KR20220087880A - Antibody inserted exosome nanoparticle composition and medical uses thereof - Google Patents

Antibody inserted exosome nanoparticle composition and medical uses thereof Download PDF

Info

Publication number
KR20220087880A
KR20220087880A KR1020200178336A KR20200178336A KR20220087880A KR 20220087880 A KR20220087880 A KR 20220087880A KR 1020200178336 A KR1020200178336 A KR 1020200178336A KR 20200178336 A KR20200178336 A KR 20200178336A KR 20220087880 A KR20220087880 A KR 20220087880A
Authority
KR
South Korea
Prior art keywords
exosome
antibody
ova
cells
exo
Prior art date
Application number
KR1020200178336A
Other languages
Korean (ko)
Inventor
김종오
풍카오다이
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020200178336A priority Critical patent/KR20220087880A/en
Publication of KR20220087880A publication Critical patent/KR20220087880A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • A61K47/6913Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome the liposome being modified on its surface by an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체기 엑소좀 표면 지질이중층에 삽입되며, 특이적으로 T 세포를 표적하는 엑소좀 나노입자 조성물에 관한 것으로, 보다 상세하게는 오브알부민 자극으로 성숙된 수지상세포로부터 분비된 엑소좀의 표면 지질이중층에 항체접합체가 삽입된 엑소좀 나노입자는 T 세포를 표적하여 면역체크포인트를 억제시키고 종양에 대한 T 세포 활성을 향상시켜 종양성장을 억제시키는 효과가 확인됨에 따라, 상기 항체접합체가 삽입된 엑소좀을 유효성분으로 함유하는 조성물은 면역항암제 및 암백신으로 제공될 수 있다.The present invention relates to an exosome nanoparticle composition that is inserted into a lipid bilayer on the surface of an antibody conjugate comprising a lipid, a biocompatible polymer, and an antibody, and specifically targets T cells, and more particularly, matures by stimulation of ovalbumin Exosome nanoparticles with antibody conjugates inserted into the surface lipid bilayer of exosomes secreted from dendritic cells have the effect of inhibiting tumor growth by targeting T cells and suppressing immune checkpoints and enhancing T cell activity against tumors. As confirmed, the composition containing the exosome into which the antibody conjugate is inserted as an active ingredient can be provided as an immuno-oncology agent and a cancer vaccine.

Description

항체 삽입된 엑소좀 나노입자 조성물 및 이의 의학적 용도 {Antibody inserted exosome nanoparticle composition and medical uses thereof} Antibody inserted exosome nanoparticle composition and medical uses thereof

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체가 엑소좀 표면 지질이중층에 삽입되며, 특이적으로 T 세포를 표적하는 엑소좀 나노입자 조성물 및 이의 의학적 용도에 관한 것이다.The present invention relates to an exosome nanoparticle composition in which an antibody conjugate composed of a lipid, a biocompatible polymer and an antibody is inserted into the lipid bilayer on the surface of an exosome and specifically targets T cells, and to a medical use thereof.

엑소좀은 자연적으로 분비되는 30 내지 200nm 직경의 나노소낭으로, 유래 세포로부터 다양한 물질은 운반하는 중요한 나노매개체로 작용할 수 있음이 알려져 있으며, 최근에는 엑소좀과 같은 세포외 소포의 사용이 암 백신 개발의 새로운 수단으로 부상하고 있다. Exosomes are naturally secreted nanovesicles with a diameter of 30 to 200 nm, and it is known that they can act as important nanomediators for transporting various substances from derived cells. emerging as a new means of

특히, 엑소좀은 살아있는 세포에서 분비되는 나노 소포로 비면역적, 무독성, 긴 순환시간 및 부모 세포의 정체성을 제시하는 고유 세포라는 특성으로 인해 암 백신으로서의 많은 장점을 제공할 수 있다. 최근 보고에서는 DC 유래 엑소좀 (DC-derived exosomes, DEXs)이 종양에 대한 면역반응을 유도하는 것이 입증되었으며, 이는 DC 기반의 암 백신을 위한 전략적 대안이 될 수 있다.In particular, exosomes are nanovesicles secreted from living cells and can provide many advantages as cancer vaccines due to their non-immune, non-toxic, long circulation time and unique cell properties that present parental cell identity. A recent report demonstrated that DC-derived exosomes (DEXs) induce an immune response against tumors, which may be a strategic alternative for DC-based cancer vaccines.

그러나 임상 조사에서 치료적 암 백신으로서 DEX의 안정성이 확인되었음에도 불구하고, 실제 DEX 백신 접종은 소수의 암 환자에게만 특정 항종양 면역을 유도하여 저조한 치료효과를 나타내는 것으로 확인되었다. 이러한 원인은 적응 면역 반응의 충분하지 못한 유도 및 면역 체크포인트 성분과 면역억제 세포와 같이 면역 시스템의 공격을 피하기 위해 종양에 의해 장악된 면역억제 메커니즘이 DEX의 효능을 제한하는 주요 장애물로 간주되고 있다.However, although the safety of DEX as a therapeutic cancer vaccine was confirmed in clinical investigations, it was confirmed that the actual DEX vaccination showed poor therapeutic effect by inducing specific anti-tumor immunity in only a small number of cancer patients. These causes include insufficient induction of adaptive immune responses and immunosuppressive mechanisms seized by tumors to evade attack of the immune system, such as immune checkpoint components and immunosuppressive cells, are considered major obstacles limiting the efficacy of DEX. .

CD28 수용체군의 구성원인 CTLA-4 (Cytotoxic T-lymphocyte antigen 4)은 특히 효과기 CD4+ 및 CD8+ T 세포뿐만 아니라 조절 T 세포 (Tregs)에서 발현된다. CTLA-4는 더 높은 친화성으로 항원 전달세포(APC)의 CD80 및 CD86과의 결합에 대하여 CD28과 경쟁함으로써 림프절의 항원인식 단계 (priming phase) 동안 T 세포 활성을 음성 조절한다. Cytotoxic T-lymphocyte antigen 4 (CTLA-4), a member of the CD28 receptor family, is specifically expressed on effector CD4+ and CD8+ T cells as well as regulatory T cells (Tregs). CTLA-4 negatively regulates T cell activity during the priming phase of lymph nodes by competing with CD28 for binding to CD80 and CD86 of antigen presenting cells (APCs) with higher affinity.

이에 따라, 효과기 T 세포의 활성화를 향상시키고, 효과기 T 세포와 조절 T 세포의 비율을 증가시키며, 활성화된 T 세포를 종양으로 수송시키기 위한 항-CTLA-4 전략에 대한 연구가 필요한 실정이다.Accordingly, there is a need for research on anti-CTLA-4 strategies for enhancing the activation of effector T cells, increasing the ratio of effector T cells to regulatory T cells, and transporting activated T cells to tumors.

대한민국 공개특허 제10-2018-0005546호 (2018.01.16. 공개)Republic of Korea Patent Publication No. 10-2018-0005546 (published on January 16, 2018)

본 발명은 공동자극분자, 주조직적합성 복합체(MHC), 항원성 펩타이드 및 항체가 삽입된 엑소좀 나노입자를 제공하여, T 세포의 면역체크포인트를 억제하고 종양 세포에 대한 T 세포의 면역반응을 활성화시키는 면역항암제를 제공하고자 한다. The present invention provides exosome nanoparticles into which a costimulatory molecule, a major histocompatibility complex (MHC), an antigenic peptide and an antibody are inserted, thereby inhibiting the immune checkpoint of T cells and enhancing the immune response of T cells to tumor cells. An object of the present invention is to provide an anticancer drug that activates the immune system.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자 조성물을 제공한다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody A labeled exosome nanoparticle composition is provided.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 면역항암제 조성물을 제공한다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody It provides an immunotherapy composition containing the labeled exosome nanoparticles as an active ingredient.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 암백신 조성물을 제공한다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody It provides a cancer vaccine composition containing the labeled exosome nanoparticles as an active ingredient.

또한, 본 발명은 DPPE-PEG-NHS의 NHS (N-Hydroxysuccinimide) 작용기와 항체의 라이신 잔기의 아민 커플링 반응시켜 항체접합체를 준비하는 단계(제1단계); In addition, the present invention comprises the steps of preparing an antibody conjugate by amine coupling reaction between the NHS (N-Hydroxysuccinimide) functional group of DPPE-PEG-NHS and the lysine residue of the antibody (step 1);

오브알부민(OVA)과 Poly(I:C)가 첨가된 배지에서 수지상세포를 배양하여 OVA-엑소좀을 준비하는 단계(제2단계); 및Preparing OVA-exosomes by culturing dendritic cells in a medium supplemented with ovalbumin (OVA) and Poly(I:C) (second step); and

상기 제1단계의 항체접합체와 제2단계의 OVA-엑소좀를 배양하여 엑소좀 표면 지질이중층에 항체접합체를 삽입시키는 단계(제3단계)를 포함하는 항체 표지된 엑소좀 나노입자 제조방법을 제공한다.It provides a method for producing antibody-labeled exosome nanoparticles comprising the step of culturing the antibody conjugate of the first step and the OVA-exosome of the second step and inserting the antibody conjugate into the exosome surface lipid bilayer (step 3) .

본 발명에 따르면, 오브알부민 자극으로 성숙된 수지상세포로부터 분비된 엑소좀의 표면 지질이중층에 항체접합체가 삽입된 엑소좀 나노입자는 T 세포를 표적하여 면역체크포인트를 억제시키고 종양에 대한 T 세포 활성을 향상시켜 종양성장을 억제시키는 효과가 확인됨에 따라, 상기 항체접합체가 삽입된 엑소좀을 유효성분으로 함유하는 조성물은 면역항암제 및 암백신으로 제공될 수 있다.According to the present invention, exosome nanoparticles with antibody conjugates inserted into the surface lipid bilayer of exosomes secreted from dendritic cells matured by ovalbumin stimulation target T cells to suppress immune checkpoints, and T cell activity against tumors As the effect of inhibiting tumor growth is confirmed by improving the , the composition containing the exosome into which the antibody conjugate is inserted as an active ingredient can be provided as an immunotherapy and cancer vaccine.

도 1은 EXO-OVA-mAb의 제조 및 특징을 확인한 결과로, 도 1A는 종양 특이적 T 세포 반응을 증가시키기 위해 림프절을 표적하는 EXO-OVA-mAb의 준비 과정을 나타내는 모식도이며, 도 1B는 EXO, EXO-OVA 및 EXO-OVA-mAb의 입자 크기를 확인한 동적광산란 (dynamic light scattering) 분석 결과이며, 도 1C는 EXO-OVA-mAb의 투과전자현미경 이미지 결과이며, 도 1D는 (1) EXO-OVA 및 (2) OVA가 추가된 수지상 세포 용해물에서 CD80, MHC-I, MHC-II, CD63 및 Calnexin을 확인한 웨스턴 블롯 결과이며, 도 1E는 EXO-OVA-mAb에서 항-CTLA-4 항체 및 OVA의 표면 수준을 확인한 ELISA 정량 분석 결과이다.
도 2는 시험관 내에서 EXO-OVA-mAb의 T 세포 결합능을 확인한 결과로, EXO-OVA-mAb-FITC와 1시간 동안 배양한 후 CD4+ 및 CD8+ T 세포의 공초점 레이저 스캔 현미경 이미지이다.
도 3은 시험관 내에서 T 세포에 대한 엑소좀 효과를 확인한 결과로, 도 3A는 각각 다른 엑소좀 제형과 CD4+ 및 CD8+ T 세포를 배양한 후 T 세포 활성 마커인 CD69을 확인한 유세포 분석 결과이며, 도 3B 및 도 3C는 각각 다른 엑소좀 제형과 배양된 CD4+ 및 CD8+ T 세포에서 CD69을 확인한 결과이며, 도 3D는 다른 엑소좀 제형이 처리된 CFSE 염색 CD4+ 및 CD8+ T 세포의 유세포분석 결과이며, 도 2E 및 도3F는 다른 엑소좀 제형과 CD4+ 및 CD8+ T 세포 배양 후 증식지수 (proliferation index)를 확인한 결과로, 데이터는 평균±SD (n = 3)이며, *P < 0.05, **P < 0.01, ***P < 0.001이다.
도 4는 꼬리 부분으로 투여 후 C57BL/6 마우스에서 시아닌 5.5 (Cy5.5) 표지된 EXO-OVA 및 EXO-OVA-mAb을 생체 내 수송을 확인한 결과로, 도 4A는 다른 시점마다 표지된 엑소좀 투여 후 촬영된 이미지이며 (circle: ILN), 도 4B는 주사 48시간 후 수집된 ILN 및 주요 장기의 생체 외 형광 이미지 결과이며, 도 4C는 ILN 및 주요 장기 무게(mg) 당 Cy5.5의 형광 강도를 정량한 결과이며, 도 4D 및 도 4E는 각각 Cy5.5 표지된 엑소좀의 CD4+ 및 CD8+ T 세포에 대한 결합을 확인한 유세포 분석 결과이며, 도 4F는 Cy5.5 표지된 엑소좀의 주입 8시간 후 ILN 내 CD4+ 및 CD8+ 세포에서 Cy5.5+의 백분율을 확인한 결과로, 결과값은 평균±SD (n = 3), ***P < 0.001이다.
도 5는 엑소좀의 면역자극 활성을 확인한 결과로, 도 5A 및 도 5B는 OVA로 재자극시키고 72시간 후 면역화된 마우스의 비장세포 중 CD4+ 세포에서 TNF-α를 확인한 유세포 분석 결과이며, 도 5C 및 도 5D는 상기 면역화된 마우스의 비장세포 중 CD8+ 세포에서 IFN-γ 발현을 확인한 유세포 분석결과이며, 도 5E 내지 도 5H는 비장과 ILN 내 CD4, CD8, IFN-γ 및 TNF-α의 면역화학조직학적(IHC) 분석 결과이며 (scale bars = 120 μm), 도 5I 및 도 5J는 마지막 면역화 7일 후 비장의 CD3+ CD8+ CD44+ CD62L- 효과기 기억 T 세포를 확인한 유세포 분석 및 데이터 분석 결과로, 마지막 면역화 2일 후 면역화된 마우스를 안락사시키고 비장 및 ILN를 수집하여 유세포 분석 및 IHC 분석을 수행한 결과로, 결과값은 평균±SD (n = 5)으로 나타내었으며, *P < 0.05, **P < 0.01, ***P < 0.001이다.
도 6은 엑소좀 처리에 따른 항종양 면역반응을 확인한 결과로, 도 6A는 EXO, EXO-OVA 또는 EXO-OVA-mAb로 면역화 후 시간 경과에 따른 C57BL/6 마우스 내 B16-OVA 종양 부피를 확인한 결과이며, 도 6B는 종양내 CD4, CD8, IFN-γ 및 TNF-α의 면역조직화학적 분석을 수행한 결과이며, 도 6C는 종양 내 CD4+ 및 CD8+ T 세포를 확인한 유세포 분석 결과이며, 도 6D는 종양 내 CD4+ 및 CD8+ T 세포의 백분율을 정량화한 결과이며, 도 6E는 종양 내 CD8+ T 세포 독성 T 림프구 (CTL) 대 조절 T 세포 (CTLs)의 비율을 확인한 유세포 분석 결과이며, 도 6F는 처리된 마우스의 혈청에서 IFN-γ 농도를 확인한 결과이며, 도 6G는 처리된 마우스의 혈청에서 TNF-α 농도를 확인한 결과로 종양 및 혈청 샘플은 마지막 처리 2일 후 수집되었으며, 데이터는 평균±SD (n = 5)로 나타내었으며, *P < 0.05, **P < 0.01, ***P < 0.001이다.
도 7A는 면역화된 마우스의 체중에서 상대적 변화를 확인한 결과이며, 도 7B는 헤마톡실린-에오신 염색을 수행하여 엑소좀 처리된 마우스의 심장, 간, 비장, ILN, 폐 및 신장을 확인한 조직학적 분석 결과이다.
1 is a result of confirming the preparation and characteristics of EXO-OVA-mAb, FIG. 1A is a schematic diagram showing the preparation process of EXO-OVA-mAb targeting lymph nodes to increase tumor-specific T cell response, FIG. 1B is The results of dynamic light scattering analysis confirming the particle sizes of EXO, EXO-OVA, and EXO-OVA-mAb, Figure 1C is a transmission electron microscope image result of EXO-OVA-mAb, Figure 1D is (1) EXO Western blot results confirming CD80, MHC-I, MHC-II, CD63 and Calnexin in dendritic cell lysates to which -OVA and (2) OVA were added, FIG. 1E is anti-CTLA-4 antibody in EXO-OVA-mAb and ELISA quantitative analysis results confirming the surface level of OVA.
2 is a confocal laser scanning microscope image of CD4 + and CD8 + T cells after incubation with EXO-OVA-mAb-FITC for 1 hour as a result of confirming the T cell binding ability of EXO-OVA-mAb in vitro.
3 is a result of confirming the effect of exosomes on T cells in vitro, FIG. 3A is a flow cytometric analysis result confirming CD69, a T cell activity marker, after culturing different exosome formulations and CD4+ and CD8+ T cells, respectively, FIG. 3B and 3C are results of confirming CD69 in CD4+ and CD8+ T cells cultured with different exosome formulations, respectively, FIG. 3D is flow cytometry results of CFSE-stained CD4+ and CD8+ T cells treated with other exosome formulations, FIG. 2E And Figure 3F is a result of confirming the proliferation index (proliferation index) after culturing other exosome formulations and CD4+ and CD8+ T cells, the data are mean±SD (n = 3), *P < 0.05, **P < 0.01, ***P < 0.001.
4 is a result of confirming the in vivo transport of cyanine 5.5 (Cy5.5)-labeled EXO-OVA and EXO-OVA-mAb in C57BL/6 mice after administration to the tail, FIG. 4A shows exosomes labeled at different time points Images taken after administration (circle: ILN), FIG. 4B is the in vitro fluorescence image result of ILN and major organs collected 48 hours after injection, and FIG. 4C is the fluorescence of ILN and Cy5.5 per major organ weight (mg). The intensity is quantified, and FIGS. 4D and 4E are flow cytometry results confirming the binding of Cy5.5-labeled exosomes to CD4+ and CD8+ T cells, respectively, and FIG. 4F is Cy5.5-labeled exosome injection 8 As a result of confirming the percentage of Cy5.5+ in CD4+ and CD8+ cells in ILN after time, the result is the mean±SD (n = 3), ***P < 0.001.
5 is a result of confirming the immunostimulatory activity of exosomes, FIGS. 5A and 5B are flow cytometry results confirming TNF-α in CD4+ cells among splenocytes of immunized mice after restimulation with OVA, FIG. 5C and FIG. 5D is a flow cytometric analysis result confirming the expression of IFN-γ in CD8+ cells among splenocytes of the immunized mouse, and FIGS. 5E to 5H are immunochemicals of CD4, CD8, IFN-γ and TNF-α in the spleen and ILN. Results of histological (IHC) analysis (scale bars = 120 μm), FIGS. 5I and 5J are flow cytometry and data analysis results of CD3+ CD8+ CD44+ CD62L- effector memory T cells in the spleen 7 days after the last immunization. After 2 days, immunized mice were euthanized, spleen and ILN were collected, and flow cytometry and IHC analysis were performed. Results were expressed as mean±SD (n = 5), *P < 0.05, **P < 0.01, ***P < 0.001.
Figure 6 is the result of confirming the antitumor immune response according to the exosome treatment, Figure 6A is the B16-OVA tumor volume in C57BL/6 mice over time after immunization with EXO, EXO-OVA or EXO-OVA-mAb Results, Fig. 6B is a result of performing immunohistochemical analysis of intratumoral CD4, CD8, IFN-γ and TNF-α, Fig. 6C is a flow cytometric analysis result confirming CD4+ and CD8+ T cells in the tumor, Fig. 6D is It is the result of quantifying the percentage of CD4+ and CD8+ T cells in the tumor, FIG. 6E is a flow cytometry result confirming the ratio of CD8+ T-cytotoxic T lymphocytes (CTL) to regulatory T cells (CTLs) in the tumor, FIG. 6F is the result of the treatment It is the result of confirming the concentration of IFN-γ in the serum of the mouse, and FIG. 6G is the result of confirming the concentration of TNF-α in the serum of the treated mouse. Tumor and serum samples were collected 2 days after the last treatment, and the data are the mean±SD (n = 5), *P < 0.05, **P < 0.01, ***P < 0.001.
7A is the result of confirming the relative change in body weight of the immunized mouse, and FIG. 7B is the histological analysis confirming the heart, liver, spleen, ILN, lung and kidney of exosome-treated mice by performing hematoxylin-eosin staining. It is the result.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 오브알부민 자극으로 성숙된 수지상세포로부터 분비된 엑소좀의 지질이중층에 DPPE-PEG-CTLA-4-Ab 항체접합체가 삽입된 엑소좀 나노입자가 T 세포 를 표적화하여 T 세포의 면역체크포인트를 억제하고 종양 특이적 면역반응을 유도하여 종양 내 효과기 T 세포/조절 T 세포의 비율을 증가시켜 종양 성장을 억제하는 것으로 확인됨에 따라, 상기 DPPE-PEG-CTLA-4-Ab 항체접합체가 삽입된 엑소좀 나노입자 조성물을 면역항암제로 제공하고자 한다.In the present invention, exosome nanoparticles with DPPE-PEG-CTLA-4-Ab antibody conjugate inserted into the lipid bilayer of exosomes secreted from dendritic cells matured by ovalbumin stimulation target T cells, thereby enabling immune checkpoints of T cells. As it was confirmed to inhibit tumor growth by inhibiting and inducing a tumor-specific immune response to increase the ratio of effector T cells/regulatory T cells in the tumor, the DPPE-PEG-CTLA-4-Ab antibody conjugate was inserted To provide an exosome nanoparticle composition as an immunotherapy agent.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자 조성물을 제공할 수 있다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody It is possible to provide a labeled exosome nanoparticle composition.

보다 상세하게는 상기 공동자극분자는 CD80 및 CD86일 수 있으며, 상기 주조직적합성 복합체는 주조직적합성 복합체 제Ⅰ형 및 제Ⅱ형일 수 있다.More specifically, the co-stimulatory molecule may be CD80 or CD86, and the major histocompatibility complex may be a major histocompatibility complex type I and type II.

상기 항체접합체는 엑소좀 표면 지질이중층 내 지질유동섬 (lipid raft)에 고정되어 엑소좀 표면에 삽입되는 것일 수 있다.The antibody conjugate may be fixed to a lipid raft in the lipid bilayer on the surface of the exosome and inserted into the surface of the exosome.

상기 엑소좀은 오브알부민과 Poly(I:C)로 자극되어 성숙된 수지상세포로부터 분비된 엑소좀인 것일 수 있다.The exosomes may be exosomes secreted from dendritic cells stimulated with ovalbumin and Poly(I:C).

상기 생체적합성 고분자는 폴리에틸렌글리콜, 히알루론산, 알지네이트, 폴리아크릴산 및 폴록사머로 이루어진 군에서 선택되는 것일 수 있으며, 보다 바람직하게는 폴리에틸렌글리콜일 수 있으나, 이에 제한되는 것은 아니다.The biocompatible polymer may be one selected from the group consisting of polyethylene glycol, hyaluronic acid, alginate, polyacrylic acid and poloxamer, and more preferably polyethylene glycol, but is not limited thereto.

상기 항체는 항-면역체크포인트 항체일 수 있으며, 보다 상세하게는 항-CTLA-4 항체 및 항-PD-1 항체로 이루어진 군에서 선택되는 것일 수 있다.The antibody may be an anti-immune checkpoint antibody, and more specifically, may be selected from the group consisting of an anti-CTLA-4 antibody and an anti-PD-1 antibody.

상기 엑소좀 나노입자는 림프절로 침투하여 T 세포를 표적함으로써, 면역체크포인트를 억제시키고 T 세포의 면역반응을 활성화시키는 것일 수 있다.The exosome nanoparticles penetrate into lymph nodes and target T cells, thereby suppressing immune checkpoints and activating the immune response of T cells.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 면역항암제 조성물을 제공할 수 있다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody It is possible to provide an immunotherapy composition containing the labeled exosome nanoparticles as an active ingredient.

상기 엑소좀 나노입자는 T 세포를 표적하여 면역체크포인트를 억제시키고 종양 특이적 CD4+ 및 CD8+ T 세포의 면역활성을 증가시키는 것일 수 있다.The exosome nanoparticles may target T cells to suppress immune checkpoints and increase the immune activity of tumor-specific CD4+ and CD8+ T cells.

상기 면역체크포인트는 CTLA-4 및 PD-1으로 이루어진 군에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.The immune checkpoint may be selected from the group consisting of CTLA-4 and PD-1, but is not limited thereto.

본 발명은 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및The present invention relates to an antibody conjugate comprising a lipid, a biocompatible polymer and an antibody; and

공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 암백신 조성물을 제공할 수 있다.The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody It is possible to provide a cancer vaccine composition containing the labeled exosome nanoparticles as an active ingredient.

본 발명은 DPPE-PEG-NHS의 NHS (N-Hydroxysuccinimide) 작용기와 항체의 라이신 잔기의 아민 커플링 반응시켜 항체접합체를 준비하는 단계(제1단계); 오브알부민(OVA)과 Poly(I:C)가 첨가된 배지에서 수지상세포를 배양하여 OVA-엑소좀을 준비하는 단계(제2단계); 및 상기 제1단계의 항체접합체와 제2단계의 OVA-엑소좀를 배양하여 엑소좀 표면 지질이중층에 항체접합체를 삽입시키는 단계(제3단계)를 포함하는 항체 표지된 엑소좀 나노입자 제조방법을 제공할 수 있다.The present invention comprises the steps of preparing an antibody conjugate by amine coupling reaction between the NHS (N-Hydroxysuccinimide) functional group of DPPE-PEG-NHS and the lysine residue of the antibody (step 1); Preparing OVA-exosomes by culturing dendritic cells in a medium supplemented with ovalbumin (OVA) and Poly(I:C) (second step); and culturing the antibody conjugate of the first step and the OVA-exosome of the second step to insert the antibody conjugate into the exosome surface lipid bilayer (step 3). can do.

상기 제1단계의 항체는 항-면역체크포인트 항체일 수 있다.The antibody of the first step may be an anti-immune checkpoint antibody.

보다 상세하게는 상기 항-면역체크포인트 항체는 항-CTLA-4 항체 및 항-PD-1 항체로 이루어진 군에서 선택되는 것일 수 있다.More specifically, the anti-immune checkpoint antibody may be selected from the group consisting of an anti-CTLA-4 antibody and an anti-PD-1 antibody.

상기 제1단계는 항체와 DPPE-PEG-NHS를 1:2 내지 1:8 몰비로 반응시키는 것일 수 있다.The first step may be to react the antibody and DPPE-PEG-NHS in a molar ratio of 1:2 to 1:8.

세포에서 추출된 엑소좀의 경우 수득율이 낮고 조직 재생학적 기능이 적으며, 엑소좀을 질병 모델의 생체 내에 주입할 경우, 간, 비장 및 신장에 대부분 축적되고 병변 부위에 대한 표적 능력이 매우 낮은 문제점이 있으며, 이러한 문제점을 해결하기 위해 엑소좀의 표면개질이 필요하다. 본 발명의 엑소좀 나노입자 제조방법은 종래 가교제를 이용하여 엑소좀 표면을 항체로 개질방법과 비교하여 생체 안정성 및 항체 안정성이 우수하고, 경제적이다. In the case of exosomes extracted from cells, the yield is low and the tissue regenerative function is low. When the exosomes are injected in vivo in a disease model, most of them are accumulated in the liver, spleen and kidney, and the targeting ability to the lesion site is very low. There is, in order to solve this problem, it is necessary to modify the surface of the exosomes. The exosome nanoparticle manufacturing method of the present invention has excellent biostability and antibody stability and is economical compared to the conventional method of modifying the exosome surface with an antibody using a crosslinking agent.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help the understanding of the present invention. However, the following examples are merely illustrative of the content of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<참고예> <Reference example>

하기의 참고예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 참고예를 제공하기 위한 것이다.The following reference examples are intended to provide reference examples commonly applied to each embodiment according to the present invention.

1. 물질1. Substance

Poly(I:C)를 InvivoGen (San Diego, CA, USA)에서 구입하였다. InVivoMAb a항-마우스 CTLA-4 항체를 BioXCell (West Lebanon, NH, USA)에서 구입하였다. RPMI-1640 배지, Dulbecco’s modified Eagle’s medium (DMEM), 태아소혈청 (FBS), 및 페니실린/스트렙토마이신을 Hyclone (Logan, UT, USA)에서 구입하였다.Poly(I:C) was purchased from InvivoGen (San Diego, CA, USA). InVivoMAb a anti-mouse CTLA-4 antibody was purchased from BioXCell (West Lebanon, NH, USA). RPMI-1640 medium, Dulbecco's modified Eagle's medium (DMEM), fetal bovine serum (FBS), and penicillin/streptomycin were purchased from Hyclone (Logan, UT, USA).

닭 OVA, 2-멀캅토에탄올(2-mercaptoethanol) 및 exosome-depleted FBS를 Sigma-Aldrich (St. Louis, MO, USA)에서 구입하였다. 마우스 granulocyte/macrophage-stimulating factor (GM-CSF)를 Peprotech (Rocky Hill, NJ, USA)에서 구입하였으며, 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-PEG-succinimidyl ester (DPPE-PEG-NHS, 3.4 kDa)를 Biochempeg Scientific (Watertown, MA, USA)에서 구입하였다. 유세포 분석에 사용된 모든 형광 결합된 항체는 Biolegend (San Diego, CA, USA)에서 구입하였다. Chicken OVA, 2-mercaptoethanol and exosome-depleted FBS were purchased from Sigma-Aldrich (St. Louis, MO, USA). Mouse granulocyte/macrophage-stimulating factor (GM-CSF) was purchased from Peprotech (Rocky Hill, NJ, USA), and 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-PEG-succinimidyl ester (DPPE-PEG-NHS) , 3.4 kDa) were purchased from Biochempeg Scientific (Watertown, MA, USA). All fluorescence-bound antibodies used for flow cytometry were purchased from Biolegend (San Diego, CA, USA).

2. 세포2. Cells

B16/F10 세포를 Korean Cell Line Bank (Seoul, South Korea)에서 얻었다. B16-OVA 세포는 pcDNA3-OVA 플라스미드 (Addgene, Arsenal Way, MA, USA)를 B16/F10 세포에 형질주입시켜 생성하였다. 생성된 B16/F10 세포는 C57BL/6 마우스에 접종되기 전까지 10% FBS 및 100 IU/ml 페니실린/스트렙토마이신이 포함된 DMEM 배지에서 성장시켰다.B16/F10 cells were obtained from the Korean Cell Line Bank (Seoul, South Korea). B16-OVA cells were generated by transfecting the pcDNA3-OVA plasmid (Addgene, Arsenal Way, MA, USA) into B16/F10 cells. The resulting B16/F10 cells were grown in DMEM medium containing 10% FBS and 100 IU/ml penicillin/streptomycin until inoculated into C57BL/6 mice.

CD4+ 및 CD8+ T 세포를 각각 EasySepTM mouse CD4+ 및 CD8+ T Cell enrichment kit (Stemcell Technologies, Vancouver, Canada)를 이용하여 제조사의 설명서에 따라, 암컷 C57BL/6 마우스의 비장에서 분리하였다.CD4 + and CD8 + T cells were isolated from the spleen of female C57BL/6 mice using EasySep mouse CD4 + and CD8 + T Cell enrichment kit (Stemcell Technologies, Vancouver, Canada), respectively, according to the manufacturer's instructions.

간략하게, C57BL/6 마우스에서 분리된 비장을 2% FBS가 포함된 PBS 용액에서 분해시키고, 세포 현탁액을 70-μm cell strainer (Sigma-Aldrich)에 통과시키고, 10분 동안 300×g로 원심분리하여 세포를 얻었다. 상기 세포를 2% FBS 및 1 mM EDTA가 포함된 PBS에 1.0 × 108 cells/ml로 재현탁시켰다.Briefly, spleens isolated from C57BL/6 mice were digested in PBS solution containing 2% FBS, the cell suspension was passed through a 70-μm cell strainer (Sigma-Aldrich), and centrifuged at 300 × g for 10 min. to obtain cells. The cells were resuspended in PBS containing 2% FBS and 1 mM EDTA at 1.0 × 10 8 cells/ml.

그 후, 1.0 × 107 세포 분액을 5 ml polystyrene round-bottom tube로 옮겼다. 다음으로 랫 혈청 50 μl (Stemcell Technologies) 및 Enrichment Cocktail 50 μl를 세포 현탁액에 첨가하고 얼음에서 15분 동안 보관하였다.Then, the 1.0 × 10 7 cell aliquot was transferred to a 5 ml polystyrene round-bottom tube. Next, 50 μl of rat serum (Stemcell Technologies) and 50 μl of Enrichment Cocktail were added to the cell suspension and stored on ice for 15 minutes.

다음으로, CD4+ 또는 CD8+ Selection cocktail 100 μl을 합성된 샘플에 첨가하고 15분간 추가 배양하였다. 마지막으로, 자성 입자를 혼합물에 첨가하여 5분간 배양한 후 MACS 자석 (Miltenyi Biotec, Bergisch Gladbach, Germany)을 넣었다. 분리된 CD4+ 및 CD8+ T 세포를 10% FBS, 100 IU/ml 페니실린/스트렙토마이신 및 30 IU/ml 재조합 마우스 IL-2 (Peprotech)가 포함된 RPMI 1640 배지에서 배양되었다.Next, 100 μl of CD4+ or CD8+ Selection cocktail was added to the synthesized samples and further incubated for 15 minutes. Finally, magnetic particles were added to the mixture, incubated for 5 minutes, and then a MACS magnet (Miltenyi Biotec, Bergisch Gladbach, Germany) was added. The isolated CD4+ and CD8+ T cells were cultured in RPMI 1640 medium containing 10% FBS, 100 IU/ml penicillin/streptomycin and 30 IU/ml recombinant mouse IL-2 (Peprotech).

<실험예><Experimental example>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

1. 엑소좀 (EXO) 및 EXO-OVA 준비1. Preparation of exosomes (EXO) and EXO-OVA

간략하게, BMDC (bone marrow-derived DCs)를 8 내지 10주령 C57BL/6 마우스의 대퇴골에서 분리된 골수 세포를 10% FBS, 100 IU/ml 페니실린/스트레토마이신, 50 μM 2-멀캅토에탄올 및 20 ng/ml murine GM-CSF이 포함된 RPMI-1640 완전 배지에서 배양하여 생성하였다. 3일 후, 동량의 신선한 완전 배지를 세포에 첨가하였다. 6일째, BMDC를 수집하여 Hank’s balanced salt solution (HBSS)로 세척하였다.Briefly, bone marrow-derived DCs (BMDCs) were prepared from bone marrow cells isolated from femurs of 8-10 week-old C57BL/6 mice with 10% FBS, 100 IU/ml penicillin/stretomycin, 50 μM 2-mercaptoethanol and It was produced by culturing in RPMI-1640 complete medium containing 20 ng/ml murine GM-CSF. After 3 days, an equal volume of fresh complete medium was added to the cells. On day 6, BMDCs were collected and washed with Hank's balanced salt solution (HBSS).

EXO-OVA를 제조하기 위해, 닭 OVA (300 μg/ml)를 BMDC에 첨가하고, 세포를 12시간 추가 배양하였다. HBSS 완충액으로 세포를 세척하여 혈청 및 유리 OVA를 완전히 제거하고 10% 엑소좀이 결핍된 FBS (Thermo Fisher Scientific, Waltham, Massachusetts, USA) 및 poly(I:C) 50 ng/ml이 포함된 RPMI-1640 배지에서 추가 배양하였다. To prepare EXO-OVA, chicken OVA (300 μg/ml) was added to BMDCs, and cells were further cultured for 12 hours. Cells were washed with HBSS buffer to completely remove serum and free OVA, and RPMI-containing 10% exosome-deficient FBS (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 50 ng/ml poly(I:C) Further incubation in 1640 medium.

24시간 후, 적합한 OVA 및 poly(I:C) 처리된 BMDC 배지를 수집하여 3,000×g, 4℃에서 30분간 원심분리하였다. 얻어진 상층액을 0.22 μm 필터 (Advantec MFS, Dublin, Ireland)에 통과시켜 여과하고, 마지막으로 여과물을 10,000×g, 4℃에서 120 분간 원심분리하였다. 펠렛화된 OVA 담지된 성숙 DC 유래 엑소좀 (EXO-OVA)을 PBS에 재현탁하고 10,000×g, 4℃에서 120 분간 원심분리하였다.After 24 hours, the appropriate OVA and poly(I:C)-treated BMDC medium was collected and centrifuged at 3,000×g, 4°C for 30 minutes. The resulting supernatant was filtered through a 0.22 μm filter (Advantec MFS, Dublin, Ireland), and finally the filtrate was centrifuged at 10,000×g, 4° C. for 120 minutes. The pelleted OVA-supported mature DC-derived exosomes (EXO-OVA) were resuspended in PBS and centrifuged at 10,000×g, 4° C. for 120 minutes.

EXO-OVA를 추가 분석 전까지 -80℃에서 저장하였다. EXO는 BMDC에 OVA 및 poly(I:C) 처리 없이 동일한 방법으로 제조되었다.EXO-OVA was stored at -80°C until further analysis. EXO was prepared in the same way without OVA and poly(I:C) treatment on BMDC.

2. EXO-OVA-mAb 준비2. EXO-OVA-mAb Preparation

항-CTLA-4 항체를 이용한 EXO-OVA의 표면 개질을 수행하였다. 먼저, 항-CTLA-4 항체 (4 mg/ml) 및 DPPE-PEG-NHS (13333 μM)를 0.1 M 비스카보네이트 염 완충액 (pH 8.5)에 실온에서 1시간 동안 반응시켜 합성하였다. 그 후 트리스 완충액(pH 8.0)을 첨가하여 반응을 중단시키고, 합성된 DPPE-PEG-mAb를 PBS에 투석(MWCO: 10 kDa)하여 정제하였다. 정제된 DPPE-PEG-mAb를 서로 다른 양으로 100 μg 단백질에 해당하는 EXO-OVA와 40℃에서 2시간 동안 교반하여 EXO-OVA 막에 DPPE-PEG-mAb를 삽입시켰다.Surface modification of EXO-OVA using anti-CTLA-4 antibody was performed. First, anti-CTLA-4 antibody (4 mg/ml) and DPPE-PEG-NHS (13333 μM) were reacted in 0.1 M biscarbonate salt buffer (pH 8.5) at room temperature for 1 hour to synthesize. Thereafter, the reaction was stopped by adding Tris buffer (pH 8.0), and the synthesized DPPE-PEG-mAb was purified by dialysis against PBS (MWCO: 10 kDa). Purified DPPE-PEG-mAb was stirred with EXO-OVA corresponding to 100 μg protein in different amounts at 40° C. for 2 hours to insert DPPE-PEG-mAb into the EXO-OVA membrane.

300 kD MWCO Vivaspin tubes (Sartorius, 37079 Goettingen, Germany)를 이용하여 결합되지 않은 DPPE-PEG-mAb를 제거하고, 생성된 EXO-OVA-mAb를 재현탁하여 PBS에 저장하였다.Unbound DPPE-PEG-mAb was removed using 300 kD MWCO Vivaspin tubes (Sartorius, 37079 Goettingen, Germany), and the resulting EXO-OVA-mAb was resuspended and stored in PBS.

3. 크기 및 형태론적 특성 확인3. Confirmation of size and morphological characteristics

상이한 엑소좀 제형의 유체역학적 크기 및 제타 전위를 dynamic light scattering (Zetasizer Nano, Malvern, UK)로 확인하였다.The hydrodynamic size and zeta potential of different exosome formulations were confirmed by dynamic light scattering (Zetasizer Nano, Malvern, UK).

투과 전자 현미경 (CM 200 UT; Philips, Andover, MA, USA)을 이용하여 엑소좀의 형태를 확인하였다. 간략하게, 엑소좀을 탄소 코팅된 구리 그리드에 장착하고, 2% 우라닐 아세테이트로 염색하여, 120 kV의 가속 전압을 이용하여 관찰하였다. The morphology of the exosomes was confirmed using a transmission electron microscope (CM 200 UT; Philips, Andover, MA, USA). Briefly, exosomes were mounted on carbon-coated copper grids, stained with 2% uranyl acetate, and observed using an accelerating voltage of 120 kV.

4. 엑소좀의 단백질 특성 확인4. Confirmation of protein properties of exosomes

웨스턴 블롯을 위해, EXO-OVA를 100,000×g, 4℃에서 120분간 원심분리하고 M-PER TM Mammalian Protein Extraction Reagent (Thermo Fisher Scientific) 및 EDTA-free 단백질분해효소 억제제 칵테일 (Roche Diagnostics, Risch-Rotkreuz, Switzerland)이 포함된 단백질 추출 용액을 재현탁하였다. For western blots, EXO-OVA was centrifuged at 100,000×g, 4°C for 120 min, followed by M-PER™ Mammalian Protein Extraction Reagent (Thermo Fisher Scientific) and an EDTA-free protease inhibitor cocktail (Roche Diagnostics, Risch-Rotkreuz). , Switzerland) was resuspended in the protein extraction solution.

단백질 농도는 Pierce BCA Pro- tein Assay Kit (Thermo Fisher Scientific)를 이용하여 측정되었다. 단백질 샘플을 Pierce BCA Pro- tein Assay Kit (Thermo Fisher Scientific)와 4/1 비율 (v/v)로 혼합하고, 90℃에서 10분간 가열한 후 10% sodium dodecyl sulfate polyacry-lamide gel (SDS-PAGE)에 로딩하여 80V로 2시간 동안 분리시키고, Power Supply (PS300-B, Hoefer Inc., MA, USA)를 이용하여 polyvinylidene fluoride membrane (Millipore, Burlington, Massachusetts, USA)으로 옮겼다. 막을 5% 탈지유 용액으로 1시간 동안 블로킹하고 CD80, MHC-I, MHC-II 및 CD63에 대한 항-마우스 1차 항체 (BioLegend)와 하룻밤동안 인큐베이션하였다. 이후, 막을 세척하고 호스래디시 페록시다아제가 결합된 항-마우스 IgG (Thermo Fisher Scientific)와 인큐베이션하였다. Protein concentrations were measured using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Protein samples were mixed with Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) at a 4/1 ratio (v/v), heated at 90°C for 10 minutes, and then 10% sodium dodecyl sulfate polyacry-lamide gel (SDS-PAGE) ) and separated at 80V for 2 hours, and transferred to a polyvinylidene fluoride membrane (Millipore, Burlington, Massachusetts, USA) using Power Supply (PS300-B, Hoefer Inc., MA, USA). Membranes were blocked with 5% skim milk solution for 1 hour and incubated overnight with anti-mouse primary antibodies (BioLegend) against CD80, MHC-I, MHC-II and CD63. The membranes were then washed and incubated with horseradish peroxidase-conjugated anti-mouse IgG (Thermo Fisher Scientific).

마지막으로, 막을 이미징 필름(Kodak, Rochester, New York, USA)에 노출시켰다. 쿠마시 블루 염색을 위해, 유리 OVA, 항-CTLA-4 mAb, EXO-OVA 및 EXO-OVA-mAb를 6% SDS-PAGE 겔에 로딩하고 60 V로 2시간 동안 전기영동하였다. 이후 겔을 아세틱산:메탄올:H2O (10:50:40, v/v/v)가 포함된 용액에 용해된 0.25% 쿠마시 블루 R-250 (Thermo Fisher Scientific)로 실온에서 30분간 염색하였다. 겔을 아세트산:메탄올:H2O (7.5: 5: 87.5, v/v/v)이 포함된 탈색(destaining) 용액으로 배경이 투명해지고 이미지가 선명해질 때까지 탈색하였다.Finally, the membrane was exposed to imaging film (Kodak, Rochester, New York, USA). For Coomassie blue staining, free OVA, anti-CTLA-4 mAb, EXO-OVA and EXO-OVA-mAb were loaded onto 6% SDS-PAGE gels and electrophoresed at 60 V for 2 hours. The gel was then stained with 0.25% Coomassie Blue R-250 (Thermo Fisher Scientific) dissolved in a solution containing acetic acid:methanol:H 2 O (10:50:40, v/v/v) for 30 min at room temperature. did The gel was decolorized with a destaining solution containing acetic acid:methanol:H 2 O (7.5: 5: 87.5, v/v/v) until the background became transparent and the image was clear.

5. 표면에 결합된 OVA의 정량5. Quantification of Surface-bound OVA

ELISA를 이용하여 OVA 양을 확인하였다. 96-웰 ELISA 플레이트 (Corning Costar, USA)를 단백질 10 μg에 해당하는 엑소좀과 함께 하룻밤동안 배양하였다. 코팅 후 플레이트를 1% 소혈청 알부민이 포함된 PBS 완충액으로 블로킹하고 항-마우스 OVA 항체 (BioLegend) 및 이차 호스래디시 페록시다아제 (HRP)가 결합된 항-마우스 항체 (Thermo Fisher Scientific)를 첨가하였다. 그 후 HRP 민감성 기질 용액 (R&D Systems, Minneapolis, MN, USA)을 첨가하고, microplate reader (Thermo Fisher Scientific)에서 450 nm 흡광도로 측정하였다.The amount of OVA was confirmed using ELISA. A 96-well ELISA plate (Corning Costar, USA) was incubated overnight with exosomes corresponding to 10 μg of protein. After coating, the plate was blocked with PBS buffer containing 1% bovine serum albumin, and an anti-mouse OVA antibody (BioLegend) and an anti-mouse antibody conjugated with secondary horseradish peroxidase (HRP) (Thermo Fisher Scientific) were added. did Then, HRP-sensitive substrate solution (R&D Systems, Minneapolis, MN, USA) was added, and absorbance was measured at 450 nm in a microplate reader (Thermo Fisher Scientific).

6. 엑소좀 표면의 항-CTLA-4 항체 정량6. Quantification of anti-CTLA-4 antibody on exosome surface

EXO-OVA막에 포함된 항-CTLA-4 양은 300 kD MWCO Vivaspin ultrafiltration tube를 이용하여 수집한 상청액에서 결합되지 않은 항-CTLA-4 항체 농도를 계산하여 간접적으로 정량하였다. The amount of anti-CTLA-4 contained in the EXO-OVA membrane was indirectly quantified by calculating the concentration of unbound anti-CTLA-4 antibody in the supernatant collected using a 300 kD MWCO Vivaspin ultrafiltration tube.

간략하게, 96-웰 ELISA 플레이트를 고트 항-사람 IgG Fc 항체 (2 μg/ml) (Thermo Fisher Scientific)로 하룻밤동안 실온에서 코팅한 후 100 ng/ml의 재조합 마우스 CTLA-4 Fc 키메라 단백질(R&D Systems)과 2시간 동안 배양하였다.Briefly, 96-well ELISA plates were coated with goat anti-human IgG Fc antibody (2 μg/ml) (Thermo Fisher Scientific) overnight at room temperature followed by 100 ng/ml recombinant mouse CTLA-4 Fc chimeric protein (R&D Systems) and incubated for 2 hours.

다음으로, 결합되지 않은 항-CTLA-4 항체가 포함된 상청액을 첨가하고 2시간 동안 추가 배양하였다. 이차 HRP가 결합된 항-마우스 항체 및 HRP 민감성 기질 용액을 첨가한 후 microplate reader에서 450 nm 흡광도로 측정하였다. Next, the supernatant containing unbound anti-CTLA-4 antibody was added and further incubated for 2 hours. After adding the secondary HRP-conjugated anti-mouse antibody and HRP-sensitive substrate solution, absorbance was measured at 450 nm in a microplate reader.

항-CTLA-4 항체가 EXO-OVA 막에 혼성되었는 지를 확인하기 위해, DPPE-PEG-NHS 결합 전에 제조사의 설명서에 따라 FITC (Thermo Fisher Scientific)를 항체에 표지하였다. EXO-OVA와 배양한 후 결합되지 않은 DPPE-PEG-mAb-FITC을 앞선 실험과 동일한 방법으로 제거하고, FITC-표지된 EXO-OVA-mAb (EXO-OVA-mAb-FITC)을 U-2800 UV-VIS spectroscopy (Hitachi, Tokyo, Japan)로 확인하였다.To confirm that the anti-CTLA-4 antibody was hybridized to the EXO-OVA membrane, FITC (Thermo Fisher Scientific) was labeled with the antibody according to the manufacturer's instructions before DPPE-PEG-NHS binding. After incubation with EXO-OVA, unbound DPPE-PEG-mAb-FITC was removed in the same manner as in the previous experiment, and FITC-labeled EXO-OVA-mAb (EXO-OVA-mAb-FITC) was applied to U-2800 UV -Vis spectroscopy (Hitachi, Tokyo, Japan) confirmed.

7. EXO-OVA-mAb의 시험관 내 T-세포 결합 능력 확인7. Confirmation of T-cell binding ability in vitro of EXO-OVA-mAb

EXO, EXO-OVA 및 EXO-OVA-mAb가 T 세포에 결합하는 것을 확인하기 위해, 커버슬립을 0.03% PureCol EZ 겔 용액 (Sigma-Aldrich)에 4℃에서 하룻밤동안 침지시켜 콜라겐 코팅된 12-웰 커버슬립 플레이트에 준비하였다.To confirm that EXO, EXO-OVA, and EXO-OVA-mAb bind to T cells, the coverslips were immersed in 0.03% PureCol EZ gel solution (Sigma-Aldrich) overnight at 4°C at 4°C for collagen-coated 12-wells. prepared on a coverslip plate.

콜라겐 용액을 제거 후 CD4+ 및 CD8+ T 세포를 콜라겐 코팅된 12-웰 커버슬립 플레이트에 첨가하여 37℃에서 24시간 동안 배양하였다. T 세포와 배양하기 전 EXO, EXO-OVA 및 EXO-OVA-mAb을 제조사의 설명서에 따라, PKH67 녹색 형광 세포 링커 (Sigma-Aldrich)로 표지하였다. After removing the collagen solution, CD4 + and CD8 + T cells were added to a collagen-coated 12-well coverslip plate and incubated at 37°C for 24 hours. Prior to incubation with T cells, EXO, EXO-OVA and EXO-OVA-mAbs were labeled with PKH67 green fluorescent cell linker (Sigma-Aldrich) according to the manufacturer's instructions.

이후 T 세포와 PKH67-표지된 EXO, EXO-OVA 및 EXO-OVA-mAb을 1시간 동안 배양하고 K1-Fluo Confocal Laser Scanning Microscope (Nanoscope, Daejeon, South Korea)로 확인하였다.Thereafter, T cells and PKH67-labeled EXO, EXO-OVA, and EXO-OVA-mAb were cultured for 1 hour and confirmed with a K1-Fluo Confocal Laser Scanning Microscope (Nanoscope, Daejeon, South Korea).

8. 시험관 내 T 세포 활성화 및 증식에 대한 엑소좀의 영향 확인8. Identification of the effect of exosomes on T cell activation and proliferation in vitro

T 세포 활성화에 대한 엑소좀의 영향을 확인하기 위해, CD4+ 또는 CD8+ T 세포를 24-웰 플레이트에 웰당 1.0 ×106 세포로 분주하고 단백질 10 μg에 상응하는 EXO, EXO-OVA 또는 EXO-OVA-mAb 양을 72시간 동안 처리하였다.To determine the effect of exosomes on T cell activation, CD4+ or CD8+ T cells were seeded at 1.0 × 10 6 cells per well in 24-well plates and EXO, EXO-OVA or EXO-OVA- corresponding to 10 μg of protein The amount of mAb was treated for 72 hours.

이후 CD4+ 및 CD8+ T 세포를 수집하고 PerCP/Cy5.5 항-마우스 CD3 (Clone: 17A2), FITC 항-마우스 CD4 (Clone: RM4-5), PE/Cy7 항-마우스 CD8a (Clone: 53-6.7) 및 PE 항-마우스 CD69 (Clone: H1.2F3) 항체로 염색하여 유세포 분석을 수행하였다. CD4+ and CD8+ T cells were then collected and PerCP/Cy5.5 anti-mouse CD3 (Clone: 17A2), FITC anti-mouse CD4 (Clone: RM4-5), PE/Cy7 anti-mouse CD8a (Clone: 53-6.7) ) and PE anti-mouse CD69 (Clone: H1.2F3) antibody staining to perform flow cytometry.

제조사의 설명서에 따라, CD4+가 생산한 TNF-α 및 CD8+가 생산한 IFN-γ를 마우스 IFN-γ Duoset ELISA kit (R&D Systems) 및 마우스 TNF-α ELISA MAX TM Standard (BioLegend)를 이용하여 정량하기 위해 조건 배양배지를 수집하였다.Quantification of TNF-α produced by CD4+ and IFN-γ produced by CD8+ according to the manufacturer's instructions using mouse IFN-γ Duoset ELISA kit (R&D Systems) and mouse TNF-α ELISA MAX TM Standard (BioLegend) Conditioned culture medium was collected for this purpose.

엑소좀 처리 후 T-세포 증식을 CFSE 염색을 이용한 유세포 분석으로 확인하였다. 처리 전 CD4+ 및 CD8+ T 세포를 CellTrace CFSE Cell Proliferation Kit (Thermo Fisher Scientific)를 이용하여 제조사의 설명서에 따라 염색하였다.T-cell proliferation after exosome treatment was confirmed by flow cytometry using CFSE staining. Before treatment, CD4+ and CD8+ T cells were stained using the CellTrace CFSE Cell Proliferation Kit (Thermo Fisher Scientific) according to the manufacturer's instructions.

염색된 세포를 24웰 플레이트에 웰당 1.0 ×106 세포로 분주하고 다른 엑소좀 제형과 72시간 동안 배양하였다. 이후 CFSE 염색된 T 세포를 PerCP/Cy5.5 항-마우스 CD3 (Clone: 17A2), APC 항-마우스 CD4 (Clone: RM4-4), 또는 PE/Cy7 항-마우스 CD8a 항체 (Clone: 53-6.7)로 염색하여 유세포 분석을 수행하였다.The stained cells were seeded in a 24-well plate at 1.0 × 10 6 cells per well and incubated with other exosome formulations for 72 hours. CFSE-stained T cells were then treated with PerCP/Cy5.5 anti-mouse CD3 (Clone: 17A2), APC anti-mouse CD4 (Clone: RM4-4), or PE/Cy7 anti-mouse CD8a antibody (Clone: 53-6.7). ) and subjected to flow cytometry.

9. 림프절로의 엑소좀 생체 내 수송9. In vivo transport of exosomes to lymph nodes

앞선 실험(32)에 따라, EXO-OVA 및 EXO-OVA-mAb를 시아닌 55 NHS 염료 (Lumiprobe Corp, Maryland, USA)로 표지하였다. 간략하게, Cy55 NHS 염료 10 mM를 총 단백질 100 μg에 해당하는 양의 엑소좀에 첨가하고 암조건의 실온에서 2시간 동안 배양하였다.According to the previous experiment (32), EXO-OVA and EXO-OVA-mAb were labeled with cyanine 55 NHS dye (Lumiprobe Corp, Maryland, USA). Briefly, 10 mM Cy55 NHS dye was added to the exosomes in an amount corresponding to 100 μg of total protein and incubated for 2 hours at room temperature under dark conditions.

Amicon Ultrafiltration Tube (10 kDa, Merck KGaA, Darmstadt, Germany)를 사용하여 결합되지 않은 염료를 제거한 후 암컷 6-8 주령 C57BL/6 마우스에 Cy55 표지된 EXO-OVA 및 EXO-OVA-mAb를 꼬리 부분의 피하에 주입하였다. After removal of unbound dye using Amicon Ultrafiltration Tubes (10 kDa, Merck KGaA, Darmstadt, Germany), Cy55-labeled EXO-OVA and EXO-OVA-mAbs were administered to female 6-8 week-old C57BL/6 mice in the tail region. Injected subcutaneously.

FOBI imaging instrument (NeoScience, Su-won, South Korea)를 이용하여 각각 다른 시점에 서혜부 림프절 (inguinal lymph node, ILN)에서 엑소좀의 형광 신호를 확인하였다. 48시간 후 마우스를 안락사시키고 ILN 및 다FMS 주요 장기를 수집한 후 염류용액으로 세척하고 이미지화 하였다. The fluorescence signal of exosomes was confirmed in the inguinal lymph node (ILN) at different time points using a FOBI imaging instrument (NeoScience, Su-won, South Korea). After 48 hours, mice were euthanized, and ILN and polyFMS major organs were collected, washed with saline, and imaged.

ILN에서 엑소좀의 T-세포 표적화 여부를 확인하기 위해, 엑소좀 주입 8시간 후 마우스를 안락사시켜 ILN를 수집하고, 작은 조작으로 절단한 후 10% FBS가 포함된 RPMI-1640 배지를 이용하여 콜라겐분해효소 D (Sigma-Aldrich) 1 mg/ml로 37℃에서 30분간 150 rpm으로 교반하여 분해시켰다. To determine whether exosomes were targeted to T-cells in ILN, mice were euthanized 8 hours after exosome injection to collect ILN, cut with small manipulations, and collagen using RPMI-1640 medium containing 10% FBS Degradation enzyme D (Sigma-Aldrich) 1 mg/ml was stirred at 37° C. for 30 minutes at 150 rpm to decompose.

샘플을 70-μm 세포 여과기 (Sigma-Aldrich)를 통과시켜 분해되지 않은 조직을 제거하였다. 단일 세포를 PerCP/Cy55 항-마우스 CD3 (Clone: 17A2), FITC 항-마우스 CD4 (Clone: RM4-5) 및 PE 항-마우스 CD8a (Clone: 53-67) 항체로 염색하고 유세포 분석을 수행하였다.The samples were passed through a 70-μm cell strainer (Sigma-Aldrich) to remove undigested tissue. Single cells were stained with PerCP/Cy55 anti-mouse CD3 (Clone: 17A2), FITC anti-mouse CD4 (Clone: RM4-5) and PE anti-mouse CD8a (Clone: 53-67) antibodies and subjected to flow cytometry. .

10. 생체 내 항종양 확인10. In vivo anti-tumor identification

엑소좀의 치료적 항종양 효과를 확인하기 위해, B16-OVA 흑색종 종양 모델을 준비하였다. 암컷 6-8 주령 C57BL/6 마우스를 무작위로 그룹으로 나누고 오른쪽 옆구리에 50% 마트리겔이 포함된 DMEM에 현탁한 100,000 개의 B16-OVA 세포를 주입하였다. 종양 세포 접종 7일 후, PBS (대조군) 또는 다른 엑소좀 제형 (EXO, EXO- OVA 및 EXO-OVA-mAb)을 100 μg 엑소좀 단백질과 동량으로 마우스에 3회, 5일 간격으로 피하에 주입하였다. To confirm the therapeutic antitumor effect of exosomes, a B16-OVA melanoma tumor model was prepared. Female 6-8 week old C57BL/6 mice were randomly divided into groups and 100,000 B16-OVA cells suspended in DMEM containing 50% Matrigel were injected into the right flank. 7 days after tumor cell inoculation, PBS (control) or other exosome formulations (EXO, EXO-OVA, and EXO-OVA-mAb) were injected subcutaneously into mice 3 times at 5 day intervals in an amount equal to 100 μg exosomal protein. did

종양 부피 (V)를 디지털 캘리퍼스를 이용하여 종양의 major (A) 축 및 minor (B) 축을 측정하고 V (mm3) = A×B2/2으로 계산하였다.The tumor volume (V) was calculated by measuring the major (A) axis and minor (B) axis of the tumor using a digital caliper, and V (mm 3 ) = A×B 2 /2.

마지막 주입 2일 후 면역화된 마우스를 안락시키고 추가 실험을 위해 종양, ILN 및 주요 장기를 수집하였다. Two days after the last injection, immunized mice were euthanized and tumors, ILN and major organs were collected for further experiments.

생체 내에서 T-세포 활성을 확인하기 위해, 안락사된 마우스의 비장에서 전체 비장세포를 준비하고, RBC 용해 버퍼 (BioLegend)로 적혈구 세포를 용해시켜 PerCP/Cy5.5 항-마우스 CD3, FITC 항-마우스 CD4, PE/Cy7 항-마우스 CD8a 및 PE 항-마우스 CD69 항체로 염색하였다. To confirm T-cell activity in vivo, whole splenocytes were prepared from the spleen of euthanized mice, and red blood cells were lysed with RBC lysis buffer (BioLegend) to obtain PerCP/Cy5.5 anti-mouse CD3, FITC anti- Mouse CD4, PE/Cy7 anti-mouse CD8a and PE anti-mouse CD69 antibodies were stained.

효과 기억 T 세포의 생성을 확인하기 위해, T-세포를 PerCP/Cy5.5 항-마우스 CD3 (Clone: 17A2), PE 항-마우스 CD8a (Clone: 53-6.7), PE/Cy7 항-마우스 CD44 (Clone: IM7) 및 FITC 항-마우스 CD62L (Clone: MEL-14) 항체로 염색하였다.To confirm the generation of effector memory T cells, T-cells were transfected with PerCP/Cy5.5 anti-mouse CD3 (Clone: 17A2), PE anti-mouse CD8a (Clone: 53-6.7), PE/Cy7 anti-mouse CD44 (Clone: IM7) and FITC anti-mouse CD62L (Clone: MEL-14) antibodies.

유세포 분석으로 염색된 세포를 특징화하였다. 면역화 후 항원 활성 CD4+ 및 CD8+ T-세포의 증가를 확인하기 위해 안락사된 마우스로부터 분리된 비장세포를 Protein Transport Inhibitor Cocktail (Thermo Fisher Scientific)과 10 μg/ml OVA가 포함된 RPMI-1640 배지로 72시간 동안 자극하였다.Stained cells were characterized by flow cytometry. To confirm the increase in antigen-activated CD4+ and CD8+ T-cells after immunization, splenocytes isolated from euthanized mice were treated with RPMI-1640 medium containing Protein Transport Inhibitor Cocktail (Thermo Fisher Scientific) and 10 μg/ml OVA for 72 hours. stimulated while

그 후, 비장세포를 PerCP/Cy5.5 항-마우스 CD3 (Clone: 17A2), FITC 항-마우스 CD4 (Clone: RM4-5) 또는 PE 항-마우스 CD8a (Clone: 53-6.7) 항체로 염색하여 고정하고 intracellular Fixation & Permeabilization Buffer Set (Thermo Fisher Scientific)로 투과성을 확인하였다.Then, the splenocytes were stained with PerCP/Cy5.5 anti-mouse CD3 (Clone: 17A2), FITC anti-mouse CD4 (Clone: RM4-5) or PE anti-mouse CD8a (Clone: 53-6.7) antibodies. After fixation, the permeability was checked with intracellular Fixation & Permeabilization Buffer Set (Thermo Fisher Scientific).

또한, 세포를 APC 항-마우스 TNF-α(Clone: MP6- XT22) 및 PE/Cy7 항-마우스 IFN- γ(Clone: XMG1.2) 항체로 염색하고 유세포 분석으로 특징화 하였다.In addition, cells were stained with APC anti-mouse TNF-α (Clone: MP6-XT22) and PE/Cy7 anti-mouse IFN-γ (Clone: XMG1.2) antibodies and characterized by flow cytometry.

종양 내 T 세포 집단을 확인하기 위해, 종양 조직을 수집하고, 작은 조각으로 절단한 후 10 U/ml Collagenase I, 400 U/ml Collagenase IV, 및 30 U/ml DNAse I (Thermo Fisher Scientific)으로 구성된 DMEM 종양 분해 배지로 37℃에서 2시간 동안 150 rpm으로 연속 교반하였다. To identify intratumoral T cell populations, tumor tissue was collected, cut into small pieces, and composed of 10 U/ml Collagenase I, 400 U/ml Collagenase IV, and 30 U/ml DNAse I (Thermo Fisher Scientific). It was continuously stirred at 150 rpm for 2 hours at 37°C with DMEM tumor degradation medium.

단일 세포를 PerCP/Cy5.5 항-마우스 CD3, FITC 항-마우스 CD4, 및 PE/Cy7 항-마우스 CD8 항체로 염색한 후 고정하고 투과시킨 후 APC 항-마우스 Foxp3 항체로 염색하여 유세포 분석하였다. Single cells were stained with PerCP/Cy5.5 anti-mouse CD3, FITC anti-mouse CD4, and PE/Cy7 anti-mouse CD8 antibodies, fixed, permeabilized, and stained with APC anti-mouse Foxp3 antibody for flow cytometry analysis.

유세포 분석으로 비장 내 CD4+ 보조 T 세포 내 Foxp3+ Treg 세포 수를 분석하기 위해, 비장세포를 PerCP/Cy5.5 항-마우스 CD3 및 FITC 항-마우스 CD4 항체로 염색하고, 고정 후 투과하여 APC 항-마우스 Foxp3 항체로 염색한 후 유세포 분석하였다.To analyze the number of Foxp3+ Treg cells in CD4+ helper T cells in the spleen by flow cytometry, the splenocytes were stained with PerCP/Cy5.5 anti-mouse CD3 and FITC anti-mouse CD4 antibodies, fixed and then permeabilized to APC anti-mouse. After staining with Foxp3 antibody, flow cytometry analysis was performed.

11. 혈청 사이토카인 정량11. Serum Cytokine Quantification

마지막 면역화 48시간 후 마우스 말초 혈액을 retro-orbital 천자(puncture)로 수집하고, 제조사의 설명서에 따라 mouse IFN-γ Duoset ELISA kit (R&D Systems) 및 mouse TNF-αELISA MAX TM Standard (BioLegend)를 이용하여 혈청 IFN-γ 및 TNF-α 수준을 분석하였다.After 48 hours of the last immunization, mouse peripheral blood was collected by retro-orbital puncture, and the mouse IFN-γ Duoset ELISA kit (R&D Systems) and mouse TNF-αELISA MAX TM Standard (BioLegend) were used according to the manufacturer's instructions. Serum IFN-γ and TNF-α levels were analyzed.

12. 조직학적 및 면역조직화학 분석12. Histological and Immunohistochemical Analysis

처리된 마우스의 종양, 심장, 간, 비장, 서혜부 림프절 (ILN), 폐 및 신장의 조직학적 분석을 각 종양 조각 또는 기관의 중심부, 각 부분의 두 영역에서 수행하였다.Histological analyzes of tumors, heart, liver, spleen, inguinal lymph nodes (ILN), lungs and kidneys of treated mice were performed in two regions, each in the center of each tumor slice or organ.

종양 조각, 비장 및 ILN에서 CD4, CD8, TNF-α 및 IFN-γ에 대한 면역활성 변화를 아비딘-비오틴 복합체가 결합된 1차 항체 및 페록시다아제 기질 키트 (Vector Labs, Burlingame, CA, USA)를 이용하여 확인하였다. Changes in immune activity against CD4, CD8, TNF-α and IFN-γ in tumor slices, spleen, and ILN were evaluated using an avidin-biotin complex-conjugated primary antibody and peroxidase substrate kit (Vector Labs, Burlingame, CA, USA). ) was used to confirm.

각 마커에 대하여 20% 이상의 면역활성을 나타내는 조직은 면역반응성세포로 확인되었다. 종양 조각, 비장 및 ILN (cells/mm2)에서 CD4, CD8, TNF-α 및 IFN-γ의 면역표지된 세포의 평균 수를 자동 이미지 분석기를 사용하여 확인하였다.Tissues exhibiting 20% or more immune activity for each marker were identified as immunoreactive cells. The average number of immunolabeled cells for CD4, CD8, TNF-α and IFN-γ in tumor slices, spleen and ILN (cells/mm 2 ) were determined using an automated image analyzer.

<실시예 1> EXO-OVA-mAb의 제조 및 특징 확인<Example 1> Preparation and characterization of EXO-OVA-mAb

먼저, N-Hydroxysuccinimide (NHS) 작용기와 항체의 라이신 잔기의 아민 커플링 반응을 통하여 항-CTLA-4 항체를 DPPE-PEG-NHS에 결합시켰다First, an anti-CTLA-4 antibody was bound to DPPE-PEG-NHS through an amine coupling reaction between an N-Hydroxysuccinimide (NHS) functional group and a lysine residue of the antibody.

페길화된 항체 (PEGylated antibody)와 관련하여, 항체 당 결합된 PEG의 높은 비율은 항체의 결합 활성에 부정적인 영향을 나타낼 수 있다고 보고되어졌으며, IgG와 DOPE-PEG-NHS가 1:5 몰비일 경우, DOPE-PEG-NHS 및 IgG의 결합은 높은 Fc 양성 비율을 나타내는 것으로 확인됨에 따라, 항-CTLA-4 항체와 DPPE-PEG-NHS를 1:5 몰비로 선택하여 DPPE-PEG-mAb를 합성하였다. With respect to PEGylated antibodies, it has been reported that a high ratio of bound PEG per antibody may have a negative effect on the binding activity of the antibody, and when the molar ratio of IgG and DOPE-PEG-NHS is 1:5 , as it was confirmed that the binding of DOPE-PEG-NHS and IgG shows a high Fc-positive ratio, DPPE-PEG-mAb was synthesized by selecting an anti-CTLA-4 antibody and DPPE-PEG-NHS in a molar ratio of 1:5 .

DPPE-PEG-mAb의 밴드가 유리 mAb와 비교하여 높은 분자무게를 나타내는 것이 확인됨에 따라, DPPE-PEG-mAb의 성공적인 제조를 확인할 수 있었다.As it was confirmed that the band of DPPE-PEG-mAb exhibited high molecular weight compared to the free mAb, successful preparation of DPPE-PEG-mAb was confirmed.

EXO-OVA-mAb는 도 1A와 같은 3개의 주요 단계를 통하여 제작되었다.EXO-OVA-mAb was fabricated through three main steps as shown in Fig. 1A.

먼저, 미성숙 BMDC와 폴리이노신산 (polyinosinic acid):폴리시티딜산 (polycytidylic acid) [poly(I:C)], TLR-3 작용제 및 OVA를 배양하여 성숙된 OVA 탑재 BMDCs (mBMDC-OVA)를 생성하였다. First, immature BMDCs were cultured with polyinosinic acid:polycytidylic acid [poly(I:C)], a TLR-3 agonist and OVA to generate mature OVA-mounted BMDCs (mBMDC-OVA). .

다음으로, 연속 원심분리를 수행하여 mBMDC-OVA의 배양배지로부터 OVA 펩타이드 (EXO-OVA)를 포함하는 BMDC 유래 엑소좀을 수집하였다. Next, BMDC-derived exosomes containing OVA peptide (EXO-OVA) were collected from the mBMDC-OVA culture medium by performing continuous centrifugation.

최종적으로, 얻어진 EXO-OVA를 항-CTLA-4 mAb 결합된 1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민)-폴리(에틸렌 글리콜) [1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine)-poly(ethylene glycol), DPPE-PEG-mAb]과 간단하게 혼합하여 항-CTLA-4 mAb를 추가 개질하였다. 알킬 사슬을 포함하는 DPPE-PEG-mAb는 엑소좀 막의 지질유동섬 (lipid raft)에 자동적으로 고정되어 EXO-OVA-mAb 형성하였다.Finally, the obtained EXO-OVA was combined with anti-CTLA-4 mAb 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine)-poly(ethylene glycol) [1,2-dipalmitoyl-sn -glycero-3-phosphoethanolamine)-poly(ethylene glycol), DPPE-PEG-mAb] and the anti-CTLA-4 mAb was further modified. DPPE-PEG-mAb containing an alkyl chain was automatically immobilized on the lipid raft of the exosome membrane to form EXO-OVA-mAb.

제조된 EXO-OVA-mAb의 특징을 확인하기 위해, 동적 광산란 분석을 수행하였다. 그 결과, 도 1B와 같이 EXO-OVA (81.3 nm) 및 EXO-OVA-mAb (95.6 nm)의 평균 유체 역학적 크기가 100 nm 보다 작은 것으로 확인되었다. 또한, 투과전자현미경 분석 결과, 도 1C와 같이 EXO-OVA-mAb는 난원형 모향으로 30-100 nm 범위의 직경을 나타내는 것을 확인할 수 있었다.To confirm the characteristics of the prepared EXO-OVA-mAb, dynamic light scattering analysis was performed. As a result, it was confirmed that the average hydrodynamic size of EXO-OVA (81.3 nm) and EXO-OVA-mAb (95.6 nm) was smaller than 100 nm as shown in FIG. 1B . In addition, as a result of transmission electron microscopy, it was confirmed that EXO-OVA-mAb had an oval shape and a diameter in the range of 30-100 nm as shown in FIG. 1C.

다음으로, 웨스턴 블롯 및 유세포 분석을 통하여 EXO-OVA-mAb의 세포 표면 마커 프로파일을 평가하였다.Next, the cell surface marker profile of EXO-OVA-mAb was evaluated through Western blot and flow cytometry.

그 결과, 도 1D와 같이 mBMDC-OVA 및 EXO-OVA-mAb에서 공동자극분자 CD80 및 MHC-I/II이 유사한 수준으로 나타났다. 반면, 엑소좀 양성 마커인 CD63와 음성 마커인 칼넥신 (Calnexin)은 각각 EXO-OVA-mAb와 mBMDC-OVA에서만 확인되었으며, 상기 마커를 이용하여 분리된 엑소좀의 순도를 확인하였다.As a result, as shown in FIG. 1D , the costimulatory molecules CD80 and MHC-I/II were found at similar levels in mBMDC-OVA and EXO-OVA-mAb. On the other hand, the exosome positive marker CD63 and the negative marker Calnexin were identified only in EXO-OVA-mAb and mBMDC-OVA, respectively, and the purity of the isolated exosome was confirmed using the marker.

또한, EXO-OVA-mAb의 표면에서 CD80 및 OVA 펩타이드 (SIINFEKL)의 높은 빈도가 확인되었으나, EXO에서는 확인되지 않았다.In addition, high frequencies of CD80 and OVA peptide (SIINFEKL) were confirmed on the surface of EXO-OVA-mAb, but not in EXO.

분리 단계 동안 EXO-OVA에서 유리 OVA의 성공적인 제거 및 엑소좀 표면에서 DPPE-PEG-mAb의 혼성은 폴리아크릴아마이드 겔을 이용한 유리 OVA, 유리 mAb, EXO-OVA 및 EXO-OVA-mAb 전기영동을 수행한 후 비환원 및 환원 조건하에서 쿠마시블루 염색을 수행하여 확인하였다.The successful removal of free OVA from EXO-OVA during the separation step and hybridization of DPPE-PEG-mAb on the exosome surface performed free OVA, free mAb, EXO-OVA and EXO-OVA-mAb electrophoresis using polyacrylamide gel. After that, it was confirmed by performing Coomassie blue staining under non-reducing and reducing conditions.

그 결과, OVA 밴드가 EXO-OVA 샘플 내에 존재하는 것이 확인되었으며, 상기 결과로부터 유리 OVA가 완벽하게 제거된 것이 확인되었다. 또한, 환원 조건하에서 절단된 Fc 및 Fab 단편의 존재를 확인된 반면, 비환원 조건에서는 DPPE-PEG-mAb의 안정적인 공유결합으로 인해 mAb 밴드가 확인되지 않음에 따라, EXO-OVA-mAb 표면에 mAb가 존재하는 것이 확인되었다.As a result, it was confirmed that the OVA band was present in the EXO-OVA sample, and it was confirmed that free OVA was completely removed from the result. In addition, the presence of cleaved Fc and Fab fragments was confirmed under reducing conditions, whereas no mAb band was identified due to stable covalent bonding of DPPE-PEG-mAb under non-reducing conditions. was confirmed to exist.

또한, EXO-OVA 막에서 DPPE-PEG-mAb가 성공적으로 고정되었는 지를 확인하기 위해, DPPE-PEG-NHS (DPPE-PEG-mAb-FITC)와 접합하기 전에 항-CTLA-4 항체를 FITC (fluorescein isothiocyanate) 형광 시약으로 표지한 후 EXO-OVA와 혼합하였다.In addition, to confirm that DPPE-PEG-mAb was successfully immobilized on the EXO-OVA membrane, an anti-CTLA-4 antibody was conjugated with FITC (fluorescein) prior to conjugation with DPPE-PEG-NHS (DPPE-PEG-mAb-FITC). After labeling with isothiocyanate) fluorescence reagent, it was mixed with EXO-OVA.

마지막으로, mAb-FITC, DPPE-PEG-mAb-FITC 및 FITC-표지된 EXO-OVA-mAb (EXO-OVA-mAb-FITC)의 UV-VIS 스펙트럼을 확인하였다.Finally, UV-VIS spectra of mAb-FITC, DPPE-PEG-mAb-FITC and FITC-labeled EXO-OVA-mAb (EXO-OVA-mAb-FITC) were checked.

그 결과, UV-VIS 스펙트럼에서 FITC-표지된 모든 mAb 샘플에 대한 FITC 흡수 피크가 490 nm에서 확인되었다.As a result, the FITC absorption peak was confirmed at 490 nm for all FITC-labeled mAb samples in the UV-VIS spectrum.

상기 결과로부터 EXO-OVA-mAb가 성공적으로 제조된 것을 확인할 수 있었다.From the above results, it was confirmed that EXO-OVA-mAb was successfully prepared.

한편, 추가적으로 enzyme-linked immunosorbent assay (ELISA) 분석을 수행하여 EXO-OVA-mAb의 표면에서 OVA 펩타이드 혼성 및 항-CTLA-4 항체의 존재를 확인하였다. On the other hand, additional enzyme-linked immunosorbent assay (ELISA) analysis was performed to confirm OVA peptide hybridization and the presence of anti-CTLA-4 antibody on the surface of EXO-OVA-mAb.

그 결과, 도 1E와 같이 EXO-OVA-mAb에서 항-CTLA-4 항체의 존재가 확인되었다.As a result, the presence of anti-CTLA-4 antibody in EXO-OVA-mAb was confirmed as shown in FIG. 1E.

상기 결과들로부터 확인된 면역자극 성분 및 항-CTLA-4 항체의 성공적인 결합은 직적접인 T 세포 자극뿐만 아니라 림프절에서 면역억제 CTLA-4 체크포인트를 차단하는 엑소좀의 잠재력이 제안될 수 있다.The successful binding of the immunostimulatory component and anti-CTLA-4 antibody identified from the above results may suggest the potential of exosomes to block immunosuppressive CTLA-4 checkpoints in lymph nodes as well as direct T cell stimulation.

<실시예 2> EXO-OVA-mAb에 의한 시험관 내 T 세포 자극 확인<Example 2> Confirmation of in vitro T cell stimulation by EXO-OVA-mAb

공초점 레이저 스캐닝 현미경을 이용하여 시험관 내에서 T 세포에 대한 EXO-OVA-mAb의 특이적 결합 능력을 확인하였다. The specific binding ability of EXO-OVA-mAb to T cells in vitro was confirmed using confocal laser scanning microscopy.

도 2를 참고하면, EXO 및 EXO-OVA와 비교하여 FITC 표지된 EXO-OVA-mAb은 CD4+ 및 CD8+ T 세포에 대한 결합능이 매우 높게 나타나는 것을 확인할 수 있었다. Referring to FIG. 2 , it was confirmed that the FITC-labeled EXO-OVA-mAb had a very high binding capacity to CD4+ and CD8+ T cells compared to EXO and EXO-OVA.

또한, EXO-OVA-mAb이 대부분 T 세포의 표면에 결합하였으며, 상기 세포에 의해 내재화된 양은 매우 적었다. In addition, EXO-OVA-mAb mostly bound to the surface of T cells, and the amount internalized by the cells was very small.

시험관 내에서 T 세포를 활성화시키고, 증식을 유도하는 엑소좀의 능력을 CD69, 표면 T-세포 활성화 마커 확인 및 carboxyfluorescein succinimidyl ester (CFSE) 염색에 대한 유세포 분석을 수행하여 확인하였다.The ability of exosomes to activate T cells and induce proliferation in vitro was confirmed by performing flow cytometry analysis for CD69, surface T-cell activation markers, and carboxyfluorescein succinimidyl ester (CFSE) staining.

그 결과, 도 3A 내지 도 3C와 같이 OVA 및 poly(I:C) (EXO)가 처리되지 않은 수지상 세포(dendritic cells, DC)로부터 분리된 엑소좀은 유의한 T 세포 활성 효과를 나타내지 못하였다. 반면, OVA (EXO-OVA 및 EXO-OVA-mAb)를 적재한 엑소좀은 CD4+ 및 CD8+ T 세포 모두의 활성을 현저하게 유도하였다. 특히 EXO-OVA-mAb는 EXO-OVA 보다 T 세포를 효과적으로 자극하는 것이 확인되었다.As a result, as shown in FIGS. 3A to 3C , exosomes isolated from dendritic cells (DC) not treated with OVA and poly(I:C) (EXO) did not exhibit a significant T cell activation effect. On the other hand, exosomes loaded with OVA (EXO-OVA and EXO-OVA-mAb) significantly induced the activity of both CD4+ and CD8+ T cells. In particular, it was confirmed that EXO-OVA-mAb stimulated T cells more effectively than EXO-OVA.

또한, 표면 마커 CD69 뿐만 아니라, CD4+ 및 CD8+ T 세포 활성에 동반되는 사이토카인 TNF-α 및 IFN-γ의 수준을 각각 엑소좀 처리된 CD4+ 및 CD8+ T 세포의 조건 배지에서 ELISA로 확인하였다.In addition, the levels of the surface marker CD69 as well as the cytokines TNF-α and IFN-γ accompanying CD4+ and CD8+ T cell activity were confirmed by ELISA in the conditioned medium of exosome-treated CD4+ and CD8+ T cells, respectively.

그 결과, CD69 결과와 유사하게 EXO 처리된 T 세포 보다 EXO-OVA 및 EXO-OVA-mAb 처리된 T 세포에서 상당히 높은 수준으로 TNF-α 및 IFN-γ 분비가 확인되었다. 중요한 것은 엑소좀 막의 CTLA-4 항체 기능화가 사이토카인 생산을 현저하게 증가시킨 것이다.As a result, TNF-α and IFN-γ secretion was confirmed at significantly higher levels in EXO-OVA and EXO-OVA-mAb-treated T cells than in EXO-treated T cells, similar to the CD69 results. Importantly, CTLA-4 antibody functionalization of the exosome membrane markedly increased cytokine production.

도 3D 내지 도 3F를 참고하면, CFSE 형광을 이용하여 확인된 CD4+ 및 CD8+ T 세포의 증식은 EXO 처리와 비교하여 EXO-OVA 및 EXO-OVA-mAb와의 배양 후 현저하게 향상된 것이 확인되었으며, 유사하게, EXO-OVA-mAb이 CD4+ 및 CD8+ T 세포 모두의 증식 인덱스를 EXO-OVA 보다 더욱 강하게 향상시켰다 (각각의 CD4+ T 세포의 증식 인덱스: ~1.30 vs. 1.25 및 CD8+ T 세포의 증식 인덱스: ~1.36 vs. 1.25). 3D to 3F, the proliferation of CD4+ and CD8+ T cells confirmed using CFSE fluorescence was significantly improved after incubation with EXO-OVA and EXO-OVA-mAb compared to EXO treatment, and similarly , EXO-OVA-mAb enhanced the proliferation index of both CD4+ and CD8+ T cells more strongly than EXO-OVA (proliferation index of each CD4+ T cell: ~1.30 vs. 1.25 and the proliferation index of CD8+ T cells: ~1.36) vs. 1.25).

상기 결과로부터 MHC-OVA 펩타이드 복합체 및 공동자극 분자와 같이 충분한 자극 신호 세트를 전달하는 엑소좀은 T 세포 활성 및 증식을 효과적으로 준비시킬 수 있음이 확인되었다. 특히, CTLA-4 면역체크포인트의 차단을 위한 EXO-OVA 표면의 CTLA-4 항체 혼성은 CD4+ 및 CD8+ T 세포 모두에 뚜렷한 자극과 증식을 가능하게 할 수 있다.From the above results, it was confirmed that exosomes that deliver a sufficient set of stimulatory signals, such as MHC-OVA peptide complex and costimulatory molecules, can effectively prepare T cell activation and proliferation. In particular, hybridization of CTLA-4 antibodies on the surface of EXO-OVA for blockade of the CTLA-4 immune checkpoint could enable distinct stimulation and proliferation of both CD4+ and CD8+ T cells.

<실시예 3> 생체 내에서 림프절로의 교환 확인<Example 3> Confirmation of exchange into lymph nodes in vivo

엑소좀의 크기가 림프 전달을 위한 최적의 범위 내에 포함되는 것으로 확인됨에 따라, 시아닌 5.5 (Cy5.5) 형광 신호로 표지하여 생체 내에서 림프절로의 교환 능력을 확인하였다. As it was confirmed that the size of the exosome was included within the optimal range for lymphatic delivery, it was labeled with a cyanine 5.5 (Cy5.5) fluorescence signal to confirm its ability to exchange to lymph nodes in vivo.

Cy5.5 표지된 EXO-OVA 및 EXO-OVA-mAb을 C57BL/6 마우스의 꼬리 부분의 피하에 주입하고, 다양한 시간점에 이미지를 확인하여 서혜부 림프절 (ILN)로의 침투를 평가하였다. Cy5.5-labeled EXO-OVA and EXO-OVA-mAbs were injected subcutaneously into the tail region of C57BL/6 mice, and images were viewed at various time points to assess penetration into inguinal lymph nodes (ILNs).

그 결과, 도 4A와 같이 투여 1시간 후 EXO-OVA-mAb가 주입된 마우스의 ILN에서 Cy5.5 신호가 확인된 반면, EXO-OVA가 주입된 마우스에서는 형광이 나타나지 않았다. 두 처리군 모두 시간 경과에 따라 Cy5.5 형광이 증가하였으나, EXO-OVA-mAb이 주입된 마우스에서 더욱 강한 형광이 확인되었다.As a result, as shown in FIG. 4A, Cy5.5 signal was confirmed in ILN of mice injected with EXO-OVA-mAb 1 hour after administration, whereas fluorescence was not observed in mice injected with EXO-OVA. Cy5.5 fluorescence increased with time in both treatment groups, but stronger fluorescence was confirmed in mice injected with EXO-OVA-mAb.

상기 결과로부터 EXO-OVA-mAb은 EXO-OVA 보다 ILN에 더 높은 친화성을 나타내며, 림프관을 통하여 ILN에 빠르게 도달하는 것이 확인되었다.From the above results, it was confirmed that EXO-OVA-mAb showed a higher affinity for ILN than EXO-OVA, and rapidly reached ILN through lymphatic vessels.

48시간 후, 마우스를 안락사시키고, ILN 및 주요 장기를 적출하여 생체 내 엑소좀의 분포를 추가로 확인하였다. After 48 hours, mice were euthanized, and ILN and major organs were extracted to further confirm the distribution of exosomes in vivo.

그 결과, 도 4B와 같이 EXO-OVA-mAb 처리는 EXO-OVA 처리보다 ILN에서 현저하게 높은 축적을 나타내는 것이 확인되었다. 특히 EXO-OVA-mAb 투여 후 Cy5.5 형광은 간과 ILN에서만 확인된 반면, EXO-OVA가 주입된 마우스에서는 신장에서도 형광이 확인되었다.As a result, as shown in Fig. 4B, it was confirmed that the EXO-OVA-mAb treatment exhibited significantly higher accumulation in ILN than the EXO-OVA treatment. In particular, after administration of EXO-OVA-mAb, Cy5.5 fluorescence was confirmed only in the liver and ILN, whereas fluorescence was also confirmed in the kidneys in mice injected with EXO-OVA.

상기 결과로부터 항-CTLA-4 항체 기능화는 비특이적 효과를 효과적으로 감소시킨 것이 확인되었다. From the above results, it was confirmed that the anti-CTLA-4 antibody functionalization effectively reduced the non-specific effect.

또한, 도 4C를 참고하면 장기 무게(mg)에 기초한 분포 비교에서 두 엑소좀 제형이 모두 ILN에 우선적으로 축적되는 것이 확인되었다. In addition, referring to Figure 4C, it was confirmed that both exosome formulations preferentially accumulate in ILN in the distribution comparison based on organ weight (mg).

림프절에서 CTLA-4 기능화가 엑소좀을 T 세포로 더욱 특이적으로 안내할 수 있는 지 여부를 확인하기 위해, 엑소좀 투여 8시간 후 유세포 분석을 수행하여 CD4+ Cy5.5+ 및 CD8+ Cy5.5+ 세포의 빈도를 정량하였다.To determine whether CTLA-4 functionalization in lymph nodes can more specifically guide exosomes to T cells, flow cytometry analysis was performed 8 hours after exosome administration to CD4+ Cy5.5+ and CD8+ Cy5.5+ The frequency of cells was quantified.

그 결과, 도 4D 내지 도 4F와 같이 EXO-OVA와 비교하여 현저하게 많은 양의 EXO-OVA-mAb가 CD4+ 및 CD8+ T 세포를 표적한 것을 확인할 수 있었다.As a result, as shown in FIGS. 4D to 4F, it was confirmed that a significantly higher amount of EXO-OVA-mAb than that of EXO-OVA targeted CD4+ and CD8+ T cells.

상기 결과로부터 EXO-OVA-mAb은 쉽게 림프관으로 투과되어 림프절로 이동하여 T 세포를 효과적으로 표적하는 것이 확인되었다.From the above results, it was confirmed that EXO-OVA-mAb easily permeated into lymphatic vessels and migrated to lymph nodes to effectively target T cells.

<실시예 4> EXO-OVA-mAb의 면역자극 활성 확인<Example 4> Confirmation of immunostimulatory activity of EXO-OVA-mAb

앞선 실험에서 EXO-OVA-mAb가 시험관 내에서 T 세포 활성 및 증식뿐만 아니라 림프절에서 T 세포에 대한 효율적인 타겟을 유도하는 잠재력을 확인함에 따라, B16-OVA 종양을 가진 마우스에 엑소좀을 투여한 후 CD4+ 및 CD8+ T 세포의 자극을 확인하였다. As previous experiments confirmed the potential of EXO-OVA-mAb to induce efficient targeting of T cells in lymph nodes as well as T cell activation and proliferation in vitro, after administration of exosomes to B16-OVA tumor-bearing mice Stimulation of CD4+ and CD8+ T cells was confirmed.

CD69 발현 증가가 확인됨에 따라, 생체 내에서 OVA 탑재된 엑소좀이 상당한 CD4+ 및 CD8+ T 세포의 활성을 유도한 것을 확인할 수 있었다. 또한, 유세포 분석 결과, 시험관 내 결과와 일치하게 EXO-OVA-mAb은 다른 어떤 제형들 보다 T 세포를 더욱 활성화시키는 것을 확인할 수 있었다.As the CD69 expression increase was confirmed, it was confirmed that the OVA-loaded exosomes induced significant CD4+ and CD8+ T cell activity in vivo. In addition, as a result of flow cytometry, it was confirmed that EXO-OVA-mAb activated T cells more than any other formulations, consistent with the in vitro results.

EXO-OVA-mAb 처리 시 생체 내에서 T 세포 활성의 강력한 유도는 EXO-OVA의 CTLA-4 항체 기능화에 의한 T 세포 표적화 및 면역억제수용체의 차단 때문일 수 있다. The strong induction of T cell activity in vivo upon treatment with EXO-OVA-mAb may be due to T cell targeting and blockade of immunosuppressive receptors by CTLA-4 antibody functionalization of EXO-OVA.

다음으로, OVA로 면역화된 생쥐로부터 수집된 비장세포를 재자극한 후 CD4 + T 세포 내 TNF-α 및 CD8+ T 세포에서 IFN-γ의 세포 내 염색 후 유세포 분석을 수행하여 면역화 후 OVA 특이적 Th1 및 CTL 반응의 시작을 확인하였다. Next, after restimulation of splenocytes collected from mice immunized with OVA, intracellular staining of TNF-α in CD4 + T cells and IFN-γ in CD8 + T cells followed by flow cytometry analysis was performed to perform OVA-specific Th1 after immunization. and the start of the CTL reaction.

그 결과, 도 5A 내지 도 5D와 같이 EXO-OVA을 포함한 다른 제형과 비교하여 현저하게 향상된 CD4+ TNF-α+ 및 CD8+ IFN-γ+ 분획이 확인됨에 따라, EXO-OVA-mAb에 의한 면역화는 OVA 항원에 대한 강력한 Th1 및 CTL 반응을 나타내는 것이 확인되었다. As a result, as compared to other formulations including EXO-OVA as shown in FIGS. 5A to 5D, significantly improved CD4+ TNF-α+ and CD8+ IFN-γ+ fractions were confirmed, so immunization with EXO-OVA-mAb was OVA It was confirmed to exhibit strong Th1 and CTL responses to antigens.

EXO-OVA 및 EXO-OVA-mAb와 대조적으로 EXO에 의한 면역화는 대조군과 비교하여 OVA에 대한 Th1 및 CTL 반응을 거의 자극하지 못하였으며, 이러한 결과는 엑소좀 표면에 항원성 OVA 펩타이드 및 공동자극 분자의 부족에 의한 것으로 제안될 수 있다.In contrast to EXO-OVA and EXO-OVA-mAb, immunization with EXO barely stimulated Th1 and CTL responses to OVA compared to controls, suggesting that antigenic OVA peptides and costimulatory molecules on the exosome surface It can be suggested that this is due to the lack of

한편, 처리된 마우스의 ILN 및 비장에서 CD4+, CD8+, TNF-α+ 및 IFN-γ+ 세포의 면역조직화학적 분석을 수행하여 OVA 펩타이드에 대한 세포내 면역 획득을 추가로 확인하였다.Meanwhile, immunohistochemical analysis of CD4+, CD8+, TNF-α+ and IFN-γ+ cells in ILN and spleen of treated mice was performed to further confirm the acquisition of intracellular immunity to OVA peptide.

그 결과, 도 5E 내지 도 5H와 같이 대조군과 비교하여 EXO-OVA-mAb > EXO-OVA 순서로 두 개의 OVA가 포함된 엑소좀 제형이 처리된 마우스에서 비장 내 CD4-, CD8-, TNF-α- 및 IFN-γ-면역활성 세포의 수와 tdLN가 상당히 증가(P < 0.01)하였다. As a result, in mice treated with exosome formulations containing two OVAs in the order of EXO-OVA-mAb > EXO-OVA, CD4-, CD8-, TNF-α in the spleen compared to the control group as shown in FIGS. 5E to 5H . - and IFN-γ-immunoactive cell number and tdLN significantly increased (P < 0.01).

또한, 세포독성의 항원 특이성 이외에도 백신접종의 다른 중요한 특징은 기억 T 세포의 활성을 기초로한 장기적인 종양 반응을 허용하는 기억 특징이다. Furthermore, in addition to the antigen specificity of cytotoxicity, another important feature of vaccination is the memory feature that allows for a long-term tumor response based on the activity of memory T cells.

이에 따라, 이전에 만난 항원에 대한 즉각적인 반응을 제공하는 T 세포 서브세트인 효과기 기억 T 세포 (TEM) (CD3 + CD8 + CD44 + CD62L-)의 존재를 위한 처리 끝에 면역화된 마우스 내 비장세포를 확인하였다 Accordingly, splenocytes in immunized mice at the end of treatment for the presence of effector memory T cells (T EM ) (CD3 + CD8 + CD44 + CD62L−), a subset of T cells that provide an immediate response to previously met antigens were isolated. confirmed

그 결과, 도 5I 내지 도 5J와 같이 OVA 포함된 엑소좀 제형이 처리된 마우스에서 TEM 세포의 분획이 현저하게 증가되었으며, 특히 EXO-OVA 보다 EXO-OVA-mAb에서 상당히 높은 TEM 유도 효과가 확인되었다 (~25% vs. ~19%). 이와 대조적으로 EXO 처리군에서는 대조군 마우스와 비교하여 TEM 세포 변화가 확인되지 않았다.As a result, the fraction of T EM cells was significantly increased in the mice treated with the exosome formulation containing OVA as shown in FIGS . confirmed (~25% vs. ~19%). In contrast, no change in T EM cells was observed in the EXO-treated group compared to the control mice.

상기 결과는 백신과 항-CTLA-4 치료 결합이 전체 내인성 T 세포에 부정적인 영향 없이 TEM 분획의 확장 및 유지를 현저하게 촉진시킨다는 종래 의견과 일치한다.These results are consistent with the prior opinion that the combination of vaccine and anti-CTLA-4 treatment significantly promotes the expansion and maintenance of the T EM fraction without negatively affecting total endogenous T cells.

상기 결과들로부터 OVA 양성 종양에 대한 면역반응을 유도하는 EXO-OVA의 능력은 T 세포 활성을 저해하는 면역억제성 성분 억제를 위한 엑소좀 플렛폼에서 항-CTLA-4 항체의 추가를 통하여 상승적으로 증가될 수 있음이 확인되었다.From the above results, the ability of EXO-OVA to induce an immune response against OVA-positive tumors is synergistically increased through the addition of anti-CTLA-4 antibody in an exosome platform for suppressing immunosuppressive components that inhibit T cell activity. It has been confirmed that it can be

<실시예 5> EXO-OVA-mAb의 항종양 효과 확인<Example 5> Confirmation of antitumor effect of EXO-OVA-mAb

B16-OVA 종양 모델에서 EXO-OVA-mAb의 치료적 효과를 확인하였다. B16-OVA 세포 접종 후 7일째에 종양이 형성된 마우스의 꼬리 부분 피하에 EXO, EXO-OVA, 또는 EXO-OVA-mAb을 5일 간격으로 3회 주사하였다.The therapeutic effect of EXO-OVA-mAb was confirmed in the B16-OVA tumor model. On day 7 after B16-OVA cell inoculation, EXO, EXO-OVA, or EXO-OVA-mAb was injected three times at 5-day intervals subcutaneously in the tail region of mice with tumors.

그 결과, 도 6A와 같이 EXO는 항원성 OVA 펩타이드 및 공동자극분자의 부족 으로 인하여 종양 성장을 지연시키지 못하였다. 그러나 EXO-OVA은 EXO와 비교하여 상당한 항종양 능력을 나타내었다. 특히, OVA 양성 종양에 대한 면역반응은 항-CTLA-4 항체로 변형된 EXO-OVA-mAb에서 상승적 증가(P < 0.01)가 확인되었다. As a result, as shown in FIG. 6A, EXO did not delay tumor growth due to the lack of antigenic OVA peptides and costimulatory molecules. However, EXO-OVA showed significant antitumor ability compared to EXO. In particular, a synergistic increase (P < 0.01) was confirmed in the EXO-OVA-mAb modified with the anti-CTLA-4 antibody in the immune response to OVA-positive tumors.

엑소좀 처리의 종양 억제 효과를 확인하기 위해, 유세포 분석 및 면역조직화학적 분석을 수행하여 성공적인 면역치료법에 기여하는 주요 인자로 간주되는 종양 침윤성 림프구의 프로파일을 확인하였다.To confirm the tumor suppressive effect of exosome treatment, flow cytometry and immunohistochemical analysis were performed to identify the profile of tumor-infiltrating lymphocytes, which are considered to be major factors contributing to successful immunotherapy.

그 결과, 도 6B 내지 도 6D와 같이 OVA 운반 엑소좀은 대조군 처리와 비교하여 종양속으로 CD4+ 및 CD8+ 세포 모두 종양속으로의 침윤을 상당히 촉진시켰으며, EXO-OVA-mAb 백신 접종군에서는 매우 높은 수준의 침윤 세포가 확인되었다. 이와 대조적으로 EXO 접종군에서는 종양 부위로 주목할만한 T 세포 이동이 나타나지 않았다. As a result, as shown in FIGS. 6B to 6D , the OVA-carrying exosomes significantly promoted the infiltration of both CD4+ and CD8+ cells into the tumor compared to the control treatment group, and very high in the EXO-OVA-mAb vaccinated group. Levels of infiltrating cells were identified. In contrast, there was no significant T cell migration to the tumor site in the EXO-inoculated group.

상기 결과로부터 종양 특이적 T 세포 반응 증가를 위한 항원성 OVA의 중요한 역할이 확인되었다.From the above results, an important role of antigenic OVA for increasing tumor-specific T cell response was confirmed.

종양에 대한 프라이밍 T 세포 반응의 평가를 추가하여, 종양에서 증가된 세포독성 T 림프구(CTLs)/조절 T 세포 (Treg) 비율에 대한 EXO-OVA-mAb의 능력을 확인하였다.In addition to the evaluation of the priming T cell response to the tumor, the ability of EXO-OVA-mAb on the increased cytotoxic T lymphocyte (CTLs)/regulatory T cell (Treg) ratio in the tumor was confirmed.

그 결과, 도 6E와 같이 다른 모든 엑소좀 제형과 비교하여 오직 EXO-OVA-mAb에서만 종양 부위 내에서 현저한 CTLs/Treg 비율 증가를 나타내는 것이 확인되었다. As a result, it was confirmed that only EXO-OVA-mAb exhibited a significant increase in the CTLs/Treg ratio in the tumor site compared to all other exosome formulations as shown in FIG. 6E.

또한, 종양에 대한 T 세포 활성 증가를 확인하기 위해, 혈청과 종양 부위에서 세포 면역 반응의 주요 마커인 IFN-γ 및 TNF-α 수준을 각각 ELISA 및 면역조직화학 분석으로 확인하였다. In addition, in order to confirm the increase in T cell activity against tumors, the levels of IFN-γ and TNF-α, which are major markers of cellular immune responses in serum and tumor sites, were confirmed by ELISA and immunohistochemical analysis, respectively.

그 결과, 도 5F 내지 도 6G를 참고하면 앞서 확인된 실험들과 일관되게 EXO-OVA-mAb 처리에 의해 증가된 T 세포 활성 및 종양 침윤으로 인하여 혈청 및 종양 모두에서 IFN-γ 및 TNF-α의 높은 생산이 확인되었다.As a result, referring to FIGS. 5F to 6G, consistent with the previously confirmed experiments, the T cell activity and tumor infiltration increased by EXO-OVA-mAb treatment of IFN-γ and TNF-α in both serum and tumor High production was confirmed.

마지막으로, 처리된 마우스의 체중 확인 및 헤마톡실린-에오신 염색에 따른 장기 손상을 확인하여 엑소좀 처리의 안전성을 확인하였다.Finally, the safety of exosome treatment was confirmed by checking the weight of the treated mice and by checking the organ damage caused by hematoxylin-eosin staining.

그 결과, 도 7과 같이 체중은 4개의 처리군 모두 유의한 차이가 확인되지 않았으며, 마우스의 심장, 간, 비장, ILN, 폐 및 신장에서 유의미한 조직병리학적 소견은 확인되지 않았다.As a result, as shown in FIG. 7, a significant difference in body weight was not confirmed in all four treatment groups, and no significant histopathological findings were found in the heart, liver, spleen, ILN, lung and kidney of mice.

상기 결과로부터 엑소좀 제형은 마우스에서 어떠한 심각한 독성도 유발하지 않는 것이 확인되었다.From the above results, it was confirmed that the exosome formulation did not induce any serious toxicity in mice.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및
공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자 조성물.
an antibody conjugate comprising a lipid, a biocompatible polymer, and an antibody; and
The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody A labeled exosome nanoparticle composition.
청구항 1에 있어서, 상기 항체접합체는 엑소좀 표면 지질이중층 내 지질유동섬 (lipid raft)에 고정되어 엑소좀 표면에 삽입되는 것을 특징으로 하는 엑소좀 나노입자 조성물.The method according to claim 1, wherein the antibody conjugate is an exosome nanoparticle composition, characterized in that it is fixed to the lipid raft (lipid raft) in the exosome surface lipid bilayer is inserted into the exosome surface. 청구항 1에 있어서, 상기 엑소좀은 오브알부민과 Poly(I:C)로 자극되어 성숙된 수지상세포로부터 분비된 엑소좀인 것을 특징으로 하는 엑소좀 나노입자 조성물.The exosome nanoparticle composition according to claim 1, wherein the exosomes are exosomes secreted from dendritic cells stimulated with ovalbumin and Poly(I:C). 청구항 1에 있어서, 상기 생체적합성 고분자는 폴리에틸렌글리콜, 히알루론산, 알지네이트, 폴리아크릴산 및 폴록사머로 이루어진 군에서 선택되는 것을 특징으로 하는 엑소좀 나노입자 조성물.The method according to claim 1, wherein the biocompatible polymer is exosome nanoparticle composition, characterized in that selected from the group consisting of polyethylene glycol, hyaluronic acid, alginate, polyacrylic acid and poloxamer. 청구항 1에 있어서, 상기 항체는 항-면역체크포인트 항체인 것을 특징으로 하는 엑소좀 나노입자 조성물.The exosome nanoparticle composition according to claim 1, wherein the antibody is an anti-immune checkpoint antibody. 청구항 5에 있어서, 상기 면역체크포인트는 CTLA-4 및 PD-1으로 이루어진 군에서 선택되는 것을 특징으로 하는 엑소좀 나노입자 조성물.The exosome nanoparticle composition according to claim 5, wherein the immune checkpoint is selected from the group consisting of CTLA-4 and PD-1. 청구항 1에 있어서, 상기 엑소좀 나노입자는 림프절로 침투하여 T 세포를 표적함으로써, 면역체크포인트를 억제시키고 T 세포의 면역반응을 활성화시키는 것을 특징으로 하는 엑소좀 나노입자 조성물.The exosome nanoparticle composition according to claim 1, wherein the exosome nanoparticles penetrate into lymph nodes and target T cells, thereby suppressing immune checkpoints and activating the immune response of T cells. 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및
공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 면역항암제 조성물.
an antibody conjugate comprising a lipid, a biocompatible polymer, and an antibody; and
The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody An immunotherapy composition comprising labeled exosome nanoparticles as an active ingredient.
청구항 8에 있어서, 상기 엑소좀 나노입자는 T 세포를 표적하여 면역체크포인트를 억제시키고 종양 특이적 CD4+ 및 CD8+ T 세포의 면역활성을 증가시키는 것을 특징으로 하는 면역항암제 조성물.The immunotherapy composition according to claim 8, wherein the exosome nanoparticles target T cells to suppress immune checkpoints and increase the immune activity of tumor-specific CD4+ and CD8+ T cells. 청구항 9에 있어서, 상기 면역체크포인트는 CTLA-4 및 PD-1으로 이루어진 군에서 선택되는 것을 특징으로 하는 면역항암제 조성물.The immuno-oncology composition according to claim 9, wherein the immune checkpoint is selected from the group consisting of CTLA-4 and PD-1. 지질, 생체적합성 고분자 및 항체로 이루어진 항체접합체; 및
공동자극분자 및 주조직적합성 복합체(MHC)-오브알부민(OVA) 복합체가 엑소좀 표면 지질이중층에 각각 삽입된 엑소좀으로 이루어지며, 상기 항체접합체의 지질이 상기 엑소좀 표면 지질이중층에 삽입되어 항체 표지된 엑소좀 나노입자를 유효성분으로 함유하는 암백신 조성물.
an antibody conjugate comprising a lipid, a biocompatible polymer, and an antibody; and
The costimulatory molecule and major histocompatibility complex (MHC)-ovalbumin (OVA) complex are composed of exosomes inserted into the exosome surface lipid bilayer, respectively, and the lipid of the antibody conjugate is inserted into the exosome surface lipid bilayer and the antibody A cancer vaccine composition comprising labeled exosome nanoparticles as an active ingredient.
DPPE-PEG-NHS의 NHS (N-Hydroxysuccinimide) 작용기와 항체의 라이신 잔기의 아민 커플링 반응시켜 항체접합체를 준비하는 단계(제1단계);
오브알부민(OVA)과 Poly(I:C)가 첨가된 배지에서 수지상세포를 배양하여 OVA-엑소좀을 준비하는 단계(제2단계); 및
상기 제1단계의 항체접합체와 제2단계의 OVA-엑소좀를 배양하여 엑소좀 표면 지질이중층에 항체접합체를 삽입시키는 단계(제3단계)를 포함하는 항체 표지된 엑소좀 나노입자 제조방법.
preparing an antibody conjugate by amine coupling reaction between the NHS (N-Hydroxysuccinimide) functional group of DPPE-PEG-NHS and the lysine residue of the antibody (step 1);
Preparing OVA-exosomes by culturing dendritic cells in a medium supplemented with ovalbumin (OVA) and Poly(I:C) (second step); and
A method for producing antibody-labeled exosome nanoparticles comprising the step of culturing the antibody conjugate of the first step and the OVA-exosome of the second step and inserting the antibody conjugate into the exosome surface lipid bilayer (step 3).
청구항 12에 있어서, 상기 제1단계의 항체는 항-면역체크포인트 항체인 것을 특징으로 하는 엑소좀 나노입자 제조방법.The method according to claim 12, wherein the antibody of the first step is an anti-immune checkpoint antibody. 청구항 12에 있어서, 상기 제1단계는 항체와 DPPE-PEG-NHS를 1:2 내지 1:8 몰비로 반응시키는 것을 특징으로 하는 엑소좀 나노입자 제조방법.The method according to claim 12, wherein in the first step, the antibody and DPPE-PEG-NHS are reacted in a molar ratio of 1:2 to 1:8.
KR1020200178336A 2020-12-18 2020-12-18 Antibody inserted exosome nanoparticle composition and medical uses thereof KR20220087880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200178336A KR20220087880A (en) 2020-12-18 2020-12-18 Antibody inserted exosome nanoparticle composition and medical uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200178336A KR20220087880A (en) 2020-12-18 2020-12-18 Antibody inserted exosome nanoparticle composition and medical uses thereof

Publications (1)

Publication Number Publication Date
KR20220087880A true KR20220087880A (en) 2022-06-27

Family

ID=82246864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200178336A KR20220087880A (en) 2020-12-18 2020-12-18 Antibody inserted exosome nanoparticle composition and medical uses thereof

Country Status (1)

Country Link
KR (1) KR20220087880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869417A (en) * 2022-07-14 2023-03-31 郑州大学 Anti-tumor fusion exosome and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005546A (en) 2016-07-06 2018-01-16 인천대학교 산학협력단 Pahrmaceutical composition using drug-loaded exosome or nanovesicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005546A (en) 2016-07-06 2018-01-16 인천대학교 산학협력단 Pahrmaceutical composition using drug-loaded exosome or nanovesicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869417A (en) * 2022-07-14 2023-03-31 郑州大学 Anti-tumor fusion exosome and preparation method and application thereof
CN115869417B (en) * 2022-07-14 2023-10-10 郑州大学 Anti-tumor fusion exosome and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Dai Phung et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses
JP6832904B2 (en) RNA preparations for immunotherapy
Qian et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy
Qin et al. Development of a cancer vaccine using in vivo click‐chemistry‐mediated active lymph node accumulation for improved immunotherapy
Thomas et al. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response
Van Broekhoven et al. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy
US20130142864A1 (en) In vivo targeting of dendritic cells
CN113769106A (en) Fused cell membrane nano vesicle for tumor immunotherapy, and preparation method and application thereof
Xie et al. A nanovaccine based on adjuvant peptide FK‐13 and l‐phenylalanine poly (ester amide) enhances CD8+ T cell‐mediated antitumor immunity
Mohammadian Haftcheshmeh et al. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer
KR20220087880A (en) Antibody inserted exosome nanoparticle composition and medical uses thereof
Pappalardo et al. Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes
Pappalardo et al. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes
US20240156930A1 (en) Tumor vaccine based on tumor-derived microparticles, and preparation method and use thereof
Escalona-Rayo et al. In vitro and in vivo evaluation of clinically-approved ionizable cationic lipids shows divergent results between mRNA transfection and vaccine efficacy
KR102425028B1 (en) Small lipid nanoparticle and cancer vaccine comprising the same
US11446390B2 (en) Antigen capturing nanoparticles for use in cancer immunotherapy
CN114807048A (en) Genetically engineered antigen-presenting extracellular vesicle and preparation method and application thereof
CN115006550A (en) Genetically engineered tumor therapy exosomes coupled with immune checkpoint blocking antibodies
WO2024094043A1 (en) Modified exosome preparation, preparation method therefor, and use thereof
CN107080837B (en) Tumor vaccine, dendritic cell tumor vaccine and preparation method thereof
WO2023190175A1 (en) Lipid nanoparticles for delivering nucleic acid to peripheral blood mononuclear cells, and method for delivering nucleic acid to peripheral blood mononuclear cells using same
CN117402831B (en) Application of large-scale customized dendritic cell exosomes in resisting tumor
WO2023054243A1 (en) Lipid nanoparticles having cell directivity
Ochyl Preparation and Characterization of Cell Membranes for Cancer Immunotherapy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination