KR20220087256A - High pressure pump type power plant usingseawater - Google Patents

High pressure pump type power plant usingseawater Download PDF

Info

Publication number
KR20220087256A
KR20220087256A KR1020200177774A KR20200177774A KR20220087256A KR 20220087256 A KR20220087256 A KR 20220087256A KR 1020200177774 A KR1020200177774 A KR 1020200177774A KR 20200177774 A KR20200177774 A KR 20200177774A KR 20220087256 A KR20220087256 A KR 20220087256A
Authority
KR
South Korea
Prior art keywords
power generation
water
pressure pump
voltage
valve
Prior art date
Application number
KR1020200177774A
Other languages
Korean (ko)
Inventor
오양균
Original Assignee
오양균
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오양균 filed Critical 오양균
Priority to KR1020200177774A priority Critical patent/KR20220087256A/en
Publication of KR20220087256A publication Critical patent/KR20220087256A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/004Valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/268Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy making use of a dam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본발명의 취수된 해수를 고압 펌프를 기동하여 배관 에 압축을 하고 압축된 유량 유속을 터빈에 가압 하여 터빈에 결합된 회전자를 회전하고 코일을 감은 발전기 고정자 회전력에 자력이 발생되면 회전자에 계자전압을 가압하여 고정자 에 발생된 자력은 전위차에 발전기 모선에 보내지고 발전된 무효전력과 계통의 유효 전력을 동위상으로 전압 주파수를 맞추어 발전전력을 송전한다.
송전된 발전전압 주파수 동위상에 따라 발전기 회전자 조절 및 유량제어로 발전량을 조절 하여 발전을 지속적으로 안전하게 운전한다.
결론 : 이상에서출원 명세서 대한 출원서를 상세한 설명을 특허청에 제출하오니 본발명이 특허 등록 될수 있도록 선처 하여 주시기 바랍니
By starting the high-pressure pump of the present invention, the intake seawater is compressed in the pipe, and the compressed flow rate is pressurized to the turbine to rotate the rotor coupled to the turbine. The magnetic force generated in the stator by pressurizing the voltage is sent to the generator bus at the potential difference, and the generated reactive power and the active power of the system are matched with the voltage frequency in the same phase to transmit the generated power.
The power generation is continuously operated safely by regulating the amount of power generation by controlling the generator rotor and flow rate according to the phase of the transmitted power generation voltage frequency.
Conclusion: I am submitting a detailed description of the application for the specification of the application above to the Korean Intellectual Property Office, so please take advance so that the invention can be patented

Description

해수를 이용한 고압펌프식 발전소{High pressure pump type power plant usingseawater}High pressure pump type power plant using seawater

본발명은 바다의 해수를 취수하여 동력으로 이용하는 지속적인 발전에 관한 것으로서 수평 수압 이동에 따른 해류조류에너지를 선행조사 하여 압력 유량유속 압력 에너지를 취수구로 끌어들여 전기에너지로 변환 하기위한 3노트 해상을 선행조사 하여 지질조사를 하여 발전소 부지의 적합성을 판단후 설계 차수한다The present invention relates to continuous power generation by taking in seawater from the sea and using it as power. By pre-investigating current tidal energy according to horizontal water pressure movement, the pressure flow velocity pressure energy is drawn into the intake port and converted into electrical energy by 3 knots sea preceded. Conduct a geological survey to determine the suitability of the power plant site, and then design it.

단계별 설계 시공 건설단계)Step-by-step design construction construction stage)

1단계) 해양의 선행조사된 3노트에 유속을 4노트로 만들기위한 해상준설을 하여 유속을 빠르게 해주고 수평수압 이동을 빠르게 설계해주고 시공하여주고Step 1) Offshore dredging to make the flow velocity 4 knots in the 3 knots surveyed beforehand in the ocean to speed up the flow speed, design and construct the horizontal water pressure movement quickly

2단계) 취수부 구조를 1단계 로부터 200m 경사지게 준설 10m 낮게 설계 해주고 취수부 구조물 설계를 하고 시공해주고 스크린 수문 저수조 취수 공급 배관도 경사지게 설계 시공하여 주면 취수부에 2단계 완료되고Step 2) Design the intake structure at an inclination of 200m from Step 1, design the intake structure 10m lower, design and construct the structure of the intake, and design and construct the screen sluice gate water intake supply pipe at an incline.

3단계) 저수조 구조물을 취수조 보다 낮게 설계 하여 취수부에 취수를 경사배관을 통해 저수조 구조물 +5m 까지 수위가 채워지도록 설계 시공해주고 배출부 구조물까지 하나의 구조물 설계 시공해주어야 되고. Step 3) Design the water tank structure lower than the water intake tank, and design and construct the water intake at the water intake section to fill the water level up to +5m of the water tank structure through the inclined pipe.

4단계)양정높이가 0~400m의 고압펌프 를 설계설치하고 수차터빈 구간 낙차 배관을 설계 시공 하여 주고 낙차배관에 취수공급 배관도 설계시공 해주고.Step 4) Design and install a high-pressure pump with a lift height of 0 to 400m, design and construct the drop pipe for the water turbine section, and design and construct the water intake supply pipe for the drop pipe.

5당계)수차터빈 발전기 회전자를 설계하여 시공하여 주고 발전시 발전 출력 송전 하기위한 발전기모선 발전차단기 양정펌프 제어반 회전자 제어반도 설계 시공하여주고 발전 제어설비도 설계시공 하여 발전소 개별 시운전 착수하고 고압펌프의 양정높이를 자유롭게조절 하여 설계용량 출력에 수차회전력을 발전출력의 효율을 극대화하는 해수를 이용한 고압펌프식 발전 장치 기술분야이고5 Party) Design and construction of water turbine generator rotor, generator busbar generator breaker to transmit power generation output during power generation, lift pump control panel, rotor control panel, design and construction, and design and build power generation control equipment to start individual test operation of power plant It is a high-pressure pump-type power generation device technology field using seawater that maximizes the efficiency of power generation output by using aberration rotational power to the design capacity output by freely adjusting the head height of the

1단계 개별 시운전)본발전소의 상기기술 분야의 고압 펌프식 수차터빈 발전소는 바다 해양의 해수에 수평수압 경도력 이동 에너지를 준설시공되어 해류조류에 유속이 3노트로 빠르게 이동되는지 유속을 시운전시험을 하여주고Step 1 Individual test run) The high-pressure pump-type water turbine power plant in the above technology field of this power plant was constructed by dredging horizontal hydraulic gradient force transfer energy into seawater in the sea, and the flow rate was tested to see if the flow rate moves rapidly to 3 knots in the current. do it

2단계 개별시운전)1단계 시운전 해류조류 속도가 수평수압경도력 에너지가 취수부에 경사면을 타고 도달하여 낙하시 4노트에 유속이 취수부에 도달 연직 수압 작용 원리로 30m 취수부 바닥을 치고 수위상승 +5m가 작용을 하는지 시험하고2nd stage individual test run) 1st stage test run The horizontal hydraulic gradient force energy reaches the intake part on the slope, and when it falls, the flow velocity reaches the intake part at 4 knots. Test if +5m works

3단계개별시운전)취수부 수위계 신호를 시험하고 +5m의 유량신호에 수문을 열고 밸브를 열어 저수조 유량을 채우면 4단계 펌프 구조 +5m 까지채워지 밸브를 열어 펌프우회배관을 열어 낙차 관로 까지 취수를 채워주면 저수조 유량계 40m 유량 신호를 받아 수차 터빈제어부로 보내주고 Step 3 individual test run) Test the water intake level gauge signal, open the sluice gate to the +5m flow signal and open the valve to fill the reservoir flow, then the 4th step pump structure will fill up to +5m. It receives the 40m flow signal from the water tank flowmeter and sends it to the water turbine turbine control unit.

4단게개별시운전)우회배관을 열어 낙차배관에 물을채우면 낙차배관 유량계 측정된 값은 고압펌프 제어반으로 보내주고 고압펌프 기동 운전으로 수차터빈 제어밸브가 열리고 수차 터빈 회전 하고 저수조에 배출이되는지 Step 4 Individual test run) When the bypass pipe is opened and the falling pipe is filled with water, the measured value of the falling pipe flow meter is sent to the high-pressure pump control panel.

5단계개별시운전)수차터빈이 회전을 하면 연결된 발전기 회전자는 회전을 하면 발전기 자력이 발생되어 발전기모선으로 위상차에 전압 전류가 흐르면 발전기모선의 전압 측정계에 전압이 계측되는지 개별 시운전이 이루어지므로 Step 5 Individual test run) When the water turbine turbine rotates, the generator rotor rotates, generating magnetic force of the generator.

6단계개별시운전)개별운전시험이 끝나면 배출부 밸브를 열어 고압 펌프실에 채워진 유량 만 배출되어 바다로 배출하고 배출이 종료 되면 배출밸브는 닫히고 단계별 시운전을 마치는 고압펌프식 배경기술이다.6-step individual trial operation) When the individual operation test is completed, the discharge valve is opened, and only the flow rate filled in the high-pressure pump chamber is discharged and discharged to the sea.

발전소 운전단계)여기서 해양과 취수부은 해수면의 높이의 수평수압 이동을 빠르게 유입되고 정지시에는 취수부에서 바다로 5m 증가된 유량이 순환되고 발전시 발전소 저수조를 채워주고 발전구간 에 유량을 채워주고 발전구간에 충수가 완료되면 수문을 닫으면 취수조 유량은 바다로 순환되어 나가고 해양부유물 쓰레기는 스크린에 유입이차단되고 수차터빈 운전에 문제가없도록 해결 과제와 저수조와 낙차배관에 충수가되어 유량 유속으로 빠르게 충수가되는 해결과제 이므로 해결과제가 발전소연속 운전에 문제가 되지 않으면 발전소 운전에들어가고 발전소 운전조절하여 공급 해주고 필요한 수량은 밸브를 열어 수시로 발전제어브가 조절 제어하여 수량을 공급 조절 해주는 해결 과제이다Power plant operation stage) Here, the ocean and water intake unit rapidly flow in horizontal water pressure movement at sea level, and when stopped, the flow rate increased by 5m from the intake unit to the sea is circulated, and during power generation, the power plant fills the water tank, fills the flow rate in the power generation section, and enters the power generation section. When the water gate is closed, the water intake tank flow is circulated to the sea, and the inflow of marine debris is blocked to the screen and there is no problem in water turbine operation. If the task to be solved is not a problem for continuous operation of the power plant, it enters into operation of the power plant and supplies it by controlling the operation of the power plant.

이와같은 상기 목적이 해결되어 발전소 연속운전에 들어가 발전을 하기위한 고압펌프제어운전과 수차터빈 제어운전에 의한 발전이 이루어지고 발전에 필요한 고압펌프에 양정유량은 2.5배 적용운전하고 계통에 동위상 조절운전 10~30% 운전에 고압펌프유량은 4.5배로 충분하므로 발전 제어하여 계통 동위상 조절에 맞추어 유량은 제어되고 공급 되므로 수차터빈은 원할하게 제어되고 저수조에 배출 하면서 발전출력을 생산하는 해결 수단이다As the above object is solved, power generation is made by high-pressure pump control operation and water turbine control operation to enter continuous operation of the power plant to generate electricity, and the head flow rate is applied to the high-pressure pump required for power generation by 2.5 times, and the same phase is adjusted in the system Since the high-pressure pump flow rate is 4.5 times sufficient for 10 to 30% operation, power generation is controlled and the flow rate is controlled and supplied according to the system phase phase adjustment.

해상의 수평수압 경도력 3노트 이동 에너지를 취수부에 4노트로 유입된 해수를 운동에너지를 변환하기 위해서 저수조와 고압 펌프실 높이 까지 충분한 유량을 항상 채워주어 토출 높이 (0m~400m) 높이로 수차터빈 용량의 2.5배 유량을 높이거나 낮추어 수차터빈 (300)의 발전출력 200(MW) 와 주파수(60HZ) 회전자(302)여자기와 고압펌프(117)연 계 제어하여 고압펌프 토출량 을 제어하고 송전계통과 연계제어 하여 발전 전압과 송전 전압 주파수가 동위상이면 GCB투입하여 송전하면 발전된 전기에너지는 주변압기 로 승압되어 계통에 송전되고 수차 터빈(300)운전되고 취수조에 배출 게속되 는 고압 펌프식 발전방식을 이용 전기에너지를 생산하는 발전 방식의 효과입니다. In order to convert the kinetic energy of the seawater flowing into the water intake unit with 4 knots of horizontal water pressure gradient force of the sea 3 knots, the water turbine turbine is always filled with sufficient flow up to the height of the reservoir and high-pressure pump room to reach the discharge height (0m~400m). By increasing or lowering the flow rate 2.5 times the capacity, the power generation output 200 (MW) of the water turbine 300 and the frequency (60HZ) rotor 302 exciter and the high-pressure pump 117 are linked to control the high-pressure pump discharge amount and control the transmission system. If the power generation voltage and transmission voltage frequency are in the same phase by controlling with the GCB, the generated electrical energy is boosted to the ambient pressure and transmitted to the system. It is the effect of the power generation method that produces the used electric energy.

도1은 본 발명의 실시에 따른 해수를 이용한 고압펌프발전소의 측면도이고 도2 에 나타난 해수를 이용한 고압펌프발전소를 개략적으로 도시하는 불록도이다.도1및도2참조하면 본발명에 따른 해수를 이용한 고압펌프 발전소 입니다. 1 is a side view of a high-pressure pump power plant using seawater according to an embodiment of the present invention, and is a block diagram schematically showing a high-pressure pump power plant using seawater shown in FIG. 2. Referring to FIGS. 1 and 2, seawater according to the present invention is This is a high-pressure pump power plant.

(100)바다 해수에 수평수압이동 경도력 3노트 유속압력 밀도 이돌하는 바다.(100) Sea The sea that moves horizontally in seawater, 3 knots of gradient force, velocity, pressure, and density.

(110)해수를 취수로 끌어들여 4노트에 낙차 유량유속을 만드는 취수부이다.(110) It is an intake part that draws seawater into the intake and creates a falling flow rate at 4 knots.

(111)해수 에 유입하는 유입관로 에 부유물 쓰레기 차단 한다.(111) Block floating debris in the inlet pipe that flows into the seawater.

(111a)취수구 수위계 취수구 수위를 계측하여 발전 제어부로 보낸다.(111a) Water intake water level gauge The water intake level is measured and sent to the power generation control unit.

(112)밸브1 개방 취수조 수위를 채우고(200)유량계 신호에 자동으로 닫힌다 (112) Valve 1 opens, fills the water level in the water intake tank (200) and closes automatically at the flow meter signal.

(113)저수조에 해수를 채우고 레벨(+5m) 바다 수위와 같게 채운다. (113) Fill the water tank with seawater and fill it with the level (+5m) equal to the sea level.

(114저수조 수위 35m 수위 측정 하여 발전제어부로 보낸다.(114 Measure the water level at 35m water level in the water tank and send it to the power generation control unit.

(115)고압 펌프에 (+5m) 수위가 해양수위와 같게채워진다.(115) The high pressure pump is filled with (+5m) water level equal to the sea level.

(116)밸브-2 은 열리고 (119)배관에 물을 채운다(116)Valve-2 opens and fills the (119) pipe with water.

(117)고압 펌프 모터는회전 하여 고낙차로 150~ 400m 의 높이로 기동하면.(117) When the high pressure pump motor rotates and starts at a height of 150~400m with a high drop.

(118) 밸브-3 은 열리고 고낙차의 유량을 배출한다.(118) Valve-3 opens and discharges a high-drop flow rate.

(119)관로에 고낙차의 유량 유속은 압축되어 진다 (119) The flow rate of the high drop in the pipeline is compressed

(200)관로 유량압력 계측량 값을 운전 제어부로 보낸다. (200) Sends the measured value of the flow rate pressure of the pipeline to the operation control unit.

(201)제어조절밸브-4 열면 노줄을 조절 수차터빈 (300) 회전한다. (201) Control control valve-4 When opened, the water turbine (300) rotates to control the nozzle.

(202)수차터빈을 회전하면 밸브-5는 압력에 열려 저수조에 배출한다 (202) When the water turbine turbine is rotated, valve-5 is opened to the pressure and discharged to the water tank.

(203)발전 정지로 밸브-6 열어 고압펌프 낙차관 유량 배출시 배출한다 (203) When power generation stops, valve-6 is opened and the high-pressure pump is discharged when the flow rate of the falling pipe is discharged.

(204)배출구 해양 바다로 연결되어 낙차관 유량 만 배출한다 (204) Outlet Connected to the ocean and sea, only the flow rate of the falling pipe is discharged

(300)수차터빈은 회전하고 발전기에 설치된 회전자도 회전한다.(300) The water turbine turbine rotates and the rotor installed in the generator also rotates.

(301)발전기는 수차의 회전력에 자력이 발생한다.(301) In the generator, magnetic force is generated by the rotational force of the water wheel.

(302)수차터빈 에 연결된 회전자에 계자전압을 가압해주면 회전하여 발전기 자력을 전위차가 낮은곳 (303)발전기 모선(IPB) 으로 흐른다 303)발전기모선 에 발전 전압전류가 흐르고 1차전압측정기로 전압측정한다.(302) If the field voltage is applied to the rotor connected to the water turbine measure

(304)발전차단기 (GCB)2차 전압측정기 발전전압 측정 동위상이면 차단기 투입되고 동위상 전압을 발전제어부로 보내면 회전자 10~30% 범위조절 하면서 수차터빈 제어밸브 연계제어되고 유량을 제어하여 전압 주파수 제어한다 (304) Generation Circuit Breaker (GCB) Secondary Voltage Meter Measuring the generation voltage If it is in the same phase, the breaker is turned on and when the same-phase voltage is sent to the generation control unit, the rotor is controlled by 10~30% range while controlling the water turbine control valve and the flow rate is controlled to control the voltage frequency control

(305)회전자에 계자전압 제어용 공급용 변압기 이다.(305) It is a transformer for supplying field voltage control to the rotor.

(306)고압펌프 전원 공급 및 발전제어용 전원 변압기이다.(306) It is a power transformer for high-pressure pump power supply and power generation control.

(307)주변압기로 (304)발전차단기 투입되면 발전전압을 18KV~345KV주변압기로 승압하여 계통에 송전 한다.(307) When the (304) power generation breaker is input to the peripheral voltage, the power generation voltage is boosted to the 18KV~345KV peripheral voltage and transmitted to the system.

(308)송변전소 차단기(GIB)로 수동 투입하고 문제시 자동 개방되어 발전소 발전기를 보호 한다. (308) It is manually put in with the Transmission and Substation Breaker (GIB) and is automatically opened when there is a problem to protect the generator of the power plant.

(309) 송전 타워로 발전 전력을 계통에 송전한다.(309) The power transmission tower transmits the generated power to the grid.

[0007] 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용 에만 국한되지 않고 여러 가지 변형이 본 발명의 범위를벗어나지 않는 한도내에서 실시될 수 있다. [0007] The present invention is not limited to the same configuration and operation as the specific embodiments as described above, and various modifications may be made within the limits that do not depart from the scope of the present invention.

따라서 그와 같은 변형도 본 발 명 의 범위에 속하는 것으로 간주해야 하며 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.Accordingly, such modifications should also be considered to fall within the scope of the present invention, and the scope of the present invention should be determined by the following claims.

[0008]취수부에 수위(+5m)고압펌프 수위(+5m) 해수밀도 압력으로 취수구 수위와 동일한 수위레벨로 채운다[0008] Fill the intake part with the same water level as the intake water level with the water level (+5m) high pressure pump water level (+5m) seawater density pressure

[0009]고압펌프모터(117)로 기동하여(0~400m)양정 높이로 발전제어부와 회전자 조절범위 10~30% 조절 되어 운전된다.By starting with the high pressure pump motor 117 (0 to 400m), the power generation control unit and the rotor control range are adjusted by 10 to 30% to the height of the lift.

[0010]밸브3 (118)열려 낙차관(119) 8.000mm 에 물을 채우고 압력을높인다.[0010]Valve 3 (118) is opened to fill the water in the drop pipe (119) 8.000mm to increase the pressure.

[0011]단면적Am=

Figure pat00001
[0011] Cross-sectional area Am =
Figure pat00001

[0012]배관 물토출유속 V=

Figure pat00002
[0012] Pipe water discharge flow rate V=
Figure pat00002

[0013]정격 유량Qm

Figure pat00003
=A
Figure pat00004
V=50.24m
Figure pat00005
59m
Figure pat00006
/s=2.964m
Figure pat00007
[0013] Rated flow Qm
Figure pat00003
=A
Figure pat00004
V=50.24m
Figure pat00005
59m
Figure pat00006
/s=2.964m
Figure pat00007

[0014]P(KW)=Q

Figure pat00008
g
Figure pat00009
H
Figure pat00010
Figure pat00011
효율=2.964
Figure pat00012
9.81
Figure pat00013
175m
Figure pat00014
0.95=483.402.465(j/W)[0014]P(KW)=Q
Figure pat00008
g
Figure pat00009
H
Figure pat00010
Figure pat00011
Efficiency=2.964
Figure pat00012
9.81
Figure pat00013
175m
Figure pat00014
0.95=483.402.465 (j/W)

[0015]P(KW)=483.402(KW)=483(MW)이므로[0015] Since P(KW)=483.402(KW)=483(MW)

[0016] 발전기 설비용량 200(MW)=4 배의 설비로 제원을 증가할 필요 없음.[0016] Generator capacity 200 (MW) = no need to increase the specification to the facility of 4 times.

[0017]발명의 청원은 해수의 유입운동에너지를 이용한 고압펌프식 해수 발전에 착안점을 두었습니다.(고압펌프(10MW)용량)발전기는 용량 200(MW)20배 용량 차이이고 (효성 대용량 개발품 사용될것임)[0017] The petition of the invention was focused on high-pressure pump-type seawater power generation using the inflow kinetic energy of seawater. will)

[0018] 삼면이 바다인 한국은 적합한 발전소부지 선정하여 건설 할 수 있다는 장점과 무공해 무연료 낙차 에 구해 받지 않고 발전이 가능하고 경제적인 건설단가로 큰 발전용량의 전기를 생산 할수 있다. Korea, which is surrounded by the sea on three sides, has the advantage of being able to select and construct a suitable power plant site, and it is possible to generate electricity without being constrained by pollution-free fuel fall and large power generation capacity at an economical construction cost.

[0019]해양을 이용한 고압 펌프식 발전소 전력은 예비율에 구해 받지 않고 잉여전력은 수소깨스 생산으로 산업용 가정용 에 공급 하고 저렴한 전기요금 공급 국가 경제 산업에 기여하고 지구온난화에 도움이되리라고 계획하고 해수를 이용한 고압펌프식 발전소 특허출원 하였음.High-pressure pump-type power plant power using the ocean is not obtained from the reserve ratio, and the surplus power is supplied to industrial households by producing hydrogen sesame seeds and low electricity rates. Patent application for high pressure pump type power plant.

[0020][도-2]
100-해양(바다) 118-밸브-3 302-회전자
110-취수부 119-낙차관 303-발전기모선-IPB
111-스크린 200-유량계 304-발전차단기-GCB
111a- 수위계 201-밸브4 305-회전자변압기-ETR
112-밸브-1 202-밸브5 306-소내변압기-ATR
113-저수조 203-밸브6 307-주변압기-MTR
114-수위계 204-배출구 308-변전소-GIB
115-고압펌프 300-수차터빈 309-송전타워
116-밸브-2 301-발전기
117-고압모터
[0020][FIG.-2]
100-Marine (Sea) 118-Valve-3 302-Rotor
110-Intake part 119-Falling pipe 303-Generator busbar-IPB
111-Screen 200-Flowmeter 304-Generation Breaker-GCB
111a- Water level 201-Valve 4 305-Rotor transformer-ETR
112-Valve-1 202-Valve 5 306-Sonae Transformer-ATR
113-Reservoir 203-Valve 6 307-Peripheral-MTR
114 - Water Level Meter 204 - Outlet 308 - Substation - GIB
115-high pressure pump 300-water turbine 309-transmission tower
116-Valve-2 301-Generator
117 - high voltage motor

Claims (1)

1)단계) 본 발명의 고압펌프식 발전의 시공 및 시운전에 관련된 취수부(110)에 (100)해양 바다에 바닥을 경사지게 시공된 취수부의 모든 방향에 해류조류가 수평 수압수압경도력 작용원리에 유입되게 시공 되므로
2)단계) 따라서취수부(110)유입 해수에 밀도 압력높이 로 취수조 (110)에 유입되어 낙하되고 스크린 (111)쓰레기 차단하고 취수부에 수위는 +5m 올리고 유량수위 는(112)밸브를 열고
3단계) (113)저수조에 채우면 고압펌프(115)하단 5m 높이와 취수부높이와 같게 되고 (116)밸브-2 을 열어 낙차관 (119)까지 물이채워지고 바다 수위와 고압펌프(115)(+5m)수위까지 채워지면 (112)밸브-1 닫히고 바다수위 와 일정하게 채워지면 발전준비하여
4단계) 채워진 수위량을 수위계(114)는 발전 제어부에 수위량을 보내지고 (116) 우회배관을열고 (119)낙차관에 물을 채우고 닫고 고압펌프 모터 (117) (306)제어부전원이 가압되고 제어되어 기동 하면 (118)밸브-3 은 열리고 고압펌프150m+25m=175m 낙차는 (119)낙차관에 유량 압축하여 유량계(200) 신호를 받아
5단계)발전시스템 제어부에 보내어 수차터빈제어 밸브-4(201)조절하여 열고 수차터빈 (300) 회전하면서 배출되는압력에 (202)밸브-5 가 열리어 저수조에(113) 배출되고 수차터빈 회전 하면서 고압펌프 발전 시스템은 순환 운전되므로 수차터빈이(300) 회전하면 회전자(302) 회전하고 (301)발전기 자력이 발생 하고 (무효전력)은 회전자 제어부와 연계 하여 회전자(302)에 계자전압을 (306)회전자제어부제어로 가압하여 회전력 조절 하고 10~30% 회전력 조절에 (201)수차터빈조절밸브 유량도 연계 조절 되어 발전 시스템과 회전자 속도 증감에 따라 제어되고 발전 전압 조절되어 무효전력 18KV~60HZ로 조절 발전 전압 무효전력을 생산 하고 생산된 무효전력을 전위차로 발전기모선 IPB(303)보내져 발전차단기 1차측 에 가압되면 1차측 전압 측정용 계측기가 계측하고 (304) 발전차단 2치PT 전압 주파수 측정하여 조절 운전되므로 송수전 전압 주파수가 일치 하면 발전차단기 (304) 투입하고 발전단 전압 을 주변압기로 보내지고 승압 하여 송전단 GIB(308)통해 송전타워(309)로 송전계통 송전한다
6단계) 발전은 고압펌프로 펌핑하여 운전되고 운전시 배출이 되지않고 정지시 발전용 배관에 유량만 배출밸브-6(203)만 열려 배출구에 (204)배출하고 닫히므로 해양환경 오염이 없음니다.
1) Step) In the water intake unit 110 related to the construction and trial operation of the high-pressure pump type power generation of the present invention (100), sea currents in all directions of the intake unit constructed with an inclined bottom in the ocean are based on the principle of horizontal hydraulic hydraulic pressure gradient force action. Because it is built to flow in
Step 2) Therefore, the water intake unit 110 flows into the water intake tank 110 at a high density and pressure in the incoming seawater and falls, blocks the screen 111 garbage, raises the water level to +5 m in the intake unit, and opens the 112 valve. open
Step 3) (113) When it is filled in the water tank, the height of the 5 m bottom of the high pressure pump (115) and the height of the water intake part are equal to the height of the water intake section. When it is filled to the (+5m) water level, (112)Valve-1 closes and when it is filled with the sea level, it prepares for power generation.
Step 4) The filled water level gauge 114 sends the water level to the power generation control unit (116) opens the bypass pipe (119) fills and closes the drop pipe with water, and the high pressure pump motor (117) (306) control power supply pressurizes When it is controlled and started, (118) valve-3 opens, and the high-pressure pump 150m+25m=175m drop compresses the flow rate in the (119) drop pipe and receives the flowmeter 200 signal.
Step 5) It is sent to the power generation system control unit to open and control the water turbine control valve-4 (201), and the water turbine (300) rotates and the pressure discharged while (202) valve-5 opens and discharges to the water tank (113), and the water turbine rotates Since the high-pressure pump power generation system is circulating, when the water turbine (300) rotates, the rotor (302) rotates (301) and the generator magnetic force is generated (reactive power) in the rotor (302) in connection with the rotor control unit. The torque is adjusted by pressurizing the voltage with the (306) rotor control unit control, and the flow rate of the (201) water turbine control valve is also adjusted in conjunction with the 10~30% torque control. The power generation voltage is adjusted to 18KV~60HZ Reactive power is produced and the generated reactive power is sent to the generator bus IPB (303) as a potential difference and pressurized to the primary side of the power generation breaker, the primary voltage measuring instrument measures (304) and cuts power generation 2 Since the PT voltage frequency is measured and controlled, if the transmission and reception voltage frequency is the same, the generator breaker 304 is turned on, the voltage of the generator stage is sent to the peripheral voltage, and the voltage is boosted and transmitted to the transmission tower 309 through the transmission stage GIB (308).
Step 6) Power generation is operated by pumping with a high-pressure pump, and there is no discharge during operation, and only the discharge valve-6 (203) opens and closes the discharge valve 6 (203) for the flow rate in the power generation pipe when it is stopped, so there is no pollution of the marine environment. .
KR1020200177774A 2020-12-17 2020-12-17 High pressure pump type power plant usingseawater KR20220087256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200177774A KR20220087256A (en) 2020-12-17 2020-12-17 High pressure pump type power plant usingseawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200177774A KR20220087256A (en) 2020-12-17 2020-12-17 High pressure pump type power plant usingseawater

Publications (1)

Publication Number Publication Date
KR20220087256A true KR20220087256A (en) 2022-06-24

Family

ID=82215577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200177774A KR20220087256A (en) 2020-12-17 2020-12-17 High pressure pump type power plant usingseawater

Country Status (1)

Country Link
KR (1) KR20220087256A (en)

Similar Documents

Publication Publication Date Title
Nasir Design of micro-hydro-electric power station
US6420794B1 (en) Hydropower conversion system
Kusakana A survey of innovative technologies increasing the viability of micro-hydropower as a cost effective rural electrification option in South Africa
Sharma et al. Run off river plant: status and prospects
AU2008281311A1 (en) Buoyancy hydro power generator and method
US20140028028A1 (en) Free-flow hydro powered turbine system
KR100681662B1 (en) Generation control system of a tidal power station and method controlling thereof
JP3220944U (en) Seawater power generator
WO2011125072A2 (en) Water velocity enhancement in canal structure for low head electrical power generation system/turbine
KR20220087256A (en) High pressure pump type power plant usingseawater
Saket et al. Self excited induction generator and municipal waste water based micro hydro power generation system
Kumano et al. Experimental test and feasibility study of a micro in-pipe hydro power generator at a university building
Sobhan Automatic generation control and monitoring the mechanism of micro hydro power plant with impulse turbine and synchronous generator
CN109932187B (en) Method and system for utilizing power generated by trial run of aviation turboshaft engine
Halder et al. Efficient hydroenergy conversion technologies, challenges, and policy implication
Saket et al. Reliability evaluation of micro hydro-photo-voltaic hybrid power generation using municipal waste water
Nasir Mat lab simulation procedure for design of micro-hydroelectric power plant
Bruce Tidal energy system for on-shore power generation
Cüce et al. Conceptual design of a regulator-type hydropower plant
KR20200145287A (en) Pressure Pump type Hydraulic power generator using the seawater
KR20230027770A (en) Water wave power plant using river water
KR20220135126A (en) Seawater pressurized power plant
Pandey et al. Generation of Electricity by Oceanic Waves Using Rotatory Generators: Performance Analysis and Comparison
Amien et al. Relationship between Water Availability and Power Plant Performance Using Water Balance Method: Case of PT. INALUM Asahan
WO2020235842A1 (en) Building-type pumped storage power generation system

Legal Events

Date Code Title Description
E601 Decision to refuse application