KR20220086467A - Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof - Google Patents

Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof Download PDF

Info

Publication number
KR20220086467A
KR20220086467A KR1020210132409A KR20210132409A KR20220086467A KR 20220086467 A KR20220086467 A KR 20220086467A KR 1020210132409 A KR1020210132409 A KR 1020210132409A KR 20210132409 A KR20210132409 A KR 20210132409A KR 20220086467 A KR20220086467 A KR 20220086467A
Authority
KR
South Korea
Prior art keywords
curcumin
crn
cur
nanocomposite
carrageenan
Prior art date
Application number
KR1020210132409A
Other languages
Korean (ko)
Inventor
나건
이주영
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of KR20220086467A publication Critical patent/KR20220086467A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/57Compounds covalently linked to a(n inert) carrier molecule, e.g. conjugates, pro-fragrances

Abstract

본 발명은 다당류인 카라기난을 이용하여 커큐민의 안정성 및 생체이용률을 향상시킨 나노복합체에 관한 것으로, 보다 상세하게는 황산화 다당류인 카라기난을 이용한 나노복합체는 카라기난의 농도의존적으로 커큐민의 봉입률이 증가하여 90% 이상의 높은 봉입율이 확인되었으며, 나노복합체에 봉입된 커큐민의 안정성 및 세포막 투과도가 증가하는 것이 확인됨에 따라, 카라기난을 이용한 나노복합체는 커큐민의 수분용해도를 향상시키고 생체내 이용율을 향상시킬 수 있으므로, 커큐민을 유효성분으로 하는 의약품, 화장품 및 건강식품으로 제공될 수 있다.The present invention relates to a nanocomposite using the polysaccharide carrageenan to improve the stability and bioavailability of curcumin. A high encapsulation rate of 90% or more was confirmed, and as it was confirmed that the stability and cell membrane permeability of curcumin encapsulated in the nanocomposite increased, the nanocomposite using carrageenan could improve the water solubility of curcumin and improve the bioavailability. , it can be provided as a pharmaceutical, cosmetic, and health food containing curcumin as an active ingredient.

Description

다당류를 이용하여 커큐민의 안정성 및 생체 이용률이 향상된 나노복합체 및 이의 제조방법{Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof}Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof

본 발명은 다당류인 카라기난을 이용하여 커큐민의 안정성 및 생체이용률을 향상시킨 나노복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a nanocomposite with improved stability and bioavailability of curcumin using carrageenan, a polysaccharide, and a method for preparing the same.

커큐민은 향신료 강황에 존재하는 화합물로, 많은 연구에서 산화방지성, 소염성, 항증식성 및 항혈관 신생 활성과 같은 약물학적 효과를 갖는 것으로 나타났다. 그 자체로서, 커큐민은 암, 심장병, 당뇨병, 크론병 및 각종 신경학적 질환과 같은 질환과 싸우기 위한 표적을 나타낸다. 이러한 이유로, 커큐민에 대한 상당한 연구가 진행되고 있다.Curcumin, a compound present in the spice turmeric, has been shown to have pharmacological effects such as antioxidant, anti-inflammatory, anti-proliferative and anti-angiogenic activities in many studies. As such, curcumin represents a target for fighting diseases such as cancer, heart disease, diabetes, Crohn's disease and various neurological diseases. For this reason, considerable research is being done on curcumin.

커큐민의 중요한 이점은 카레와 같은 음식물에 향신료로서 수세기 동안 사용된 천연 화합물임에 기인하는 이의 광범위한 수용이다. 추가의 이점은 고용량에서도 부작용이 거의 없거나 전혀 없다는 점이다. 이는 또한 공급하기에 비교적 저렴하고, 실온에서 잘 저장할 수 있다.An important benefit of curcumin is its widespread acceptance due to being a natural compound that has been used for centuries as a spice in foods such as curry. A further advantage is that even at high doses there are few or no side effects. It is also relatively inexpensive to supply and can be stored well at room temperature.

이러한 이점에도 불구하고, 아직 해결해야 할 최우선 문제는 커큐민의 익히 공지된 문제인 동물에서의 낮은 생체이용성이다. 이는 불량한 용해도 및 따라서 시스템 및/또는 빠른 대사로부터 불량한 흡수, 제거를 포함하는 요인의 조합에 기인하는 것으로 간주된다.Despite these advantages, a top priority still to be addressed is the well-known problem of curcumin, low bioavailability in animals. This is believed to be due to a combination of factors including poor solubility and thus poor absorption, clearance from the system and/or rapid metabolism.

과거에, 이러한 불량한 용해도는 적어도 시험관내 연구에서 커큐민의 용해도를 증가시키는 것을 돕는 담체, 예를 들면, DMSO 또는 트윈(Tween) 80을 첨가함으로써 해결했다. 그러나, 이러한 담체, 예를 들면, DMSO가 불쾌한 맛을 유도하고, 제조 비용 및 공정에 추가되어여 하고, 커큐민이 (소비자가 원하는) 천연 생성물이라는 이점을 손상시키는 문제점이 있다.In the past, this poor solubility has been addressed by adding a carrier that helps to increase the solubility of curcumin, at least in in vitro studies, such as DMSO or Tween 80. However, there are problems that such carriers, such as DMSO, induce an unpleasant taste, add to manufacturing costs and processes, and undermine the benefits of curcumin being a natural product (which consumers want).

대한민국 공개특허 제10-2008-0112224호 (2008.12.24. 공개)Republic of Korea Patent Publication No. 10-2008-0112224 (published on December 24, 2008)

본 발명은 다양한 생리활성을 나타내는 커큐민의 안정성 및 생체이용률을 향상시키기 위해, 다당류인 카라기난을 이용한 커큐민 나노복합체 제조방법을 제공하고자 한다.An object of the present invention is to provide a method for preparing a curcumin nanocomposite using a polysaccharide, carrageenan, in order to improve the stability and bioavailability of curcumin exhibiting various physiological activities.

본 발명은 커큐민을 유기용매에 용해시켜 유기용매상을 준비하는 단계 (제1단계); 카라기난 (carrageenan)을 물에 용해시켜 수상을 준비하는 단계 (제2단계); 상기 제1단계의 유기용매상과 제2단계의 수상을 혼합하여 균질화하는 단계 (제3단계); 상기 균질화된 혼합물을 초음파 처리하는 단계 (제4단계); 및 상기 초음파 처리된 혼합물에서 유기용매를 증발시키는 단계 (제5단계)로 제조되는 커큐민 나노복합체 제조방법을 제공한다.The present invention comprises the steps of dissolving curcumin in an organic solvent to prepare an organic solvent phase (first step); preparing an aqueous phase by dissolving carrageenan in water (second step); mixing and homogenizing the organic solvent phase of the first step and the aqueous phase of the second step (third step); sonicating the homogenized mixture (fourth step); and evaporating the organic solvent from the sonicated mixture (step 5).

또한, 본 발명은 상기 제조방법에 따른 커큐민 나노복합체를 제공한다.In addition, the present invention provides a curcumin nanocomposite according to the above preparation method.

본 발명에 따르면, 황산화 다당류인 카라기난을 이용한 나노복합체는 카라기난의 농도의존적으로 커큐민의 봉입률이 증가하여 90% 이상의 높은 봉입율이 확인되었으며, 카라기난의 분자량에 따라 유기용매 친화도의 개선으로 봉입율 개선이 확인되었으며, 나노복합체에 봉입된 커큐민의 안정성 및 세포막 투과도가 증가하는 것이 확인됨에 따라, 카라기난을 이용한 나노복합체는 커큐민의 수분용해도를 향상시키고 생체내 이용율을 향상시킬 수 있으므로, 커큐민을 유효성분으로 하는 의약품, 화장품 및 건강식품으로 제공될 수 있다.According to the present invention, in the nanocomposite using the sulfated polysaccharide carrageenan, the encapsulation rate of curcumin increased in a concentration-dependent manner of carrageenan, and a high encapsulation rate of 90% or more was confirmed. As the rate improvement was confirmed and the stability and cell membrane permeability of curcumin encapsulated in the nanocomposite were confirmed to increase, the nanocomposite using carrageenan can improve the water solubility of curcumin and improve the bioavailability, so curcumin is effective It can be provided as pharmaceuticals, cosmetics, and health foods as ingredients.

도 1은 제작된 커큐민 나노복합체의 모식도와 증진된 소장 투과도를 설명하는 모식도이다.
도 2는 제작된 커큐민 나노복합체를 확인한 이미지 결과이다.
도 3은 제작된 커큐민 나노복합체 내 커큐민의 안정성을 확인한 결과이다.
도 4은 제작된 커큐민 나노복합체와 용매의 비율에 따른 용매 친화도를 확인한 결과이다.
도 5은 제작된 커큐민 나노복합체와 용매의 비율에 따른 용매 친화도를 커큐민이 포함된 조건에서 확인한 결과이다.
도 6은 제작된 커큐민 나노복합체의 증진된 항산화 효과를 확인한 결과이다.
도 7은 제작된 커큐민 나노복합체의 증진된 항산화 효과를 세포실험을 통해 확인한 결과이다.
도 8은 제작된 커큐민 나노복합체의 항염증 효과를 세포실험을 통해 확인한 결과이다.
도 9은 커큐민 나노복합체를 이루는 여러 다당류 중 황산화 다당류와 소장세포의 증진된 상호작용을 확인한 결과이다.
도 10은 제작된 커큐민 나노복합체의 생체이용율 (Pharmacokinetics)을 확인한 결과이다.
1 is a schematic diagram illustrating the prepared curcumin nanocomposite and improved intestinal permeability.
2 is an image result confirming the prepared curcumin nanocomposite.
3 is a result confirming the stability of curcumin in the prepared curcumin nanocomposite.
4 is a result of confirming the solvent affinity according to the ratio of the prepared curcumin nanocomposite and the solvent.
5 is a result of confirming the solvent affinity according to the ratio of the prepared curcumin nanocomposite and the solvent in the condition containing curcumin.
6 is a result confirming the enhanced antioxidant effect of the prepared curcumin nanocomposite.
7 is a result of confirming the enhanced antioxidant effect of the prepared curcumin nanocomposite through a cell experiment.
8 is a result of confirming the anti-inflammatory effect of the prepared curcumin nanocomposite through a cell experiment.
9 is a result confirming the enhanced interaction between sulfated polysaccharides and small intestine cells among various polysaccharides constituting the curcumin nanocomposite.
10 is a result confirming the bioavailability (Pharmacokinetics) of the prepared curcumin nanocomposite.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 커큐민의 수분산성과 안정성 높이기 위해 황산화 다당류인 카라기난을 이용한 나노복합체 제조방법에 관한 것으로, 본 발명의 나노복합체는 커큐민의 물에 대한 용해도를 향상시키는 방법을 제공함으로써 커큐민의 의약품, 화장품 및 식품으로서의 활용도를 높이는데 기여할 수 있다. The present invention relates to a method for preparing a nanocomposite using carrageenan, a sulfated polysaccharide, in order to increase the water dispersibility and stability of curcumin. And it can contribute to increasing the utilization as food.

본 발명은 커큐민을 유기용매에 용해시켜 유기용매상을 준비하는 단계 (제1단계); 황산화 다당류를 물에 용해시켜 수상을 준비하는 단계 (제2단계); 상기 제1단계의 유기용매상과 제2단계의 수상을 혼합하여 균질화하는 단계 (제3단계); 상기 균질화된 혼합물을 초음파 처리하는 단계 (제4단계); 및 상기 초음파 처리된 혼합물에서 유기용매를 증발시키는 단계 (제5단계)로 제조되는 커큐민 나노복합체 제조방법을 제공할 수 있다.The present invention comprises the steps of dissolving curcumin in an organic solvent to prepare an organic solvent phase (first step); preparing an aqueous phase by dissolving the sulfated polysaccharide in water (second step); mixing and homogenizing the organic solvent phase of the first step and the aqueous phase of the second step (third step); sonicating the homogenized mixture (fourth step); and evaporating the organic solvent from the sonicated mixture (the fifth step) may provide a method for preparing a curcumin nanocomposite.

상기 유기용매상은 다이클로로메테인 (Dichloromethane), 에탄올 (Ethanol) 및 클로로포름 (Chloroform)으로 이루어진 군에서 선택되는 것일 수 있다.The organic solvent phase may be selected from the group consisting of dichloromethane, ethanol, and chloroform.

상기 황산화 다당류는 카라기난 (carrageenan), 후코이단 (Fucoidan), 콘드로이틴 설페이트 (Chondroitin sulfate) 및 덱스트란 설페이트 (Dextran sulfate)으로 이루어진 군에서 선택되는 것일 수 있다.The sulfated polysaccharide may be selected from the group consisting of carrageenan, fucoidan, chondroitin sulfate, and dextran sulfate.

상기 황산화 다당류는 0.6 내지 0.7 중량%의 점도를 나타내는 것일 수 있다.The sulfated polysaccharide may have a viscosity of 0.6 to 0.7 wt%.

상기 황산화 다당류는 100 KDa 이상 또는 100 KDa 내지 800 KDa의 분자량을 나타내는 것일 수 있다.The sulfated polysaccharide may have a molecular weight of 100 KDa or more or 100 KDa to 800 KDa.

상기 유기용매상은 유기용매 100 중량부에 대하여, 커큐민 0.01 내지 10 중량부가 포함되는 것일 수 있다.The organic solvent phase may contain 0.01 to 10 parts by weight of curcumin based on 100 parts by weight of the organic solvent.

상기 수상은 물 100 중량부에 대하여, 카라기난 0.1 내지 0.8 중량부가 포함되는 것일 수 있다.The aqueous phase may contain 0.1 to 0.8 parts by weight of carrageenan based on 100 parts by weight of water.

또한, 본 발명은 상기 제조방법에 따른 커큐민 나노복합체를 제공할 수 있다.In addition, the present invention may provide a curcumin nanocomposite according to the above preparation method.

본 발명의 "카라기난 (carrageenan)"은 돌사리과 또는 끈적살과에 속하는 다양한 홍조류로부터 추출하여 얻어지는 다당류 성분으로 알칼리조건에서 높은 점도를 나타내어 여러가지 양이온과 쉽게 결합하여 겔을 만드는 특성이 있는 친수성 콜로이드 성분이다.The "carrageenan" of the present invention is a polysaccharide component obtained by extraction from various red algae belonging to the Dolomaceae family or the Gossiaceae family. It exhibits high viscosity under alkaline conditions and is a hydrophilic colloidal component having the property of easily combining with various cations to form a gel. .

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help the understanding of the present invention. However, the following examples are merely illustrative of the content of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<< 실시예Example 1> 1> 커큐민curcumin 나노복합체 제조 Nanocomposite Manufacturing

커큐민 (Cur)을 다이클로로메테인(Dichloromethane)에 5 mg/mL로 용해시켰으며, iota-Carrageenan (ι-CRN (H); High molecular weight (100K ~ 800K), sigma-aldrich, kappa-Carrageenan (κ-CRN; High molecular weight (100K ~ 800K), sigma-aldrich, iota-Carrageenan (ι-CRN (L); Low molecular weight (1K), JBK-LAB) 및 ramda-Carrageenan (λ-CRN; 분자량 미상, JBK-LAB)을 각각 0.4% (CRN 100 mg/25 mL) 및 0.66% (CRN 100 mg/15 mL) 농도로 증류수에 용해시켰다.Curcumin (Cur) was dissolved in dichloromethane at 5 mg/mL, iota-Carrageenan (ι-CRN (H); High molecular weight (100K ~ 800K), sigma-aldrich, kappa-Carrageenan ( κ-CRN; High molecular weight (100K ~ 800K), sigma-aldrich, iota-Carrageenan (ι-CRN (L); Low molecular weight (1K), JBK-LAB) and ramda-Carrageenan (λ-CRN; molecular weight unknown , JBK-LAB) were dissolved in distilled water at concentrations of 0.4% (CRN 100 mg/25 mL) and 0.66% (CRN 100 mg/15 mL), respectively.

5 mg/mL 커큐민 2 mL을 주사기를 이용해 상기 카라기난 용액에 주사한 후 균질기 (Homogenizer)를 통하여 8,000 rpm으로 3분간 균질화하였다.After injecting 2 mL of 5 mg/mL curcumin into the carrageenan solution using a syringe, it was homogenized for 3 minutes at 8,000 rpm through a homogenizer.

이후 초음파 (Sonication)를 3분 동안 처리하고, 600 rpm에서 4시간 동안 디클로로메탄을 증발시킨 후 원심분리기 (3,000 rpm, 3 분)을 이용해 봉입되지 않은 커큐민을 제거하여 도 1과 같은 최종 나노복합체를 얻었다.Thereafter, ultrasonication was performed for 3 minutes, dichloromethane was evaporated at 600 rpm for 4 hours, and then unsealed curcumin was removed using a centrifuge (3,000 rpm, 3 minutes) to obtain the final nanocomposite as shown in FIG. got it

Dynamic light scattering (DLS)를 이용해 Cur 기준 0.1 mg/mL로 사이즈를 측정하여 표 1과 같은 나노복합체 사이즈를 확인하였다.The size of the nanocomposite as shown in Table 1 was confirmed by measuring the size at 0.1 mg/mL based on Cur using dynamic light scattering (DLS).

Nunber mean (d.nm)Nunber mean (d.nm) Cur@ι-CRN (H)Cur@ι-CRN (H) 65.97 ± 19.8265.97 ± 19.82 Cur@κ-CRNCur@κ-CRN 217.39 ± 22.54217.39 ± 22.54 Cur@ι-CRN (L)Cur@ι-CRN (L) 11.25 ± 0.4211.25 ± 0.42 Cur@λ-CRNCur@λ-CRN 77.62 ± 10.2277.62 ± 10.22

<< 실시예Example 2> 에탄올을 이용한 2> Using ethanol 커큐민curcumin 나노복합체 제조 Nanocomposite Manufacturing

커큐민 (Cur)을 에탄올(Ethanol)에 2.5 mg/mL로 용해시켰으며, 카라기난(Carrageenan) 100 mg을 증류수 15 mL에 2시간 동안 교반기 600 rpm에서 충분히 용해시켰다. 2.5 mg/mL의 커큐민 4 mL을 주사기를 이용하여 카라기난 용액에 주사한 후, 균질기(Homogenizer)를 통하여 8,000 rpm으로 3분간 균질화하였다.Curcumin (Cur) was dissolved in ethanol (Ethanol) at 2.5 mg/mL, and 100 mg of carrageenan was sufficiently dissolved in 15 mL of distilled water at 600 rpm with a stirrer for 2 hours. After injecting 2.5 mg/mL of curcumin 4 mL into the carrageenan solution using a syringe, it was homogenized for 3 minutes at 8,000 rpm through a homogenizer.

이후 6분 동안 초음파 (Sonication) 처리하고, 에탄올을 완전히 증발하기 위해 회전증발기 (Round rotary evaporator)을 이용하여 감압상태에서 10분간 증발시켰다.Then, ultrasonication was performed for 6 minutes, and the ethanol was evaporated for 10 minutes under reduced pressure using a round rotary evaporator to completely evaporate.

에탄올을 증발시킨 후 원심분리기 (3,000 rpm, 3 분)을 이용해 봉입되지 않은 커큐민을 제거하여 최종 나노복합체를 얻었다.After evaporating the ethanol, the unencapsulated curcumin was removed using a centrifuge (3,000 rpm, 3 minutes) to obtain a final nanocomposite.

<< 비교예comparative example 1> 1> 커큐민curcumin 트윈80Twin 80 ( ( Tween80Tween80 ) 나노복합체 제조) Nanocomposite Manufacturing

커큐민 (Cur)을 다이클로로메테인(Dichloromethane)에 5 mg/mL로 용해시켰으며, Tween80 을 0.66% (Tween80 100 mg/15 mL) 농도로 증류수에 용해시켰다. 5 mg/mL 커큐민 2 mL을 주사기를 이용해 상기 Tween80 용액에 주사한 후 균질기 (Homogenizer)을 통하여 8,000 rpm으로 3분간 균질화하였다. Curcumin (Cur) was dissolved in dichloromethane at 5 mg/mL, and Tween80 was dissolved in distilled water at a concentration of 0.66% (Tween80 100 mg/15 mL). After injecting 2 mL of 5 mg/mL curcumin into the Tween80 solution using a syringe, it was homogenized for 3 minutes at 8,000 rpm through a homogenizer.

이후 초음파 (Sonication)를 3분 동안 처리하고, 600 rpm에서 4시간 동안 디클로로메탄을 증발시킨 후 원심분리기 (3,000 rpm, 3 분)을 이용해 봉입되지 않은 커큐민을 제거하여 최종 나노복합체를 얻었다.Thereafter, ultrasonication was performed for 3 minutes, dichloromethane was evaporated at 600 rpm for 4 hours, and then unencapsulated curcumin was removed using a centrifuge (3,000 rpm, 3 minutes) to obtain a final nanocomposite.

<< 비교예comparative example 2> 2> 커큐민curcumin 히드록시프로필셀룰로오스Hydroxypropyl Cellulose (HPC) 나노복합체 제조 (HPC) Nanocomposite Preparation

커큐민 (Cur)을 다이클로로메테인(Dichloromethane)에 5 mg/mL로 용해시켰으며, HPC (분자량 80K, Sigma-aldrich) 을 0.66% (Tween80 100 mg/15 mL) 농도로 증류수에 용해시켰다. 5 mg/mL 커큐민 2 mL을 주사기를 이용해 상기 HPC 용액에 주사한 후 균질기 (Homogenizer)을 통하여 8,000 rpm으로 3분간 균질화하였다. Curcumin (Cur) was dissolved in dichloromethane at 5 mg/mL, and HPC (molecular weight 80K, Sigma-aldrich) was dissolved in distilled water at a concentration of 0.66% (Tween80 100 mg/15 mL). After injecting 2 mL of 5 mg/mL curcumin into the HPC solution using a syringe, it was homogenized for 3 minutes at 8,000 rpm through a homogenizer.

이후 초음파 (Sonication)를 3분 동안 처리하고, 600 rpm에서 4시간 동안 디클로로메탄을 증발시킨 후 원심분리기 (3,000 rpm, 3 분)을 이용해 봉입되지 않은 커큐민을 제거하여 최종 나노복합체를 얻었다.Thereafter, ultrasonication was performed for 3 minutes, dichloromethane was evaporated at 600 rpm for 4 hours, and then unencapsulated curcumin was removed using a centrifuge (3,000 rpm, 3 minutes) to obtain a final nanocomposite.

<< 실시예Example 3> 3> 카라기난의carrageenan 점도 확인 Viscosity check

ι-CRN (H), κ-CRN, ι-CRN (L) 및 λ-CRN을 각각 0.4% (CRN 100 mg/25 mL) 및 0.66% (CRN 100 mg/15 mL) 농도로 증류수에 용해시키고, 25 ℃에서 rpm 변경해가며 카라기난의 점도 (mPa·sec)를 측정하였으며, 점도 측정기의 스핀들 (spindle)은 21번을 사용하였다.ι-CRN (H), κ-CRN, ι-CRN (L) and λ-CRN were dissolved in distilled water at a concentration of 0.4% (CRN 100 mg/25 mL) and 0.66% (CRN 100 mg/15 mL), respectively, and , the viscosity (mPa·sec) of carrageenan was measured while changing the rpm at 25 °C, and the spindle of the viscosity meter was used No. 21.

그 결과, 표 2와 같이 카라기난의 농도가 높을 수록 점도가 증가되는 것이 확인되었으며, 상기 결과로부터 점도가 높은 카라기난은 높은 봉입률을 나타낼 수 있을 것으로 제안될 수 있다.As a result, as shown in Table 2, it was confirmed that the higher the concentration of carrageenan, the higher the viscosity.

(mPa·sec)(mPa sec) RPM
Conc. (%)
RPM
Conc. (%)
1010 2020 5050 8080 100100 120120 200200
ι-CRN
(H)
ι-CRN
(H)
0.4%0.4% 145.00145.00 110.00110.00 72.0072.00 56.3056.30 45.5045.50 42.5042.50 33.5033.50
0.66%0.66% 880.00880.00 557.80557.80 297.00297.00 222.00222.00 188.50188.50 167.50167.50 142.00142.00 κ-CRNκ-CRN 0.4%0.4% 50.0050.00 32.5032.50 32.0032.00 25.9025.90 27.0027.00 25.4025.40 23.0023.00 0.66%0.66% 70.0070.00 47.5047.50 44.0044.00 43.8043.80 38.0038.00 36.2036.20 33.8033.80 ι-CRN
(L)
ι-CRN
(L)
0.4%0.4% 20.0020.00 12.5012.50 15.0015.00 11.9011.90 5.505.50 5.845.84 8.758.75
0.66%0.66% 45.0045.00 32.5032.50 29.0029.00 27.5027.50 25.5025.50 24.6024.60 22.8022.80 λ-CRNλ-CRN 0.4%0.4% 50.0050.00 42.5042.50 35.0035.00 31.3031.30 30.0030.00 28.8028.80 25.8025.80 0.66%0.66% 135.00135.00 107.56107.56 69.0069.00 61.9061.90 59.0059.00 57.1057.10 49.0049.00

<< 실시예Example 4> 4> 봉입율inclusion rate 확인 Confirm

실제 카라기난의 커큐민 봉입률을 확인하기 위해, 제조된 나노복합체를 에탄올을 이용해 1/10 배 희석하여 나노 입자 내부에 있는 커큐민을 용해시키고, 커큐민 (Cur)을 에탄올에 녹여 검정곡선을 확인하였으며, 425 nm에서 흡광도를 측정하여 정량하였다. To check the curcumin encapsulation rate of actual carrageenan, the prepared nanocomposite was diluted 1/10 with ethanol to dissolve curcumin inside the nanoparticles, and curcumin (Cur) was dissolved in ethanol to confirm the calibration curve, 425 It was quantified by measuring the absorbance at nm.

그 결과, 다이클로로메테인(Dichloromethane)에 커큐민을 용해하여 봉입한 경우 표 3과 같이 0.4% 카라기난은 낮은 점도로 인해 커큐민의 봉입이 효과적이지 않은 반면, 0.66% 카라기난의 경우 ι- CRN (H)와 κ- CRN은 90% 이상 λ- CRN은 88.30%으로 높은 봉입 효율을 나타내었다.As a result, in dichloromethane (Dichloromethane) In the case of dissolving and encapsulating curcumin, as shown in Table 3, the encapsulation of curcumin in 0.4% carrageenan was not effective due to the low viscosity, whereas in the case of 0.66% carrageenan, ι - CRN (H) and κ - CRN were more than 90% λ- CRN showed a high encapsulation efficiency of 88.30% .

상기 결과로부터 카라기난은 커큐민 나노복합체 제조에 적합하며, 분자량이 큰 카라기난(100 KDa ~ 800 KDa)이 분자량이 작은 카라기난(1 KDa)보다 높은 봉입 효율을 보이는 것이 확인되었다.From the above results, it was confirmed that carrageenan is suitable for the production of curcumin nanocomposites, and carrageenan with a high molecular weight (100 KDa to 800 KDa) shows higher encapsulation efficiency than carrageenan with a small molecular weight (1 KDa) .

Cur:XCur:X ( ( curcumincurcumin 10 mg10 mg )) 15 mL15 mL (0.66 %, w/v) (0.66 %, w/v) 25 mL25 mL (0.40 %, w/v) (0.40 %, w/v) Loading efficiency (%)Loading efficiency (%) Loading content (%)Loading content (%) Loading efficiency (%)Loading efficiency (%) Loading content (%)Loading content (%) Cur@ι-CRN (H)Cur@ι-CRN (H) 97.81 ± 2.1097.81 ± 2.10 8.89 ± 0.198.89 ± 0.19 11.49 ± 0.1511.49 ± 0.15 1.04 ± 0.011.04 ± 0.01 Cur@κ-CRNCur@κ-CRN 95.79 ± 4.3695.79 ± 4.36 8.71 ± 0.408.71 ± 0.40 14.26 ± 0.3614.26 ± 0.36 1.30 ± 0.031.30 ± 0.03 Cur@ι-CRN (L)Cur@ι-CRN (L) 41.76 ± 0.3141.76 ± 0.31 3.80 ± 0.033.80 ± 0.03 9.85 ± 0.239.85 ± 0.23 0.89 ± 0.020.89 ± 0.02 Cur@λ-CRNCur@λ-CRN 88.30 ± 1.5588.30 ± 1.55 8.03 ± 0.148.03 ± 0.14 37.49 ± 3.1637.49 ± 3.16 3.41 ± 0.293.41 ± 0.29

<< 실시예Example 5> 안정성 확인 5> Check stability

커큐민 (Cur)을 다이클로로메테인 ( Dichloromethane ) 에 5 mg /mL로 용해시키고, ι-CRN (H), κ-CRN, ι-CRN (L) 및 λ-CRN을 각각 0.4% (CRN 100 mg/25 mL), 0.66% (CRN 100 mg/15 mL) 농도로 증류수에 용해시켰다. Curcumin (Cur) was dissolved in dichloromethane at 5 mg / mL, and ι-CRN (H), κ-CRN, ι-CRN (L) and λ-CRN were each 0.4% (CRN 100 mg) /25 mL), dissolved in distilled water to a concentration of 0.66% (CRN 100 mg/15 mL).

5 mg/mL 커큐민 2 mL을 주사기를 이용해 상기 카라기난 용액에 각각 주사한 후 균질기 (Homogenizer)를 이용하여 8,000 rpm, 3분간 균질화하였다.2 mL of 5 mg/mL curcumin was injected into the carrageenan solution using a syringe, and then homogenized at 8,000 rpm for 3 minutes using a homogenizer.

이후 초음파 (Sonication)를 3분 동안 처리하고, 600 rpm에서 4시간 동안 디클로로메탄을 증발시킨 후 원심분리기 (3,000 rpm, 3 분)을 이용해 봉입되지 않은 커큐민을 제거하여 최종 나노복합체를 얻었다.Thereafter, ultrasonication was performed for 3 minutes, dichloromethane was evaporated at 600 rpm for 4 hours, and then unencapsulated curcumin was removed using a centrifuge (3,000 rpm, 3 minutes) to obtain a final nanocomposite.

최종 나노복합체는 냉장보관 (4 ℃)에 보관하며 시간에 따라 (1, 3, 6, 10일) 나노복합체의 안정성을 테스트하였으며, 측정은 7번 과정을 반복해가며 남아있는 커큐민의 양을 정량하였다.The final nanocomposite was stored in a refrigerator (4 ℃) and the stability of the nanocomposite was tested over time (1, 3, 6, 10 days), and the measurement was repeated 7 times to quantify the amount of curcumin remaining. did

그 결과, 도 2 및 표 4와 같이 Cur@ι- CRN (H)과 Cur@κ- CRN의 경우 시간에 따라 10일 차에 약 7% 감소하며 각각 90% 및 88%의 커큐민이 유지되는 것을 확인하였으며, Cur@ι- CRN (L)은 약 11% 감소하며 30%의 커큐민을 유지하였고, Cur@λ-CRN은 49.48% 감소하며 38%의 커큐민을 유지하는 것을 확인할 수 있었다.As a result, as shown in FIGS. 2 and 4, Cur@ι- CRN (H) and Cur@κ- CRN decreased by about 7% on the 10th day with time, and 90% and 88% of curcumin were maintained , respectively. It was confirmed that Cur@ι- CRN (L) decreased by about 11% and curcumin was maintained at 30%, and Cur@λ-CRN decreased by 49.48% and curcumin was maintained at 38%.

0 day0 day 10 day10 days 차이difference Cur@ι-CRN (H)Cur@ι-CRN (H) 97.8197.81 90.6790.67 7.147.14 Cur@κ-CRNCur@κ-CRN 95.7995.79 88.8088.80 6.996.99 Cur@ι-CRN (L)Cur@ι-CRN (L) 41.7741.77 30.4430.44 11.3311.33 Cur@λ-CRNCur@λ-CRN 88.3088.30 38.8138.81 49.4949.49

<< 실시예Example 6> 6> 카라기난의carrageenan 분자량에 따른 according to molecular weight 유기용매와의with organic solvents 친화도 확인 Affinity check

카라기난과 유기용매와의 친화도를 확인하기 위해 큰 분자량의 커큐민 (100KDa ~ 800KDa)을 이용하여 실험을 각각 진행하였다. DW와 EtOH의 총 부피는 5 mL이 유지되도록 하며, 이의 부피비가 10:1, 8:2, 6:4, 4:6, 2:8, 1:10이 되도록 하였다. 총 5mL 부피에 카라기난 33.33 mg/6.33mL 및 커큐민 3.33mg/6.33mL의 농도가 되도록 혼합하였다.In order to confirm the affinity between carrageenan and the organic solvent, each experiment was carried out using curcumin (100KDa ~ 800KDa) having a large molecular weight. The total volume of DW and EtOH was maintained at 5 mL, and the volume ratio was 10:1, 8:2, 6:4, 4:6, 2:8, 1:10. In a total volume of 5 mL, 33.33 mg/6.33 mL of carrageenan and 3.33 mg/6.33 mL of curcumin were mixed.

혼합 후 용매의 비율에 따른 용매 친화도를 확인하였다. 도 4 및 도 5는 각각 커큐민을 포함하지 않은 실험군 및 커큐민을 포함한 실험군의 결과로 카라기난은 수중에 분산되어 있다가 에탄올을 만나 순식간에 침전이 일어났다.After mixing, the solvent affinity according to the ratio of the solvent was confirmed. 4 and 5 show the results of the experimental group not containing curcumin and the experimental group containing curcumin, respectively, and carrageenan was dispersed in water and precipitated in an instant when it met ethanol.

또한 에멀젼의 상태변화를 확인하기 위해 UV-vis 분광기를 이용하여 투과도를 측정하였다. 큰 분자량의 카라기난은 에탄올의 비중이 높아지면서 침전에 의한 빛의 투과도 감소가 더욱 가파르게 나타났다. DW:EtOH의 비율이 4:6인 경우 카라기난이 강하게 침전되어 가라앉으면서 투과도가 일시적으로 증가한 것을 도 4를 통해 확인할 수 있다. In addition, the transmittance was measured using a UV-vis spectrometer to confirm the state change of the emulsion. In carrageenan with a large molecular weight, as the specific gravity of ethanol increased, the decrease in light transmittance by precipitation was more steep. When the ratio of DW:EtOH is 4:6, it can be seen from FIG. 4 that carrageenan is strongly precipitated and subsides while the transmittance temporarily increases.

800nm800nm DW : EtOHDW: EtOH I-CAR(H)I-CAR(H) 10:010:0 8:28:2 6:46:4 4:64:6 2:82:8 0:100:10 transmission (%)transmission (%) 100.2100.2 84.284.2 77.277.2 91.691.6 63.063.0 38.338.3 (%)(%) 100100 84.084.0 77.077.0 91.491.4 62.962.9 38.238.2

<< 실시예Example 7> 항산화 효과 확인 7> Check the antioxidant effect

커큐민(Cur)의 용해도 개선에 따른 수상에서의 항산화 효과를 확인하였다. 커큐민 혹은 커큐민 나노복합체 자체의 항산화 능력을 DPPH(2,2-디페닐-1-피크릴 하이드라질) 실험법으로 확인하였다. 각각의 샘플을 Cur 80μg/mL 기준으로 증류수 용해하고, DPPH 용액에 Cur 2μg/mL 기준으로 희석하였다. DPPH은 515nm에서 UV 흡광도를 나타내므로, 30분간 30초에 한 번씩 흡광도의 변화를 측정하여 상대적인 값으로 환산하였다. 또한, 시간에 따라 상쇄된 DPPH에 의해 보라색을 띄던 용매는 노란색으로 변화하였으며, 30분 후의 색 변화를 사진으로 측정하였다. 잘 알려져있는 항산화 물질인 아스코르빅산을 양성 대조군으로 사용하였다.The antioxidant effect in the aqueous phase according to the solubility improvement of curcumin (Cur) was confirmed. The antioxidant ability of curcumin or curcumin nanocomposite itself was confirmed by the DPPH (2,2-diphenyl-1-picryl hydrazyl) test method. Each sample was dissolved in distilled water based on Cur 80 μg/mL, and diluted in DPPH solution based on Cur 2 μg/mL. Since DPPH shows UV absorbance at 515 nm, the change in absorbance was measured once every 30 seconds for 30 minutes and converted into a relative value. In addition, the solvent, which was purple due to the DPPH offset with time, changed to yellow, and the color change after 30 minutes was measured with a photograph. Ascorbic acid, a well-known antioxidant, was used as a positive control.

커큐민의 용해도가 개선됨에 따라 증진된 항산화 효과를 세포활성을 통해 확인하고자 DCF-DA(2,7-다이클로로다이하이드로플루오신 디아세테이트) 시험법을 수행하였다. 먼저, 96웰 세포 배양 플레이트에 HaCa-T 세포를 1 × 104 cells/well로 분주하고, 1일 후, tBHP(테트라부틸 하이드로젠 퍼옥사이드, 양성대조군)을 통해 세포 내의 활성산소 생성을 인위적으로 유도하였다. 활성산소가 유도된 세포 내 환경에서 커큐민 혹은 커큐민 나노복합체의 항산화 능력을 평가하기 위해 각각의 샘플을 Cur 5μg/mL 기준으로 처리하였다.As the solubility of curcumin was improved, DCF-DA (2,7-dichlorodihydrofluucine diacetate) test method was performed to confirm the enhanced antioxidant effect through cell activity. First, HaCa-T cells were aliquoted at 1 × 10 4 cells/well in a 96-well cell culture plate, and after 1 day, the generation of active oxygen in the cells was artificially generated through tBHP (tetrabutyl hydrogen peroxide, positive control). induced. In order to evaluate the antioxidant ability of curcumin or curcumin nanocomposite in the intracellular environment induced by free radicals, each sample was treated at 5 μg/mL of Cur.

그 결과, 도 7과 같이 커큐민의 항산화 효과에 의해 활성산소에 염색되는 DCF-DA 형광강도가 감소하였으며, 고분자량의 이중 황산화 다당류를 이용한 나노복합체(Cur@CRN)의 항산화가 가장 효과적으로 나타나는 것을 확인할 수 있었다. As a result, as shown in FIG. 7 , DCF-DA fluorescence intensity dyed with active oxygen was decreased due to the antioxidant effect of curcumin, and the antioxidant of the nanocomposite (Cur@CRN) using double sulfated polysaccharide with high molecular weight was most effective. could check

<< 실시예Example 8> 항염증 효과 확인 8> Check the anti-inflammatory effect

커큐민의 용해도가 개선에 따른 항염증 효과를 확인하기 위해, NFκB/IκBα 신호 전달체계의 주요 인자 발현정도를 웨스턴 블롯을 통해 비교하였다. NFκB은 일반적인 상태에서는 IκBα와 복합체를 이루어 불활성화 상태지만, 염증 상태가 되면 IκBα 키나아제에 의해 인산화 IκBα(phosphorylated IκBα, pIκBα)가 증가한다. pIκBα의 증가 및 pIκBα의 분해는 복합체를 분리시키고 단일 NFκB은 세포핵 내에서 결합해 염증 인자들을 전사한다. 따라서, 양성 대조군(Lipopolysaccharide, LPS)에서는 NFκB, pIκBα의 발현양이 증가하고 IκBα의 발현양은 감소한다. 그러나, 카라기난 혹은 카라기난 나노복합체의 항염증 효과에 따라 증가했던 NFκB, pIκBα의 발현양은 다시 감소하고, IκBα의 발현양은 다시 증가하게 된다.In order to confirm the anti-inflammatory effect of curcumin solubility improvement, the expression levels of major factors of the NFκB/IκBα signaling system were compared through Western blot. In a normal state, NFκB forms a complex with IκBα and is inactivated, but in an inflammatory state, phosphorylated IκBα (pIκBα) increases by IκBα kinase. An increase in pIκBα and degradation of pIκBα dissociate the complex, and a single NFκB binds in the nucleus and transcribes inflammatory factors. Therefore, in the positive control (Lipopolysaccharide, LPS), the expression levels of NFκB and pIκBα increase, and the expression levels of IκBα decrease. However, the expression levels of NFκB and pIκBα, which were increased according to the anti-inflammatory effect of carrageenan or carrageenan nanocomposite, decrease again, and the expression level of IκBα increases again.

이를 확인하기 위해, 6웰 세포 배양 플레이트에 HaCa-T 세포를 5 × 105 cells/well로 분주하고, 1일 후 각각의 샘플을 Cur 5μg/mL 기준으로 배지에 용해하였다. 각 샘플을 4시간 동안 배양한 후, 면역활성을 유도하기 위해 LPS을 10μg/mL의 농도로 6시간 동안 배양하였다. 12시간 후, 세포의 단백질을 추출하여 웨스턴 블롯을 통해 NFκB, IκBα 및 pIκBα의 발현양을 확인하였다. To confirm this, HaCa-T cells were aliquoted at 5 × 10 5 cells/well in a 6-well cell culture plate, and after 1 day, each sample was dissolved in a medium based on Cur 5 μg/mL. After incubating each sample for 4 hours, LPS was incubated at a concentration of 10 μg/mL for 6 hours to induce immune activity. After 12 hours, the cells were extracted and the expression levels of NFκB, IκBα and pIκBα were confirmed through Western blot.

그 결과, 도 8과 같이 커큐민을 단독으로 사용했을 때보다 커큐민 나노복합체를 사용한 실험군에서 항염증 효과가 증진된 것을 확인할 수 있었으며, 특히 황산화 다당류(Cur@CRN)군에서 항염증 효과가 가장 높게 나타나는 것을 확인하였다.As a result, as shown in FIG. 8 , it was confirmed that the anti-inflammatory effect was enhanced in the experimental group using the curcumin nanocomposite compared to when curcumin was used alone, and in particular, sulfated It was confirmed that the anti-inflammatory effect was the highest in the polysaccharide (Cur@CRN) group.

<< 실시예Example 9> 세포막 투과성 확인 9> Check cell membrane permeability

12 trans well apical plate에 MDCK (Madin-Darby Canine Kidney) 세포를 1 × 105 cells/well로 분주하고, 4일 후, Transepithelial electrical resistance (TEER) 값을 측정하여 250 Ω cm2 임을 확인하였다.12 MDCK (Madin-Darby Canine Kidney) cells were seeded in a trans well apical plate at 1 × 10 5 cells/well, and after 4 days, transepithelial electrical resistance (TEER) was measured and 250 Ω cm 2 It was confirmed that

각각의 샘플을 Cur 150 μM 기준으로 apical (A) 또는 basolateral (B) plate에 2시간 동안 처리하고, apical (A)과 basolateral (B)의 샘플을 회수 한 뒤, LC-MS/MS analysis를 이용해 커큐민의 양을 정량하여 커큐민의 apparent permeability (Paap)를 측정하고 이에 따른 유출 비율 (Efflux ratio)을 확인하였다.Each sample was treated on an apical (A) or basolateral (B) plate for 2 hours based on Cur 150 μM, and after collecting the apical (A) and basolateral (B) samples, LC-MS/MS analysis was used to By quantifying the amount of curcumin, the apparent permeability (Paap) of curcumin was measured, and the Efflux ratio was confirmed accordingly.

그 결과, 표 6과 같이 Paap 값이 커큐민에 비해 Cur@ι-CRN (H)에서 44.54배, Cur@κ-CRN에서 48.3배, Cur@ι-CRN (L)에서 16.21배, Cur@λ-CRN에서 8.33배 증가했다. As a result, as shown in Table 6, the Paap values were 44.54 times in Cur@ι-CRN (H), 48.3 times in Cur@κ-CRN, 16.21 times in Cur@ι-CRN (L), and 16.21 times in Cur@λ-, compared to curcumin. It increased 8.33 times in CRN.

상기 결과로부터 고분자량인 Cur@ι- CRN (H) 및 Cur@κ- CRN에서 유의미한 결과가 확인됨에 따라, in vivo 생체 이용률에도 긍정적인 영향을 나타낼 수 있다.From the above results, as significant results were confirmed in Cur@ι- CRN (H) and Cur@κ- CRN, which are high molecular weight, it can have a positive effect on in vivo bioavailability.

CompoundsCompounds PP aapaap (Х10(Х10 -6-6 cm/sec) cm/sec) Efflux ratioEfflux ratio
(B to A/A to B)(B to A/A to B)
Cur (A to B)Cur (A to B) 0.0185 ± 0.00210.0185 ± 0.0021 0.08090.0809 Cur (B to A)Cur (B to A) 0.0014 ± 0.00040.0014 ± 0.0004 Cur@ι-Cur@ι- CRNCRN (H) (A to B) (H) (A to B) 0.8228 ± 0.06200.8228 ± 0.0620 0.00050.0005 Cur@ι-Cur@ι- CRNCRN (H) (B to A) (H) (B to A) 0.0048 ± 0.00150.0048 ± 0.0015 Cur@κ-Cur@κ- CRNCRN (A to B) (A to B) 0.8922 ± 0.38290.8922 ± 0.3829 0.00310.0031 Cur@κ-Cur@κ- CRNCRN (B to A) (B to A) 0.0028 ± 0.00080.0028 ± 0.0008 Cur@ι-Cur@ι- CRNCRN (L) (A to B) (L) (A to B) 0.2994 ± 0.13540.2994 ± 0.1354 0.08170.0817 Cur@ι-Cur@ι- CRNCRN (L) (B to A) (L) (B to A) 0.0244 ± 0.01340.0244 ± 0.0134 Cur@λ-Cur@λ- CRNCRN (A to B) (A to B) 0.1538 ± 0.10160.1538 ± 0.1016 0.07790.0779 Cur@λ-Cur@λ- CRNCRN (B to A) (B to A) 0.0120 ± 0.01180.0120 ± 0.0118

<< 실시예Example 10> 10> 황산화sulfation 다당류와 장에 발현된 용질 운반체의 상호작용 Interaction of polysaccharides with gut-expressed solutes

황산화 다당류(Cur@CRN)의 우수한 세포막 투과성의 원인을 규명하기 위해 장에 발현된 용질 운반체(Solute carrier transporter)와 황산화 다당류 간의 상호작용을 확인하였다. 다당류와 세포의 상호작용을 육안으로 확인하기 위해 공초점 현미경을 사용하였으며, 공초점 현미경 사용을 위해 다당류에 형광물질(FITC)을 접합하였다. FITC가 접합된 다당류를 FITC 5μg/mL 기준으로 처리하여 2시간 동안의 흡수 정도를 비교하였다. Caco-2 세포는 양성 대조군으로 용질 운반체(Solute carrier 26A2, SLC26A2)를 발현한 세포이며, MDCK 및 L929 세포는 음성 대조군으로 용질 운반체를 발현하지 않은 세포이다. To investigate the cause of the excellent cell membrane permeability of sulfated polysaccharide (Cur@CRN), the interaction between the solute carrier transporter expressed in the intestine and sulfated polysaccharide was confirmed. A confocal microscope was used to visually confirm the interaction between polysaccharides and cells, and a fluorescent substance (FITC) was conjugated to polysaccharides for use under a confocal microscope. FITC-conjugated polysaccharide was treated based on FITC 5 μg/mL, and the degree of absorption for 2 hours was compared. Caco-2 cells are cells expressing solute carriers (Solute carrier 26A2, SLC26A2) as positive controls, and MDCK and L929 cells are cells that do not express solute carriers as negative controls.

도 9를 참고하면, Caco-2 세포에만 발현된 용질 운반체를 항체 염색을 통해 확인할 수 있었으며, 황산화 다당류(CRN)에 접합된 FITC의 형광이 가장 높은 강도를 나타내는 것을 확인하였다. Referring to FIG. 9 , the solute carrier expressed only in Caco-2 cells could be identified through antibody staining, and it was confirmed that the fluorescence of FITC conjugated to sulfated polysaccharide (CRN) exhibited the highest intensity.

상기 결과로부터 황을 특이적으로 인식하는 용질 운반체(SLC26A2)와 황산화 다당류의 상호작용은 커큐민 나노복합체의 소장 투과도를 증진시키는 원인이 될 수 있음을 확인하였다.From the above results, it was confirmed that the interaction between the solute carrier (SLC26A2) that specifically recognizes sulfur and the sulfated polysaccharide could be the cause of enhancing the intestinal permeability of the curcumin nanocomposite.

<< 실시예Example 11> 생체이용률 확인 11> Check bioavailability

1주일 순화시킨 Rats을 12시간 공복상태를 유지한 후 Cur와 Cur@ι-CRN을 경구투여 (Cur기준 500 mg/kg) 하였다. Rats의 혈액을 0, 5, 10, 15, 30, 45, 60, 90, 120, 150, 180, 240, 360 및 480분 별로 채취하여 13,000 rpm으로 5분간 혈장을 분리하고, 혈장 내 존재하는 Cur을 LC-MS/MS analysis를 이용하여 정량하였다.Rats acclimatized for one week were maintained in a fasting state for 12 hours, and then Cur and Cur@ι-CRN were orally administered (based on Cur 500 mg/kg). Blood from rats is collected every 0, 5, 10, 15, 30, 45, 60, 90, 120, 150, 180, 240, 360 and 480 minutes, plasma is separated at 13,000 rpm for 5 minutes, and Cur present in plasma was quantified using LC-MS/MS analysis.

그 결과, 도 10과 같이 Cur@ι- CRN (H)은 Cur에 비해 AUC 수치가 약 2.5배 증가하는 것으로 확인되었다. 또한 T max 수치가 Cur에 비해 7.49배 정도 늦어진 것이 확인됨에 따라, 장내에서 천천히 오랫동안 흡수가 진행된 것이 확인되었다. As a result, as shown in FIG. 10 , it was confirmed that Cur@ι- CRN (H) increased the AUC value by about 2.5 times compared to Cur. In addition, as it was confirmed that the T max value was delayed by 7.49 times compared to Cur, it was confirmed that absorption proceeded slowly in the intestine for a long time.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

커큐민을 유기용매에 용해시켜 유기용매상을 준비하는 단계 (제1단계);
황산화 다당류를 물에 용해시켜 수상을 준비하는 단계 (제2단계);
상기 제1단계의 유기용매상과 제2단계의 수상을 혼합하여 균질화하는 단계 (제3단계);
상기 균질화된 혼합물을 초음파 처리하는 단계 (제4단계); 및
상기 초음파 처리된 혼합물에서 유기용매를 증발시키는 단계 (제5단계)로 제조되는 커큐민 나노복합체 제조방법.
preparing an organic solvent phase by dissolving curcumin in an organic solvent (first step);
preparing an aqueous phase by dissolving the sulfated polysaccharide in water (second step);
mixing and homogenizing the organic solvent phase of the first step and the aqueous phase of the second step (third step);
sonicating the homogenized mixture (step 4); and
A method for producing a curcumin nanocomposite prepared by evaporating an organic solvent from the sonicated mixture (step 5).
청구항 1에 있어서, 상기 유기용매는 다이클로로메테인(Dichloromethane), 에탄올 (ethanol) 및 클로로포름 (Chloroform)으로 이루어진 군에서 선택되는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the organic solvent is selected from the group consisting of dichloromethane, ethanol and chloroform. 청구항 1에 있어서, 상기 황산화 다당류는 카라기난 (carrageenan), 후코이단 (Fucoidan), 콘드로이틴 설페이트 (Chondroitin sulfate) 및 덱스트란 설페이트 (Dextran sulfate)으로 이루어진 군에서 선택되는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the sulfated polysaccharide is selected from the group consisting of carrageenan, fucoidan, chondroitin sulfate and dextran sulfate. 청구항 1에 있어서, 상기 황산화 다당류는 0.6 내지 0.7 중량%의 점도를 나타내는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the sulfated polysaccharide has a viscosity of 0.6 to 0.7 wt%. 청구항 1에 있어서, 상기 황산화 다당류는 100 KDa 이상의 분자량을 나타내는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the sulfated polysaccharide has a molecular weight of 100 KDa or more. 청구항 1에 있어서, 상기 유기용매상은 유기용매 100 중량부에 대하여, 커큐민 0.01 내지 10 중량부가 포함되는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the organic solvent phase contains 0.01 to 10 parts by weight of curcumin based on 100 parts by weight of the organic solvent. 청구항 1에 있어서, 상기 수상은 물 100 중량부에 대하여, 카라기난 0.1 내지 0.8 중량부가 포함되는 것을 특징으로 하는 커큐민 나노복합체 제조방법.The method according to claim 1, wherein the aqueous phase contains 0.1 to 0.8 parts by weight of carrageenan based on 100 parts by weight of water. 청구항 1 내지 청구항 7 중 어느 한 항의 제조방법에 따른 커큐민 나노복합체.The curcumin nanocomposite according to any one of claims 1 to 7.
KR1020210132409A 2020-12-16 2021-10-06 Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof KR20220086467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200176099 2020-12-16
KR20200176099 2020-12-16

Publications (1)

Publication Number Publication Date
KR20220086467A true KR20220086467A (en) 2022-06-23

Family

ID=82222008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210132409A KR20220086467A (en) 2020-12-16 2021-10-06 Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20220086467A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080112224A (en) 2006-03-09 2008-12-24 인데나 에스피아 Phospholipid complexes of curcumin having improved bioavailability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080112224A (en) 2006-03-09 2008-12-24 인데나 에스피아 Phospholipid complexes of curcumin having improved bioavailability

Similar Documents

Publication Publication Date Title
da Silva-Buzanello et al. Validation of an Ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly (l-lactic acid) nanoparticles
Li et al. Development of a nanoparticle delivery system based on zein/polysaccharide complexes
US9624237B2 (en) Oridonin functionalized selenium nanoparticles and method of preparation thereof
Das et al. Design of a pectin-based microparticle formulation using zinc ions as the cross-linking agent and glutaraldehyde as the hardening agent for colonic-specific delivery of resveratrol: in vitro and in vivo evaluations
Zafar et al. Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations
Wen et al. Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects
Shi et al. In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol
Esmaeilzadeh Kenari et al. Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials
Betbeder et al. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties
Güncüm et al. Novel amoxicillin nanoparticles formulated as sustained release delivery system for poultry use
CN106853249A (en) A kind of preparation method of the natural pigment member embedded object based on ferritin/shitosan
Manne et al. Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications
Roque et al. Development of a bioadhesive nanoformulation with Glycyrrhiza glabra L. extract against Candida albicans
Aguilera-Garrido et al. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid
Zhang et al. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: a comparative study with micelles
Zheng et al. Effect of A 2-HP-β-cyclodextrin formulation on the biological transport and delivery of chemotherapeutic PLGA nanoparticles
DE102013011026A1 (en) Composition of a food additive
Alam et al. Microwave‐assisted and chemically tailored chlorogenic acid‐functionalized silver nanoparticles of Citrus sinensis in gel matrix aiding QbD design for the treatment of acne
Pecorini et al. Polymeric systems for the controlled release of flavonoids
Desu et al. Optimizing formulation of green tea extract-loaded chitosan nanogel
Han et al. Cypate‐mediated thermosensitive nanoliposome for tumor imaging and photothermal triggered drug release
KR20220086467A (en) Nanocomposites for enhancing stability and bioavailability of curcumin using polysaccharide and preparation method thereof
US9555121B2 (en) Composition for forming complex, complex formed therefrom, and composition for oral administration including said complex
CN110538094B (en) Pterostilbene @ cyclodextrin inclusion compound with homogeneous hydrophilicity and multi-dimensional stability and preparation method thereof
KR20220086018A (en) Nanocomposites for enhancing stability and bioavailability of curcumin using cellulose and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal