KR20220083902A - Method of fabricating thin-film composite membrane with interlayer structure and its applications - Google Patents

Method of fabricating thin-film composite membrane with interlayer structure and its applications Download PDF

Info

Publication number
KR20220083902A
KR20220083902A KR1020200173306A KR20200173306A KR20220083902A KR 20220083902 A KR20220083902 A KR 20220083902A KR 1020200173306 A KR1020200173306 A KR 1020200173306A KR 20200173306 A KR20200173306 A KR 20200173306A KR 20220083902 A KR20220083902 A KR 20220083902A
Authority
KR
South Korea
Prior art keywords
monomer
layer
manufacturing
intermediate layer
group
Prior art date
Application number
KR1020200173306A
Other languages
Korean (ko)
Inventor
박희등
손붕비
이정훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020200173306A priority Critical patent/KR20220083902A/en
Publication of KR20220083902A publication Critical patent/KR20220083902A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Abstract

본 발명은 중간층 구조를 포함하는 고성능의 박막 복합 분리막의 제조방법에 관한 것으로, 자세하게는 1차원 나노 물질인 탄소 나노튜브 (carbon nanotube, CNT) 및 2차원 나노 물질인 맥신 (MXene)을 혼합하여 다공성 지지체 표면에 코팅한 뒤, 계면중합을 이용하여 활성층을 형성하는 단계를 포함하고, 수투과성 및 염선택성을 향상시킬 수 있는 역삼투, 정삼투, 나노여과용 박막 복합 분리막의 제조방법 및 이의 응용에 관한 것이다. The present invention relates to a method of manufacturing a high-performance thin-film composite separator including an intermediate layer structure, and more particularly, by mixing carbon nanotube (CNT), a one-dimensional nanomaterial, and MXene, a two-dimensional nanomaterial, to form a porous After coating on the surface of the support, comprising the step of forming an active layer using interfacial polymerization, the method for manufacturing a thin film composite separation membrane for reverse osmosis, forward osmosis, and nanofiltration, which can improve water permeability and salt selectivity, and its application it's about

Description

중간층 구조를 포함하는 박막 복합 분리막의 제조방법 및 이의 응용{Method of fabricating thin-film composite membrane with interlayer structure and its applications}Method of fabricating thin-film composite membrane with interlayer structure and its applications

본 발명은 중간층 구조를 포함하는 고성능의 박막 복합 분리막의 제조방법에 관한 것으로, 자세하게는 1차원 나노 물질인 탄소 나노튜브 (carbon nanotube, CNT) 및 2차원 나노 물질인 맥신 (MXene)을 혼합하여 다공성 지지체 표면에 코팅한 뒤, 계면중합을 이용하여 활성층을 형성하는 단계를 포함하고, 수투과성 및 염선택성을 향상시킬 수 있는 역삼투, 정삼투, 나노여과용 박막 복합 분리막의 제조방법 및 이의 응용에 관한 것이다. The present invention relates to a method of manufacturing a high-performance thin-film composite separator including an intermediate layer structure, and more particularly, by mixing carbon nanotube (CNT), a one-dimensional nanomaterial, and MXene, a two-dimensional nanomaterial, to form a porous After coating on the surface of the support, comprising the step of forming an active layer using interfacial polymerization, the method for manufacturing a thin film composite separation membrane for reverse osmosis, forward osmosis, and nanofiltration, which can improve water permeability and salt selectivity, and its application it's about

정삼투 (forward osmosis) 공정은 외부 구동압력 없이 염도가 낮은 쪽(피드용액)의 물이 삼투압에 의해 자발적으로 반투과성 분리막을 통과하여 염도가 높은 쪽(유도용액)으로 이동하여 피드용액을 농축 및 유도용액을 희석할 수 있는 공정 기술로서, 기존 역삼투 및 나노여과 공정보다 에너지 소비를 절감하고 막오염을 낮출 수 있기 때문에 정삼투 공정 및 정삼투를 이용한 하이브리드 공정은 해수 및 하폐수 전처리, 유용자원 회수, 농업용 비료 희석 등 광범위한 분야에 활발히 연구 및 적용되고 있다.In the forward osmosis process, water from the low salinity side (feed solution) passes through the semipermeable membrane spontaneously by osmotic pressure without external driving pressure and moves to the high salinity side (derivation solution) to concentrate and induce the feed solution. As a process technology that can dilute a solution, the forward osmosis process and the hybrid process using forward osmosis can reduce energy consumption and lower membrane contamination compared to the existing reverse osmosis and nanofiltration processes. It is being actively researched and applied in a wide range of fields such as fertilizer dilution for agriculture.

이러한 정삼투용 분리막은 역삼투용 분리막과 유사하게, 다공성 지지체와 선택층으로 구성된 박막 복합체 (thin-film composite, TFC)의 형태로 개발되어 오고 있으며, 이와 더불어 나노물질을 이용하여 지지체 또는 선택층을 개질하는 박막 나노 복합막(thin-film nanocomposite, TFN) 형태로 개발되는 것이 일반적이다.This forward osmosis membrane has been developed in the form of a thin-film composite (TFC) composed of a porous support and a selective layer, similar to a reverse osmosis membrane, and, in addition, a support or a selective layer is formed using a nanomaterial. It is generally developed in the form of a modified thin-film nanocomposite (TFN).

TFC 및 TFN 분리막은 넓은 범위의 운전 pH (pH 2 - 11), 그리고 60 ℃ 수준의 준수한 내열성을 갖지만 수투과성-염선택성(permeability-selectivity) 트레이드 오프(trade-off)로 인해 공정 적용에 제한을 받고 있다. 즉, TFC 및 TFN 분리막은 일정 수준이상의 염 선택 성능 조건에서, 상대적으로 낮은 수투과성(1-20 LMH/bar)을 갖는다는 단점을 가지고 있다. TFC and TFN membranes have a wide operating pH (pH 2 - 11) and good heat resistance at a level of 60 ° C. However, the process application is limited due to the trade-off of water permeability-selectivity. are receiving That is, TFC and TFN separation membranes have a disadvantage in that they have relatively low water permeability (1-20 LMH/bar) under salt selection performance conditions above a certain level.

이러한 정삼투용 분리막의 수투과성과 염선택성을 증가시키기 위해서는 선택층 뿐만 아니라 다공성 지지체의 개선이 필요하다. 지지체 내부의 정삼투공정의 효율을 떨어뜨리는 농도분극(internal concentration polarization, ICP) 현상을 최소화시키기 위해서는 일반적으로 사용되는 한외여과막(ultrafiltration, UF)을 대신하여 폴리에테르설폰(polyethersulfone) 정밀여과막 (microfiltration, MF)과 같이 기존의 UF막보다 기공도가 높고 친수성이 높은 지지체를 사용하는 것이 바람직하다. 다만, 이러한 기공도가 높고 표면 공극이 큰 지지체를 이용하면 도 1 (a)에 도시된 것과 같이 폴리아미드 선택층이 쉽게 지지체 내부에 침투하여, 선택층의 실질적인 두께가 증가하여 수투과성 감소되는 문제를 수반한다.In order to increase the water permeability and salt selectivity of the forward osmosis membrane, it is necessary to improve the porous support as well as the selective layer. In order to minimize the internal concentration polarization (ICP) phenomenon that reduces the efficiency of the forward osmosis process inside the support, a polyethersulfone microfiltration membrane is used instead of the commonly used ultrafiltration membrane (UF). MF), it is preferable to use a support having a higher porosity and higher hydrophilicity than a conventional UF membrane. However, when such a support with high porosity and large surface voids is used, the polyamide selective layer easily penetrates into the support as shown in FIG. is accompanied by

이에, 본 발명자들은 상기 문제점(trade-off, ICP 등)을 해결하기 위하여 예의 노력한 결과, 공극이 큰 정밀여과막을 지지체로 폴리아미드를 선택층으로써 적용하지만, 두 층 사이에 중간층 구조를 포함하는 박막 복합 분리막의 제조방법을 개발하고, 상기 중간층 구조를 포함된 분리막이 중간층 구조가 포함되지 않은 분리막보다 성능이 뛰어날 뿐만 아니라, 유용 자원 회수 및 비료 희석 등 다양한 분야에 응용 적용이 가능함을 확인하고, 본 발명을 완성하였다. Accordingly, the present inventors made diligent efforts to solve the above problems (trade-off, ICP, etc.). As a result, a microfiltration membrane with large pores is applied as a support as a selective layer, but a thin film including an intermediate layer structure between the two layers. Developing a method for manufacturing a composite separation membrane, and confirming that the separation membrane including the intermediate layer structure has better performance than the separation membrane without the intermediate layer structure, and can be applied to various fields such as useful resource recovery and fertilizer dilution, The invention was completed.

본 발명의 목적은 중간층 구조를 포함한 높은 수투과성 및 염선택성을 가지는 박막 복합 분리막의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for manufacturing a thin film composite separator having high water permeability and salt selectivity including an intermediate layer structure.

또한, 본 발명의 목적은 상기 제조방법에 의해 제조된 분리막을 이용한 환경응용(유용 자원 회수 및 비료 희석 등)을 제공하는 데 있다. In addition, an object of the present invention is to provide an environmental application (useful resource recovery and fertilizer dilution, etc.) using the separation membrane manufactured by the above manufacturing method.

본 발명은 상기 과제를 해결하기 위하여, 다음의 단계를 포함하는 중간층 구조를 가진 복합 분리막의 제조방법을 제공한다: In order to solve the above problems, the present invention provides a method for manufacturing a composite separator having an intermediate layer structure comprising the following steps:

(a) 중간층 구조 형상을 위해서 중간층 예비 용액을 제조하는 단계;(a) preparing an interlayer preliminary solution for the interlayer structure shape;

(b) 상기 중간층 예비 용액을 다공성 지지체 표면에 코팅하는 단계; 및(b) coating the intermediate layer preliminary solution on the surface of the porous support; and

(c) 상기 중간층이 코팅된 지지체 위에 선택층/활성층을 형성하는 단계. (c) forming a selective layer/active layer on the support coated with the intermediate layer.

본 발명에 따르면, 상기 (a) 단계의 중간층 예비 용액은 나노입자(ZnO, TiO2), 1차원(SWCNT, MWCNT), 2차원(GO, MXene, MoS2) 나노물질 및 그의 개질된 나노물질, 또는 계면 코팅을 할 수 있는 고분자(polydopamine, polyvinyl alcohol) 등을 포함하는 소재일 수 있다. According to the present invention, the intermediate layer preliminary solution of step (a) is nanoparticles (ZnO, TiO 2 ), one-dimensional (SWCNT, MWCNT), two-dimensional (GO, MXene, MoS 2 ) nanomaterials and modified nanomaterials thereof , or may be a material containing a polymer (polydopamine, polyvinyl alcohol) capable of interfacial coating.

본 발명에 따르면, 상기 (b) 단계의 지지체는 PSF(polysulfone), SPSF(sulfonated polysulfone), PES(polyethersulfone), SPES(sulfonated polyethersulfone), PVDF(polyvinylidene fluoride), PAN(polyacrylonitrile), PTFE(polytetra fluoroethylene) 등을 포함하는 고분자 분리막으로 구성되며 및 위 물질군 중 하나 이상을 포함하는 재료로 제조되는 것일 수 있다. According to the present invention, the support of step (b) is PSF (polysulfone), SPSF (sulfonated polysulfone), PES (polyethersulfone), SPES (sulfonated polyethersulfone), PVDF (polyvinylidene fluoride), PAN (polyacrylonitrile), PTFE (polytetra fluoroethylene) ) and the like, and may be made of a material including at least one of the above material groups.

본 발명에 따르면, 상기 (b) 단계의 코팅은 진공 여과(vacuum filtration), 스프레이(spray), 전자방사(electrospinning), 브러시(brush) 등에 의해 수행될 수 있다. According to the present invention, the coating of step (b) may be performed by vacuum filtration, spraying, electrospinning, brushing, or the like.

본 발명에 따르면, 상기 (c) 단계의 선택층/활성층은 계면중합(interfacial polymerization), 디핑(dipping), 층상조립(layer-by-layer) 또는 이중층-슬롯코팅(dual layer slot coating)에 의해 형성될 수 있다. According to the present invention, the selective layer / active layer of step (c) is interfacial polymerization (interfacial polymerization), dipping (dipping), layer-by-layer (layer-by-layer) or double-layer slot coating (dual layer slot coating) by can be formed.

이때, 상기 계면중합은 i) 극성용매에 제1 단량체가 용해되어 있는 극성용액과 비극성용매에 제2 단량체가 용해되어 있는 비극성용액을 이용하여 두 용액 사이에 계면을 형성하는 단계 및 ii) 상기 형성된 계면에서 제1 단량체와 제2 단량체 간의 중합반응을 유도하여 선택층을 형성시키는 단계를 포함할 수 있다. At this time, the interfacial polymerization includes the steps of i) forming an interface between the two solutions using a polar solution in which the first monomer is dissolved in a polar solvent and a non-polar solution in which the second monomer is dissolved in a non-polar solvent, and ii) the formed Inducing a polymerization reaction between the first monomer and the second monomer at the interface may include forming a selective layer.

이때, 상기 제1 단량체는 방향족 및 지방족 아민, 알코올 또는 하이드록실 말단기를 가지는 분자, MPD(m-phenylene diamine), OPD(1,2-phenylene diamine), PPD(1,4-phenylene diamine), MDA(methane diamine), MXDA(M-xylene diamine), IPDA(isophoroediamine), DETA(diethylene triamine), TETA(triethylene tetramine), EDA(ethylenediamine), DEPA(diethyl propyl amine), PIP(piperazine), PEI(Polyetherimide), N-AEP(N-aminoethyl piperazine), PVA(polyvinyl alcohol)로 이루어진 군에서 선택될 수 있고,In this case, the first monomer is an aromatic and aliphatic amine, alcohol or a molecule having a hydroxyl end group, MPD (m-phenylene diamine), OPD (1,2-phenylene diamine), PPD (1,4-phenylene diamine), MDA(methane diamine), MXDA(M-xylene diamine), IPDA(isophoroediamine), DETA(diethylene triamine), TETA(triethylene tetramine), EDA(ethylenediamine), DEPA(diethyl propyl amine), PIP(piperazine), PEI( Polyetherimide), N-AEP (N-aminoethyl piperazine), and PVA (polyvinyl alcohol) may be selected from the group consisting of,

상기 제2 단량체는 아실 클로라이드 말단기를 가지는 분자, TMC(trimesoyl chloride), PC(phthaloyl chloride), IPC(isophthaloyl chloride), TPC(terephthaloyl chloride), HTC(cyclohexane-1,3,5tricarbonyl chloride)로 이루어진 군에서 선택될 수 있다. The second monomer is a molecule having an acyl chloride end group, TMC (trimesoyl chloride), PC (phthaloyl chloride), IPC (isophthaloyl chloride), TPC (terephthaloyl chloride), HTC (cyclohexane-1,3,5tricarbonyl chloride) consisting of may be selected from the group.

또한, 상기 극성용매는 물, 메탄올, 에탄올, 프로판올, 부탄올, 이소프로판올, 에틸아세테이트, 아세톤 및 클로로포름으로 이루어진 군에서 선택되는 1종 이상일 수 있다. In addition, the polar solvent may be at least one selected from the group consisting of water, methanol, ethanol, propanol, butanol, isopropanol, ethyl acetate, acetone and chloroform.

또한, 상기 비극성용매는 헥산, 펜탄, 사이클로헥산, 헵탄, 옥탄, 사염화탄소, 테트라하이드로퓨란, 벤젠 및 톨루엔으로 이루어진 군에서 선택되는 1종 이상일 수 있다. In addition, the non-polar solvent may be at least one selected from the group consisting of hexane, pentane, cyclohexane, heptane, octane, carbon tetrachloride, tetrahydrofuran, benzene, and toluene.

본 발명은 또한, 상기 제조방법에 따라 제조되며, 다공성 지지체와 선택층/활성층 사이에 중간층 구조를 포함하는 복합 분리막을 제공한다.The present invention also provides a composite separator prepared according to the above manufacturing method and including an intermediate layer structure between the porous support and the selective layer/active layer.

본 발명은 또한, 상기 중간층 구조를 포함한 복합 분리막을 이용한 수처리 방법을 제공한다. The present invention also provides a water treatment method using a composite separator including the intermediate layer structure.

본 발명은 또한, 상기 중간층 구조를 포함한 복합 분리막을 이용한 유용자원의 회수 및 농축 방법을 제공한다.The present invention also provides a method for recovering and concentrating useful resources using the composite membrane including the intermediate layer structure.

본 발명은 또한, 상기 중간층 구조를 포함한 복합 분리막을 이용한 고농도 폐수/비료의 희석방법을 제공한다.The present invention also provides a method for diluting high-concentration wastewater/fertilizer using a composite membrane including the intermediate layer structure.

본 발명에 따르면, 종래 한외여과막(UF) 지지체 이외의 다양한 지지체, 특히 UF 지지체보다 공극이 큰 지지체를 가지는, 중간층 구조를 포함하는 복합 분리막을 제조할 수 있으며, 상기 제조된 분리막은 정삼투 뿐만 아니라, 역삼투, 나노여과 등 분리막에 효과적으로 적용 가능하다. 또한, 상기 제조된 분리막은 높은 수투과성 및 높은 특정 용질 선택성를 가지고 기존 분리막의 트레이드 오프(trade-off) 및 내부농도분극(ICP) 문제를 완화할 수 있으며, 수처리, 유용 자원 회수 및 고농도 폐수, 비료 희석 등 다양한 분야에 유용하게 활용될 수 있다. According to the present invention, it is possible to manufacture a composite separation membrane including an intermediate layer structure having various supports other than the conventional ultrafiltration membrane (UF) support, in particular, a support having larger pores than a UF support, and the prepared separation membrane is not only forward osmosis but also forward osmosis. , can be effectively applied to separation membranes such as reverse osmosis and nanofiltration. In addition, the prepared separation membrane has high water permeability and high specific solute selectivity, and can alleviate trade-off and internal concentration polarization (ICP) problems of existing separation membranes, water treatment, useful resource recovery and high concentration wastewater, fertilizer It can be usefully used in various fields such as dilution.

도 1은 본 발명에 따른, 중간층 구조를 포함하는 복합 분리막(TFNi)의 제조 공정을 나타낸 것으로, (a)는 기존 중간층 구조가 없는 박막 복합(TFC)막의 제조공정, (b)는 본 발명에 따른 TFNi막 제조 공정을 나타낸 것이다.
도 2는 중간층 구조의 다양한 부하에 따른 TFC 분리막 및 TFNi 분리막의 성능을 나타낸 것으로서, (a)는 수투고도(Jw) 및 역 염투과도(Js), (b)는 특정 염투과도(Js/Jw)를 나타낸다.
도 3은 유도용액 농도에 따른 TFC 분리막 및 TFNi 분리막의 성능을 나타낸 것으로서, (a)는 수투과도(Jw), (b)는 역 염투과도(Js), (c)는 특정 염투과도(Js/Jw)를 나타낸다.
도 4는 TFC 분리막 및 TFNi 분리막의 응용 성능을 비교한 것으로서, (a)는 폐수의 농축 효율, (b)는 폐수 회수율 증가에 따른 물 플럭스의 변화, (c)는 특정 암모니아성 질소 플럭스 및 누적 암모니아성 질소의 질량을 나타낸 것이다.
1 shows a manufacturing process of a composite separator (TFNi) including an interlayer structure according to the present invention, (a) is a manufacturing process of a thin film composite (TFC) membrane without an existing interlayer structure, (b) is the present invention The TFNi film manufacturing process is shown.
Figure 2 shows the performance of the TFC membrane and the TFNi membrane according to various loads of the intermediate layer structure, (a) is the water permeability ( Jw ) and reverse salt permeability ( Js ), (b) is the specific salt permeability ( Js/Jw ) ) is indicated.
3 shows the performance of the TFC membrane and the TFNi membrane according to the concentration of the draw solution, (a) is the water permeability ( Jw ), (b) is the reverse salt permeability ( Js ), (c) is the specific salt permeability ( Js/ Jw ).
4 is a comparison of the application performance of the TFC membrane and the TFNi membrane, (a) is the concentration efficiency of the wastewater, (b) is a change in the water flux according to the increase in the wastewater recovery rate, (c) is a specific ammonia nitrogen flux and accumulation It represents the mass of ammonia nitrogen.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.

[실시예][Example]

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

[[ 실시예Example ]]

실시예Example 1: 중간층 구조를 포함하는 복합 분리막 제조 1: Manufacture of a composite separator including an intermediate layer structure

(1) 재료(1) material

다공성 지지체: 공극이 큰 정밀여과막(0.22 μm, PES MF)을 지지체로 사용하였다. Porous support : A microfiltration membrane with large pores (0.22 μm, PES MF) was used as a support.

중간층 용액: 폴리도파민(polydopamine, PDA) 개질된 1차원 나노물질인 탄소 나노튜브(CNT) 용액 및 2차원 나노물질인 Ti3C2Tx 맥신(MXene) 용액을 혼합하여 사용하였다. Interlayer solution : A polydopamine (PDA)-modified one-dimensional nanomaterial, carbon nanotube (CNT) solution, and a two-dimensional nanomaterial, Ti 3 C 2 T x maxine (MXene) solution were mixed and used.

계면중합 단량체 및 용매: 친수성 용매인 물에 포함된 단량체는 MPD(m-Phenylenediamine) 또는 PIP(piperazine)를 사용하였고, 유기 용매인 n-헥산(n-hexane)에 포함된 단량체는 TMC(1,3,5-benzenetricarbonyl trichloride)를 사용하였다. Interfacial polymerization monomer and solvent : MPD ( m -Phenylenediamine) or PIP (piperazine) was used for the monomer contained in the hydrophilic solvent, water, and the monomer contained in the organic solvent, n-hexane, was TMC (1, 3,5-benzenetricarbonyl trichloride) was used.

(2) 제조방법(2) Manufacturing method

중간층 용액 준비: 상기 1D 및 2D 나노물질은 질량비 1:1로 혼합하여, 10분 초음파처리 후, 중간층 구조를 형성하는 용액을 준비하였다. Interlayer solution preparation : The 1D and 2D nanomaterials were mixed at a mass ratio of 1:1, and after 10 minutes of sonication, a solution for forming an interlayer structure was prepared.

중간층 코팅: 상기 PES MF 지지체를 여과 장치에 고정하여, 고정된 PES MF 지지체 위에 상기 준비된 중간층 용액을 부어, 저압 여과(0.2 bar)를 통해 나노물질이 PES MF 지지체 표면에 코팅되어, 60℃ 오븐에 건조를 통해 중간층 구조를 제조하였다. 제조된 중간층 구조의 부하량은 용액의 부피에 따라 4-66 μg/cm2를 나타내었다. Interlayer coating : The PES MF support is fixed to a filtration device, the prepared intermediate layer solution is poured on the fixed PES MF support, and the nanomaterial is coated on the surface of the PES MF support through low pressure filtration (0.2 bar), in an oven at 60 ° C. An intermediate layer structure was prepared through drying. The amount of loading of the prepared intermediate layer structure was 4-66 μg/cm 2 depending on the volume of the solution.

선택층 형상: 상기 중간층 구조를 지닌 지지체를 용기에 고정하여, 중간층 위에 MPD 수용액(정삼투막/역삼투막 용) 또는 PIP 수용액(나노여과막 용) 을 부어, 완전히 잠기게 3분을 기다렸다. 남은 MPD 수용액을 제거한 후, TMC 유기용액을 부어, 1분을 기다린 뒤, 계면중합 반응을 통해 선택층을 제조하였다. Selective layer shape : The support having the intermediate layer structure was fixed in a container, and MPD aqueous solution (for forward osmosis membrane/reverse osmosis membrane) or PIP aqueous solution (for nanofiltration membrane) was poured on the intermediate layer and waited for 3 minutes to completely submerge. After removing the remaining MPD aqueous solution, the TMC organic solution was poured, and after waiting 1 minute, a selective layer was prepared through an interfacial polymerization reaction.

실시예Example 2: 중간층 구조를 포함한 2: Including interlayer structure 정삼투용for forward osmosis 막의 성능 실험 Membrane performance test

실시예 1의 방법에 의해 제조된 정삼투용 분리막의 성능을 검증하기 위하여 피드용액 Deionized water(탈이온수), 유량 0.3 L/min, 온도 25℃ 조건에서 하기 (1) 또는 (2) 조건에 따른 수투과도 및 염선택도 비교 실험을 실시하였다. In order to verify the performance of the membrane for forward osmosis prepared by the method of Example 1, feed solution Deionized water (deionized water), flow rate 0.3 L/min, temperature 25 ℃ conditions according to the following (1) or (2) conditions A comparative experiment on water permeability and salt selectivity was performed.

(1) 중간층 구조의 부하량에 따른 막의 성능 변화 (유도용액 농도: 1.0 M NaCl )(1) Membrane performance change according to the load of the intermediate layer structure (draw solution concentration: 1.0 M NaCl )

도 2에 나타난 바와 같이, 중간층 구조를 포함하는 정삼투막(TFNi)은 대조군(즉, 중간층 구조가 없는 TFC막)에 비해 수투과도(water flux, J w )가 전체적으로 2~4배 높고 특정 염투과도(specific salt flux, J s / J w )가 2~4배 낮게 나타났다. 또한, 중간층 구조의 부하량이 24.9 μg/cm2 경우에는, 대조군(J w : 11.2 LMH)보다 32.9 LMH의 높은 수투과도가 달성되어, 특정 염투과도가 0.72 g/L에서 0.24 g/L로 감소되었다. As shown in FIG. 2 , the forward osmosis membrane (TFNi) including the intermediate layer structure has a water permeability (water flux, J w ) 2 to 4 times higher overall than the control (ie, TFC membrane without the intermediate layer structure), and specific salts Permeability (specific salt flux, J s / J w ) was 2 to 4 times lower. In addition, when the loading of the intermediate layer structure was 24.9 μg/cm 2 , a higher water permeability of 32.9 LMH than the control ( J w : 11.2 LMH) was achieved, and the specific salt permeability was reduced from 0.72 g/L to 0.24 g/L. .

(2) 유도용액 농도에 따른 막의 성능 변화 (중간층 구조의 부하량: 16.6 (2) Changes in membrane performance according to draw solution concentration (load of intermediate layer structure: 16.6 μgμg // cmcm 22 ) )

도 3에 나타난 바와 같이, 유도용액의 농도가 증가할수록 수투과도가 증가하였고, 중간층 구조가 있는 경우, 최대 3.0 M의 NaCl 유도용액에서 48.4 LMH의 수투과도 및 0.48 g/L의 특정 염투과도를 나타내었으며, 대조군(J w : 24.7 LMH, J s / J w : 0.80 g/L)보다 높은 수투과성 및 염선택성를 유지하였다. As shown in FIG. 3, as the concentration of the draw solution increased, the water permeability increased, and when there was an intermediate layer structure, water permeability of 48.4 LMH and specific salt permeability of 0.48 g/L were exhibited in a NaCl draw solution of up to 3.0 M. and maintained higher water permeability and salt selectivity than the control group ( J w : 24.7 LMH, J s / J w : 0.80 g/L).

상기 결과를 통해, 본 발명에 따른 중간층 구조를 포함한 정삼투용 분리막은 매우 우수한 성능을 가지는 것을 확인하였다. Through the above results, it was confirmed that the separator for forward osmosis including the intermediate layer structure according to the present invention has very good performance.

실시예Example 3: 중간층 구조를 포함한 3: Including interlayer structure 정삼투용for forward osmosis 막의 실체 하수 농축 및 비료 희석 성능 검증 Verification of actual sewage concentration and fertilizer dilution performance of the membrane

상기 실시예 1에 방법에 따라 제조된 정삼투용 막은 실제 환경응용에 적용 성능 검증하기 위해 피드용액으로 도시 생활 폐수, 유도용액으로 비료인 염화칼륨(potassium chloride, KCl), 유량 0.3 L/min, 온도 25℃ 공정조건에서 폐수 농축 효율, 안정성 및 암모니아성 질소 선택도에 대한 비교 실험을 수행하였다.The membrane for forward osmosis prepared according to the method in Example 1 was used as a feed solution to verify the application performance in actual environmental applications, and as a feed solution, potassium chloride (KCl), a fertilizer, a flow rate of 0.3 L/min, temperature Comparative experiments were performed on wastewater concentration efficiency, stability, and selectivity for ammonia nitrogen under 25°C process conditions.

그 결과, 도 4에 나타낸 바와 같이, 중간층 구조가 있는 TFNi 분리막은 TFC 분리막에 비해 매우 높은 농축 효율을 나타내었다. 또한, 중간층 구조를 가진 TFNi 분리막을 사용하여 피 드용액인 폐수의 회수율은 24시간 미만으로 50%에 도달하지만, 중간층 구조가 없는 TFC 분리막은 같은 회수율 도달하기 위해 100시간이 소요됨을 확인하였다(도4a). 이와 같은 높은 농축 효율(~4.3배)은 상기 실시예 2에서 나타낸 높은 수투과도에 따른 것이다. 시료로 사용한 도시 생활 폐수는 많은 유기 및 무기 오염 물질로 구성되었지만, 유도용액의 희석 효과를 고려할 때 수투과도 감소세가 크게 보이지 않았다(도 4b).As a result, as shown in FIG. 4 , the TFNi membrane having an intermediate layer structure exhibited very high concentration efficiency compared to the TFC membrane. In addition, it was confirmed that the recovery rate of wastewater, which is the feed solution, reached 50% in less than 24 hours using the TFNi membrane having an interlayer structure, but it was confirmed that it took 100 hours to reach the same recovery rate in the TFC membrane without the interlayer structure (Fig. 4a). This high concentration efficiency (~4.3 times) is due to the high water permeability shown in Example 2 above. Urban wastewater used as a sample was composed of many organic and inorganic contaminants, but no significant decrease in water permeability was seen when considering the dilution effect of the draw solution (FIG. 4b).

또한, 중간층 구조가 갖진 TFNi 분리막을 사용할 때 암모니아성 질소 플러스가 더 낮아지고 있음을 확인하였다(도4c). TFNi 분리막을 사용하면 대조군 TFC 분리막에 비해 유도용액 측에서 더 낮은 암모니아성 질소 누적량을 나타내었다.In addition, it was confirmed that ammonia nitrogen plus was lowered when a TFNi membrane having an interlayer structure was used (Fig. 4c). When the TFNi membrane was used, the amount of ammonia nitrogen accumulation was lower in the draw solution side than the control TFC membrane.

이러한 결과를 통해, 본 발명에 따른 중간층 구조를 포함한 정삼투용 분리막은 높은 농축 효율을 가질 뿐만 아니라 중간층 구조의 도입으로 인해 향상된 암모니아성 질소 제거 또는 선택성을 나타냄을 확인하였다.Through these results, it was confirmed that the separation membrane for forward osmosis including the intermediate layer structure according to the present invention exhibits improved ammonia nitrogen removal or selectivity due to the introduction of the intermediate layer structure as well as high concentration efficiency.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시형태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (8)

(a) 중간층 예비 용액을 제조하는 단계;
(b) 상기 중간층 예비 용액을 다공성 지지체 표면에 코팅하는 단계; 및
(c) 상기 코팅된 다공성 지지체 상에 선택층/활성층을 형성하는 단계를 포함하는 복합 분리막의 제조방법.
(a) preparing an intermediate layer preliminary solution;
(b) coating the intermediate layer preliminary solution on the surface of the porous support; and
(c) a method of manufacturing a composite separator comprising the step of forming a selective layer / active layer on the coated porous support.
제1항에 있어서,
상기 중간층 예비 용액은 ZnO, TiO2, 탄소나노튜브, 그래핀 옥사이드(GO), 맥신(MXene), MoS2, 폴리도파민(polydopamine) 및 폴리비닐알코올(polyvinyl alcohol)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 복합 분리막의 제조방법.
According to claim 1,
The intermediate layer preliminary solution is one selected from the group consisting of ZnO, TiO 2 , carbon nanotubes, graphene oxide (GO), maxine (MXene), MoS 2 , polydopamine and polyvinyl alcohol. A method for manufacturing a composite separator comprising the above.
제1항에 있어서,
상기 다공성 지지체는 PSF(polysulfone), SPSF(sulfonated polysulfone), PES(polyethersulfone), SPES(sulfonated polyethersulfone), PVDF(polyvinylidene fluoride), PAN(polyacrylonitrile) 및 PTFE(polytetra fluoroethylene)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 복합 분리막의 제조방법.
According to claim 1,
The porous support is one selected from the group consisting of polysulfone (PSF), sulfonated polysulfone (SPSF), polyethersulfone (PES), sulfonated polyethersulfone (SPES), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polytetra fluoroethylene (PTFE). A method for manufacturing a composite separator comprising the above.
제1항에 있어서,
상기 코팅은 진공 여과(vacuum filtration), 스프레이(spray), 전자방사(electrospinning) 및 브러시(brush)로 이루어진 군에서 선택되는 방법으로 수행되는 것을 특징으로 하는 복합 분리막의 제조방법.
The method of claim 1,
The coating is a method of manufacturing a composite separator, characterized in that the coating is performed by a method selected from the group consisting of vacuum filtration (vacuum filtration), spray (spray), electrospinning (electrospinning) and a brush (brush).
제1항에 있어서,
상기 선택층/활성층은 계면중합(interfacial polymerization), 디핑(dipping), 층상조립(layer-by-layer) 및 이중층-슬롯코팅(dual layer slot coating)으로 이루어진 군에서 선택되는 방법에 의해 형성되는 것을 특징으로 하는 복합 분리막의 제조방법.
According to claim 1,
The selective layer/active layer is formed by a method selected from the group consisting of interfacial polymerization, dipping, layer-by-layer and dual layer slot coating. A method for manufacturing a composite separator, characterized in that
제5항에 있어서,
상기 계면중합에 의한 선택층/활성층은 i) 극성용매에 제1 단량체가 용해되어 있는 극성용액과 비극성용매에 제2 단량체가 용해되어 있는 비극성용액 사이에 계면을 형성하는 단계; 및 ii) 상기 형성된 계면에서 상기 제1 단량체와 상기 제2 단량체 간의 중합반응을 유도하여 선택층을 형성시키는 단계;에 의해 형성되는 것을 특징으로 하는 복합 분리막의 제조방법.
6. The method of claim 5,
The selective layer/active layer by the interfacial polymerization comprises: i) forming an interface between a polar solution in which a first monomer is dissolved in a polar solvent and a non-polar solution in which a second monomer is dissolved in a non-polar solvent; and ii) forming a selective layer by inducing a polymerization reaction between the first monomer and the second monomer at the formed interface.
제6항에 있어서,
상기 제1 단량체는 방향족 및 지방족 아민, 알코올 또는 하이드록실 말단기를 가지는 분자, MPD(m-phenylene diamine), OPD(1,2-phenylene diamine), PPD(1,4-phenylene diamine), MDA(methane diamine), MXDA(M-xylene diamine), IPDA(isophoroediamine), DETA(diethylene triamine), TETA(triethylene tetramine), EDA(ethylenediamine), DEPA(diethyl propyl amine), PIP(piperazine), PEI(Polyetherimide) 및 N-AEP(N-aminoethyl piperazine), PVA(polyvinyl alcohol)로 이루어진 군에서 선택되는 것을 특징으로 하는 복합 분리막의 제조방법.
7. The method of claim 6,
The first monomer is an aromatic and aliphatic amine, an alcohol or a molecule having a hydroxyl end group, MPD (m-phenylene diamine), OPD (1,2-phenylene diamine), PPD (1,4-phenylene diamine), MDA ( methane diamine), MXDA(M-xylene diamine), IPDA(isophoroediamine), DETA(diethylene triamine), TETA(triethylene tetramine), EDA(ethylenediamine), DEPA(diethyl propyl amine), PIP(piperazine), PEI(Polyetherimide) and N-AEP (N-aminoethyl piperazine), and PVA (polyvinyl alcohol).
제6항에 있어서,
상기 제2 단량체는 아실 클로라이드 말단기를 가지는 분자, TMC(trimesoyl chloride), PC(phthaloyl chloride), IPC(isophthaloyl chloride), TPC(terephthaloyl chloride) 및 HTC(cyclohexane-1,3,5tricarbonyl chloride)로 이루어진 군에서 선택되는 것을 특징으로 하는 복합 분리막의 제조방법.
7. The method of claim 6,
The second monomer is a molecule having an acyl chloride end group, trimesoyl chloride (TMC), phthaloyl chloride (PC), isophthaloyl chloride (IPC), terephthaloyl chloride (TPC) and cyclohexane-1,3,5tricarbonyl chloride (HTC) consisting of Method for producing a composite separator, characterized in that selected from the group.
KR1020200173306A 2020-12-11 2020-12-11 Method of fabricating thin-film composite membrane with interlayer structure and its applications KR20220083902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200173306A KR20220083902A (en) 2020-12-11 2020-12-11 Method of fabricating thin-film composite membrane with interlayer structure and its applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200173306A KR20220083902A (en) 2020-12-11 2020-12-11 Method of fabricating thin-film composite membrane with interlayer structure and its applications

Publications (1)

Publication Number Publication Date
KR20220083902A true KR20220083902A (en) 2022-06-21

Family

ID=82221487

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200173306A KR20220083902A (en) 2020-12-11 2020-12-11 Method of fabricating thin-film composite membrane with interlayer structure and its applications

Country Status (1)

Country Link
KR (1) KR20220083902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115591413A (en) * 2022-11-10 2023-01-13 四川农业大学(Cn) MoS based on polyphenol 2 Preparation method and application of interlayer composite loose nanofiltration membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115591413A (en) * 2022-11-10 2023-01-13 四川农业大学(Cn) MoS based on polyphenol 2 Preparation method and application of interlayer composite loose nanofiltration membrane
CN115591413B (en) * 2022-11-10 2024-01-12 四川农业大学 Based on polyphenols MoS 2 Preparation method and application of middle layer composite loose nanofiltration membrane

Similar Documents

Publication Publication Date Title
US10786786B2 (en) Method for manufacturing membrane using selective layer prepared through support-free interfacial polymerization
CN107158980A (en) Utilized thin film composite membranes reacted based on air liquid interface and its preparation method and application
CN107530642B (en) Functionalized single-layer graphene-based thin film composite material and manufacturing method thereof
CN103635242A (en) Thin film composite membranes embedded with molecular cage compounds
CN108348866B (en) Single-step preparation process of thin film composite separation membrane by using double (double-layer) -slit coating technology
WO2011060202A1 (en) Nanostructured membranes for engineered osmosis applications
CN113117524A (en) Two-dimensional material MXene modified polypiperazine amide nanofiltration membrane and preparation method thereof
WO2013085343A1 (en) Reverse osmosis membrane comprising silver nanowire layer, and preparation method thereof
CN112426894B (en) Preparation method of polyamide composite reverse osmosis membrane and obtained reverse osmosis membrane
KR101105199B1 (en) Polyamide nanofiltration membrane having high flux property for water purification and manufacturing method thereof
Yuan et al. Carbon composite membranes for thermal-driven membrane processes
Lee et al. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization
Meng et al. Janus membranes at the water-energy nexus: A critical review
KR101869799B1 (en) manufacturing method of forward osmosis filter using carbon nano-material
KR20220083902A (en) Method of fabricating thin-film composite membrane with interlayer structure and its applications
CN114016285A (en) Preparation method of functional nanofiber membrane for seawater desalination
KR20140003086A (en) Hollow fiber nano filtration membrane and manufacturing method thereof
CN113731190A (en) Nano-cellulose layered self-assembled film and preparation method thereof
CN116371222B (en) Ultrathin composite polyamide nanofiltration membrane and preparation method and application thereof
WO2021244117A1 (en) Solution blow spinning method to fabricate thin film composite membrane
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
Geng et al. Fabrication of carbon nanotubes-modified poly (ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process
KR20150005330A (en) Preparation method of polyamide nanofiltration composite membrane and the polyamide nanofiltration composite membrane thereby
CN115382394A (en) Polyolefin-based composite nanofiltration membrane modified by UIO-66 nano material and preparation method thereof
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane