KR20220092204A - Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate - Google Patents

Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate Download PDF

Info

Publication number
KR20220092204A
KR20220092204A KR1020200183747A KR20200183747A KR20220092204A KR 20220092204 A KR20220092204 A KR 20220092204A KR 1020200183747 A KR1020200183747 A KR 1020200183747A KR 20200183747 A KR20200183747 A KR 20200183747A KR 20220092204 A KR20220092204 A KR 20220092204A
Authority
KR
South Korea
Prior art keywords
protein
tryptophan
composition
phenylalanine
amino acids
Prior art date
Application number
KR1020200183747A
Other languages
Korean (ko)
Other versions
KR102571169B1 (en
Inventor
이홍구
이재성
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020200183747A priority Critical patent/KR102571169B1/en
Publication of KR20220092204A publication Critical patent/KR20220092204A/en
Application granted granted Critical
Publication of KR102571169B1 publication Critical patent/KR102571169B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • A23K50/15Feeding-stuffs specially adapted for particular animals for ruminants containing substances which are metabolically converted to proteins, e.g. ammonium salts or urea
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K5/00Feeding devices for stock or game ; Feeding wagons; Feeding stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S426/00Food or edible material: processes, compositions, and products
    • Y10S426/807Poultry or ruminant feed

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Birds (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

The present invention relates to a composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan, and acetic acid. According to the present invention, there is an effect of increasing the amount of milk protein without changing the feed intake and flow rate of cows.

Description

L-페닐알라닌, L-트립토판 및 아세트산 포함하는 유단백 합성 촉진용 조성물 {Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate}Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetic acid {Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate}

본 발명은 L-페닐알라닌, L-트립토판 및 아세트산 포함하는 유단백 합성 촉진용 조성물에 관한 것이다.The present invention relates to a composition for promoting milk protein synthesis comprising L-phenylalanine, L-tryptophan and acetic acid.

소비자들의 관심사 변화에 따라 고단백 저지방 우유, 우유 단백질이 포함된 화장품 및 치즈 수요가 증가하고 있으며, 유단백질 증가에 대한 관심도 증가하고 있다. 이에 따라 우리나라 원유가격산정체계는 2014년부터 유단백질 함량을 포함하는 쪽으로 변화하고 있다. 유단백질 양을 최대화하기 위해서는 사료 내 crude protein (CP) 함량이 22-23% 정도가 되어야 하지만 (NRC, 2001), 젖소가 CP 함량이 높은 사료 섭취 시 오줌으로 배출되는 질소 함량도 높아져 결국 질소로 인한 환경오염과 질소 이용효율 감소를 야기한다. 따라서 영양소를 제한하면서도 유단백질 양을 증가시킬 수 있는 방안을 모색해야 한다. 유단백질을 합성하는 기전에 필요한 것은 일반적으로 아미노산, 에너지원, 그리고 성장호르몬으로 알려져 있다 (Kim et al., 2013). 현재 우리나라는 젖소에 성장호르몬 사용을 금지하고 있기 때문에 아미노산과 에너지원에 주목하게 되었다.As consumers' interests change, the demand for high-protein, low-fat milk, cosmetics and cheese containing milk protein is increasing, and interest in increasing milk protein is also increasing. Accordingly, the crude oil price calculation system in Korea is changing to include milk protein content from 2014. In order to maximize the amount of milk protein, the crude protein (CP) content in the feed should be around 22-23% (NRC, 2001). It causes environmental pollution and reduced nitrogen utilization efficiency. Therefore, it is necessary to find a way to increase the amount of milk protein while limiting the nutrients. It is generally known that amino acids, energy sources, and growth hormones are required for the mechanism of milk protein synthesis (Kim et al., 2013). Since Korea currently prohibits the use of growth hormone in cows, attention has been paid to amino acids and energy sources.

아미노산은 단백질의 기본 단위일 뿐만 아니라 생리활성물질이다 (Kim et al., 2013). 아미노산 중 동물 체내에서 합성되지 않거나, 합성되더라도 적게 합성되어 섭취를 통해 보충해야 하는 것들을 필수아미노산이라고 하는데, 필수아미노산 중에서도 함량이 적어서 단백질 합성을 제한시키는 아미노산 (제한아미노산)에 대한 연구가 활발히 진행되어 왔다. Amino acids are not only basic units of proteins, but also physiologically active substances (Kim et al., 2013). Among amino acids that are not synthesized in the body of animals or synthesized in a small amount even if they are synthesized, they are called essential amino acids, which are called essential amino acids. .

필수아미노산 첨가로 젖소의 유단백질을 늘리고자 하는 연구들이 많이 진행되었으나, 이는 몇몇 아미노산에 집중되어 있다. 본원 발명자들은 젖소의 유단백질의 함량을 증가하는 방법을 연구하던 중에, 젖소 유래 유선상피세포(MAC-T)에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 처리하면 유단백질의 생산이 증가하는 것을 확인하였고, 또한 젖소에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 급여한 결과 젖소의 사료 섭취량 및 유량을 변화하지 않으면서 유단백질량을 증가시키고 체세포 수를 감소시키는 것을 확인함으로써, 본원 발명을 완성하였다. Many studies have been conducted to increase cow's milk protein by adding essential amino acids, but these are concentrated on a few amino acids. While the present inventors were studying a method for increasing the content of milk protein in cow's milk, it was confirmed that the production of milk protein was increased when cow-derived mammary epithelial cells (MAC-T) were treated with tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid. Also, as a result of feeding tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid to cows, it was confirmed that the amount of milk protein increased and the number of somatic cells was decreased without changing the feed intake and flow rate of cows, thereby completing the present invention. .

필수아미노산 첨가로 젖소의 유단백질을 늘리고자 하는 연구들이 많이 진행되었으나, 이는 몇몇 아미노산에 집중되어 있다. 본원 발명자들은 젖소의 유단백질의 함량을 증가하는 방법을 연구하던 중에, 젖소 유래 유선상피세포(MAC-T)에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 처리하면 유단백질의 생산이 증가하는 것을 확인하였고, 또한 젖소에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 급여한 결과 젖소의 사료 섭취량 및 유량을 변화하지 않으면서 유단백질량을 증가시키고 체세포 수를 감소시키는 것을 확인함으로써, 본원 발명을 완성하였다. Many studies have been conducted to increase cow's milk protein by adding essential amino acids, but these are concentrated on a few amino acids. While the present inventors were studying a method for increasing the content of milk protein in cow's milk, it was confirmed that the production of milk protein was increased when cow-derived mammary epithelial cells (MAC-T) were treated with tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid. Also, as a result of feeding tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid to cows, it was confirmed that the amount of milk protein increased and the number of somatic cells was decreased without changing the feed intake and flow rate of cows, thereby completing the present invention. .

본 발명의 목적은 페닐알라닌, 트립토판 및 아세트산을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 조성물을 제공하는 것이다. It is an object of the present invention to provide a composition for promoting protein-in-oil synthesis in milking ruminants comprising phenylalanine, tryptophan and acetic acid.

본 발명의 또 다른 목적은 상기 서술한 조성물을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 사료 첨가제를 제공하는 것이다. Another object of the present invention is to provide a feed additive for promoting protein-in-oil protein synthesis in milking ruminants comprising the above-described composition.

본 발명의 다른 목적은 또한 상기 서술한 조성물을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 사료 조성물을 제공하는 것이다. Another object of the present invention is to provide a feed composition for promoting protein-in-oil protein synthesis in milking ruminants comprising the composition described above.

본 발명의 다른 목적은 상기 서술한 조성물을 젖소에 급여하는 단계를 포함하는 젖소의 유중 단백질의 함량을 증가시키는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for increasing the protein-in-oil content of cows, comprising the step of feeding the above-described composition to the cows.

본 발명은 페닐알라닌, 트립토판 및 아세트산을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 조성물을 제공할 수 있다. The present invention may provide a composition for promoting protein-in-oil protein synthesis in milking ruminants comprising phenylalanine, tryptophan and acetic acid.

상기 유단백질은 베타-카제인(beta-casein)일 수 있다. The milk protein may be beta-casein (beta-casein).

본 발명은 또한 상기 서술한 조성물을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 사료 첨가제를 제공할 수 있다. The present invention may also provide a feed additive for promoting protein-in-oil protein synthesis in milking ruminants comprising the above-described composition.

본 발명은 또한 상기 서술한 조성물을 포함하는 젖소의 유중 단백질 합성 촉진용 사료 조성물을 제공할 수 있다. The present invention may also provide a feed composition for promoting protein-in-oil protein synthesis in cows comprising the above-described composition.

본 발명은 또한 상기 서술한 조성물을 젖소에 급여하는 단계를 포함하는 젖소의 유중 단백질의 함량을 증가시키는 방법을 제공할 수 있다. The present invention may also provide a method for increasing the protein-in-oil content of cows, comprising the step of feeding the above-described composition to the cows.

본 발명의 페닐알라닌, 트립토판 및 아세트산의 조합은 젖소의 사료 섭취량 및 유량을 변화시키지 않으면서 유단백질량을 증가시키는 효과가 있다. 또한 대조구 대비 모든 처리구에서 항염증 효과로 체세포 수를 감소하는 효과가 있다. The combination of phenylalanine, tryptophan and acetic acid of the present invention has the effect of increasing the amount of milk protein without changing the feed intake and flow rate of cows. In addition, there is an effect of reducing the number of somatic cells due to the anti-inflammatory effect in all treatment groups compared to the control group.

도 1은 72시간 동안 대사촉진 물질 및 다양한 아미노산을 처리할 때 MAC-T 세포에서 상대적인 세포 외 단백질 농도를 확인한 결과이다.
도 2는 72시간 동안 대사촉진 물질 및 다양한 아미노산을 처리할 때 MAC-T 세포에서 상대적인 β- 카제인 mRNA 발현을 확인한 결과이다.
1 is a result of confirming the relative extracellular protein concentration in MAC-T cells when treated with metabolites and various amino acids for 72 hours.
Figure 2 is the result of confirming the relative β- casein mRNA expression in MAC-T cells when the metabolites and various amino acids are treated for 72 hours.

이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

필수아미노산 첨가로 젖소의 유단백질을 늘리고자 하는 연구들이 많이 진행되었으나, 이는 몇몇 아미노산에 집중되어 있다. 본원 발명자들은 젖소의 유단백질의 함량을 증가하는 방법을 연구하던 중에, 젖소 유래 유선상피세포(MAC-T)에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 처리하면 유단백질의 생산이 증가하는 것을 확인하였고, 또한 젖소에 트립토판 및 페닐알린, 또는 트립토판, 페닐알라닌 및 아세트산을 급여한 결과 젖소의 사료 섭취량 및 유량을 변화하지 않으면서 유단백질량을 증가시키고 체세포 수를 감소시키는 것을 확인함으로써, 본원 발명을 완성하였다. Many studies have been conducted to increase cow's milk protein by adding essential amino acids, but these are concentrated on a few amino acids. While the present inventors were studying a method for increasing the content of milk protein in cow's milk, it was confirmed that the production of milk protein was increased when cow-derived mammary epithelial cells (MAC-T) were treated with tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid. Also, as a result of feeding tryptophan and phenylalin, or tryptophan, phenylalanine and acetic acid to cows, it was confirmed that the amount of milk protein increased and the number of somatic cells was decreased without changing the feed intake and flow rate of cows, thereby completing the present invention. .

본 발명은 페닐알라닌, 트립토판 및 아세트산을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 조성물을 제공할 수 있다. The present invention may provide a composition for promoting protein-in-oil protein synthesis in milking ruminants comprising phenylalanine, tryptophan and acetic acid.

상기 페닐알라닌 및 트립토판은 L-페닐알라닌 및 L-트립토판 일 수 있으며, 페닐알라닌(phenylalanine; Phe) 및 트립토판(tryptophan; Trp)은 필수 아미노산으로 동물조직에 의해 합성 될 수 없으며, 설사 합성된다 하더라도 요구량만큼 충분히 합성되지 못한다. 유선상피세포에 트립토판 및 페닐알라닌을 처리한 결과 Extra cellular 단백질 농도가 크게 증가하는 것을 확인하였다 (도 1). 페닐알라닌, 트립토판 및 아세트산을 처리한 경우 β-casein 발현량 증가하였다 (도 2). 따라서 MAC-T cell에서 가장 효율적으로 유단백질을 생산하는 조합은 트립토판 및 페닐알라닌과 트리토판, 페닐알라니 및 아세트산인 것을 확인하였다. The phenylalanine and tryptophan may be L-phenylalanine and L-tryptophan, and phenylalanine (Phe) and tryptophan (Trp) are essential amino acids and cannot be synthesized by animal tissues, and even if synthesized, they are sufficiently synthesized as required. can't be As a result of treatment with tryptophan and phenylalanine in mammary epithelial cells, it was confirmed that the concentration of extra cellular protein was significantly increased (FIG. 1). When phenylalanine, tryptophan and acetic acid were treated, the expression level of β-casein was increased ( FIG. 2 ). Therefore, it was confirmed that the combinations that produce milk protein most efficiently in MAC-T cells are tryptophan and phenylalanine and tryptophan, phenylalani and acetic acid.

상기 트립토판은 0.9 mM의 농도로 포함할 수 있다. The tryptophan may be included in a concentration of 0.9 mM.

상기 페닐알라닌은 0.6 mM의 농도로 포함할 수 있다. The phenylalanine may be included in a concentration of 0.6 mM.

상기 아세트산은 0.3 mM의 농도로 포함할 수 있다. The acetic acid may be included in a concentration of 0.3 mM.

상기 유단백질은 베타-카제인(beta-casein)일 수 있다. The milk protein may be beta-casein (beta-casein).

상기 반추동물은 소, 젖소, 양, 사슴, 기린 또는 낙타일 수 있으며, 바람직하게는 젖소일 수 있으나, 이에 제한되지 않는다. The ruminant may be cattle, dairy cows, sheep, deer, giraffes or camels, preferably cows, but is not limited thereto.

일반적으로 반추위를 가진 반추동물의 영양소 소화과정은 반추위 내에서 미생물에 의한 제1단계 발효 과정 및 하부 소화장기(제4위, 소장 및 대장 등)에서 소화효소에 의한 제2단계 소화과정으로 이루어진다. 반추동물은 반추위에 존재하는 미생물의 원료로 아미노산이 소비되는 점과 고능력우 또는 착유우의 경우에는 필요한 영양소가 부족한 점이 있어서 사료를 통한 공급이 필요하다. 또한, 반추동물은 반추위 구조상 합성 아미노산 급이시 반추위 내에서 반추미생물에 의해 분해되어 반추미생물의 영양원으로 거의 모두 이용된다. 결국 급이된 합성아미노산 중 최대 20% 정도만 소장으로 이전된다. 따라서 반추 동물에 있어서는 사료 공급시 반추위에서의 소화 흡수율 및 흡수량 뿐만 아니라 반추위를 우회하여 소장에 도달하는 영양소의 양 및 소장에서 효소에 의하여 흡수되는 흡수율 등을 모두 고려하여 사료를 공급해야 할 필요성이 있다. 따라서 반추동물의 생산능력을 최대한 발휘하기 위해서는 제1위에서 최대한 미생물체 단백질을 많이 생산할 수 있는 환경을 만들어 주고 동시에 반추미생물의 분해작용으로부터 보호된 단백질을 적절히 급이해야 한다. 그런데 미생물체 단백질은 반추동물의 능력을 최대로 발휘하기 위하여 필요한 아미노산의 양을 충족할 수 없으므로, 반추미생물에 의해 분해되지 않고 소장으로 내려가 흡수 이용될 수 있는 사료 단백질의 급이가 필요하다.In general, the nutrient digestion process of ruminants with a rumen consists of a first-stage fermentation process by microorganisms in the rumen and a second-stage digestion process by digestive enzymes in the lower digestive organs (fourth stomach, small intestine and large intestine, etc.). Ruminants need to be supplied through feed because amino acids are consumed as a raw material for microorganisms present in the rumen and, in the case of high-capacity or milking cattle, there is a lack of necessary nutrients. In addition, ruminants are decomposed by ruminant microorganisms in the rumen when synthetic amino acids are fed in the structure of the rumen, and almost all are used as nutrient sources for ruminant microorganisms. In the end, only up to 20% of the fed synthetic amino acids are transferred to the small intestine. Therefore, in ruminant animals, it is necessary to supply feed considering not only the digestibility and absorption rate in the rumen, but also the amount of nutrients that bypass the rumen and reach the small intestine and the absorption rate absorbed by enzymes in the small intestine. . Therefore, in order to maximize the production capacity of ruminants, it is necessary to create an environment that can produce as much microbial protein as possible in the first place, and at the same time to feed the protein protected from the decomposition action of ruminant microorganisms appropriately. However, since the microbial protein cannot meet the amount of amino acids required for maximizing the ability of ruminants, it is necessary to feed a feed protein that can be absorbed and used by going down to the small intestine without being decomposed by the ruminant microorganisms.

본 발명은 또한 상기 서술한 조성물을 포함하는 착유 반추동물의 유중 단백질 합성 촉진용 사료 첨가제를 제공할 수 있다. The present invention may also provide a feed additive for promoting protein-in-oil protein synthesis in milking ruminants comprising the above-described composition.

본 발명은 또한 상기 서술한 조성물을 포함하는 젖소의 유중 단백질 합성 촉진용 사료 조성물을 제공할 수 있다. The present invention may also provide a feed composition for promoting protein-in-oil protein synthesis in cows comprising the above-described composition.

"사료첨가제"는 사료에 첨가되는 물질을 의미하며, 상기 사료첨가제는 대상 개체의 생산성 향상이나 건강을 증진시키기 위한 것일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 사료첨가제는 사료 관리법상의 보조사료에 해당할 수 있다."Feed additive" means a material added to the feed, and the feed additive may be for improving productivity or health of the subject, but is not limited thereto. In addition, the feed additive may correspond to an auxiliary feed under the Feed Management Act.

본 발명의 젖소의 유중 단백질 합성 촉진용 사료 조성물의 사료첨가제형태는 페닐알라닌, 트립토판 및 아세트산 이외에도 대상 개체의 생산성 또는 건강 증진을 위한 뉴클레오티드류, 아미노산, 칼슘, 인산, 유기산 등의 영양소를 추가로 포함할 수 있으나, 이에 제한되지 않는다.In addition to phenylalanine, tryptophan and acetic acid, the feed additive form of the feed composition for promoting protein-in-oil protein synthesis in cows of the present invention may further include nutrients such as nucleotides, amino acids, calcium, phosphoric acid, organic acids, etc. can, but is not limited thereto.

본 발명의 페닐알라니, 트립토판 및 아세트산은 급여 대상, 급여 대상의 종, 체중, 급여 시기, 급여 사료의 종류, 급여 목적등을 고려하여 당업자가 그 함량을 결정할 수 있다.The content of the phenylalani, tryptophan and acetic acid of the present invention can be determined by those skilled in the art in consideration of the feeding target, the feeding target species, body weight, feeding time, feeding feed type, feeding purpose, and the like.

본 출원의 용어, "사료"는 개체가 먹고, 섭취하며, 소화시키기 위한 또는 이에 적당한 임의의 천연 또는 인공 규정식, 한끼식 등 또는 상기 한끼식의 성분을 의미한다. 상기 사료의 종류는 특별히 제한되지 아니하며, 당해 기술 분야에서 통상적으로 사용되는 사료를 사용할 수 있다. 상기 사료의 비제한적인 예로는, 곡물류, 근과류, 식품 가공 부산물류, 조류, 섬유질류, 제약 부산물류, 유지류, 전분류, 박 류 또는 곡물 부산물류 등과 같은 식물성 사료; 단백질류, 무기물류, 유지류, 광물성류, 유지류, 단세포 단백질류, 동물성 플랑크톤류 또는 음식물 등과 같은 동물성 사료를 들 수 있다. 이들은 단독으로 사용되거나 2종 이상을 혼합하여 사용될 수 있다.As used herein, the term “feed” refers to any natural or artificial diet, meal meal, etc., or a component of the meal meal, for or suitable for being eaten, ingested, and digested by an individual. The type of feed is not particularly limited, and feed commonly used in the art may be used. Non-limiting examples of the feed include plant feeds such as grains, root fruits, food processing by-products, algae, fibers, pharmaceutical by-products, oils and fats, starches, gourds or grain by-products; and animal feeds such as proteins, inorganic materials, oils and fats, minerals, oils and fats, single cell proteins, zooplankton, or food. These may be used alone or in mixture of two or more.

본 발명은 또한 상기 서술한 조성물을 젖소에 급여하는 단계를 포함하는 젖소의 유중 단백질의 함량을 증가시키는 방법을 제공할 수 있다. The present invention may also provide a method for increasing the protein-in-oil content of cows, comprising the step of feeding the above-described composition to the cows.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail through examples.

실시예 1. 유선상피세포에서 대사촉진 물질과 필수아미노산의 조합이 유단백질 합성에 미치는 영향의 확인 Example 1. Identification of the effect of a combination of a metabolite and essential amino acids on milk protein synthesis in mammary gland epithelial cells

실시예 1-1. 유선상피세포에서 대사촉진 물질과 필수아미노산의 조합이 Extra cellular 단백질 농도에 미치는 영향의 확인Example 1-1. Confirmation of the effect of combination of metabolites and essential amino acids on extra cellular protein concentration in mammary gland epithelial cells

유선상피세포에서 대사촉진 물질과 필수아미노산의 조합이 유단백질 합성에 미치는 영향을 확인하기 위해, 다양한 필수아미노산, 대사촉진 물질 및 이들의 조합을 유선상피세포(immortalized bovine mammary epithelial cell line; MAC-T (University of Vermont, Burlington, VT, USA))에 처리하여 Extra cellular 단백질 농도를 확인하였다. 유선상피세포(MAC-T)를 성장 배지(10% FBS, 100 units/mL penicillin/streptomycin, 50 μg/mL gentamycin, 5 μg/mL insulin 및 1 μg/mL hydrocortisone를 포함하는 DMEM/F12 배지)에서 배양한 후, plate의 80% 정도 성장하면, 다른 plate로 계대배양 하였다. Extra cellular 단백질 농도의 변화를 시험하기 위해 이를 6 well에 계대배양 한 후, MAC-T cell이 100% confluence 상태로 성장했을 때, 대조구로서 분화 미디어(DMEM/F12 (Gibco) + 10% Fetal bovine serum (Gibco) + 1% Penicillin/streptomycin (Hyclone) + 0.1% Gentamycin (Sigma-aldrich) + 0.1% Hydrocortisone (Sigma-aldrich) + 0.1% Insulin (Sigma-aldrich) + 0.1% Prolactin (Sigma-aldrich))와 처리구로서 각 필수아미노산이 농도별 첨가된 분화 미디어를 분주 후 72시간 동안 배양하였다. 상기 처리군은 하기와 같았다: 0.3 mM (acetate); 0.6 mM (Met, Lys, Phe), 0.9 mM (Trp, glucose), 1.5 mM (Ile, t-10, c-12 CLA). 72시간 배양 후 세포 외 단백질을 추출하고, BCA protein assay kit (Thermo Scientific, South Logan, UT, USA)를 이용하여 분석하였다. 데이터 평균값에 따른 통계적 유의차는 SPSS 통계 소프트웨어(SPSS Inc., Chicago, IL, USA)의 Tucky's HSD test로 실시하였다. 모든 실험은 3 반복으로 진행되었으며, p < 0.05에서 유의하다고 판단하였다. 도 1과 같이 Extracellular 단백질 농도는 모든 처리구 중 Trp-Phe 처리구에서 가장 증가하는 것으로 나타났다. In order to confirm the effect of the combination of metabolites and essential amino acids on milk protein synthesis in mammary epithelial cells, various essential amino acids, metabolites and combinations thereof were used in mammary epithelial cells (immortalized bovine mammary epithelial cell line; MAC-T ( University of Vermont, Burlington, VT, USA))) to check the extra cellular protein concentration. Mammary gland epithelial cells (MAC-T) were cultured in growth medium (DMEM/F12 medium containing 10% FBS, 100 units/mL penicillin/streptomycin, 50 μg/mL gentamycin, 5 μg/mL insulin and 1 μg/mL hydrocortisone). After incubation, when about 80% of the plate was grown, it was subcultured to another plate. To test the change of extra cellular protein concentration, after subculture in 6 wells, when MAC-T cells were grown to 100% confluence, as a control, differentiation media (DMEM/F12 (Gibco) + 10% Fetal bovine serum) (Gibco) + 1% Penicillin/streptomycin (Hyclone) + 0.1% Gentamycin (Sigma-aldrich) + 0.1% Hydrocortisone (Sigma-aldrich) + 0.1% Insulin (Sigma-aldrich) + 0.1% Prolactin (Sigma-aldrich)) As a treatment group, differentiation media in which each essential amino acid was added for each concentration was cultured for 72 hours after dispensing. The treatment groups were as follows: 0.3 mM (acetate); 0.6 mM (Met, Lys, Phe), 0.9 mM (Trp, glucose), 1.5 mM (Ile, t-10, c-12 CLA). After culturing for 72 hours, extracellular proteins were extracted and analyzed using a BCA protein assay kit (Thermo Scientific, South Logan, UT, USA). Statistical significant differences according to the data mean values were performed using Tucky's HSD test of SPSS statistical software (SPSS Inc., Chicago, IL, USA). All experiments were performed in 3 repetitions, and it was judged to be significant at p < 0.05. As shown in Figure 1, the extracellular protein concentration was found to increase the most in the Trp-Phe treatment group among all the treatment groups.

실시예 1-2. 유선상피세포에서 대사촉진 물질과 필수아미노산의 조합이 β-casein 발현량의 효과 확인 Example 1-2. Effect of β-casein expression level confirmed by combination of metabolic stimulant and essential amino acid in mammary gland epithelial cells

유선상피세포에서 대사촉진 물질과 필수아미노산의 조합이 유단백질 합성에 미치는 영향을 확인하기 위해, 다양한 필수아미노산, 대사촉진 물질 및 이들의 조합을 유선상피세포(immortalized bovine mammary epithelial cell line; MAC-T (University of Vermont, Burlington, VT, USA))에 처리하여 β-casein 발현량를 확인하였다. 유선상피세포(MAC-T)를 성장 배지(10% FBS, 100 units/mL penicillin/streptomycin, 50 μg/mL gentamycin, 5 μg/mL insulin 및 1 μg/mL hydrocortisone를 포함하는 DMEM/F12 배지)에서 배양한 후, plate의 80% 정도 성장하면, 다른 plate로 계대배양 하였다. Extracellular 단백질 농도의 변화를 시험하기 위해 이를 6 well에 계대배양 한 후, MAC-T cell이 100% confluence 상태로 성장했을 때, 대조구로서 분화 미디어(DMEM/F12 (Gibco) + 10% Fetal bovine serum (Gibco) + 1% Penicillin/streptomycin (Hyclone) + 0.1% Gentamycin (Sigma-aldrich) + 0.1% Hydrocortisone (Sigma-aldrich) + 0.1% Insulin (Sigma-aldrich) + 0.1% Prolactin (Sigma-aldrich))와 처리구로서 각 필수아미노산이 농도별 첨가된 분화 미디어를 분주 후 72시간 동안 배양하였다. 상기 처리군은 하기와 같았다: 0.3 mM (acetate); 0.6 mM (Met, Lys, Phe), 0.9 mM (Trp, glucose), 1.5 mM (Ile, t-10, c-12 CLA). 72시간 배양 후 MAC-T 세포에 TRI reagent(MRC), chloroform, isopropanol, 80% ethanol, 100% ethanol을 차례로 처리하여 RNA를 추출하였고, 추출한 RNA에서 cDNA를 합성하였다. cDNA를 이용하여 beta-casein 합성 유전자인 bCSNB의 발현을 확인하기 위해 AccuPower 2X GreenStar qPCR MasterMix(Bioneer)로 RT-PCR을 수행하였다. 이때 사용한 bCSNB 프라이머는 forward(5'-GAGCCTGACTCTCACTGATGTTGAA-3'), reverse(5'-GACAGCACGGACTGAGGAGGAA-3')이고, bBActin 프라이머는 forward(5'-GCATGGAATCCTGCGGC-3'), reverse(5'-GTAGAGGTCCTTGCGGATGT-3')이며, bUXT 프라이머는 forward(5'-GCGCTACGAGGCTTTCATCT-3'), reverse(3'-CCAAGGGCCACATAGATCCG-5')이다. RT-PCR은 95℃에서 3분간 변성시킨 후 95℃에서 10초 반응시키는 조건으로 40회 수행하고, 55℃ 내지 65℃에서 30초, 72℃에서 30초간 반응시켰다. β-casein 발현량은 모든 처리구 중 Acetate-Trp-Phe 처리구에서 가장 높은 발현량을 보였다 (도 2). 따라서 MAC-T cell에서 가장 효율적으로 유단백질을 생산하는 조합은 Trp-Phe와 Acetate-Trp-Phe으로 이들 조합을 in vivo 실험을 통하여 확인하였다. In order to confirm the effect of the combination of metabolites and essential amino acids on milk protein synthesis in mammary epithelial cells, various essential amino acids, metabolites and combinations thereof were used in mammary epithelial cells (immortalized bovine mammary epithelial cell line; MAC-T ( University of Vermont, Burlington, VT, USA))) to confirm the expression level of β-casein. Mammary gland epithelial cells (MAC-T) were cultured in growth medium (DMEM/F12 medium containing 10% FBS, 100 units/mL penicillin/streptomycin, 50 μg/mL gentamycin, 5 μg/mL insulin and 1 μg/mL hydrocortisone). After incubation, when about 80% of the plate was grown, it was subcultured to another plate. After subculture in 6 wells to test the change in extracellular protein concentration, when MAC-T cells were grown to 100% confluence, as a control, differentiation media (DMEM/F12 (Gibco) + 10% Fetal bovine serum ( Gibco) + 1% Penicillin/streptomycin (Hyclone) + 0.1% Gentamycin (Sigma-aldrich) + 0.1% Hydrocortisone (Sigma-aldrich) + 0.1% Insulin (Sigma-aldrich) + 0.1% Prolactin (Sigma-aldrich)) with treatment As a result, the differentiation media in which each essential amino acid was added by concentration was cultured for 72 hours after dispensing. The treatment groups were as follows: 0.3 mM (acetate); 0.6 mM (Met, Lys, Phe), 0.9 mM (Trp, glucose), 1.5 mM (Ile, t-10, c-12 CLA). After culturing for 72 hours, MAC-T cells were sequentially treated with TRI reagent (MRC), chloroform, isopropanol, 80% ethanol, and 100% ethanol to extract RNA, and cDNA was synthesized from the extracted RNA. RT-PCR was performed with AccuPower 2X GreenStar qPCR MasterMix (Bioneer) to confirm the expression of bCSNB, a beta-casein synthesis gene, using cDNA. The bCSNB primer used at this time was forward(5'-GAGCCTGACTCTCACTGATGTTGAA-3'), reverse(5'-GACAGCACGGACTGAGGAGGAA-3'), and the bBAactin primer was forward(5'-GCATGGAATCCTGCGGC-3'), reverse(5'-GTAGAGGTCCTTGCGGATGT-3 '), and bUXT primers are forward(5'-GCGCTACGAGGCTTTCATCT-3'), reverse(3'-CCAAGGGCCACATAGATCCG-5'). RT-PCR was performed 40 times under the conditions of denaturing at 95° C. for 3 minutes and then reacting at 95° C. for 10 seconds, and reacted at 55° C. to 65° C. for 30 seconds and at 72° C. for 30 seconds. The expression level of β-casein was highest in Acetate-Trp-Phe treatment group among all treatment groups ( FIG. 2 ). Therefore, the combination that produces milk protein most efficiently in MAC-T cells is Trp-Phe and Acetate-Trp-Phe, and these combinations were confirmed through in vivo experiments.

실시예 2. Example 2. 젖소의 경정맥으로 주입된 Tryptophan(Trp), Phenylalanine(Phe) 및 Acetate의 조합의 유단백질 합성 효과의 확인 Confirmation of the milk protein synthesis effect of the combination of Tryptophan (Trp), Phenylalanine (Phe) and Acetate injected into the jugular vein of cows

in vitro 결과로 Trp-Phe 및 Acetate-Trp-Phe 조합이 유단백 합성에 가장 효과적인 조합인 것으로 결정되어 이를 실제 젖소 착유우에게 적용하여 유단백 증진에의 효과를 확인하였다. 본 연구는 건국대학교 동물실험윤리위원회에 승인 하에 실시하였다. 홀스타인 (Holstein-Friesian) 착유우 젖소 중 5두를 사양 실험에 사용하였다. Total mixed ration (TMR), concentrate, hay를 NRC (2001)의 에너지 및 단백질 요구량에 맞춰 하루 두 번 (0830 and 1700 h) 급여하였다 [표 1].As a result of in vitro results, the combination of Trp-Phe and Acetate-Trp-Phe was determined to be the most effective combination for milk protein synthesis. This study was conducted under the approval of the Animal Experimental Ethics Committee of Konkuk University. Five of Holstein-Friesian milking cows were used in the breeding experiments. Total mixed ration (TMR), concentrate, and hay were fed twice a day (0830 and 1700 h) according to the energy and protein requirements of NRC (2001) [Table 1].

사료의 화학 성분 chemical composition of feed Chemical compositions, g/d of DMChemical compositions, g/d of DM TMRTMR Concentrates Concentrates Roughage Roughage DM (%)DM (%) 61.9161.91 88.8488.84 85.8885.88 ― % of DM ― — % of DM — Crude proteinCrude protein 9.799.79 20.3320.33 9.619.61 Ether extractEther extract 1.791.79 3.103.10 3.713.71 Crude fiber Crude fiber 13.0213.02 7.257.25 15.6815.68 Crude ashCrude ash 5.095.09 6.946.94 4.864.86 NDFNDF 34.7834.78 24.3324.33 29.5229.52 ADFADF 18.2518.25 12.0512.05 18.0818.08 Ca Ca 0.590.59 0.690.69 0.520.52 P P 0.280.28 0.560.56 0.270.27 NEL (Mcal/kg of DM) 3 NE L (Mcal/kg of DM) 3 2.152.15 2.102.10 2.152.15 Amino acids amino acids TryptophanTryptophan 0.100.10 0.210.21 0.15* 0.15 * ThreonineThreonine 0.360.36 0.670.67 0.24* 0.24 * SerineSerine 0.420.42 0.870.87 -- ProlineProline 0.530.53 1.061.06 -- ValineValine 0.430.43 0.790.79 0.26* 0.26 * IsoleucineIsoleucine 0.270.27 0.570.57 0.30* 0.30 * LeucineLeucine 0.600.60 1.421.42 0.43* 0.43 * TyrosineTyrosine 0.160.16 0.440.44 -- MethionineMethionine 0.090.09 0.200.20 0.25* 0.25 * CysteineCysteine 0.210.21 0.460.46 0.06* 0.06 * LysineLysine 0.400.40 0.590.59 0.34* 0.34 * GlycineGlycine 0.390.39 0.800.80 -- AlanineAlanine 0.480.48 0.940.94 -- ArginineArginine 0.530.53 1.141.14 0.28* 0.28 * Glutamic acidGlutamic acid 1.351.35 3.193.19 -- Aspartic acidAspartic acid 0.790.79 1.511.51 -- HistidineHistidine 0.160.16 0.370.37 0.21* 0.21 * PhenylalaninePhenylalanine 0.360.36 0.760.76 0.46* 0.46 * *Book Value (from NRC, 2001)*Book Value (from NRC, 2001)

5X5 Latin square design을 이용하여 휴지기 5일과 실험 6일을 반복하였다. control(saline), Trp, Phe, Trp-Phe, Acetate-Trp-Phe의 총 5개 시험구로 시험을 수행하였다. In vitro 연구에서 결정된 0.9 mM의 Trp, 0.6 mM의 Phe, 0.3 mM의 acetate를 분자량 대비 gram으로 환산하여 계산하였다. 아미노산과 acetate powder를 삼투압 및 pH 영향을 받지 않도록 조절하여 생리식염수에 첨가하였다. treatment solution은 10:00h에 경정맥 카테터를 이용하여 천천히 주입하였다. 공시 동물(총 5두)의 개체별 오전(03:00 h) 및 오후(15:00 h)에 착유된 유량을 매일 기록하였다. 공시 동물(총 5두)의 실험 기간 매일 오전(0300 h) 및 오후(1500 h)에 착유 된 원유를 pooling하여 우유 내 일반성분[milk fat, milk protein, lactose, solid-not fat(SnF), somatic cell count(SCC), milk urea nitrogen(MUN), acetone, beta-hydroxybutyrate(BHB), beta-casein, Mono- and Poly-unsaturated fatty acids, Saturated fatty acid]을 분석하였다. 사료 섭취량 분석은 매일 아침 사료 급이 전 남은 사료의 양을 기록하여 일당 섭취량을 분석하였다. 경정맥 카테터를 통해 실험 1, 3, 5일째에 treatment solution 주입 전 혈액을 채취하였다. 각 분석을 통해 얻어진 일별 성적들은 기간별로 평균값을 계산하였다. 데이터 평균값에 따른 통계적 유의차는 SAS 소프트웨어 v. 9.4 (SAS Institute, Cary, NC, USA)의 one-way ANOVA를 사용하였다. 표 2는 대사 촉진 물질 및 아미노산 급여에 의한 젖소의 우유 생산량 및 우유의 구성의 영향을 나타낸 것이다. 착유우의 경정맥 카테터를 이용해 아미노산 및 아세트산을 처리한 결과, 사료 섭취량과 유량에는 변화가 없었다 [표 2]. 유단백질량 (milk protein yield)이 처리구에서 유의적으로 증가하였다. Trp 단독 처리구가 모든 시험구를 통틀어 가장 증가했으며, 이후로 Acetate-Trp-Phe, Trp-Phe, Control, Phe 순으로 증가하였다. 유중 체세포 수는 모든 처리구에서 대조구 대비 감소함을 보여, 첨가물들이 동물 체내에서 염증 반응을 억제시킨 것으로 판단되었다. Using a 5X5 Latin square design, 5 days of resting period and 6 days of the experiment were repeated. The test was performed with a total of 5 test groups: control (saline), Trp, Phe, Trp-Phe, and Acetate-Trp-Phe. 0.9 mM Trp, 0.6 mM Phe, and 0.3 mM acetate determined in the in vitro study were calculated by converting the molecular weight into grams. Amino acids and acetate powder were added to physiological saline after adjusting so as not to be affected by osmotic pressure and pH. The treatment solution was slowly injected using a jugular vein catheter at 10:00 h. The milking flow rate of each test animal (5 heads in total) in the morning (03:00 h) and in the afternoon (15:00 h) was recorded daily. During the experiment period of the test animals (total of 5), milk milked from milk was pooled every morning (0300 h) and afternoon (1500 h), and the general ingredients [milk fat, milk protein, lactose, solid-not fat (SnF), somatic cell count (SCC), milk urea nitrogen (MUN), acetone, beta-hydroxybutyrate (BHB), beta-casein, mono- and poly-unsaturated fatty acids, saturated fatty acid] were analyzed. In the analysis of feed intake, the daily intake was analyzed by recording the amount of feed remaining before feeding every morning. Blood was collected before injection of the treatment solution on days 1, 3, and 5 of the experiment through a jugular vein catheter. The daily grades obtained through each analysis were averaged for each period. The statistically significant difference according to the mean value of the data was determined by SAS software v. One-way ANOVA of 9.4 (SAS Institute, Cary, NC, USA) was used. Table 2 shows the effect of milk production and milk composition of dairy cows by the feeding of metabolites and amino acids. As a result of treatment with amino acids and acetic acid using a jugular vein catheter of milking cows, there was no change in feed intake and flow rate [Table 2]. Milk protein yield was significantly increased in the treatment group. The Trp-only treatment group increased the most among all the test groups, and thereafter, Acetate-Trp-Phe, Trp-Phe, Control, and Phe increased in the order. The number of somatic cells in oil was decreased compared to the control in all treatment groups, so it was judged that the additives suppressed the inflammatory response in the animal body.

Figure pat00001
Figure pat00001

표 3은 1, 3 및 5 일에 아미노산의 급여에 젖소의 CBC에 미치는 영향을 나타낸 것이다. 경정맥을 통한 아미노산 및 아세트산의 첨가는 혈액 성상에 아무런 영향을 보이지 않았다 [표 3]. 시험축들의 건강 상태에는 문제가 없는 것으로 확인되었다. Table 3 shows the effect of the feeding of amino acids on the CBC of cows on days 1, 3 and 5. The addition of amino acids and acetic acid via jugular vein had no effect on blood properties [Table 3]. It was confirmed that there was no problem in the health condition of the test axes.

Figure pat00002
Figure pat00002

경정맥을 통해 아미노산과 아세트산을 주입한 24시간 후 혈중 아미노산 함량은 표 4 및 표 5와 같다. 시험 기간 동안 처리구 간 아미노산 조성에는 유의적인 변화가 없었다 (표 4). 이는 경정맥 주입 24시간 후의 결과이므로 주입된 아미노산들이 이미 단백질 합성 및 체내 대사에 이용된 것으로 사료된다. 각 처리구별 실험 1, 3, 5일 째의 아미노산 함량에는 큰 차이가 없었다 (표 5). 대조구에서 Ser, Trp-Phe 처리구에서 Val에 유의적 차이가 있었고, Phe 처리구에서 Asp, Acetate-Trp-Phe 처리구에서 Trp에 변화하는 경향이 보였다. Phe 처리구에서 Asp는 day 3에 증가했다가 day 5에 다시 감소하는 패턴을 보였다. Phe가 amide를 포함한 아미노산의 장관 이동을 증가시키기 때문인 것으로 사료된다. Val은 Trp-Phe 처리구에 의해 day 3에 감소했다가 day 5에 증가하는 패턴을 보이는데 (p = 0.02), 이는 Trp, Phe, Val이 같은 amino acid transporter (LAT1)을 경유하기 때문에 경쟁에 의한 일부 효과일 수 있다. 혈중 Trp는 day 3에 증가했다가 day 5에 다시 감소하는 경향을 나타내었다. 아미노산의 수송은 에너지를 필요로 하는데, 혈중으로 추가된 acetate로부터 에너지를 만들어 이용하는 시간상의 문제가 이런 변화를 나타낸 것으로 사료된다. The amino acid content in blood after 24 hours of injection of amino acids and acetic acid through the jugular vein is shown in Tables 4 and 5. There was no significant change in amino acid composition between treatments during the test period (Table 4). Since this is the result after 24 hours of jugular vein injection, it is considered that the injected amino acids have already been used for protein synthesis and body metabolism. There was no significant difference in the amino acid content on days 1, 3, and 5 of each treatment group (Table 5). In the control group, there was a significant difference in Val in the Ser and Trp-Phe treatment groups, and there was a tendency to change in the Trp in the Asp and Acetate-Trp-Phe treatment groups in the Phe treatment group. In the Phe treatment group, Asp increased on day 3 and then decreased again on day 5. It is thought that this is because Phe increases intestinal transport of amino acids including amide. Val decreased on day 3 by the Trp-Phe treatment group and then increased on day 5 (p = 0.02), which is partly due to competition because Trp, Phe, and Val pass through the same amino acid transporter (LAT1). could be an effect. Blood Trp showed a tendency to increase on day 3 and decrease again on day 5. The transport of amino acids requires energy, and it is thought that this change was caused by the time problem of making and using energy from acetate added to the blood.

대사 촉진 물질 및 아미노산의 급여에 따른 젖소의 혈액 아미노산 조성의 분석 Analysis of blood amino acid composition of dairy cows according to the feeding of metabolites and amino acids Amino acidsamino acids ControlControl TrpTrp PhePhe Trp-PheTrp-Phe AcetateAcetate
+ +
Trp-PheTrp-Phe
SEMSEM pp -value-value
Aspartic AcidAspartic Acid 12.4612.46 15.1415.14 14.7314.73 13.6513.65 18.1518.15 7.927.92 0.9900.990 ThreonineThreonine 102.48102.48 77.3277.32 85.1885.18 71.4371.43 95.9995.99 19.7519.75 0.7910.791 SerineSerine 105.72105.72 61.0061.00 100.46100.46 109.80109.80 91.8391.83 14.9914.99 0.1910.191 AsparagineAsparagine 105.52105.52 132.08132.08 67.5267.52 134.88134.88 104.05104.05 30.0430.04 0.5280.528 Glutamic AcidGlutamic Acid 289.54289.54 258.28258.28 270.92270.92 267.23267.23 259.85259.85 24.8524.85 0.9040.904 GlycineGlycine 345.54345.54 350.85350.85 353.29353.29 322.84322.84 352.12352.12 21.7921.79 0.8480.848 AlanineAlanine 289.58289.58 279.12279.12 277.24277.24 266.20266.20 280.07280.07 19.7619.76 0.9470.947 ValineValine 14.5114.51 14.3014.30 17.5317.53 22.9122.91 13.9613.96 3.393.39 0.3220.322 CystineCystine 41.4641.46 37.5937.59 41.8441.84 42.4842.48 40.1940.19 7.857.85 0.9930.993 MethionineMethionine 99.2099.20 100.70100.70 98.2198.21 75.3275.32 102.24102.24 22.6622.66 0.9100.910 PhenylalaninePhenylalanine 95.7995.79 91.0891.08 99.3599.35 95.6795.67 93.6593.65 22.2322.23 0.9990.999 IsoleucineIsoleucine 25.5725.57 28.3428.34 30.7630.76 26.9226.92 27.2827.28 8.198.19 0.9940.994 LeucineLeucine 20.6420.64 30.7330.73 28.1228.12 23.6023.60 20.0820.08 6.436.43 0.7180.718 TyrosineTyrosine 16.3016.30 21.2221.22 21.2121.21 24.7124.71 21.9321.93 5.595.59 0.8780.878 HistidineHistidine 55.6555.65 57.7457.74 56.3556.35 48.1748.17 61.9361.93 6.346.34 0.6530.653 TryptophanTryptophan 10.3710.37 18.5518.55 19.6619.66 17.5917.59 14.0414.04 4.834.83 0.6520.652 LysineLysine 83.1283.12 81.3581.35 83.8183.81 77.4777.47 74.7874.78 4.114.11 0.4910.491 ArginineArginine 105.36105.36 99.3699.36 104.95104.95 127.21127.21 105.02105.02 14.7614.76 0.7100.710

1일 내지 5일 동안 대사 촉진 물질 및 아니노산을 급여한 젖소의 혈액 아미노산 조성의 확인Identification of the blood amino acid composition of cows fed with metabolites and aninoic acid for 1 to 5 days Amino acidsamino acids ControlControl TrpTrp PhePhe Trp-PheTrp-Phe Acetate+Trp-PheAcetate+Trp-Phe Aspartic Acid Aspartic Acid D1D1 5.705.70 2.602.60 7.557.55 30.1330.13 15.1315.13 D3D3 26.2326.23 36.5036.50 28.7228.72 4.194.19 43.1043.10 D5D5 5.445.44 6.336.33 7.927.92 8.248.24 5.215.21 SEMSEM 7.137.13 8.208.20 7.367.36 8.788.78 8.098.09 pp -value-value 0.420.42 0.190.19 0.440.44 0.450.45 0.370.37 ThreonineThreonine D1D1 83.1783.17 63.5563.55 84.0584.05 65.9265.92 80.2780.27 D3D3 108.82108.82 93.0593.05 96.6596.65 51.4951.49 117.98117.98 D5D5 115.46115.46 75.3575.35 74.8474.84 58.5858.58 118.47118.47 SEMSEM 16.2416.24 16.1116.11 16.5716.57 14.2814.28 16.6116.61 pp -Value-Value 0.720.72 0.780.78 0.880.88 0.930.93 0.540.54 SerineSerine D1D1 151.90a 151.90 a 101.23101.23 112.17112.17 77.3777.37 135.91135.91 D3D3 61.33b 61.33 b 25.4725.47 120.32120.32 161.99161.99 43.3743.37 D5D5 103.93ab 103.93 ab 56.2956.29 68.8768.87 75.2575.25 106.04106.04 SEMSEM 15.3215.32 13.8713.87 17.2817.28 21.2121.21 15.5515.55 pp -Value-Value 0.040.04 0.690.69 0.460.46 0.180.18 0.190.19 AsparagineAsparagine D1D1 90.5090.50 121.60121.60 63.8363.83 216.74216.74 101.20101.20 D3D3 136.33136.33 64.9364.93 105.24105.24 74.7574.75 80.7180.71 D5D5 89.7489.74 209.70209.70 33.4833.48 129.11129.11 81.1381.13 SEMSEM 27.5327.53 30.0730.07 13.6813.68 43.1243.12 23.3623.36 pp -Value-Value 0.760.76 0.140.14 0.090.09 0.420.42 0.390.39 Glutamic AcidGlutamic Acid D1D1 311.39311.39 239.85239.85 259.07259.07 265.13265.13 286.44286.44 D3D3 259.50259.50 307.62307.62 331.16331.16 266.91266.91 216.60216.60 D5D5 297.74297.74 227.38227.38 222.54222.54 253.36253.36 303.02303.02 SEMSEM 12.2712.27 20.5820.58 28.0728.07 31.9031.90 23.4123.41 pp -Value-Value 0.210.21 0.240.24 0.290.29 0.990.99 0.540.54 GlycineGlycine D1D1 356.13356.13 375.76375.76 402.90402.90 382.07382.07 362.08362.08 D3D3 341.44341.44 355.66355.66 392.27392.27 287.92287.92 384.06384.06 D5D5 339.05339.05 321.13321.13 264.71264.71 264.96264.96 328.79328.79 SEMSEM 16.7516.75 20.1920.19 30.0830.08 36.3536.35 19.8019.80 pp -Value-Value 0.920.92 0.570.57 0.110.11 0.390.39 0.110.11 AlanineAlanine D1D1 317.49317.49 295.04295.04 303.87303.87 304.35304.35 299.61299.61 D3D3 278.16278.16 266.32266.32 302.66302.66 243.53243.53 291.13291.13 D5D5 273.09273.09 275.98275.98 225.19225.19 231.03231.03 264.11264.11 SEMSEM 12.6312.63 14.0714.07 18.9718.97 29.5029.50 15.5415.54 pp -Value-Value 0.310.31 0.730.73 0.150.15 0.580.58 0.130.13 ValineValine D1D1 12.4112.41 13.2013.20 7.777.77 22.86ab 22.86 ab 8.418.41 D3D3 13.9013.90 11.1611.16 19.3519.35 8.02b 8.02 b 15.3415.34 D5D5 17.2217.22 18.5218.52 25.4525.45 43.04a 43.04 a 12.7012.70 SEMSEM 3.173.17 2.482.48 3.623.62 5.505.50 2.282.28 pp -Value-Value 0.840.84 0.490.49 0.130.13 0.020.02 0.410.41 CystineCystine D1D1 41.5741.57 33.9733.97 28.4128.41 41.9741.97 34.4034.40 D3D3 34.9934.99 36.6036.60 51.5951.59 43.1643.16 40.6040.60 D5D5 47.8247.82 42.2042.20 45.5245.52 55.7855.78 34.9134.91 SEMSEM 5.985.98 5.285.28 5.155.15 5.775.77 4.744.74 pp -Value-Value 0.710.71 0.830.83 0.170.17 0.610.61 0.960.96 MethionineMethionine D1D1 92.1492.14 81.0381.03 95.6595.65 64.6864.68 107.12107.12 D3D3 117.37117.37 111.96111.96 125.20125.20 78.6678.66 148.86148.86 D5D5 88.0988.09 109.12109.12 73.7973.79 60.9260.92 99.8699.86 SEMSEM 14.1914.19 16.4616.46 15.0015.00 14.4014.40 15.0915.09 pp -Value-Value 0.690.69 0.730.73 0.400.40 0.890.89 0.650.65 PhenylalaninePhenylalanine D1D1 81.8681.86 86.6186.61 86.0086.00 88.4588.45 57.2257.22 D3D3 91.9391.93 96.1496.14 101.19101.19 87.0087.00 78.1578.15 D5D5 113.59113.59 90.5090.50 110.86110.86 135.83135.83 95.9895.98 SEMSEM 14.1514.15 17.3017.30 11.1511.15 16.7216.72 12.1412.14 pp -Value-Value 0.680.68 0.980.98 0.790.79 0.450.45 0.780.78 IsoleucineIsoleucine D1D1 28.2228.22 22.3722.37 14.3214.32 26.2726.27 10.4310.43 D3D3 21.3621.36 29.2829.28 33.9633.96 18.8118.81 26.0226.02 D5D5 27.1227.12 33.3933.39 43.9943.99 47.8447.84 29.1029.10 SEMSEM 6.176.17 5.855.85 20.8120.81 7.587.58 5.435.43 pp -Value-Value 0.900.90 0.770.77 0.590.59 0.320.32 0.120.12 LeucineLeucine D1D1 26.3426.34 31.3831.38 17.0517.05 25.4025.40 12.3712.37 D3D3 13.1913.19 21.2821.28 37.7037.70 15.0215.02 34.4934.49 D5D5 22.4022.40 39.5239.52 29.6229.62 40.0740.07 15.0715.07 SEMSEM 5.375.37 6.306.30 5.275.27 8.218.21 4.894.89 pp -Value-Value 0.110.11 0.530.53 0.290.29 0.530.53 0.210.21 TyrosineTyrosine D1 D1 20.6320.63 24.0824.08 13.8813.88 25.0825.08 24.4624.46 D3 D3 15.9315.93 17.9617.96 19.3319.33 16.6016.60 26.3526.35 D5 D5 12.3312.33 21.6321.63 30.4230.42 31.4131.41 21.2121.21 SEMSEM 3.203.20 4.354.35 4.854.85 5.605.60 3.323.32 pp -Value-Value 0.610.61 0.870.87 0.390.39 0.620.62 0.790.79 HistidineHistidine D1D1 62.7662.76 61.6461.64 66.4566.45 55.2255.22 62.0662.06 D3D3 49.2149.21 55.6855.68 50.1150.11 51.1751.17 60.4860.48 D5D5 54.9954.99 55.9055.90 52.5152.51 51.8451.84 59.0959.09 SEMSEM 4.314.31 2.652.65 5.575.57 7.687.68 6.326.32 pp -Value-Value 0.470.47 0.620.62 0.470.47 0.980.98 0.260.26 TryptophanTryptophan D1D1 11.16 11.16 10.9310.93 14.4114.41 13.8313.83 13.8713.87 D3D3 10.2710.27 15.7715.77 18.4918.49 12.7512.75 21.9321.93 D5D5 9.679.67 28.9628.96 26.0826.08 31.1231.12 10.4810.48 SEMSEM 1.111.11 5.195.19 5.265.26 5.995.99 2.082.08 pp -Value-Value 0.880.88 0.370.37 0.690.69 0.430.43 0.080.08 LysineLysine D1D1 85.4785.47 82.9582.95 85.0385.03 83.1983.19 74.8074.80 D3D3 81.9881.98 85.7285.72 88.0188.01 61.1861.18 76.1076.10 D5D5 81.8981.89 75.3775.37 78.4078.40 83.8883.88 76.8476.84 SEMSEM 4.044.04 6.006.00 4.184.18 5.645.64 4.814.81 pp -Value-Value 0.930.93 0.790.79 0.660.66 0.200.20 0.560.56 ArginineArginine D1D1 114.88114.88 97.1597.15 101.01101.01 115.58115.58 108.10108.10 D3D3 92.7592.75 98.7098.70 111.37111.37 110.59110.59 99.4099.40 D5D5 108.46108.46 102.22102.22 102.48102.48 105.38105.38 123.90123.90 SEMSEM 6.166.16 6.416.41 6.876.87 13.9513.95 7.747.74 pp -Value-Value 0.340.34 0.950.95 0.820.82 0.960.96 0.940.94

in vitro 연구를 통해 가장 효율적으로 유단백질을 생산하는 조합은 Trp-Phe와 Acetate-Trp-Phe로 확인되었다. 상기 결과를 바탕으로 in vivo 실험을 수행하였다. in vivo를 통해 경정맥 카테터를 통한 착유우에 주입된 아미노산 및 아세트산은 젖소의 사료 섭취량 및 유량을 변화시키지 않으면서 유단백질량을 증가시켰다. 또한 대조구 대비 모든 처리구에서 체세포 수를 감소시켰으며, 이는 항염증 효과가 있는 것으로 사료된다. 혈중 아미노산 조성은 아미노산 첨가에 따라 큰 변화를 보이지 않았다. In vitro 세포 실험 결과를 in vivo에 적용하여 유단백질이 증가하는 것을 확인하였다.Through an in vitro study, the combination that produced the most efficient milk protein was identified as Trp-Phe and Acetate-Trp-Phe. Based on the above results, an in vivo experiment was performed. Amino acids and acetic acid injected into milking cows through a jugular vein catheter in vivo increased milk protein content without changing feed intake and flow rate of cows. In addition, the number of somatic cells was reduced in all treatment groups compared to the control group, which is considered to have an anti-inflammatory effect. The composition of amino acids in the blood did not show significant changes according to the addition of amino acids. The increase in milk protein was confirmed by applying the results of in vitro cell experiments to in vivo.

Claims (5)

페닐알라닌, 트립토판 및 아세트산을 포함하는, 착유 반추동물의 유중 단백질 합성 촉진용 조성물A composition for promoting protein-in-oil protein synthesis in milking ruminants, comprising phenylalanine, tryptophan and acetic acid 제 1항에 있어서,
상기 유단백질은 베타-카제인(beta-casein)인, 착유 반추동물의 유중 단백질 합성 촉진용 조성물.
The method of claim 1,
The milk protein is beta-casein (beta-casein), a composition for promoting protein synthesis in milking ruminants.
제 1항 또는 제 2항의 조성물을 포함하는, 착유 반추동물의 유중 단백질 합성 촉진용 사료 첨가제. A feed additive for promoting protein-in-oil protein synthesis in milking ruminants, comprising the composition of claim 1 or 2. 제 1항 또는 제 2항의 조성물을 포함하는, 착유 반추동물의 유중 단백질 합성 촉진용 사료 조성물. A feed composition for promoting protein-in-oil protein synthesis in milking ruminants, comprising the composition of claim 1 or 2. 제 1항 또는 제 2항의 조성물을 젖소에 급여하는 단계; 를 포함하는, 젖소의 유중 단백질의 함량을 증가시키는 방법.The step of feeding the composition of claim 1 or 2 to cows; A method for increasing the protein-in-oil content of cows, comprising a.
KR1020200183747A 2020-12-24 2020-12-24 Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate KR102571169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200183747A KR102571169B1 (en) 2020-12-24 2020-12-24 Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200183747A KR102571169B1 (en) 2020-12-24 2020-12-24 Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate

Publications (2)

Publication Number Publication Date
KR20220092204A true KR20220092204A (en) 2022-07-01
KR102571169B1 KR102571169B1 (en) 2023-08-24

Family

ID=82396998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200183747A KR102571169B1 (en) 2020-12-24 2020-12-24 Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate

Country Status (1)

Country Link
KR (1) KR102571169B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190115226A (en) * 2018-04-02 2019-10-11 대한민국(농촌진흥청장) Composition comprising bee venom for promoting synthesis of milk protein
KR20200055218A (en) * 2018-11-12 2020-05-21 씨제이제일제당 (주) Feed additive for dairy cattle comprising N-acetyl-L-tryptophan as active ingredient
US20200337336A1 (en) * 2018-01-18 2020-10-29 Pando Nutrition Inc. Recombinant yeast as animal feed
KR20220034848A (en) * 2019-07-11 2022-03-18 클라라 푸드즈 컴퍼니 Protein composition and edible products thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200337336A1 (en) * 2018-01-18 2020-10-29 Pando Nutrition Inc. Recombinant yeast as animal feed
KR20190115226A (en) * 2018-04-02 2019-10-11 대한민국(농촌진흥청장) Composition comprising bee venom for promoting synthesis of milk protein
KR20200055218A (en) * 2018-11-12 2020-05-21 씨제이제일제당 (주) Feed additive for dairy cattle comprising N-acetyl-L-tryptophan as active ingredient
KR20220034848A (en) * 2019-07-11 2022-03-18 클라라 푸드즈 컴퍼니 Protein composition and edible products thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Animal Physiology and Animal Nutrition, Vol. 99, pps 215-220(2015)* *
Animal Science Journal, Vol. 90, pps 81-89(2019)* *

Also Published As

Publication number Publication date
KR102571169B1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
EP3325605B1 (en) Protein-rich biomass of thraustochytrids, culturing method, and uses
RU2595727C1 (en) Fodder composition and preparation method thereof
CA3167573A1 (en) Methods and compositions for reducing deleterious enteric atmospheric gases in livestock
Thirunavukkarasar et al. Protein-sparing effect of dietary lipid: Changes in growth, nutrient utilization, digestion and IGF-I and IGFBP-I expression of Genetically Improved Farmed Tilapia (GIFT), reared in Inland Ground Saline Water
KR102331867B1 (en) Feed additive for cattle comprising N-acetyl-L-tryptophan as active ingredient
Rodríguez et al. Microbial protein synthesis in rumen and its importance to ruminants
Elseed et al. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on NDF digestibility and rumen fermentation of forage sorghum hay in Nubian goat’s kids
Hatungimana et al. Effect of urea molasses block supplementation on growth performance of sheep
Alcaide et al. Degradation characteristics of shrubs and the effect of supplementation with urea or protein on microbial production using a continuous‐culture system
Khalid et al. Response of growing lambs fed on different vegetable protein sources with or without probiotics.
Goswami et al. Growth and nutrient utilization in calves fed guar (Cyamopsis tetragonoloba) meal replacing groundnut cake in concentrate with and without added sweetener and flavour
KR102571169B1 (en) Composition for promoting synthesis of milk protein comprising L-phenylalanine, L-tryptophan and acetate
RU2717991C1 (en) Protein feed supplement for farm animals and fish
Kamal Effect of dietary protected lysine supplementation on milk yield, composition and some blood and rumen parameters in local ewes
Kirimi et al. Nutrients digestibility and growth performance of Nile tilapia (Oreochromis niloticus) fed on oilseed meals with crude papain enzyme
He et al. Dietary glycine supplementation improves the growth performance of 110-to 240-g (phase II) hybrid striped bass (Morone saxatilis♀× Morone chrysops♂) fed soybean meal-based diets
Meenongyai et al. Effect of coated cysteamine hydrochloride and probiotics supplemented alone or in combination on feed intake, nutrients digestibility, ruminal fermentation, and blood metabolites of Kamphaeng Saen beef heifers
Brooks et al. Assessment of amino acid supplementation on rumen microbial efficiency and nitrogen metabolism using a continuous-culture system
Funaba et al. Bone growth rather than myofibrillar protein turnover is strongly affected by nutritional restriction at early weaning of calves
Sikka et al. Studies on milk allantoin and uric acid in relation to feeding regimens and production performance in buffaloes
Lassoued et al. Reproductive and productivity traits of goats grazing Acacia cyanophylla Lindl. with and without daily PEG supplementation
Marla et al. Retention of Dry Matter, Organic Matter and Nitrogen In Native Chicken Fed Non-AGP Rations Added by Rubber Leaf (Hevea Brasiliensis) Flour
US20230145341A1 (en) Feed additive compositions and methods of use
Nevostruyeva Content of amino acids in the rumen of cows under conditions of feeding high-protein extruded supplements
Vergara-Rubín et al. Digestible energy content and apparent digestibility coefficients of fish meal, soybean meal, corn, wheat middlings and soybean oil in paiche Arapaima gigas

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant