KR20220081940A - Transition metals doped rhenium selenide nanosheet having enhanced catalytic activity on hydrogen evolution reaction and preparation method thereof - Google Patents
Transition metals doped rhenium selenide nanosheet having enhanced catalytic activity on hydrogen evolution reaction and preparation method thereof Download PDFInfo
- Publication number
- KR20220081940A KR20220081940A KR1020210175801A KR20210175801A KR20220081940A KR 20220081940 A KR20220081940 A KR 20220081940A KR 1020210175801 A KR1020210175801 A KR 1020210175801A KR 20210175801 A KR20210175801 A KR 20210175801A KR 20220081940 A KR20220081940 A KR 20220081940A
- Authority
- KR
- South Korea
- Prior art keywords
- rese
- transition metal
- doped
- rhenium
- selenide
- Prior art date
Links
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 84
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 83
- QYGMYMCIOLTWMT-UHFFFAOYSA-N [Re]=[Se] Chemical compound [Re]=[Se] QYGMYMCIOLTWMT-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 45
- 239000001257 hydrogen Substances 0.000 title claims abstract description 45
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000002135 nanosheet Substances 0.000 title claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 title abstract description 19
- 230000003197 catalytic effect Effects 0.000 title description 10
- 238000002360 preparation method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000000694 effects Effects 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 25
- 239000011572 manganese Substances 0.000 claims description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 8
- 238000004729 solvothermal method Methods 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052702 rhenium Inorganic materials 0.000 claims description 6
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 5
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- 125000004429 atom Chemical group 0.000 description 16
- 239000011669 selenium Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000004502 linear sweep voltammetry Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 8
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- CUYHGAIVHCHFIA-UHFFFAOYSA-N bis(selanylidene)rhenium Chemical compound [Se]=[Re]=[Se] CUYHGAIVHCHFIA-UHFFFAOYSA-N 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 5
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 4
- -1 hydrogen ions Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002514 Co–Co Inorganic materials 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910003298 Ni-Ni Inorganic materials 0.000 description 1
- 229910019567 Re Re Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000014987 copper Nutrition 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/057—Selenium or tellurium; Compounds thereof
- B01J27/0573—Selenium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/36—Rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B01J35/0033—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/077—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
본 발명은 우수한 수소발생반응 (Hydrogen evolution reaction, HER) 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트 및 이의 제조방법에 관한 것이다. The present invention relates to a rhenium selenide nanosheet doped with a transition metal having excellent hydrogen evolution reaction (HER) activity and a method for preparing the same.
Description
본 발명은 우수한 수소발생반응(Hydrogen evolution reaction, HER) 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트 및 이의 제조방법에 관한 것이다. The present invention relates to a rhenium selenide nanosheet doped with a transition metal having excellent hydrogen evolution reaction (HER) activity and a method for preparing the same.
화석 연료의 급격히 증가하는 소모로 인해 발생되는 자원 고갈 및 지구온난화, 대기 오염 등의 심각한 환경 파괴를 극복하기 위해서 차세대 대체 에너지원을 찾아야 하며, 이는 현시대의 인류가 반드시 해결해야 할 가장 큰 과제이다. 수소 에너지는 공기 중에서 깨끗하게 연소되어 환경 친화적이다. 또한 지역 편재적이지도 않아 앞서 언급된 차세대 에너지로 적합한 에너지이다. 지구상에서 가장 풍부하고 공해가 전혀 발생하지 않는 태양에너지로 물을 분해하는 방법은 가장 친환경적이고 경제적인 수소 생산법으로 평가되고 있다. 현재 주로 수소 생산에 사용되고 있는 개질 반응은 천연가스나 석유 등을 이용하므로 한계가 있지만 물은 풍부한 자원이다. 따라서 물분해를 통한 수소 생산이 장기적으로 보았을 때 가장 적합한 방법이라 할 수 있다. In order to overcome severe environmental destruction such as resource depletion and global warming and air pollution caused by the rapidly increasing consumption of fossil fuels, the next generation of alternative energy sources must be found, which is the biggest challenge that mankind must solve in the present age. Hydrogen energy is environmentally friendly as it burns cleanly in the air. In addition, it is not ubiquitous in the region, so it is an energy suitable for the next-generation energy mentioned above. The method of decomposing water with solar energy, which is the most abundant and pollution-free on earth, is evaluated as the most eco-friendly and economical hydrogen production method. Currently, the reforming reaction mainly used for hydrogen production uses natural gas or petroleum, so there is a limit, but water is an abundant resource. Therefore, it can be said that hydrogen production through water cracking is the most suitable method in the long term.
물 전기분해는 전기를 가해주었을 때 물이 수소와 산소로 분해되는 반응을 말한다. 즉, 전극물질에 전압을 가해주었을 때 전기화학적으로 산화 환원 반응이 일어난다. 이 때 산화전극에서는 산소가, 환원전극에서는 수소가 발생한다. 물을 분해하여 수소와 산소를 생성시키는 과정은 큰 자유에너지의 증가로 인한 흡열반응이며 비자발적인 반응에 해당한다. 따라서, 물 분해 반응을 진행하기 위해서는 1.23V에 해당하는 전위를 외부적으로 걸어주어야 하는데, 실제로는 전극 촉매에 따라 이상적인 전위보다 더 많은 과전압이 걸린다. 물 전기분해는 수소를 생산할 수 있는 가장 간단한 방법이기도 하면서 물을 원료로 사용하기 때문에 대량생산의 용이성과 고순도의 수소를 얻을 수 있다. 하지만 물 전기분해에 의해 수소를 생산할 경우 전력소모량이 많아질 수 있기 때문에, 실용화되기 어려운 한계를 가지고 있다. 이를 위해 물 전기분해를 통한 수소생산의 효율성을 높이는 시스템의 개발과 수소발생에 대한 활성이 높은 전극촉매 제조기술 연구가 필요한 실정이다. 물 전기분해에서 성능을 결정하는 가장 대표적인 것은 전극촉매이고, 촉매를 통해 수소가 발생되는 현상을 수소발생반응 (Hydrogen Evolution Reaction, HER) 이라 한다. 전극물질과 표면상태에 따라 필요한 전압과 성능이 결정된다. 전극표면에서의 가역적인 전기화학적 반응은 다음과 같다.Water electrolysis refers to a reaction in which water is decomposed into hydrogen and oxygen when electricity is applied. That is, when a voltage is applied to the electrode material, an electrochemical oxidation-reduction reaction occurs. At this time, oxygen is generated at the anode and hydrogen is generated at the cathode. The process of decomposing water to produce hydrogen and oxygen is an endothermic reaction due to a large increase in free energy and corresponds to an involuntary reaction. Therefore, in order to proceed with the water decomposition reaction, a potential corresponding to 1.23 V must be externally applied, but in reality, an overvoltage higher than the ideal potential is applied depending on the electrode catalyst. Water electrolysis is also the simplest method to produce hydrogen, and because water is used as a raw material, it can be easily mass-produced and high-purity hydrogen can be obtained. However, when hydrogen is produced by water electrolysis, power consumption may increase, so it is difficult to put into practical use. To this end, it is necessary to develop a system that increases the efficiency of hydrogen production through water electrolysis and to study the electrode catalyst manufacturing technology with high activity for hydrogen generation. The most representative thing that determines the performance in water electrolysis is the electrocatalyst, and the phenomenon in which hydrogen is generated through the catalyst is called the Hydrogen Evolution Reaction (HER). The required voltage and performance are determined according to the electrode material and surface condition. The reversible electrochemical reaction on the electrode surface is as follows.
H+(aq) + e- → 1/2H2(g), E° = 0V vs. SHEH + (aq) + e- → 1/2H 2 (g), E° = 0V vs. SHE
수소환원전극을 기준으로 하였을 때, 전압이 0V 일 때 수소가 발생한다. 전극 표면에서 수소가 발생할 때 세 가지 메커니즘(mechanism)을 통해 일어난다. 기본적으로 수소이온이 환원되어 수소원자형태로 전극 표면에 흡착한다 (Volmer 반응). 여기서 두 가지 경로로 나눠지게 되는데 흡착된 수소원자와 용액의 수소이온이 결합하거나 (Heyrowsky 반응) 흡착된 수소원자들끼리의 결합 (Tafel 반응)에 의해 수소가 발생한다. 또한 타펠 기울기( Tafel slope)는 수소발생반응의 메커니즘을 규명하기 위한 값으로 활용된다. 수소 촉매 활성에 영향을 주는 인자와 관련된 식은 다음과 같다.Based on the hydrogen reduction electrode, hydrogen is generated when the voltage is 0V. When hydrogen is generated on the electrode surface, it occurs through three mechanisms. Basically, hydrogen ions are reduced and adsorbed on the electrode surface in the form of hydrogen atoms (Volmer reaction). Here, it is divided into two paths. Hydrogen is generated by the bonding between the adsorbed hydrogen atom and the hydrogen ion in the solution (Heyrowsky reaction) or the bonding between the adsorbed hydrogen atoms (Tafel reaction). In addition, the Tafel slope is used as a value to investigate the mechanism of the hydrogen evolution reaction. Equations related to factors affecting hydrogen catalytic activity are as follows.
η = b log(j/j o)η = b log( j/j o )
상기 식에서 η: 과전압, b: 타펠 기울기, j: 전류밀도 (current density), jo: 교환 전류밀도 (exchange current density)를 의미하며, 이에 근거하여 이상적인 수소 촉매는 낮은 타펠 기울기와 높은 교환 전류밀도를 가진다.In the above formula, η: overvoltage, b: Tafel slope, j: current density, j o : means exchange current density, based on this, an ideal hydrogen catalyst has a low Tafel slope and high exchange current density have
촉매 활성에 가장 큰 영향을 주는 인자는 과전압이다. 과전압은 전하전달반응이 일어나는데 가장 크게 기여를 하는 인자이며, 촉매 활성화에 있어 에너지 벽 (energy barrier)을 극복하는 속도 및 여부에 따라 과전압 값이 좌지우지된다. 촉매 활성화가 좋을수록 과전압 값은 감소한다. 상용화된 백금 전극 같은 경우에는 수소가 발생할 때의 전압이 거의 0V에 가깝다. 하지만 백금 전극의 단점을 보완하면서 과전압을 백금 전극만큼 최소화하려는 수소 촉매 연구가 진행되고 있다. 수소촉매개발을 충족시켜주기 위해서는 백금의 단점을 보완할 수 있는 저비용과 풍부함의 장점을 가지고 있는 물질이어야 하고, 백금을 대체할 수 있을 만한 좋은 촉매활성을 가지고 있어야 한다.The factor that has the greatest influence on catalytic activity is overvoltage. The overvoltage is the factor that contributes the most to the charge transfer reaction, and the overvoltage value depends on the speed and whether or not the energy barrier is overcome in catalyst activation. The better the catalyst activation, the lower the overvoltage value. In the case of commercially available platinum electrodes, the voltage when hydrogen is generated is almost 0V. However, research on hydrogen catalysts to minimize the overvoltage as much as the platinum electrode is in progress while compensating for the disadvantages of the platinum electrode. In order to satisfy the development of a hydrogen catalyst, it must be a material with advantages of low cost and abundance that can compensate for the disadvantages of platinum, and it must have good catalytic activity that can replace platinum.
이에 본 발명자들은 고가의 귀금속 수소발생반응 촉매인 백금(Pt)을 대체할 수 있는 저렴한 나노소재 촉매를 개발하기 위해 예의 노력한 결과, 용매열 합성 (solvothermal synthesis)을 이용하여 전이금속이 도핑된 레늄 셀레나이드 나노시트를 제조하는 경우, 우수한 HER 성능을 가짐을 확인한 후, 본 발명을 완성하기에 이르렀다. Accordingly, the present inventors made intensive efforts to develop an inexpensive nanomaterial catalyst that can replace platinum (Pt) , which is an expensive noble metal hydrogen evolution catalyst. As a result, rhenium selenium doped with a transition metal using solvothermal synthesis. In the case of manufacturing the aged nanosheet, after confirming that it has excellent HER performance, the present invention was completed.
본 발명은 우수한 수소발생반응 (Hydrogen evolution reaction, HER) 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a rhenium selenide nanosheet doped with a transition metal having excellent hydrogen evolution reaction (HER) activity.
본 발명은 또한 상기 우수한 수소발생반응 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for preparing a rhenium selenide nanosheet doped with a transition metal having the excellent hydrogen evolution activity.
상기 목적을 달성하기 위하여, In order to achieve the above object,
본 발명은the present invention
우수한 수소발생반응 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트를 제공하고자 한다. An object of the present invention is to provide a rhenium selenide nanosheet doped with a transition metal having excellent hydrogen evolution activity.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트에 있어서, 상기 전이금속은 니켈(Ni), 코발트(Co), 철(Fe), 구리(Cu) 또는 망간(Mn), 바람직하기는 니켈(Ni) 또는 코발트(Co), 더욱 바람직하기는 니켈(Ni)인 것을 특징으로 한다. In the rhenium selenide nanosheet doped with a transition metal according to the present invention, the transition metal is nickel (Ni), cobalt (Co), iron (Fe), copper (Cu) or manganese (Mn), preferably nickel (Ni) or cobalt (Co), more preferably nickel (Ni).
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트에 있어서, 상기 전이금속의 도핑 농도는 레늄을 기준으로 5%인 것을 특징으로 한다. In the rhenium selenide nanosheet doped with a transition metal according to the present invention, the doping concentration of the transition metal is 5% based on rhenium.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트에 있어서, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 HER 성능 (10 mAcm-2)은 100 mV 이하인 것을 특징으로 한다. 예를 들면, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 HER 성능 (10 mAcm-2)은 100 mV 이하, 바람직하기는 90 mV 이하, 더욱 바람직하기는 85 mV 이하일 수 있다. In the rhenium selenide nanosheet doped with the transition metal according to the present invention, the HER performance (10 mAcm -2 ) of the rhenium selenide nanosheet doped with the transition metal is 100 mV or less. For example, the HER performance (10 mAcm -2 ) of the rhenium selenide nanosheet doped with the transition metal may be 100 mV or less, preferably 90 mV or less, and more preferably 85 mV or less.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트에 있어서, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 타펠 기울기는 70 mV/dec 이하인 것을 특징으로 한다. 예를 들면, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 타펠 기울기는 70 mV/dec 이하, 바람직하기는 65 mV/dec 이하, 더욱 바람직하기는 60 mV/dec 이하일 수 있다. In the rhenium selenide nanosheet doped with the transition metal according to the present invention, the Tafel slope of the rhenium selenide nanosheet doped with the transition metal is 70 mV/dec or less. For example, the Tafel slope of the rhenium selenide nanosheet doped with the transition metal may be 70 mV/dec or less, preferably 65 mV/dec or less, and more preferably 60 mV/dec or less.
본 발명은 또한The present invention also
(A) NH4ReO4, (PhCH2)2Se2, TM (Transition metal) 아세틸아세토네이트를 올레일아민 (C18H35NH2, OAm)에 첨가하여 교반하는 단계; 및(A) NH 4 ReO 4 , (PhCH 2 ) 2 Se 2 , TM (Transition metal) acetylacetonate was added to oleylamine (C 18 H 35 NH 2 , OAm) and stirred; and
(B) 상기 교반된 용액을 용매열합성법 (solvothermal process)을 진행하여 전이금속이 도핑된 레늄 셀레나이드 나노시트를 제조하는 단계를 포함하는 포함하는 용매열 합성 (solvothermal synthesis)을 이용한 우수한 수소발생반응 활성을 갖는 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조 방법을 제공하고자 한다. (B) performing a solvothermal process on the stirred solution to prepare a transition metal-doped rhenium selenide nanosheet, excellent hydrogen evolution reaction using solvothermal synthesis An object of the present invention is to provide a method for preparing a rhenium selenide nanosheet doped with an active transition metal.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조방법에 있어서, 상기 전이금속은 니켈(Ni), 코발트(Co), 철(Fe), 구리(Cu) 또는 망간(Mn), 바람직하기는 니켈(Ni) 또는 코발트(Co), 더욱 바람직하기는 니켈(Ni)인 것을 특징으로 한다. In the method of manufacturing a rhenium selenide nanosheet doped with a transition metal according to the present invention, the transition metal is nickel (Ni), cobalt (Co), iron (Fe), copper (Cu) or manganese (Mn), preferably The following is characterized in that nickel (Ni) or cobalt (Co), more preferably nickel (Ni).
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조방법에 있어서, 상기 전이금속의 도핑 농도는 레늄을 기준으로 5%인 것을 특징으로 한다. In the method for manufacturing a rhenium selenide nanosheet doped with a transition metal according to the present invention, the doping concentration of the transition metal is 5% based on rhenium.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조방법에 있어서, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 HER 성능 (10 mAcm-2)은 100 mV 이하인 것을 특징으로 한다. 예를 들면, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 HER 성능 (10 mAcm-2)은 100 mV 이하, 바람직하기는 90 mV 이하, 더욱 바람직하기는 85 mV 이하일 수 있다. In the method for manufacturing a rhenium selenide nanosheet doped with a transition metal according to the present invention, the HER performance (10 mAcm -2 ) of the rhenium selenide nanosheet doped with the transition metal is 100 mV or less. For example, the HER performance (10 mAcm -2 ) of the rhenium selenide nanosheet doped with the transition metal may be 100 mV or less, preferably 90 mV or less, and more preferably 85 mV or less.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트의 제조방법에 있어서, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 타펠 기울기는 70 mV/dec 이하인 것을 특징으로 한다. 예를 들면, 상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 타펠 기울기는 70 mV/dec 이하, 바람직하기는 65 mV/dec 이하, 더욱 바람직하기는 60 mV/dec 이하일 수 있다.In the method of manufacturing a rhenium-selenide nanosheet doped with a transition metal according to the present invention, the Tafel slope of the rhenium-selenide nanosheet doped with the transition metal is 70 mV/dec or less. For example, the Tafel slope of the rhenium selenide nanosheet doped with the transition metal may be 70 mV/dec or less, preferably 65 mV/dec or less, and more preferably 60 mV/dec or less.
본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드 나노시트는 우수한 수소 발생 활성을 가지며 종래의 백금 촉매보다 저렴하고 간단한 방법으로 수소발생반응용 촉매를 제공할 수 있다.The rhenium selenide nanosheet doped with a transition metal according to the present invention has excellent hydrogen generating activity and can provide a catalyst for hydrogen generating reaction in a cheaper and simpler way than a conventional platinum catalyst.
도 1(a)는 NH4ReO4, (PhCH2)2Se2, TM 아세틸아세토네이트 (TM (acac)2 또는 3) 및 시약으로서 올레일아민 (OAm)을 사용하여 용매열 합성을 이용한 TM-도핑된 ReSe2의 합성 방법에 대한 모식도를 나타낸다. 도 1(b)는 ReSe2의 HRTEM 이미지를 나타낸다. 도 1(c)는 격자 분해 TEM 및 기저면에 대한 해당 고속 푸리에 변환 (FFT) 이미지를 나타낸다. 도 1(d)는 Re (M 쉘), Mn 또는 Ni (K 쉘) 및 Se (L 쉘)의 HAADF-STEM 이미지 및 EDX 원소 매핑/스펙트럼을 나타낸다.
도 2(a)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 TEM 이미지를 나타낸다. 도 2(b)는 Fe-ReSe2, Co-ReSe2, Cu-ReSe2,의 HAADF-STEM 이미지 및 EDX 원소 매핑/스펙트럼을 나타낸다. 도 2(c)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 SEM EDX 원소 스펙트럼을 나타낸다.
도 3(a)는 레늄 셀라나이드의 atomic-resolution HAADF-STEM 이미지를 나타낸다. 도 3(b), 3(c), 3(d), 3(e) 및 3(f)는 각각 Mn, Fe, Co, Ni, Cu-도핑된 레늄 셀레나이드의 atomic-resolution HAADF-STEM 이미지 및 전자 에너지 손실 분광법(Electron energy loss spectroscopy, EELS)을 나타낸다.
도 4는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 X-ray 회절 (X-ray diffractometer, XRD) 패턴을 나타낸다.
도 5(a), 도 5(b) 및 도 5(d)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드2의 각각 Re 4f, Se 3d 및 금속 (Mn, Fe, Co, Ni, Cu) 2p에 대한 x-선 광전자 분광법(x-ray photoelectron spectroscopy, XPS)의 Fine-scan 결과를 나타낸다. 도 5(c)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 Valence band spectrum이다. 도 5(e)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 XANES 데이터이다. 도 5(f)는 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 EXAFS 데이터이다. 도 5(g)는 Co, Ni, Cu 도핑된 레늄 셀레나이드의 Co K-edge, Ni K-edge, Cu K-edge의 EXAFS 데이터이다.
도 6은 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 Raman 데이터이다.
도 7(a)는 H2-포화 0.5 M H2SO4 (pH 0)에서 HER에 대한 촉매로서 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2)에 대한 LSV 곡선 (스캔 속도 : 2mVs-1)을 나타낸다. 도 7(b)는 Tafel 방정식 η=blog(J/J0)를 사용하여 활성화-제어 영역에 해당하는 낮은 전위에서 LSV 곡선으로부터 유도한 Tafel 플롯을 나타내고, 여기서 η는 과전압, b는 Tafel 기울기 (mV dec-1), J는 측정된 전류 밀도, 및 J0는 교환 전류 밀도를 나타낸다. 도 7(c) 및 도 7(d)는 H2-포화 0.5 M KOF (pH 14)에서 HER에 대한 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2)의 촉매 성능으로서 각각 LSV 곡선 및 Tafel 플롯을 나타낸다. 도 7(e)는 ηJ=10 (왼쪽 축) 및 Tafel 기울기 (오른쪽 축)을 나타낸다. 도 7(f)는 125 mV에서 TOF를 나타낸다. 도 7(g)는 0.5 M H2SO4 및 1 M KOH에서 1차 및 2000차 사이클에 대한 Ni-ReSe2의 LSV 곡선 및 12 시간 동안 ηJ=10에서 CA을 나타낸다. 도 7(h)는 0.5 M H2SO4 및 1 M KOH에서 Ni-ReSe2의 ηJ=10을 종래 공지된 촉매와 비교한 데이터를 나타낸다.
도 8은 본 발명의 일 실시예에 따른 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 전기화학적 임피던스 분광법 (electrochemical impedance spectroscopy, EIS) 분석 결과를 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드의 순환전압전류 Cyclic voltammetry (CV) 커브 분석 결과를 나타낸 것이다. 0.15 V 에서의 전류밀도를 스캔속도에 따라 플롯하여 기울기로부터 이중층 전기용량 (double-layer capacitance, Cdl) 값을 나타낸다. 1(a) shows NH 4 ReO 4 , (PhCH 2 ) 2 Se 2 , TM acetylacetonate (TM (acac)2 or 3) and TM using solvothermal synthesis using oleylamine (OAm) as reagent. - Shows a schematic diagram for a method for synthesizing doped ReSe 2 . Figure 1 (b) of ReSe 2 HRTEM images are shown. Figure 1(c) shows lattice-resolved TEM and corresponding fast Fourier transform (FFT) images for the basal plane. 1(d) shows HAADF-STEM images and EDX element mapping/spectra of Re (M shell), Mn or Ni (K shell) and Se (L shell).
Figure 2(a) shows a TEM image of rhenium selenide and rhenium selenide doped with a transition metal. FIG. 2( b ) shows HAADF-STEM images and EDX element mapping/spectrum of Fe-ReSe 2 , Co-ReSe 2 , Cu-ReSe 2 . Figure 2 (c) is rhenium selenide and transition metal doped rhenium selenide of The SEM EDX element spectrum is shown.
Figure 3 (a) is of rhenium selanide An atomic-resolution HAADF-STEM image is shown. 3(b), 3(c), 3(d), 3(e) and 3(f) show the Mn, Fe, Co, Ni, Cu-doped rhenium selenide, respectively. An atomic-resolution HAADF-STEM image and electron energy loss spectroscopy (EELS) are shown.
4 shows an X-ray diffractometer (XRD) pattern of rhenium selenide and rhenium selenide doped with a transition metal.
5(a), 5(b), and 5(d) show Re 4f, Se 3d and metals (Mn, Fe, Co, Ni, Cu of rhenium selenide 2 doped with rhenium selenide and a transition metal, respectively) ) Fine-scan results of x-ray photoelectron spectroscopy (XPS) for 2p are shown. 5( c ) is a Valence band spectrum of rhenium selenide and rhenium selenide doped with a transition metal. 5(e) is XANES data of rhenium selenide and rhenium selenide doped with a transition metal. FIG. 5(f) is EXAFS data of rhenium selenide and rhenium selenide doped with a transition metal. 5( g ) is EXAFS data of Co K-edge, Ni K-edge, and Cu K-edge of rhenium selenide doped with Co, Ni, and Cu.
6 is Raman data of rhenium selenide and rhenium selenide doped with a transition metal.
Figure 7(a) is a transition metal-doped rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni as a catalyst for HER in H 2 -saturated 0.5 MH 2 SO 4 (pH 0)). LSV curves (scan rate: 2 mVs -1 ) for -ReSe 2 and Cu-ReSe 2 ) are shown. 7(b) shows a Tafel plot derived from the LSV curve at a low potential corresponding to the activation-control region using the Tafel equation η=blog(J/J 0 ), where η is the overvoltage and b is the Tafel slope ( mV dec -1 ), J represents the measured current density, and J 0 represents the exchange current density. 7(c) and 7(d) show rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 ) doped with a transition metal for HER in H 2 -saturated 0.5 M KOF (pH 14). , show LSV curves and Tafel plots as catalytic performance of Ni-ReSe 2 and Cu-ReSe 2 ), respectively. 7(e) shows η J=10 (left axis) and Tafel slope (right axis). 7(f) shows the TOF at 125 mV. Figure 7(g) shows the LSV curves of Ni-ReSe 2 for the 1st and 2000th cycles in 0.5 MH 2 SO 4 and 1 M KOH and CA at η J=10 for 12 h. 7(h) shows data comparing η J=10 of Ni-ReSe 2 with a conventionally known catalyst in 0.5 MH 2 SO 4 and 1 M KOH.
8 shows the results of electrochemical impedance spectroscopy (EIS) analysis of rhenium selenide and rhenium selenide doped with a transition metal according to an embodiment of the present invention.
9 is a graph showing a cyclic voltammetry (CV) curve analysis result of rhenium selenide and rhenium selenide doped with a transition metal according to an embodiment of the present invention. The current density at 0.15 V is plotted according to the scan rate to indicate the double-layer capacitance (Cdl) value from the slope.
이하, 실시 예를 통해서 본 발명을 보다 상세히 설명하기로 한다. 하지만, 이들은 본 발명을 보다 상세하게 설명하기 위한 것일 뿐 본 발명의 권리범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these are only for describing the present invention in more detail, and the scope of the present invention is not limited thereto.
<실시예> <Example>
실시예 1. 전이금속이 도핑된 레늄 셀레나이드 (TM-ReSeExample 1. Rhenium selenide doped with transition metal (TM-ReSe 22 ) 나노시트의 제조) Preparation of Nanosheets
도 1(a)에 도시된 방법에 따라 용매열 합성법을 이용하여 전이금속이 도핑된 레늄 셀레나이드 (TM-ReSe2 상기 TM은 Mn, Fe, Co, Ni 및 Cu) 나노시트를 제조하였다. 5 개의 TM 도핑된 ReSe2 샘플 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2)의 도핑 농도는 5% ([TM]/[Re]=0.05)로 조절하였다. Transition metal-doped rhenium selenide (TM-ReSe 2 TM is Mn, Fe, Co, Ni and Cu) nanosheets were prepared by solvothermal synthesis according to the method shown in FIG. 1(a). The doping concentrations of the five TM-doped ReSe 2 samples (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) were 5% ([TM]/[Re]=0.05). ) was adjusted.
<실험예><Experimental example>
실험예 1. 본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드의 형태, 결정구조 및 전자구조 확인Experimental Example 1. Confirmation of form, crystal structure and electronic structure of rhenium selenide doped with transition metal according to the present invention
1-1. HRTEM 이미지 분석 1-1. HRTEM image analysis
상기 실시예 1에서 제조된 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 HRTEM (high-resolution transmission electron microscope) 이미지 분석을 수행하였다. 그 결과, 레늄 셀레나이드 (ReSe2) 나노시트의 두께는 평균 2nm이며, 층간 거리 (d001)는 6.5 Å으로서 1T″ 상 ReSe2의 값 (6.3899 Å)에 가까운 것으로 확인되었다 (도 1(b)). TEM 이미지를 통해 레늄 셀레나이드 (ReSe2) 및 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 평균적인 크기는 대략 148 nm의 꽃 형태로 모두 비슷함을 확인하였다 (도 2(a)).HRTEM (high-resolution transmission) of the transition metal-doped rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nanosheets prepared in Example 1 electron microscope) image analysis was performed. As a result, it was confirmed that the thickness of the rhenium selenide (ReSe 2 ) nanosheet was 2 nm on average, and the interlayer distance (d 001 ) was 6.5 Å, which is close to the value of ReSe 2 on 1T″ (6.3899 Å) (Fig. 1(b)). )). Average of rhenium selenide (ReSe 2 ) and transition metal-doped rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nanosheets through TEM images It was confirmed that all of them were similar in size in the form of flowers of approximately 148 nm (Fig. 2(a)).
1-2. 기저면에 대한 격자 분해능 TEM 및 FFT 이미지 분석1-2. Lattice resolution TEM and FFT image analysis for the basal plane
상기 실시예 1에서 제조된 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 기저면에 대한 격자 분해능 TEM 및 FFT (fast-Fourier transformed) 이미지 분석을 수행하였다. 그 결과, b-빔이 기저면에 대하여 수직으로 투사되기 때문에, FFT 이미지는 영역 축이 대략 [001]인 (200), (020) 및 (220) 반사에 의해 형성된 준 육각형 패턴을 나타내었다. 실제, 각도 γ (a 및 b 축 사이)는 118.94 °로서, 이는 육각형 단위 셀의 120 ° 값에 가깝웠으며, 인접한 (200)면 사이의 거리 (d200)는 2.9 Å으로, 이는 기준 값 (2.8881 Å)에 가까운 것으로 확인되었다 (도 1(c)). Lattice resolution TEM of the basal surface of the transition metal-doped rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nanosheets prepared in Example 1 and FFT (fast-Fourier transformed) image analysis was performed. As a result, since the b-beam is projected perpendicular to the base plane, the FFT image exhibited a quasi-hexagonal pattern formed by (200), (020) and (220) reflections with the domain axes approximately [001]. In practice, the angle γ (between the a and b axes) is 118.94°, which is close to the 120° value of the hexagonal unit cell, and the distance (d 200 ) between adjacent (200) faces is 2.9 Å, which is the reference value ( 2.8881 Å) was confirmed (FIG. 1(c)).
1-3. HAADF-STEM 및 EDX 이미지 분석1-3. HAADF-STEM and EDX image analysis
상기 실시예 1에서 제조된 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 HAADF-STEM (high-angle annular dark-field imaging- scanning transmission electron microscope) 이미지 분석 및 EDX (energy-dispersive X-ray spectroscopy) 원소 맵핑 및 스펙트럼을 측정하였다. 그 결과, 전이금속이 도핑된 레늄 셀레나이드 나노시트에 전이금속 Mn, Fe, Co, Cu, Ni 원소, 레늄(Re) 원소, 셀레늄 (Se) 원소가 균일하게 분포되어 있음이 확인되었다 (도 1(d), 도 2(b)). SEM EDX 원소 스펙트럼을 통해 동일하게 대략 5%의 전이금속이 존재함을 확인하였다 (도 2(c)). HAADF - STEM ( high- Angle annular dark-field imaging-scanning transmission electron microscope) image analysis and EDX (energy-dispersive X-ray spectroscopy) elemental mapping and spectra were measured. As a result, it was confirmed that the transition metals Mn, Fe, Co, Cu, Ni elements, rhenium (Re) elements, and selenium (Se) elements were uniformly distributed in the rhenium selenide nanosheets doped with the transition metal (FIG. 1). (d), FIG. 2(b)). It was also confirmed that approximately 5% of the transition metal was present through the SEM EDX element spectrum (FIG. 2(c)).
도 3은 레늄 셀레나이드의 기저면의 원자 수준의 HAADF-STEM 이미지이다. b축을 따라 연결된 다이아몬드 모양의 Re4 클러스터의 1D 사슬(빨간색으로 표시된 선 참조)이 명확히 관찰되었다. 이 이미지에서는 더 가벼운 Se 원자(Z = 34)가 구분이 어렵다. STEM 이미지의 표시된 영역에 대한 등고선도(contour plot)에서 균일한 빨간색은 Re 원자를 나타낸다. 대조적으로 전이금속이 도핑된 레늄 셀레나이드는 각각 TM 치환(substitution) 및 흡착원자(adatom)에 대해 Re 위치의 세기가 더 약하거나 더 강했다. 도 3의 (b)와 (c)는 각각 Mn-ReSe2와 Fe-ReSe2의 HAADF-STEM 이미지다. Re의 세기가 약한 곳은 가벼운 Mn과 Fe 원자(각각 Z = 25와 26)가 무거운 Re 원자(Z = 75)대신 치환된 경우이다. STEM 이미지의 표시된 영역과 점선을 따른 세기 프로파일에 대한 데이터에서는 세기가 약한 Re 위치가 TM 원자가 치환된 것이다. Re 위치의 세기가 더 밝게 보이는 것은 해당 위치에 원자가 올라가 있는 흡착원자 때문이다. EELS 데이터로 Mn과 Fe의 원자가 도핑 사이트에 단일 원자로 존재함을 확인하였다. 즉, 1.0Å의 프로브 사이즈로 스펙트럼을 얻었으며, Mn 또는 Fe의 L2,3-ionization edge를 측정하였을 때, 도핑된 위치에서 원자로 존재하며 바로 옆 원자에서는 존재하지 않음을 확인하였다. Mn-ReSe2와 Fe-ReSe2와 달리, Co-ReSe2와 Ni-ReSe2는 흡착원자로 존재함을 확인하였다. 등고선도(contour plot)에서 강한 인텐시티를 나타내는 부분이 Re 원자 위치에 다른 흡착원자가 존재하기 때문이다. EELS 데이터로 Co와 Ni의 경우에도 단일 원자로 존재함을 확인하였다. Cu-ReSe2의 경우, 2-4개 정도의 Cu원자가 클러스터처럼 뭉쳐있으며, 흡착해서 붙어 있음을 확인하였다. 다른 금속보다 강한 세기를 보이는 것은 커퍼가 두 개 이상 뭉쳐있기 때문이고, EELS 데이터에서도 다른 금속들 보다 뭉쳐있음을 확인하였다. 3 is an atomic-level HAADF-STEM image of the basal plane of rhenium selenide. 1D chains of diamond-shaped Re 4 clusters linked along the b-axis (see the red line) were clearly observed. In this image, the lighter Se atom (Z = 34) is difficult to distinguish. A uniform red color in the contour plot for the indicated area of the STEM image indicates Re atoms. In contrast, rhenium selenide doped with a transition metal had weaker or stronger Re positions for TM substitution and adatom, respectively. 3 (b) and (c) are HAADF-STEM images of Mn-ReSe 2 and Fe-ReSe 2 , respectively. The weak Re strength is when light Mn and Fe atoms (Z = 25 and 26, respectively) are substituted for heavy Re atoms (Z = 75). In the data for the intensity profile along the dotted line and the indicated region of the STEM image, the TM atom is substituted at the Re position with the weaker intensity. The reason that the intensity of the Re position appears brighter is because of the adsorbed atom with the atom at the corresponding position. The EELS data confirmed that the atoms of Mn and Fe exist as single atoms in the doping site. That is, a spectrum was obtained with a probe size of 1.0 Å, and when the L 2,3 -ionization edge of Mn or Fe was measured, it was confirmed that the atom was present at the doped position and not the atom immediately adjacent to it. Unlike Mn-ReSe 2 and Fe-ReSe 2 , Co-ReSe 2 and Ni-ReSe 2 were confirmed to exist as adsorbent atoms. The part showing strong intensity in the contour plot is because another adsorbed atom exists at the Re atom position. The EELS data confirmed that Co and Ni also exist as single atoms. In the case of Cu-ReSe 2 , it was confirmed that about 2-4 Cu atoms were clustered together and adsorbed. The stronger strength than other metals is because two or more coppers are agglomerated, and the EELS data also confirmed that they are more agglomerated than other metals.
1-4. XRD를 통한 결정성 확인 1-4. Crystallinity confirmation by XRD
도 4는 상기 실시예 1에서 제조된 레늄 셀레나이드(ReSe2) 및 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 X-ray 회절 분석(X-ray diffractometer, XRD) 결과를 나타낸다. 레늄 셀레나이드와 전이금속이 도핑된 레늄 셀레나이드는 1T″ 상의 ReSe2 (JCPDS 번호 74-0611; a = 6.716 Å, b = 6.728 Å, c = 6.728 Å, 및 υ = 104.90°) 으로 구성되는 것으로 확인되었다.4 is rhenium selenide (ReSe 2 ) prepared in Example 1 and rhenium selenide doped with a transition metal (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 , and Cu-ReSe 2 ) X-ray diffraction analysis (X-ray diffractometer, XRD) results of nanosheets are shown. Rhenium selenide and rhenium selenide doped with a transition metal were found to be composed of ReSe 2 on 1T″ (JCPDS No. 74-0611; a = 6.716 Å, b = 6.728 Å, c = 6.728 Å, and υ = 104.90°). Confirmed.
1-5. XPS, XANES, EXAFS를 통한 전자 구조 분석1-5. Electronic structure analysis through XPS, XANES, EXAFS
상기 실시예 1에서 제조된 레늄 셀레나이드(ReSe2) 및 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트의 대한 촉매 표면의 정성 및 정량적 분석을 위해 Fine-scan XPS (Fine-scan X-ray photoelectron spectroscopy)을 실시하여 그 결과를 도 5(a), 도 5(b) 및 도 5(d)에 나타내었다. Rhenium selenide (ReSe 2 ) prepared in Example 1 and rhenium selenide doped with a transition metal (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nano Fine-scan X-ray photoelectron spectroscopy (Fine-scan X-ray photoelectron spectroscopy) was performed for qualitative and quantitative analysis of the catalyst surface on the sheet, and the results are shown in FIGS. 5(a), 5(b) and 5(d). indicated.
도 5(a), 도 5(b) 및 도 5(d)에서 보는 바와 같이 레늄 셀레나이드(ReSe2)의 Re4f7/2는 금속 Re의 값인 40.3 eV보다 높은 바인딩 에너지인 41.7 eV에서 피크가 나타난다. 전이금속이 도핑되면 Re 4f의 피크는 적색편이 된다. Se 3d의 경우, Re 4f와 마찬가지로 전이금속이 도핑되면 적색편이 된다. valence band maximum (VBM) 데이터는 레늄 셀레나이드(ReSe2)는 0.65 eV이지만, Mn과 Fe의 경우에 0.50 eV이다. Co, Ni, Cu의 경우 0.36 eV까지 값이 작아진다. 이는 Re 4f와 Se 3d의 데이터와 유사하다. 전이금속의 2p 데이터를 통해 TM-Se의 결합이지만 거의 금속과 유사함을 확인하였고 Cu의 경우에는 다른 금속보다는 산화된 상태임을 확인하였다. 결합에너지의 적색편이는 가장 가까운 페르미 레벨 (Fermi level, Ef)에서 전이금속의 도핑 상태가 추가돼 전도도가 높아졌기 때문일 수 있다. Mn에서 Cu로 이동할수록, ReSe2의 전자 구조는 d전자의 증가로 인해 더 금속성이 됨을 확인하였다. As shown in FIGS. 5(a), 5(b) and 5(d), Re4f 7/2 of rhenium selenide (ReSe 2 ) has a peak at 41.7 eV, which is a higher binding energy than 40.3 eV, which is the value of metal Re. appear. When the transition metal is doped, the peak of Re 4f is redshifted. In the case of Se 3d, like Re 4f, when a transition metal is doped, it becomes redshifted. The valence band maximum (VBM) data is 0.65 eV for rhenium selenide (ReSe 2 ), but 0.50 eV for Mn and Fe. In the case of Co, Ni, and Cu, the value decreases to 0.36 eV. This is similar to the data of Re 4f and Se 3d. Through the 2p data of the transition metal, it was confirmed that the TM-Se bond is almost similar to the metal, and in the case of Cu, it was confirmed that it is in an oxidized state rather than other metals. The redshift of the binding energy may be due to the increased conductivity due to the addition of the doping state of the transition metal at the nearest Fermi level (E f ). As it moved from Mn to Cu, it was confirmed that the electronic structure of ReSe 2 became more metallic due to the increase of d electrons.
또한, X-선 흡수 분광분석법(X-ray absorption near edge structure, XANES)분석법 및 푸리에 변환된 확장 X선 흡수 미세 구조 (Fourier-transform extended X-ray absorption fine structure, FT EXAFS)를 분석하여 그 결과를 도 5(e)에 나타내었다. 도 5(e)는 Re L3-edge의 XANES 데이터로서, 전이금속이 도핑된 레늄 셀레나이드의 세기는 레늄 셀레나이드의 세기에 비해 낮은데, 이는 전이금속 도핑으로 인한 전자 밀도 증가로 설명될 수 있다. 전이금속이 Mn에서 Cu로 이동할수록 강도 감소는 더 커지며, 이는 XPS 피크의 적색편이와 밀접한 관련이 있다.In addition, X-ray absorption near edge structure (XANES) analysis and Fourier-transform extended X-ray absorption fine structure (FT EXAFS) were analyzed and the results were is shown in Figure 5 (e). 5(e) is XANES data of Re L 3 -edge. The intensity of rhenium selenide doped with a transition metal is lower than that of rhenium selenide, which can be explained by the increase in electron density due to doping with the transition metal. . As the transition metal moves from Mn to Cu, the intensity decrease becomes larger, which is closely related to the redshift of the XPS peak.
또한, X-선 흡수 분광분석법(X-ray absorption near edge structure, XANES)분석법 및 푸리에 변환된 확장 X선 흡수 미세 구조 (Fourier-transform extended X-ray absorption fine structure, FT EXAFS)를 분석하여 그 결과를 도 5(f)에 나타내었다. EXAFS 데이터를 통해 ReSe2의 경우, Re-Se 결합 중 가장 짧은 결합길이가 2.40 Å, Re-Re 결합 중 가장 짧은 결합길이는 2.84-2.85 Å 이다. 이로부터 1T″ 상의 ReSe2임을 확인할 수 있다. 전이금속의 K-edge의 XANES 데이터는 Co-Se (2.38 Å)와 Ni-Se (2.41 Å)로, Co-Co와 Ni-Ni의 결합이 없으므로 단일원자임을 확인하였다. Cu의 경우, Cu-Se와 Cu-O의 결합이 관찰되었다.In addition, X-ray absorption near edge structure (XANES) analysis and Fourier-transform extended X-ray absorption fine structure (FT EXAFS) were analyzed and the results were is shown in FIG. 5(f). According to the EXAFS data, for ReSe 2 , the shortest bond length among Re-Se bonds is 2.40 Å, and the shortest bond length among Re-Re bonds is 2.84-2.85 Å. From this, it can be confirmed that it is ReSe 2 on 1T″. The XANES data of the K-edge of the transition metal confirmed that Co-Se (2.38 Å) and Ni-Se (2.41 Å) were single atoms because there was no bonding between Co-Co and Ni-Ni. In the case of Cu, a bond between Cu-Se and Cu-O was observed.
1-6. Raman 분석 1-6. Raman analysis
상기 실시예 1에서 제조된 레늄 셀레나이드(ReSe2) 및 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트에 대하여 Raman 분석을 실시하여 그 결과를 도 6에 나타내었다. 도 6에서 보는 바와 같이 1T″ 상 ReSe2에 해당하는 동일한 Raman 피크를 나타낸다. 많은 피크는 이전 연구와 일관되게 1T″ 상 ReSe2의 격자 진동의 복잡성에서 발생한다. 125 cm-1의 피크는 Eg-유사 진동 모드(평면 내 진동)이며, 160 및 174 cm-1의 피크는 Ag-유사 진동 모드(평면 외 진동)이다. Rhenium selenide (ReSe 2 ) prepared in Example 1 and rhenium selenide doped with a transition metal (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nano Raman analysis was performed on the sheet, and the results are shown in FIG. 6 . 6 shows the same Raman peak corresponding to 1T″ phase ReSe 2 . Many peaks arise from the complexity of the lattice oscillations of 1T″-phase ReSe 2 , consistent with previous studies. The peak at 125 cm -1 is the Eg-like vibration mode (in-plane vibration), and the peaks at 160 and 174 cm -1 are the Ag-like vibration mode (out-of-plane vibration).
실험예 2. 본 발명에 따른 전이금속이 도핑된 레늄 셀레나이드의 전기화학적 특성 확인Experimental Example 2. Confirmation of electrochemical properties of rhenium selenide doped with transition metal according to the present invention
2-1. 전기화학 실험 방법2-1. Electrochemical test method
상기 실시예 1에서 제조된 전이금속이 도핑된 레늄 셀레나이드 (Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2) 나노시트 시료 4 mg을 카본 블랙 (Vulcan XC-72) 1 mg과 혼합한 후, 5 중량% 나피온 (Nafion) 용액 20 ㎕와 이소프로필알코올 980 ㎕로 구성된 용액에 분산시켜 촉매 잉크를 제조하였다. 한편, 표준화된 20 중량%의 나노크기의 백금이 카본 블랙에 분산되어 있는 Pt/C 촉매물질(제조사: sigma-aldrich)을 구입하여 상기 전이금속이 포함된 레늄 셀레나이드 나노시트 대신에 사용하는 것을 제외하고, 위와 같은 방법으로 촉매 잉크를 제조하였다. 전기화학 실험은 작업 전극, 기준 전극, 상대 전극으로 구성되어 있는 3전극 셀로 진행하였다. 기준 전극으로는 Ag/AgCl (4M KCl, 제조사: Pine Co.)을, 상대 전극으로는 흑연 막대 (graphite rod, 직경 6 mm)를 사용하였다. 작업 전극으로는 회전 전극 (rotating disk electrode, RDE)인 유리 탄소 전극 (glassy carbon electrode, 면적: 0.1963 cm2)에 상기 촉매 잉크를 18 ㎕ 만큼 적하하고, 충분히 건조한 뒤 사용하였다. 4 mg of the transition metal-doped rhenium selenide (Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 ) nanosheet sample prepared in Example 1 was mixed with carbon black ( Vulcan XC-72) was mixed with 1 mg, and then dispersed in a solution consisting of 20 μl of a 5 wt% Nafion solution and 980 μl of isopropyl alcohol to prepare a catalyst ink. On the other hand, purchasing a Pt/C catalyst material (manufacturer: sigma-aldrich) in which standardized 20 wt% of nano-sized platinum is dispersed in carbon black and using it instead of the rhenium selenide nanosheet containing the transition metal Except for this, a catalyst ink was prepared in the same manner as above. Electrochemical experiments were conducted with a three-electrode cell composed of a working electrode, a reference electrode, and a counter electrode. Ag/AgCl (4M KCl, manufacturer: Pine Co.) was used as a reference electrode, and a graphite rod (diameter 6 mm) was used as a counter electrode. As a working electrode, 18 μl of the above catalyst ink was added dropwise to a glassy carbon electrode (area: 0.1963 cm 2 ), which is a rotating disk electrode (RDE), and dried sufficiently before use.
수소발생반응(HER) 실험시에는 각각 고순도의 수소 가스로 퍼징해주며, 기체의 유량은 20 sccm (mL min-1) 이였다. 측정 시 사용한 전압은 가역수소전극 (reversible hydrogen electrode, RHE)를 기준으로 변환시켰다. In the hydrogen evolution reaction (HER) experiment, each was purged with high-purity hydrogen gas, and the gas flow rate was 20 sccm (mL min -1 ). The voltage used for measurement was converted based on a reversible hydrogen electrode (RHE).
수소이온농도지수(pH) 0 (0.5M H2SO4)에서의 가역수소전극(RHE) 변환 식은 아래 식을 따른다. E (vs. RHE) = E (vs. SCE) + ESCE(=0.278V) + 0.0592 pH=E(vs.SCE) + 0.278V The conversion formula for the reversible hydrogen electrode (RHE) at the hydrogen ion concentration index (pH) 0 (0.5MH 2 SO 4 ) follows the formula below. E (vs. RHE) = E (vs. SCE) + E SCE (=0.278V) + 0.0592 pH=E(vs.SCE) + 0.278V
수소이온농도지수(pH) 14 (1M KOH)에서의 가역수소전극(RHE) 변환 식은 아래 식을 따른다. E (vs. RHE) =E(vs.Ag/AgCl) + 1.007V The conversion formula for the reversible hydrogen electrode (RHE) at the hydrogen ion concentration index (pH) 14 (1M KOH) follows the formula below. E(vs. RHE) =E(vs.Ag/AgCl) + 1.007V
측정시에는 회전 전극(RDE)을 1600 RPM (분당 회전수; Revolutions per minute)의 속도 회전시켜주며, 수소발생반응(HER) 활성은 선형주사전위법(linear sweep voltammetry, LSV)을 통해 측정하였다.During the measurement, the rotating electrode (RDE) was rotated at a speed of 1600 RPM (Revolutions per minute), and the hydrogen evolution reaction (HER) activity was measured by linear sweep voltammetry (LSV).
선형주사전위법(LSV) 측정할 때, 수소발생반응(HER)은 가역수소전극(RHE) 기준 0 V 부터 0.8 V까지 5 mV s-1의 스캔 속도로 측정하였다.When measuring the linear scanning potential (LSV), the hydrogen evolution reaction (HER) was measured at a scan rate of 5 mV s -1 from 0 V to 0.8 V based on the reversible hydrogen electrode (RHE).
2-2. 결과2-2. result
도 7(a)는 pH 0에서 측정된 LSV 곡선을 나타내며, 여기서 전위는 가역수소전극 (RHE)을 기준으로 하였다. 10mAcm-2 (ηJ=10)의 전류 밀도를 얻는데 필요한 과전압의 경우, ReSe2, Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2에서 각각 143, 132, 115, 104, 82, 및 126 mV인 것으로 확인되었다. 7(a) shows the LSV curve measured at
도 7(b)는 낮은 전위 영역에서 Tafel 플롯, η(V) vs. log [J(mAcm-2)]를 나타낸다. Tafel 기울기 (b)는 ReSe2, Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2에서 각각 62, 62, 59, 56, 54, 58, 및 30 mV dec-1으로써, TM을 ReSe2에 도핑하는 경우 HER 촉매 활성이 증가되는 것으로 확인되었다. 특히, Ni-ReSe2의 경우 ηJ=10 및 b 값이 Pt/C에 가까움에 따라 상기 전이금속이 도핑된 이차원 전이금속 칼코겐 화합물 중에서 가장 촉매 활성이 우수한 것으로 확인되었다. 7(b) is a Tafel plot in the low potential region, η(V) vs. It represents log [J(mAcm -2 )]. Tafel slope (b) is 62, 62, 59, 56, 54, 58, and 30 mV in ReSe 2 , Mn-ReSe 2 , Fe-ReSe 2 , Co-ReSe 2 , Ni-ReSe 2 and Cu-ReSe 2 , respectively. As dec -1 , it was confirmed that HER catalytic activity was increased when TM was doped into ReSe 2 . In particular, in the case of Ni-ReSe 2 η J = 10 and b values close to Pt / C, it was confirmed that the most excellent catalytic activity among the two-dimensional transition metal chalcogen compound doped with the transition metal.
도 7(c)는 pH 14에서, LSV 곡선이 ηJ=10의 경우 ReSe2, Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2에서 256, 197, 221, 138, 109, 및 179 mV임을 나타낸다. Tafel 플롯은 ReSe2, Mn-ReSe2, Fe-ReSe2, Co-ReSe2, Ni-ReSe2 및 Cu-ReSe2에서 각각 146, 116, 133, 99, 81 및 115 mV dec-1의 해당 b 값을 나타내었다 (도 7(d)). 특히, Ni-ReSe2의 b 값이 Pt/C (35mV dec-1)의 값에 가장 가까운 것으로 확인되었다. 7(c) shows that at
도 7(e)는 ηJ=10 및 b 값을 나타내는 것으로, ReSe2에 Ni을 도핑하는 경우 pH 0 내지 14에서 모두 HER의 성능을 최대로 향상시키는 것으로 나타났다. 전반적으로 pH 0에서 HER 촉매 성능에 대한 TM 도핑의 긍정적 인 효과는 Ni> Co> Fe> Cu> Mn 순서를 따르며 pH 14에서는 Ni> Co> Cu> Mn> Fe인 것으로 확인되었다. 7(e) shows η J=10 and b values, and it was found that the HER performance was maximally improved at
도 7(f)는 125 mV에서 각 촉매에 대해 LSV 곡선을 이용하여 계산된 TOF 값을 플롯팅한 것으로, 활성 표면적은 pH 7에서 -0.2 내지 0.6V 범위의 CV 곡선을 기반으로 정전 용량을 측정하여 추정하였다. Ni-ReSe2의 경우 pH 1 내지 14에서의 TOF(turn of frequency)의 값은 각각 2.5 및 0.91 s-1로 추정되었다. Figure 7(f) is a plot of the TOF values calculated using the LSV curve for each catalyst at 125 mV. The active surface area is the capacitance measured based on the CV curve in the range of -0.2 to 0.6V at pH 7. and estimated. For Ni-ReSe 2 , values of turn of frequency (TOF) at
도 7(g)는 Ni-ReSe2의 LSV 곡선이 2000 사이클 (80 h) 이후에도 pH 0 내지 14에서 거의 변화가 없음을 나타낸다. 7( g ) shows that the LSV curve of Ni-ReSe 2 shows little change at
도 7(h)는 ηJ=10에서 Ni-ReSe2의 촉매 성능을 종래 공지된 성능과 비교한 것으로, 가장 우수한 HER 촉매 효과를 나타내는 것으로 확인되었다. 7(h) is a comparison of the catalytic performance of Ni-ReSe 2 with the conventionally known performance at η J=10 , and it was confirmed that the HER catalytic effect was the most excellent.
도 8(a) 및 8(b)는 전이금속이 도핑된 ReSe2의 전기화학적 임피던스 분광법 (electrochemical impedance spectroscopy, EIS) 데이터이다. Nyquist 플롯을 하였으며 -0.15 V를 교류로 100 kHz에서 0.1 Hz를 감소시키면서 실수 저항과 허수 저항을 나타낸다. 그래프 안에 삽입된 전기회로로 커브를 피팅하면 전하전달저항 (charge transfer resistance, Rct)를 얻을 수 있다. 반구 형태의 커브가 x 축과 만나는 위치로부터 얻을 수 있으며 작을수록 우수한 촉매 활성이 나타난다. 전하전달저항은 pH 0에서 Ni< Co< Fe< Cu< Mn< ReSe2 순서를 따르며 pH 14에서는 Ni< Co< Cu <Mn <Fe <ReSe2인 것으로 확인되었다. 8(a) and 8(b) are electrochemical impedance spectroscopy (EIS) data of ReSe 2 doped with a transition metal. A Nyquist plot was performed, and the real and imaginary resistances were shown while decreasing 0.1 Hz at 100 kHz with -0.15 V as an alternating current. By fitting the curve with the electric circuit inserted in the graph, the charge transfer resistance (Rct) can be obtained. It can be obtained from the position where the hemispherical curve intersects the x-axis, and the smaller it is, the better the catalyst activity is. The charge transfer resistance follows the order of Ni<Co<Fe<Cu<Mn<ReSe 2 at
도 9은 0.1-0.2 V 영역의 순환전압전류 Cyclic voltammetry (CV) 커브 데이터이다. 스캔 속도를 20 mV/s 부터 100 mV/s로 증가시킴에 따른 CV 커브를 측정하였다. 0.15 V 에서의 전류밀도를 스캔속도에 따라 플롯하여 기울기로부터 이중층 전기용량 (double-layer capacitance, Cdl) 를 얻을 수 있다. pH 0에서 Ni> Co> Fe> Mn> Cu <ReSe2 순서를 따르며 pH 14에서는 Ni> Co> Cu> Mn> Fe> ReSe2인 것으로 확인되었다. 이는 Ni-ReSe2가 표면적이 가장 극대화 됨을 예상 할 수 있다. 9 is a cyclic voltammetry (CV) curve data of 0.1-0.2 V region. The CV curve was measured as the scan speed was increased from 20 mV/s to 100 mV/s. The double-layer capacitance (Cdl) can be obtained from the slope by plotting the current density at 0.15 V as a function of the scan rate. At
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.
Claims (5)
상기 전이금속은 니켈(Ni), 코발트(Co), 철(Fe), 구리(Cu) 또는 망간(Mn)인 것을 특징으로 하는 것인, 전이금속이 도핑된 레늄 셀레나이드 나노시트.
As a rhenium selenide nanosheet doped with a transition metal having excellent hydrogen evolution activity,
The transition metal is nickel (Ni), cobalt (Co), iron (Fe), copper (Cu) or manganese (Mn), characterized in that the transition metal doped rhenium selenide nanosheet.
상기 전이금속의 도핑 농도는 레늄을 기준으로 5%인 것을 특징으로 하는 것인, 전이금속이 도핑된 레늄 셀레나이드 나노시트.
According to claim 1,
The doping concentration of the transition metal is characterized in that 5% based on rhenium, the transition metal doped rhenium selenide nanosheet.
(A) NH4ReO4, (PhCH2)2Se2, TM (Transition metal) 아세틸아세토네이트를 올레일아민 (C18H35NH2, OAm)에 첨가하여 교반하는 단계; 및
(B) 상기 교반된 용액을 용매열합성법 (solvothermal process)을 진행하여 전이금속이 도핑된 레늄 셀레나이드 나노시트를 제조하는 단계를 포함하고,
상기 전이금속은 니켈(Ni), 코발트(Co), 철(Fe), 구리(Cu) 또는 망간(Mn)인 것을 특징으로 하는 것인, 방법.
A method for preparing rhenium selenide nanosheets doped with a transition metal having excellent hydrogen evolution activity using solvothermal synthesis, the method comprising:
(A) NH 4 ReO 4 , (PhCH 2 ) 2 Se 2 , TM (Transition metal) acetylacetonate was added to oleylamine (C 18 H 35 NH 2 , OAm) and stirred; and
(B) subjecting the stirred solution to a solvothermal process to prepare a transition metal-doped rhenium selenide nanosheet,
The transition metal is nickel (Ni), cobalt (Co), iron (Fe), copper (Cu) or manganese (Mn), characterized in that the method.
상기 전이금속의 도핑 농도는 레늄을 기준으로 5%인 것을 특징으로 하는 것인, 방법.
4. The method of claim 3,
The method, characterized in that the doping concentration of the transition metal is 5% based on rhenium.
상기 전이금속이 도핑된 레늄 셀레나이드 나노시트의 HER 성능 (10 mAcm-2) 및 타펠 기울기는 각각 100 mV 이하 및 70 mV/dec 이하인 것을 특징으로 하는 것인, 방법.4. The method of claim 3,
HER performance (10 mAcm -2 ) and Tafel slope of the rhenium selenide nanosheet doped with the transition metal is characterized in that it is 100 mV or less and 70 mV/dec or less, respectively.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200171176 | 2020-12-09 | ||
KR1020200171176 | 2020-12-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220081940A true KR20220081940A (en) | 2022-06-16 |
KR102653332B1 KR102653332B1 (en) | 2024-04-01 |
Family
ID=82217312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210175801A KR102653332B1 (en) | 2020-12-09 | 2021-12-09 | Transition metals doped rhenium selenide nanosheet having enhanced catalytic activity on hydrogen evolution reaction and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102653332B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115072674A (en) * | 2022-06-22 | 2022-09-20 | 安徽师范大学 | Sulfur ion doped cuprous selenide honeycomb-shaped flexible nanosheet array structure material, preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101495755B1 (en) | 2013-12-18 | 2015-03-02 | 코닝정밀소재 주식회사 | Catalyst for generating hydrogen, hydrogen generating device, and method of manufactuing the catalyst |
-
2021
- 2021-12-09 KR KR1020210175801A patent/KR102653332B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101495755B1 (en) | 2013-12-18 | 2015-03-02 | 코닝정밀소재 주식회사 | Catalyst for generating hydrogen, hydrogen generating device, and method of manufactuing the catalyst |
Non-Patent Citations (5)
Title |
---|
Erika Meza et al, Solution-Phase Activation and Functionalization of Colloidal WS2 Nanosheets with Ni Single Atoms, ACS Nano 2020, 14, 2, 2238~2247쪽, 2020.1.29.발행 * |
Feili Lai et al, Refining Energy Levels in ReS2 Nanosheets by ~ Ammonia/Hydrogen Production, Advanced Functional Materials 2020, 30, 1907376, 1~9쪽, Supporting Information 1~25쪽, 2020.1.31.발행 * |
Ik Seon Kwon et al, Adatom Doping of Transition Metals in ReSe2 Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution Reaction, ACS Nano 2020, 14, 9, 12184~12194쪽, 2020.8.27.발행 * |
Liang Ji et al, One-pot synthesis of porous 1T-phase MoS2 integrated with ~ for enhancing electrocatalytic hydrogen evolution reaction, Applied Catalysis B: Environmental 251, 87~93쪽, 2019.3.26.온라인 공개 * |
Ran Wang et al, Dual-Enhanced Doping in ReSe2 for Efficiently Photoenhanced Hydrogen Evolution Reaction, Advanced Science 2020, 7, 2000216, 1~7쪽, 2020.3.16.발행 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115072674A (en) * | 2022-06-22 | 2022-09-20 | 安徽师范大学 | Sulfur ion doped cuprous selenide honeycomb-shaped flexible nanosheet array structure material, preparation method and application thereof |
CN115072674B (en) * | 2022-06-22 | 2024-03-26 | 安徽师范大学 | Sulfur ion doped cuprous selenide honeycomb flexible nano-sheet array structure material, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102653332B1 (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis | |
Xu et al. | Flexible self-supported bi-metal electrode as a highly stable carbon-and binder-free cathode for large-scale solid-state zinc-air batteries | |
Lu et al. | Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting | |
Patil et al. | Bifunctional catalytic activity of Ni–Co layered double hydroxide for the electro-oxidation of water and methanol | |
Flores et al. | Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium | |
Yan et al. | A fast micro–nano liquid layer induced construction of scaled-up oxyhydroxide based electrocatalysts for alkaline water splitting | |
Zhu et al. | Special atmosphere annealed Co3O4 porous nanoclusters with oxygen defects and high proportion of Co2+ for oxygen evolution reaction | |
Zhang et al. | Ni@ RuM (M= Ni or Co) core@ shell nanocrystals with high mass activity for overall water-splitting catalysis | |
Hameed et al. | Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution | |
KR102592411B1 (en) | Molybdenum selenide nanosheets and preparation method thereof | |
Katubi et al. | Hydrothermally fabricated NdTe hollow shells thermally vaporized on Ni foam for water-splitting in alkaline media | |
Chanda et al. | Electrochemical synthesis of Li-doped NiFeCo oxides for efficient catalysis of the oxygen evolution reaction in an alkaline environment | |
Junaid et al. | Facile synthesis of strontium selenide supported copper sulfide hybrid nanosheets as an efficient electrode for high-performance OER | |
Liu et al. | Regulation of the morphology and electrochemical properties of Ni 0.85 Se via Fe doping for overall water splitting and supercapacitors | |
Chen et al. | Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting | |
Yang et al. | A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting | |
Chen et al. | Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@ NiCo layered double hydroxides | |
Yu et al. | Oxygen-deficient MoO x/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction | |
Milikić et al. | Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction | |
CN110813330A (en) | Co-Fe @ FeF catalyst and two-dimensional nano-array synthesis method | |
KR102653332B1 (en) | Transition metals doped rhenium selenide nanosheet having enhanced catalytic activity on hydrogen evolution reaction and preparation method thereof | |
Manzoor et al. | Facile fabrication of MnTe@ CNT nanocomposite for high efficiency hydrogen production via renewable energy sources | |
Lv et al. | N/C doped nano-size IrO2 catalyst of high activity and stability in proton exchange membrane water electrolysis | |
CN114059082A (en) | N, P codoped NF @ NiMoO4Hollow nanowire composite material and preparation method and application thereof | |
Tao et al. | Tuning electronic structure of hedgehog-like nickel cobaltite via molybdenum-doping for enhanced electrocatalytic oxygen evolution catalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |