하는 단계,
풍력 시스템인 경우 예측 풍력 발전량, 고장 예측 및 점검 시기를 조회하는 단계,
풍력 시스템이 아닌 경우, ESS인지 여부를 판단하는 단계,
ESS인 경우 알고리즘 수행 여부를 판단하는 단계,
알고리즘을 수행하는 단계인 경우 알고리즘 수행후 피크컷 충방전 알고리즘을 수행하고, 충전량 및 방전량을 산출하고 소비 전력량을 산출하는 단계,
시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계를 포함하는 분산 자원 및 전력 계통 운영 계획 방법.
6. The method of claim 5,
The simulation step is
Setting the target and scope to be simulated through the simulation setting unit, and then executing the simulation;
The simulation execution steps are:
Inquiring information on simulation settings, inquiring distributed resource operation information and power information, inquiring predicted power consumption, determining whether it is a solar system,
In the case of a photovoltaic system, the step of inquiring the predicted solar power generation amount, failure prediction, and inspection time;
determining whether it is a wind system if not a solar system;
In the case of a wind power system, the step of inquiring the predicted wind power generation amount, failure prediction and inspection time;
If it is not a wind power system, determining whether it is an ESS;
In the case of ESS, the step of determining whether to perform the algorithm;
In the case of performing an algorithm, performing a peak cut charging/discharging algorithm after performing the algorithm, calculating the amount of charge and discharge, and calculating the amount of power consumption;
A method for planning distributed resource and power system operation, comprising transmitting simulation results and completing simulation execution.
제7 항에 있어서,
ESS가 아닌 경우, 소비 전력량을 산출하고 시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계,
알고리즘을 수행하지 않는 경우, 피크컷 충방전 알고리즘을 수행하지 않고 충전량 및 방전량을 산출하고, 소비 전력량을 산출하여 시뮬레이션 결과를 전송하고 시뮬레이션 실행을 완료하는 단계를 포함하는 분산 자원 및 전력 계통 운영 계획 방법.
8. The method of claim 7,
If it is not an ESS, calculating the amount of power consumption, transmitting the simulation result, and completing the simulation execution;
Distributed resource and power system operation plan, comprising the steps of calculating the amount of charge and discharge without performing the peak-cut charge-discharge algorithm when the algorithm is not performed, calculating the amount of power consumption, transmitting the simulation result, and completing the simulation execution Way.
KR1020200185799A 2020-12-29 2020-12-29 Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof KR102544181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200185799A KR102544181B1 (en) 2020-12-29 2020-12-29 Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200185799A KR102544181B1 (en) 2020-12-29 2020-12-29 Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof

Publications (2)

Publication Number Publication Date
KR20220095313A true KR20220095313A (en) 2022-07-07
KR102544181B1 KR102544181B1 (en) 2023-06-19

Family

ID=82398587

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200185799A KR102544181B1 (en) 2020-12-29 2020-12-29 Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof

Country Status (1)

Country Link
KR (1) KR102544181B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549078A (en) * 2022-10-12 2022-12-30 国网山西省电力公司 Power grid integration planning method based on digital twinning
CN116307652A (en) * 2023-05-25 2023-06-23 华北电力大学 Artificial intelligent resource allocation method for intelligent power grid
CN116861834A (en) * 2023-08-31 2023-10-10 北京松岛菱电电力工程有限公司 Power installation testing method and system
CN117272696A (en) * 2023-11-21 2023-12-22 国网信息通信产业集团有限公司 Data interconnection interaction platform based on electric power artificial intelligence and digital twin
KR102644225B1 (en) * 2022-12-06 2024-03-07 주식회사 장인의 공간 Method and Apparatus for Power Exchange of Virtual Power Plant
KR20240044049A (en) 2022-09-28 2024-04-04 한국전력공사 System and Method for processing data for environmental predicted model of power station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119863A (en) * 2016-04-20 2017-10-30 중소기업은행 Method for calculating energy storage system capacity and power management system using the same
JP2019154201A (en) * 2018-03-06 2019-09-12 一般財団法人電力中央研究所 Power system control arrangement, power system control system, power system control method and power system program
KR20190123040A (en) * 2018-04-23 2019-10-31 한국전자통신연구원 Solar power generation prediction model management APPARATUS AND METHOD for setting the renewal cycle of the deep run-based solar power generation prediction model
KR102190845B1 (en) * 2020-08-21 2020-12-14 주식회사 아이씨티솔루션스 Driving control method of fuel cell generation system using power load estimation of building based on artificial intelligence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119863A (en) * 2016-04-20 2017-10-30 중소기업은행 Method for calculating energy storage system capacity and power management system using the same
JP2019154201A (en) * 2018-03-06 2019-09-12 一般財団法人電力中央研究所 Power system control arrangement, power system control system, power system control method and power system program
KR20190123040A (en) * 2018-04-23 2019-10-31 한국전자통신연구원 Solar power generation prediction model management APPARATUS AND METHOD for setting the renewal cycle of the deep run-based solar power generation prediction model
KR102190845B1 (en) * 2020-08-21 2020-12-14 주식회사 아이씨티솔루션스 Driving control method of fuel cell generation system using power load estimation of building based on artificial intelligence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
디지털트윈 기반의 신재생에너지 서비스 플랫폼 구현방안에 대한 연구(2018.8.31.) 1부.* *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240044049A (en) 2022-09-28 2024-04-04 한국전력공사 System and Method for processing data for environmental predicted model of power station
CN115549078A (en) * 2022-10-12 2022-12-30 国网山西省电力公司 Power grid integration planning method based on digital twinning
CN115549078B (en) * 2022-10-12 2023-08-11 国网山西省电力公司 Power grid integration planning method based on digital twin
KR102644225B1 (en) * 2022-12-06 2024-03-07 주식회사 장인의 공간 Method and Apparatus for Power Exchange of Virtual Power Plant
CN116307652A (en) * 2023-05-25 2023-06-23 华北电力大学 Artificial intelligent resource allocation method for intelligent power grid
CN116861834A (en) * 2023-08-31 2023-10-10 北京松岛菱电电力工程有限公司 Power installation testing method and system
CN116861834B (en) * 2023-08-31 2023-12-29 北京松岛菱电电力工程有限公司 Power installation testing method and system
CN117272696A (en) * 2023-11-21 2023-12-22 国网信息通信产业集团有限公司 Data interconnection interaction platform based on electric power artificial intelligence and digital twin
CN117272696B (en) * 2023-11-21 2024-01-26 国网信息通信产业集团有限公司 Data interconnection interaction platform based on electric power artificial intelligence and digital twin

Also Published As

Publication number Publication date
KR102544181B1 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
KR20220095313A (en) Digital Twin Based Distributed Energy Resource and Power Line Management Plan System and Method thereof
CN101413981B (en) Electric power system operation standby reliability testing system
CN104182902A (en) Monitoring method based on centralized operation and maintenance system of dispatching data network
KR102063383B1 (en) Integrated management system and method of distributed energy resource
CN102509178A (en) Distribution network device status evaluating system
Dhupia et al. The role of big data analytics in smart grid management
Wu et al. Improving data center energy efficiency using a cyber-physical systems approach: integration of building information modeling and wireless sensor networks
Yan et al. Development of a tool for urban microgrid optimal energy planning and management
CN113169709A (en) Solar power generation control system and method based on machine learning
KR20210074587A (en) Communication system apparatus
Cioara et al. An overview of digital twins application domains in smart energy grid
Taylor et al. Recent developments towards novel high performance computing and communications solutions for smart distribution network operation
CN112950001B (en) Intelligent energy management and control system and method based on cloud edge closed-loop architecture
CN111208384A (en) Smart power grid management system
Stewart et al. Integrated multi-scale data analytics and machine learning for the distribution grid and building-to-grid interface
Verba et al. The energy revolution: cyber physical advances and opportunities for smart local energy systems
KR20230102007A (en) Device and method for controlling photovoltaic and fuel cell hybrid generation system
KR20210073836A (en) Energy resources integrated operating system
Niu et al. Power grid planning framework and application prospects based on digital twin
Stewart et al. Integrated multi-scale data analytics and machine learning for the distribution grid
CN117878925B (en) Power transmission data control method and system of smart power grid
Weng et al. Component material prediction model based on deepening application of power distribution network infrastructure data
CN117786372B (en) Distributed photovoltaic power generation data processing method and system based on machine learning
Sarmas et al. A next generation library of AI-based data-driven services for the built environment
CN113269435B (en) New energy station running state coupling monitoring and evaluating system

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant