KR20220090655A - Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same - Google Patents

Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same Download PDF

Info

Publication number
KR20220090655A
KR20220090655A KR1020200181072A KR20200181072A KR20220090655A KR 20220090655 A KR20220090655 A KR 20220090655A KR 1020200181072 A KR1020200181072 A KR 1020200181072A KR 20200181072 A KR20200181072 A KR 20200181072A KR 20220090655 A KR20220090655 A KR 20220090655A
Authority
KR
South Korea
Prior art keywords
edlc
voltage
output
double layer
layer capacitor
Prior art date
Application number
KR1020200181072A
Other languages
Korean (ko)
Inventor
강언욱
Original Assignee
주식회사 레스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레스코 filed Critical 주식회사 레스코
Priority to KR1020200181072A priority Critical patent/KR20220090655A/en
Publication of KR20220090655A publication Critical patent/KR20220090655A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors

Abstract

본 발명은 EDLC 및 G-EDLC의 고용량 슈퍼커패시터 배터리시스템에서의 방전 시 슈퍼커패시터의 충·방전특성에 기인하여 일정하지 않는 전압이 발생되고 선형적인 감소 기울기를 갖는 출력부하의 전압과 전류를 일정하게 유지, 공급하는 슈퍼커패시터 배터리 출력의 안정화 방법에 관한 것이다. 본 발명의 하나의 실시 예에 따라, 전원입력단의 셀벨런싱 회로, 배터리모듈, BMS회로, DC/DC Buck/Boost변환회로, 배터리 상태 모니터링을 위한 내부 센서(입·출력 전류 및 전압)회로, 무선모듈로서 구성되며, 배터리의 상태정보를 외부로 와이파이, 블루투스 근거리 통신모듈을 통하여 Soft AP방식에 의한 상태 정보를 전송하는 기능을 포함하고 있으며, 정전류(Constant Current), 정전압(Constant Voltage)으로 부하 사용의 연속적인 전압과 전류를 제어하여 출력전압을 안정적으로 부하방전에 적용하여 G-EDLC 및 EDLC 배터리의 수명주기(Life Cycle)와 효율적인 출력을 제공 할 수 있도록 고안 하였다.In the present invention, when discharging in a high capacity supercapacitor battery system of EDLC and G-EDLC, an inconsistent voltage is generated due to the charging and discharging characteristics of the supercapacitor, and the voltage and current of the output load having a linear decrease slope are constantly maintained. It relates to a method of stabilizing the output of a supercapacitor battery that maintains and supplies. According to an embodiment of the present invention, a cell balancing circuit of a power input stage, a battery module, a BMS circuit, a DC/DC Buck/Boost conversion circuit, an internal sensor (input/output current and voltage) circuit for monitoring battery status, a wireless It is configured as a module and includes a function to transmit the battery status information to the outside through Wi-Fi and Bluetooth short-distance communication module by Soft AP method, and uses a load with constant current and constant voltage It was designed to provide the life cycle and efficient output of G-EDLC and EDLC batteries by stably applying the output voltage to the load by controlling the continuous voltage and current of the G-EDLC and EDLC batteries.

Description

그라핀전기이중층 커패시터 셀 및 전기이중층 커패시터 셀을 이용한 전기저장시스템에서의 출력부하 안정화를 위한 DC/DC 전력변환방법 {Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same}Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same}

본 발명은 EDLC 및 G-EDLC의 고용량 슈퍼커패시터 배터리시스템에서의 방전 시 슈퍼커패시터의 충·방전특성에 기인하여 일정하지 않는 전압이 발생되고 선형적인 감소 기울기를 갖는 출력부하의 전압과 전류를 일정하게 유지, 공급하는 슈퍼커패시터 배터리 출력의 안정화 방법에 관한 것으로, 적용가능한 기술분야로는 신재생에너지(에너지/환경제어설비분야 및 에너지 환경기계 시스템 S/W) 이차전지분야, 초고용량 커패시터와, IT분야(통신 및 제어 소프트웨어) 무선정보통신 SoftAP기술 및 Multiple AP접속을 통한 G-EDLC 배터리 상태정보, 송·수신처리장치 도 및 전압, 전류량, 능동형 부하제어 DC컨버팅 및 임베디드 전력제어 모니터링 시스템 기술과, 전기전자(전지) 초고용량 커패시터 ESS 전기 저장장치, 에너지 저장기기에 가능하다.In the present invention, when discharging in a high capacity supercapacitor battery system of EDLC and G-EDLC, an inconsistent voltage is generated due to the charging and discharging characteristics of the supercapacitor, and the voltage and current of the output load having a linear decrease slope are constantly maintained. It relates to a method of stabilizing the output of a supercapacitor battery that maintains and supplies, and applicable technical fields include renewable energy (energy/environmental control equipment field and energy environment machine system S/W) secondary battery field, ultra-high capacity capacitor and IT Field (communication and control software) wireless information communication SoftAP technology and G-EDLC battery status information through multiple AP connection, transmission/reception processing device diagram and voltage, current amount, active load control DC converting and embedded power control monitoring system technology; It is possible for electric and electronic (battery) ultra-high-capacity capacitors, ESS electric storage devices, and energy storage devices.

4차산업도래 이후 현대인들은 이동용 스마트단말기기의 소형배터리에서부터, 운송기기, 이동 형 교통 전기 차, 드론 등 다양한 용도로 배터리를 사용하고 있다. 전기 차, 스마트 기기 등 다양한 전기전자장치에 적용 될 때 배터리가 필수적이며, 배터리 저장기술은 계속적으로 진화하여 발전해나가고 있다. 본 발명은 일반적으로 휴대 혹은 이동용에 많이 사용하고 있는 리듐 계열의 배터리가 아닌 친환경, 화재가능성이 낮고 수명이 높은 고용량 전기이중층 커패시터를 이용하여 에너지 저장장치를 개발하여 사용할려는 최근 다양한 시도가 있었다. 이중에서 에너지 밀도를 높여 배터리로서 사용하기 위해서는 슈퍼커패시터의 특성상 완전충전이후 에너지를 방전 시 선형적으로 전압강하가 발행하는 특성으로 사용에 제약이 있어 특수 분야에서만 사용이 되고 있다. 이러한 특수 분야의 사용을 일반화 하여 사용하기 위해서는 반드시 전압의 연속적인 안정화가 필수적으로 필요하게 되었다. 따라서 본 발명은 슈퍼거패시터(EDLC,GEDLC) 배터리의 방전 부하 시 전압강하의 단점을 보완하고 해결하고자 안정적인 부하를 만족하기 위한 기술방법을 제시하고 있다. Since the advent of the 4th industry, modern people have been using batteries for various purposes, from small batteries for mobile smart terminal devices, to transportation devices, electric vehicles for mobile transport, and drones. Batteries are essential when applied to various electric and electronic devices such as electric vehicles and smart devices, and battery storage technology continues to evolve and develop. In the present invention, there have been various recent attempts to develop and use an energy storage device using an eco-friendly, high-capacity electric double-layer capacitor having a low fire possibility and a high lifespan, rather than a lithium-based battery that is generally used for portable or mobile use. Among them, in order to increase the energy density and use it as a battery, the characteristic of a supercapacitor causes a linear voltage drop upon discharging energy after full charge. In order to generalize the use of this special field, continuous stabilization of the voltage is absolutely necessary. Therefore, the present invention proposes a technical method for satisfying a stable load in order to supplement and solve the disadvantage of voltage drop during discharge load of supercapacitor (EDLC, GEDLC) batteries.

전술한 문제를 해결하고자, 고용량 슈퍼커패시터의 DC출력단에 동기식 4스위칭 벅부스터 DC/DC컨트롤러를 탑재하여 전압안정기(Voltage Stabilizer)를 적용하였다. 통상 Buck을 위한 강압(Step down)용 인덕터와 Boost를 위한 승압(Step up) 인덕터를 분리하여 2개의 인덕터를 구성하나, 단지 하나의 인덕터로 강압과 승압 구현이 가능하도록 하였다. 출력의 효율성은 컨트롤러에 의한 동기화 고정주파수 100kHz에서 400kHz가 사용되고 동기식 정류의 효율은 98%까지 가능한 고성능 Buck-Boost 스위칭 콘트롤러에 의해 기술구현을 해결하였다. 또한 본 기술로 입력과 출력에 대한 전류제한 변환기로서의 기능도 가진다.In order to solve the above problem, a voltage stabilizer was applied by mounting a synchronous 4-switching buck booster DC/DC controller on the DC output stage of the high-capacity supercapacitor. Usually, two inductors are configured by separating the step-down inductor for buck and the step-up inductor for boost, but only one inductor is used to implement step-down and step-up. The efficiency of the output is solved by the high-performance Buck-Boost switching controller that uses the synchronization fixed frequency 100kHz to 400kHz by the controller and the efficiency of the synchronous rectification is up to 98%. In addition, this technology also has a function as a current limiting converter for input and output.

본 발명의 해결수단은 GEDLC 및 EDLC 슈퍼커패시터의 셀을 에너지 저장용량에 맞추어 다수의 직렬(Serial) 병렬(Parallel)로 전지를 구성하고 직렬구성 시 단위 셀의 최대 2.8V 충전 전압의 제한하고 고른 전압을 분배하여 셀의 손상 없이 충전하기 위한 셀의 벨런싱 회로부와 최종 공칭 출력전압인 DC12V, 24V, 36V, 48V 로 구성된 모듈은 다음의 DC변환단계인 출력단의 전극단자에서 연결되고, DC/DC 변환을 수행하는 능동 스위칭 동기화 Buck/Boost 회로부, DC변환 후 FeedBack을 수행하는 비교연산 회로부, DC/DC 변환 시 출력부하에 따른 전압 및 전류 CC/CV(Contant Current / Contant Voltage)로 안정적 전력 제어가 가능한 정전류/정전압 제어회로부, 전압, 전류센서의 정보를 전송하고 WiFi통신 및 블루투스 통신이 가능한 근거리 무선통신 모듈부로서 스마트기기와 PC로서 데이터를 수신하고 배터리 정보를 모니터링 할 수 있는 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법을 특징으로 한다.The solution of the present invention is to configure the cells of GEDLC and EDLC supercapacitors according to the energy storage capacity in a plurality of series and parallel, and limit the maximum 2.8V charging voltage of the unit cell when configuring in series and uniform voltage The module composed of the balancing circuit part of the cell and the final nominal output voltage of DC12V, 24V, 36V, 48V for charging without damage to the cell by distributing the Active switching synchronization Buck/Boost circuit unit that performs DC conversion, comparison operation circuit unit that performs FeedBack after DC conversion, and constant current that enables stable power control with voltage and current CC/CV (Contant Current/Contant Voltage) according to the output load during DC/DC conversion / It is a short-distance wireless communication module that transmits information of constant voltage control circuit, voltage and current sensor, and is capable of WiFi and Bluetooth communication. It is a graphene electric double layer capacitor (Graphene) that can receive data as smart devices and PCs and monitor battery information. It features a DC/DC power conversion method for stabilizing an output load in an electric storage system (ESS) using an Electric Double Layer Capacitor) cell and an Electric Double Layer Capacitor (EDLC) cell.

이상과 같이 본 발명의 하나의 실시예에 따라, 슈퍼커패시터 배터리내부에 위치한 슈퍼커패시터 DC변환기를 통하여 배터리의 선형적인 전압강하에도 Buck Boost 컨트롤러에 의한 최적 제어 전압전류의 사용자 패턴설정 전력 L(Inductance, Capacitance, Resistance) Value값을 통해 배터리 에너지 밀도에 따라 일정 전압을 유지하고 공급하여 출력단의 부하기기에 오작동방지 및 배터리의 제품 수명을 연장 할 수 있다. As described above, according to one embodiment of the present invention, the user pattern setting power L (Inductance, Through the Capacitance, Resistance) value, it is possible to prevent malfunction and extend the life of the battery by maintaining and supplying a constant voltage according to the battery energy density.

도 1은 슈퍼커패시터(EDLC, GEDLC)의 전체 구성도
도 2는 셀밸런싱을 구성하는 직·병렬 구성 형태도
도 3은 DC/DC 제어회로도
1 is an overall configuration diagram of a supercapacitor (EDLC, GEDLC);
2 is a diagram of a serial/parallel configuration constituting cell balancing;
3 is a DC/DC control circuit diagram

슈퍼커패시터 일반배터리와 슈퍼커패시터 EDLC, G-EDLC Supercapacitor(Ultracapacitor)의 특성비교Characteristics Comparison of Supercapacitor General Battery and Supercapacitor EDLC, G-EDLC Supercapacitor (Ultracapacitor)

Figure pat00001
Figure pat00001

상기 표 1은 일반 배터리(리듐계 베터리 및 MF 납산베터리)와 전기이중층 커패시터(EDLC), 그라핀 EDLC의 충전 및 방전특성을 보여주고 있다. 여기서 EDLC, G-EDLC의 특징으로 초기 완전방전상태(0 Voltage)에서 충전을 시작으로 완전 방전 시까지 전압은 선형적으로 올라가면서 충전이 됨을 알 수 있으며 방전시 점점 시간에 따라 전압이 감소하고 있다. Table 1 shows the charging and discharging characteristics of general batteries (lithium-based batteries and MF lead-acid batteries), electric double-layer capacitors (EDLCs), and graphene EDLCs. Here, as a characteristic of EDLC and G-EDLC, it can be seen that charging starts from the initial fully discharged state (0 Voltage) and the voltage increases linearly until fully discharged, and the voltage gradually decreases with time during discharge. .

통상 일반적으로 배터리의 출력에 사용하는 부하의 종류는 다양하며 리듐계베터리 인 리듐이온(Lion, 리듐폴리머, 리듐인산철(Lipo4) 및 납배터리(MF배터리)는 출력되는 전압은 거의 일정하고 차이가 크게 발생하지 않아 출력 안정화에 별도의 회로가 필요치 않으나 슈퍼커패시터(EDLC, GEDLC, LIC)는 출력이 이루어지고 시간이 경과됨에 따라전압이 낮아져 완충시의 전압과 부하발생시 전압 변화의 편차가 너무 높아 정해진 시간동안에 출력되는 전압의 유지 연속에 대해 안정적인으로 전력을 제공하지 못한다. 일반 배터리의 경우 편차가 그렇게 높지 않아 에너지 저장용량 만큼 사용하기에는 충분하나 슈퍼커패시터(EDLC, G-EDLC)의 경우 부하 사용 시 편차가 높아 배터리로서 사용하기에는 문제가 발생하며, 이를 극복하기 위한 출력전압의 연속성을 확보하기 위해서 정전압(Constant Voltage), 정전류 기술(Constant Current)을 적용하고 안정적인 출력 전압을 확보하기 위한 슈퍼커패시터(EDLC, G-EDLC) 전용의 DC/DC Buck, Boost 출력장치가 필요하다. In general, the type of load used for the output of the battery is diverse, and the output voltage of the lithium-based battery, lithium ion (Lion, lithium polymer, lithium iron phosphate (Lipo4) and lead battery (MF battery)) is almost constant and there is no difference. Since it does not occur significantly, a separate circuit is not required for output stabilization. However, as for supercapacitors (EDLC, GEDLC, LIC), the output is made and the voltage decreases as time elapses. In the case of a normal battery, the deviation is not so high that it is sufficient to use as much as the energy storage capacity, but in the case of a supercapacitor (EDLC, G-EDLC), there is a deviation when using a load The high voltage causes a problem to be used as a battery, and to overcome this problem, constant voltage and constant current technology are applied to secure continuity of output voltage, and supercapacitor (EDLC, EDLC, G-EDLC) dedicated DC/DC Buck and Boost output devices are required.

일부 슈퍼커패시터를 제외한 용도로서 전압강압 혹은 전압승압 DC/DC Buck, Boost가 사용되어 있기는 하나, 슈퍼커패시터 용도로 출력를 일정하게 유지시키는 장치는 현재 존재하지 않으므로 슈퍼커패시터 전용 충전 및 방전기를 고안하여 발명하게 되었다. 또한 충전시 일반배터리 보다 슈퍼커패시터는 충전전류가높다(ESR) 따라서 급속으로 충전과 방전을 할 수 있으므로 해당 고안된 DC/DC 방전 컨버터는 고전류를 처리 하기 위해 일반 배터리와 설계를 달리하고 슈퍼커패시터는 방전종지전압이 없이 Zero Voltage에서 충전이 이루어진다. Although voltage step-down or voltage-boosting DC/DC Buck and Boost are used for purposes other than some supercapacitors, there is currently no device that maintains the output constant for supercapacitors, so a supercapacitor dedicated charging and discharging device was devised and invented. did it In addition, when charging, a super capacitor has a higher charging current (ESR) than a normal battery, so it can charge and discharge rapidly. Therefore, the designed DC/DC discharge converter has a different design from that of a general battery to handle high current, and the super capacitor is discharged. Charging takes place at zero voltage without a final voltage.

2. 기존 전압차를 극복(전력품질향상)을 위한 DC/DC 출력의 안정화 회로가 부재2. There is no DC/DC output stabilization circuit to overcome the existing voltage difference (to improve power quality)

Figure pat00002
Figure pat00002

상기 표 2는 EDLC의 충전(Charging)과 방전(Discharging)특성을 보여주고 있는데 에너지량은 Wh로서

Figure pat00003
구간이 선형적으로 이루어지고 방전(
Figure pat00004
)또한 선형적으로 이루어 지고 있는데 방전의 전력 품질을 전혀 일정하지 않고 감소하고 있음을 보여 준다. 따라서 본 특허의 기술적 요지는 기존의 전압차를 전력품질향상 차원에서 극복하기 위함이다. 또한 에너지량은 전압(V) 값을 실측하기 위해서는
Figure pat00005
으로 적용이 이루어지고 방전 시
Figure pat00006
구간은 일정하게 유지하므로
Figure pat00007
이다. Table 2 shows the charging and discharging characteristics of the EDLC, and the amount of energy is Wh.
Figure pat00003
The section is made linear and the discharge (
Figure pat00004
) is also linear, showing that the power quality of the discharge is not constant at all but is decreasing. Therefore, the technical gist of this patent is to overcome the existing voltage difference in terms of power quality improvement. In addition, the amount of energy is required to measure the voltage (V) value.
Figure pat00005
is applied and when discharging
Figure pat00006
Since the interval is kept constant
Figure pat00007
to be.

Figure pat00008
Figure pat00008

표 3은 EDLC에 Graphene을 추가 하여 에너지 저장밀도를 높여서 개선한 G-EDLC특성을 보여 주고 있으며 EDLC와의 차이점은 Peak 영역상태가 EDLC보다 수평화되어 좀더 구간 개선으로 상위 전압 안정적으로이루어지고 있으나 일정 구간이하일 경우 이것 또한 선형적으로 전압이 떨어짐을 알 수 있다. 따라서 본 고안은 EDLC, G-EDLC를 대상으로 방전 시 출력의 안정화를 도모하기 위한 슈퍼커패시터 전용 DC/DC BUCK, Boost 컨버터로서 가능하도록 하였다.Table 3 shows the improved G-EDLC characteristics by adding graphene to the EDLC to increase the energy storage density. The difference with EDLC is that the peak region is flatter than that of EDLC and the upper voltage is stably achieved by improving the section more, but in a certain section. Below, it can be seen that the voltage also drops linearly. Therefore, this design was made possible as a DC/DC BUCK and Boost converter for super capacitors to stabilize the output during discharge targeting EDLC and G-EDLC.

도 1은 슈퍼커패시터(EDLC, GEDLC)의 전체 구성도를 나타내었다. 10번에서 충전을 위한 전원입력이 이루어지고 셀밸런싱을 통해 일정한 셀에 골고루 전력공급으로 충전이 이루어지고 완충 혹은 충전 량의 70%수준에 도달하게 되면 방전을 개시 할 수 있고 방전 시 전압강하를 보환하기 위한 슈퍼커패시터 전용의 Buck(강압)기능과 Boost(승압)기능을 능동적으로 DC/DC변환 제어기에 의해 일정한 전압변환이 이루어진다. 40번에 의해 배터리 상태정보를 담아 50번의 BMS 상태 정보가 무선모듈로 송출이 이루어진다. 송출된 무선데이터는 패킷데이터로서 PC기기 및 스마트 원격 모니터링 기기를 위해 제공된다. 1 shows the overall configuration of supercapacitors (EDLC, GEDLC). Power input for charging is made in step 10, and charging is made by evenly supplying power to a certain cell through cell balancing. When it reaches 70% of the full charge or charge, it can start discharging and compensate for the voltage drop during discharging. A constant voltage conversion is made by the DC/DC conversion controller actively with the Buck (step-down) function and the Boost (step-up) function dedicated to supercapacitors. No. 40 contains the battery status information, and No. 50 BMS status information is transmitted to the wireless module. The transmitted wireless data is provided as packet data for PC devices and smart remote monitoring devices.

도 2는 셀밸런싱을 구성하는 직·병렬 구성형태를 나타내고 있다. 11번은 Divide된 각 셀 전압을 검출하기 위한 회로로서 만족하는 전압이내일 때만 MOSFET을 통하여 충전이 이루어지며, 완충되었을 경우 MOS FET을 불허하여 더 이상 충전이 이루어지지 않도록 한다. 14번은 셀의 직병렬 구성을 통하여 에너지를 저장할 수 있도록 배열되어져 있으며 최종 슈퍼커패시터에 전기에너지가 저장이 된다. 15번은 최종 저장된 에너지가 출력이 되는 단자로서 방전 전 단계인 DC/DC컨버터로 보내어진다.2 shows a serial/parallel configuration form constituting cell balancing. No. 11 is a circuit for detecting each divided cell voltage, and charging is performed through the MOSFET only when the voltage is within a satisfactory range. No. 14 is arranged to store energy through series-parallel configuration of cells, and electrical energy is stored in the final supercapacitor. No. 15 is the terminal where the final stored energy is output and is sent to the DC/DC converter before discharging.

도 3은 DC/DC 제어회로를 나타내고 있다. 20번은 입력전압보다 목표전압이 낮을 때 STEP DOWN 강압을 위한 제어회로부과 이와 반대로 승압제어회로는 목표전압이 높을 때 STEP UP 승압하기 위한 회로서서 사용된다. 최초 유입되는 입력측(배터리측)전압은 22번으로 유입이 이루어지고 L1인덕터를 통한 승압과 강압작용으로 별도부품을 추가하지 않고 하나의 인덕터로서 승압과 강압이 이루어 질수 있도록 구성되며, 마지막 L2인덕터는 출력 전류의 급격한 흐름을 보호하기위해 사용되었고 D1의 다이오드는 부하에서 들어오는 역전압 방지용으로 추가하여 회로를 보호하고 있다. D1의 고용량 전류사용시 전압손실이 낮은 정류 다이오드로 적용 할 수 있다.3 shows a DC/DC control circuit. No. 20 is a control circuit for step-down step-down when the target voltage is lower than the input voltage, and on the contrary, the step-up control circuit is used as a circuit for step-up step-up when the target voltage is high. The input side (battery side) voltage that is initially introduced is made to No. 22, and the step-up and step-down action through the L1 inductor is configured so that step-up and step-down can be performed as a single inductor without adding additional parts, and the last L2 inductor is It is used to protect the sudden flow of output current, and the diode of D1 is added to protect the circuit by preventing reverse voltage coming from the load. It can be applied as a rectifier diode with low voltage loss when using the high-capacity current of D1.

10: 배터리 입력전원 밸런싱
11: 전압디텍터
12: 스위칭 MOS-FET
13: GEDLC Cell
14: GEDLC Module
15: +DC 전력 버스
20: 전압강압부
21: 전압승압부
22: + POWER BUS 입력
23: 메인 인덕터
24: 인덕터 출력
25: 전류제한 SHUNT 저항
26: 역전압 보호다이오드
40: BMS 센서회로
50: 근거리네트워크 무선 WiFi 모듈, Bluetooth모듈
10: Battery input power balancing
11: voltage detector
12: switching MOS-FET
13: GEDLC Cell
14: GEDLC Module
15: +DC power bus
20: voltage step-down unit
21: voltage boosting unit
22: + POWER BUS input
23: main inductor
24: inductor output
25: Current limit SHUNT resistor
26: reverse voltage protection diode
40: BMS sensor circuit
50: local area network wireless WiFi module, Bluetooth module

Claims (6)

GEDLC 및 EDLC 슈퍼커패시터의 셀을 에너지 저장용량에 맞추어 다수의 직렬(Serial) 병렬(Parallel)로 전지를 구성하고 직렬구성 시 단위 셀의 최대 2.8V 충전 전압의 제한하고 고른 전압을 분배하여 셀의 손상 없이 충전하기 위한 셀의 벨런싱 회로부와 최종 공칭 출력전압인 DC12V, 24V, 36V, 48V 로 구성된 모듈은 다음의 DC변환단계인 출력단의 전극단자에서 연결되고, DC/DC 변환을 수행하는 능동 스위칭 동기화 Buck/Boost 회로부, DC변환 후 FeedBack을 수행하는 비교연산 회로부, DC/DC 변환 시 출력부하에 따른 전압 및 전류 CC/CV(Contant Current / Contant Voltage)로 안정적 전력 제어가 가능한 정전류/정전압 제어회로부, 전압, 전류센서의 정보를 전송하고 WiFi통신 및 블루투스 통신이 가능한 근거리 무선통신 모듈부로서 스마트기기와 PC로서 데이터를 수신하고 배터리 정보를 모니터링 할 수 있는 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
Cells of GEDLC and EDLC supercapacitors are arranged in multiple series and parallel to match the energy storage capacity, and when configured in series, the maximum 2.8V charging voltage of the unit cells is limited and the cells are damaged by distributing the voltage evenly. The module composed of the balancing circuit part of the cell for charging without charge and the final nominal output voltages of DC12V, 24V, 36V, and 48V is connected at the electrode terminal of the output stage, which is the next DC conversion step, and performs DC/DC conversion Active switching synchronization Buck /Boost circuit part, comparison operation circuit part that performs feedback after DC conversion, constant current/constant voltage control circuit part that enables stable power control with voltage and current CC/CV (Contant Current / Contant Voltage) according to the output load during DC/DC conversion, voltage Graphene Electric Double Layer Capacitor cell that transmits current sensor information and can receive data and monitor battery information as a smart device and PC as a short-distance wireless communication module unit capable of WiFi communication and Bluetooth communication. and a DC/DC power conversion method for stabilizing an output load in an electric storage system (ESS) using an electric double layer capacitor (EDLC) cell.
제 1항에 있어서,
배터리의 저장용량의 40% 이하의 경우 방전출력을 제어장치의 전압측정 ADC로 배너리 잔량을 검출하고, 출력을 제한하여 충전이 70%이상의 경우 출력을 사용할 수 있도록 방전이 이루어지도록 재개 한다, 슈퍼거패시터의 Deep Cycle Voltage를 1V이하로 제한하는 방전종지전압(CutOff전압)을 적용하여 제공하고, Zero Voltage에서도 CC/CV 충전이 가능하도록 하는 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
The method of claim 1,
In the case of less than 40% of the battery's storage capacity, the discharge output is detected by the voltage measuring ADC of the control device, and the remaining amount is detected, and the output is limited to resume discharging so that the output can be used when the charge is more than 70%, super Graphene Electric Double Layer Capacitor cell and A DC/DC power conversion method for stabilizing the output load in an electric storage system (ESS) using an electric double layer capacitor (EDLC) cell.
EDLC, GEDLC 슈퍼거패시터 배터리의 전원단자를 GEDLC방전 회로 22번 VIN에서 + DC를 입력받고 설정된 목표(타켓)제어전압 값으로 도달하게 되면 해당 FET를 통하여 강압과 승압이 이루어진다. BOOST(Vin<Vout) 영역회로에서 M1 ON, M2 OFF, M3 PWM, M4 Switching을 통해 전압을 승압하여 목표 전압의 값으로 수렴하도록 Power Switch Controller는 동작한다. BUCK(Vin>Vout))영역에서는 M4 ON, M3 OFF, M1 PWM, M2 Switching을 통해 동작영역이 정해진다. PWM Frequency는 100kHz에서 400kHz로서 98% 변환효율을 갖는 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
When the power terminal of the EDLC and GEDLC supercapacitor battery receives +DC input from VIN of the GEDLC discharge circuit No. 22 and reaches the set target (target) control voltage value, step-down and step-up are performed through the corresponding FET. In the BOOST (Vin<Vout) region circuit, the Power Switch Controller operates to boost the voltage through M1 ON, M2 OFF, M3 PWM, and M4 Switching and converge to the target voltage value. In the BUCK (Vin>Vout) area, the operation area is determined through M4 ON, M3 OFF, M1 PWM, and M2 Switching. The PWM frequency is from 100 kHz to 400 kHz, and the output load stabilization in the electrical storage system (ESS) using graphene electric double layer capacitor cells and electric double layer capacitor (EDLC) cells with 98% conversion efficiency. DC/DC power conversion method for
제 3항에 있어서,
출력되는 일정한 전력은 단방향으로서 배터리로 유입하지 못하도록 26번 D1을 통해 부하 측으로 출력이 이루어지며 부하의 역기전력 유입을 차단함으로써 회로가 파손되지 않고 배터리를 보호 할 수 있도록 하는 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
4. The method of claim 3,
The output constant power is unidirectional, and output is made to the load side through No. 26 D1 to prevent it from flowing into the battery. Graphene Electric Double Layer Capacitor (Graphene Electric) prevents the circuit from being damaged and protects the battery by blocking the inflow of counter electromotive force from the load. A DC/DC power conversion method for stabilizing the output load in an electric storage system (ESS) using a double layer capacitor (EDLC) cell and an electric double layer capacitor (EDLC) cell.
제 1항에 있어서,
G-EDLC(Graphene-Based Electro Chemical Double Layer Capacitor) ESS 전기 저장장치의 충·방전 부하의 특성을 고려한 전력품질 향상 DC/DC 출력 변환 컨버터 장치로서 G-EDLC 전기충전과 방전 부하 시 배터리 장치의 출력 안정화 DC/DC회로를 구비한 능동형 부하제어 컨버장치로 구성된 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
The method of claim 1,
G-EDLC (Graphene-Based Electro Chemical Double Layer Capacitor) As a DC/DC output converter device that improves power quality considering the characteristics of the charging and discharging load of the ESS electrical storage device, the G-EDLC output of the battery device during electrical charging and discharging loads Graphene Electric Double Layer Capacitor (Graphene Electric Double Layer Capacitor) cell and electric double layer capacitor (EDLC) cell composed of an active load control converter equipped with a stabilized DC/DC circuit. ) DC/DC power conversion method for stabilization.
제 3항에 있어서,
제어되는 전력은 전압 및 전류센서를 통해 상위 무선모듈로 전달되고 무선모듈에서는 무선WIFI로 패킷을 전송하고, 단거리일 경우 로컬 블루투스로서 스마트 기기와 전송이 이루어진다. 이때 상위 단은 기본적인 배터리의 정보를 포함하며, 배터리의 잔량, 온도, 충·방전 회수, 배터리의 상태정보를 전송한다. 무선으로 BMS 기능을 내장한 G-EDLC 배터리 전력 측정장치 모니터링 인터페이스와 배터리팩 내부와 외부와의 무선통신을 갖는 WIFI-Direct SoftAP를 적용한 DC/DC변환기, 이를 연동하는안드로이드 기반의 운영체제 및 PC 기반 응용모니터링 시스템을 이용한 그라핀전기이중층 커패시터(Graphene Electric Double Layer Capacitor)셀 및 전기이중층 커패시터(EDLC)셀을 이용한 전기저장시스템(ESS)에서의 출력부하(Load) 안정화을 위한 DC/DC 전력변환방법.
4. The method of claim 3,
Controlled power is transmitted to the upper wireless module through voltage and current sensors, and the wireless module transmits a packet through wireless WIFI, and in the case of a short distance, it is transmitted with a smart device through local Bluetooth. At this time, the upper stage includes basic battery information, and transmits the remaining battery capacity, temperature, number of times of charging/discharging, and state information of the battery. DC/DC converter to which WIFI-Direct SoftAP is applied with wireless communication between G-EDLC battery power measuring device monitoring interface and battery pack inside and outside with built-in BMS function, and Android-based operating system and PC-based application linking it DC/DC power conversion method for stabilizing the output load in an electric storage system (ESS) using a graphene electric double layer capacitor (Graphene Electric Double Layer Capacitor) cell and an electric double layer capacitor (EDLC) cell using a monitoring system.
KR1020200181072A 2020-12-22 2020-12-22 Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same KR20220090655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200181072A KR20220090655A (en) 2020-12-22 2020-12-22 Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200181072A KR20220090655A (en) 2020-12-22 2020-12-22 Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same

Publications (1)

Publication Number Publication Date
KR20220090655A true KR20220090655A (en) 2022-06-30

Family

ID=82215273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200181072A KR20220090655A (en) 2020-12-22 2020-12-22 Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same

Country Status (1)

Country Link
KR (1) KR20220090655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577590A (en) * 2023-06-13 2023-08-11 深圳正泰电源系统有限公司 Inverter self-checking method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577590A (en) * 2023-06-13 2023-08-11 深圳正泰电源系统有限公司 Inverter self-checking method

Similar Documents

Publication Publication Date Title
US11128152B2 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US7952231B1 (en) Method and system for providing supplemental power
US9906039B2 (en) Power system for multiple power sources
US9343967B2 (en) Single input multiple input/output supply for energy harvest application
US8754545B2 (en) High efficiency backup-power circuits for switch-mode power supplies
US10343872B2 (en) Elevator system having battery and energy storage device
CN107124100B (en) Apparatus for power management
TWI524629B (en) An electric power supply system cooperated by a battery and a super capacitor
US9764655B2 (en) Hybrid power supply and electric vehicle using the same
CN101682199A (en) Power distribution circuit for use in a portable telecommunications device
CN102983563A (en) Coordination control method for common direct current bus mixing energy storage systems
EP2930821B1 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US9306452B2 (en) Multiple power path management with micro-energy harvesting
Li et al. Power electronics integration on battery cells
TW201330453A (en) Charging and discharging control circuit for super capacitor and energy storing unit and method thereof
CN110620413B (en) Energy equalization circuit of battery system
KR20220090655A (en) Graphene Electric Double Layer Capacitor Cell and Electricity Conversion Method Using the Same
US20170077720A1 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
Aharon et al. Design of semi-active battery-ultracapacitor hybrids
US11699953B2 (en) Zero voltage switching hybrid voltage divider
Mahlknecht et al. Energy supply considerations for self-sustaining wireless sensor networks
KR101599962B1 (en) Energe storage system
Lerman et al. Capacitor semi-active battery-ultracapacitor hybrid energy source
KR20230008355A (en) Wired and wireless charging supercapacitor pack battery device
CN111404220A (en) Battery management chip, battery management system, electronic equipment and power supply method