KR20220081648A - Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법 - Google Patents

Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법 Download PDF

Info

Publication number
KR20220081648A
KR20220081648A KR1020200171373A KR20200171373A KR20220081648A KR 20220081648 A KR20220081648 A KR 20220081648A KR 1020200171373 A KR1020200171373 A KR 1020200171373A KR 20200171373 A KR20200171373 A KR 20200171373A KR 20220081648 A KR20220081648 A KR 20220081648A
Authority
KR
South Korea
Prior art keywords
image
information
data
encoding
neural network
Prior art date
Application number
KR1020200171373A
Other languages
English (en)
Inventor
조대성
김대은
김봉조
박태준
이상조
최규하
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200171373A priority Critical patent/KR20220081648A/ko
Priority to CN202180082870.6A priority patent/CN116584093A/zh
Priority to EP21903593.8A priority patent/EP4195154A4/en
Priority to PCT/KR2021/013814 priority patent/WO2022124546A1/ko
Priority to US17/522,579 priority patent/US20220180568A1/en
Publication of KR20220081648A publication Critical patent/KR20220081648A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/002Image coding using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0454
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23614Multiplexing of additional data and video streams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

AI 부호화 장치에 관한 것으로, 제1 영상의 타겟 해상도에 기초하여, 다운스케일 타겟을 결정하고, 다운스케일 타겟에 대응하는 AI 다운스케일 뉴럴 네트워크(Neural Network)를 이용하여, 원본 영상을 AI 다운스케일한 제1 영상을 획득하고, 제1 영상을 부호화하여, 영상 데이터를 생성하고, 제1 영상의 타겟 해상도, 원본 영상의 특성 정보, 및 타겟 선명도 강도에 기초하여, AI 업 스케일 뉴럴 네트워크(Neural Network) 셋(Set) 식별 정보를 결정하고, 제1 영상의 타겟 해상도, 제1 영상의 비트 심도 정보, AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 인코딩 제어 정보를 포함하는 AI 데이터를 생성하고, 영상 데이터와 AI 데이터를 포함하는 AI 부호화 데이터를 생성하는 프로세서, 및 AI 부호화 데이터를 AI 복호화 장치로 전송하는 통신부를 포함하고, AI 데이터는, 상기 AI 다운스케일 뉴럴 네트워크에 대응하는 AI 업 스케일 뉴럴 네트워크에 관한 정보를 나타내는, AI 부호화 장치가 개시된다.

Description

AI 부호화 장치 및 그 동작방법, 및 AI 복호화 장치 및 그 동작방법{AI encoding apparatus and operating method for the same, and AI decoding apparatus and operating method for the same}
다양한 실시예들은 AI 부호화 장치 및 그 동작방법, 및 AI 복호화 장치 및 그 동작방법에 관한 것이다. 더욱 상세하게는 원본 영상을 AI 다운스케일하고 부호화하여 AI 복호화 장치로 전송하는 AI 부호화 장치 및 그 동작방법에 관한 것이고, AI 부호화 장치로부터 수신한 영상을 복호화하고, AI 업스케일하는 AI 복호화 장치 및 그 동작방법에 관한 것이다.
영상은 소정의 데이터 압축 표준, 예를 들어 MPEG (Moving Picture Expert Group) 표준 등을 따르는 코덱(codec)에 의해 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
고해상도/고화질의 영상을 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도/고화질의 영상을 효과적으로 부호화 및 복호화할 수 있는 코덱의 필요성이 증대하고 있다.
다양한 실시예들은, 영상을 AI 다운스케일하고, 부호화한 영상 데이터와 AI 업스케일에 필요한 AI 데이터를 AI 복호화 장치로 전송할 수 있는 AI 부호화 장치 및 그 동작방법을 제공할 수 있다.
AI 부호화 장치로부터 영상 데이터와 AI 데이터를 수신하고, 영상 데이터를 복호화하며, 복호화된 영상을 AI 데이터에 대응하는 업 스케일용 뉴럴 네트워크 모델을 이용하여, AI 업스케일할 수 있는 AI 복호화 장치 및 그 동작방법을 제공할 수 있다.
일 실시예에 따른 AI 부호화 장치는, 제1 영상의 타겟 해상도에 기초하여, 다운스케일 타겟을 결정하고, 상기 다운스케일 타겟에 대응하는 AI 다운스케일 뉴럴 네트워크(Neural Network)를 이용하여, 원본 영상을 AI 다운스케일한 상기 제1 영상을 획득하고, 상기 제1 영상을 부호화하여, 영상 데이터를 생성하고, 상기 제1 영상의 타겟 해상도, 상기 원본 영상의 특성 정보, 및 타겟 선명도 강도에 기초하여, AI 업 스케일 뉴럴 네트워크(Neural Network) 셋(Set) 식별 정보를 결정하고, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 인코딩 제어 정보를 포함하는 AI 데이터를 생성하고, 상기 영상 데이터와 상기 AI 데이터를 포함하는 AI 부호화 데이터를 생성하는 프로세서, 및 상기 AI 부호화 데이터를 AI 복호화 장치로 전송하는 통신부를 포함하고, 상기 AI 데이터는, 상기 AI 다운스케일 뉴럴 네트워크에 대응하는 AI 업 스케일 뉴럴 네트워크에 관한 정보를 나타낸다.
일 실시예에 따른 프로세서는, 품질 측정 네트워크를 이용하여, 상기 원본 영상의 품질 정보를 결정하고, 상기 원본 영상의 품질 정보에 따라 상기 타겟 선명도 강도를 결정할 수 있다.
일 실시예에 따른 품질 정보는, 고품질(high quality), 저품질(low quaility), 및 잡음 품질(noisy quality) 중 어느 하나를 포함하고, 상기 품질 측정 네트워크는, 상기 원본 영상의 선명도, 잡음, 및 명암비 중 적어도 하나를 나타내는 특징을 추출하고, 추출된 특징에 기초하여, 상기 품질 정보를 결정하는 네트워크일 수 있다.
일 실시예에 따른 프로세서는, 상기 AI 업 스케일 뉴럴 네트워크의 업데이트 방법 및 AI 업 스케일링 비율을 포함하는 디코딩 제어 정보를 더 포함하는 상기 AI 데이터를 생성할 수 있다.
일 실시예에 따른 인코딩 제어 정보는, 양자화 레벨 및 픽쳐 타입 중 적어도 하나를 포함하고, 상기 양자화 레벨은 기 설정된 제1 값으로 결정되고, 상기 픽쳐 타입은 I(Intra), P(Predictive), 및 B(Bidirectional) 중 어느 하나의 값으로 결정될 수 있다.
일 실시예에 따른 상기 AI 부호화 데이터는, 메타 데이터 박스와 미디어 데이터 박스로 구성되며, 상기 AI 데이터는 상기 메타 데이터 박스에 포함되고, 상기 영상 데이터는 상기 미디어 데이터 박스에 포함될 수 있다.
일 실시예에 따른 프로세서는, 상기 AI 데이터가 상기 영상 데이터의 부가 정보 영역인 SEI(Supplemental enhancement information)에 포함되도록 상기 AI 부호화 데이터를 생성할 수 있다.
일 실시예에 따른 AI 복호화 장치는, 원본 영상의 AI 다운스케일 및 부호화 결과 생성된 AI 부호화 데이터를 수신하는 통신부, 및 상기 AI 부호화 데이터를 영상 데이터와 AI 데이터로 구분하고, 상기 영상데이터를 복호화하여, 상기 원본 영상을 상기 AI 다운스케일한 제1 영상에 대응하는 제2 영상을 획득하고, 상기 AI 데이터로부터 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 제1 인코딩 제어 정보를 추출하고, 상기 제1 영상의 부호화에 이용된 제2 인코딩 제어 정보를 획득하고, 상기 제1 인코딩 제어 정보를 상기 제2 인코딩 제어 정보로 업데이트하고, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 상기 제2 인코딩 제어 정보에 기초하여, AI 업 스케일 뉴럴 네트워크를 결정하고, 상기 결정된 AI 업 스케일 뉴럴 네트워크를 이용하여, 상기 제2 영상을 AI 업스케일하는 프로세서를 포함할 수 있다.
일 실시예에 따른 제1 인코딩 제어 정보는, 기 설정된 양자화 레벨의 초기 값을 나타내며, 상기 제2 인코딩 제어 정보는, 상기 제1 영상의 부호화에 적용된 양자화 레벨 값을 나타낼 수 있다.
일 실시예에 따른 프로세서는, 상기 AI 업스케일 뉴럴 네트워크 셋 식별 정보에 대응하는 복수의 뉴럴 네트워크 설정 정보 중, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보 및 상기 제2 인코딩 제어 정보에 포함된 양자화 레벨 값에 따라 어느 하나의 설정 정보를 선택하고, 상기 선택된 설정 정보를 이용하여, 상기 AI 업 스케일 뉴럴 네트워크의 파라미터들을 설정할 수 있다.
일 실시예에 따른 프로세서는, 상기 AI 데이터로부터 업 스케일 뉴럴 네트워크의 업데이트 정보 및 업 샘플링 비율을 결정하고, 상기 결정된 AI 업 스케일 뉴럴 네트워크, 상기 업데이트 정보 및 상기 업 샘플링 비율에 기초하여, 상기 제2 영상을 AI 업스케일할 수 있다.
일 실시예에 따른 AI 부호화 장치의 동작방법은, 제1 영상의 타겟 해상도에 기초하여, 다운스케일 타겟을 결정하는 단계, 상기 다운스케일 타겟에 대응하는 AI 다운스케일 뉴럴 네트워크를 이용하여, 원본 영상을 AI 다운스케일한 상기 제1 영상을 획득하는 단계, 상기 제1 영상을 부호화하여, 영상 데이터를 생성하는 단계, 상기 제1 영상의 해상도, 상기 원본 영상의 특성 정보, 및 타겟 선명도 강도에 기초하여, AI 업 스케일 뉴럴 네트워크(Neural Network) 셋(Set) 식별 정보를 결정하는 단계, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 인코딩 제어 정보를 포함하는 AI 데이터를 생성하는 단계, 상기 영상 데이터와 상기 AI 데이터를 포함하는 AI 부호화 데이터를 생성하는 단계, 및 상기 AI 부호화 데이터를 AI 복호화 장치로 전송하는 단계를 포함하고, 상기 AI 데이터는, 상기 AI 다운스케일 뉴럴 네트워크에 대응하는 AI 업 스케일 뉴럴 네트워크에 관한 정보를 나타낼 수 있다.
일 실시예에 따른 AI 복호화 장치의 동작방법은, 원본 영상의 AI 다운스케일 및 부호화 결과 생성된 AI 부호화 데이터를 수신하는 단계, 상기 AI 부호화 데이터를 영상 데이터와 AI 데이터로 구분하는 단계, 상기 영상 데이터를 복호화하여, 상기 원본 영상을 상기 AI 다운스케일한 제1 영상에 대응하는 제2 영상을 획득하는 단계, 상기 AI 데이터로부터 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 제1 인코딩 제어 정보를 추출하는 단계, 상기 제1 영상의 부호화에 이용된 제2 인코딩 제어 정보를 획득하고, 상기 제1 인코딩 제어 정보를 상기 제2 인코딩 제어 정보로 업데이트하는 단계, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 상기 제2 인코딩 제어 정보에 기초하여, AI 업 스케일 뉴럴 네트워크를 결정하는 단계, 및 상기 결정된 AI 업 스케일 뉴럴 네트워크를 이용하여, 상기 제2 영상을 AI 업스케일하는 단계를 포함할 수 있다.
일 실시예에 따른 AI 업스케일에 이용되는 뉴럴 네트워크와 관련된 정보를 포함하는 AI 데이터를, AI 다운스케일되고 부호화된 영상 데이터와 함께, AI 복호화 장치로 전송하고, AI 복호화 장치는 수신한 AI 데이터에 기초하여 AI 업스케일 뉴럴 네트워크의 파라미터를 설정함으로써, 복원 영상의 화질을 향상시킬 수 있다.
도 1은 일 실시예에 따른 AI(artificial intelligence) 부호화 과정 및 AI 복호화 과정을 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 제 1 DNN 및 제 2 DNN을 훈련시키는 방법을 설명하기 위한 도면이다.
도 3은 일 실시예에 따른 제 1 DNN 및 제 2 DNN의 훈련 과정을 설명하기 위한 도면이다.
도 4는 일 실시예에 따른 AI 부호화 장치의 구성을 나타내는 블록도이다.
도 5 및 도 6은 일 실시예에 따른 AI 데이터 설정부 및 AI 데이터 생성부를 설명하기 위해 참조되는 도면들이다.
도 7은 일 실시예에 따른 AI 복호화 장치의 구성을 나타내는 블록도이다.
도 8 은 일 실시예에 따른 AI 데이터 복원부 및 모델 결정부를 설명하기 위해 참조되는 도면이다.
도 9는 일 실시예에 따른 모델 결정부가 AI 업 스케일에 이용할 제2 DNN의 설정 정보를 결정하는 예를 나타내는 도면이다.
도 10은 일 실시예에 따른 AI 데이터의 신택스 테이블을 나타내는 도면이다.
도 11은 다른 실시예에 따른 AI 데이터의 신택스 테이블을 나타내는 도면이다.
도 12는 일 실시예에 따른 AI 복호화 장치가 별개의 복호화 장치와 AI 업스케일링 장치로 구성되는 예를 나타낸다.
도 13은 일 실시예에 따른 VSIF(Vendor Specific Infoframe) 패킷의 헤더 구조 및 컨텐츠 구조를 나타내는 도면이다.
도 14는 다른 실시예에 따른 VSIF(Vendor Specific Infoframe) 패킷의 헤더 구조 및 컨텐츠 구조를 나타내는 도면이다.
도 15는 일 실시예에 따른 AI 부호화 장치의 동작방법을 나타내는 흐름도이다.
도 16은 일 실시예에 따른 AI 복호화 장치의 동작방법을 나타내는 흐름도이다.
본 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 개시의 실시 형태에 대해 한정하려는 것이 아니며, 본 개시는 여러 실시예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별 기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
또한, 본 명세서에서, '영상(image)' 또는 '픽처'는 정지영상, 복수의 연속된 정지영상(또는 프레임)으로 구성된 동영상, 또는 비디오를 나타낼 수 있다.
또한, 본 명세서에서 'DNN(deep neural network)'은 뇌 신경을 모사한 인공신경망 모델의 대표적인 예시로서, 특정 알고리즘을 사용한 인공신경망 모델로 한정되지 않는다.
또한, 본 명세서에서 '파라미터'는 뉴럴 네트워크를 이루는 각 레이어의 연산 과정에서 이용되는 값으로서 예를 들어, 입력 값을 소정 연산식에 적용할 때 이용되는 가중치를 포함할 수 있다. 파라미터는 매트릭스 형태로 표현될 수 있다. 파라미터는 훈련의 결과로 설정되는 값으로서, 필요에 따라 별도의 훈련 데이터(training data)를 통해 갱신될 수 있다.
또한, 본 명세서에서 '제 1 DNN'은 영상의 AI 다운스케일을 위해 이용되는 DNN을 의미하고, '제 2 DNN'은 영상의 AI 업스케일을 위해 이용되는 DNN을 의미한다.
또한, 본 명세서에서 'DNN 설정 정보'는 DNN을 구성하는 요소와 관련된 정보로서 전술한 파라미터를 포함한다. DNN 설정 정보를 이용하여 제 1 DNN 또는 제 2 DNN이 설정될 수 있다.
또한, 본 명세서에서 '원본 영상'은 AI 부호화의 대상이 되는 영상을 의미하고, '제 1 영상'은 AI 부호화 과정에서 원본 영상의 AI 다운스케일 결과 획득된 영상을 의미한다. 또한, '제 2 영상'은 AI 복호화 과정에서 제 1 복호화를 통해 획득된 영상을 의미하고, '제 3 영상'은 AI 복호화 과정에서 제 2 영상을 AI 업스케일하여 획득된 영상을 의미한다.
또한, 본 명세서에서 'AI 다운스케일'은 AI 기반으로 영상의 해상도를 감소시키는 처리를 의미하고, '제 1 부호화'는 주파수 변환 기반의 영상 압축 방법에 의한 부호화 처리를 의미한다. 또한, '제 1 복호화'는 주파수 변환 기반의 영상 복원 방법에 의한 복호화 처리를 의미하고, 'AI 업스케일'은 AI 기반으로 영상의 해상도를 증가시키는 처리를 의미한다.
도 1은 일 실시예에 따른 AI(artificial intelligence) 부호화 과정 및 AI 복호화 과정을 설명하기 위한 도면이다.
전술한 바와 같이, 영상의 해상도가 급격히 커짐에 따라 부호화/복호화를 위한 정보 처리량이 많아지게 되고, 이에 따라 영상의 부호화 및 복호화 효율을 향상시키기 위한 방안이 필요하다.
도 1에 도시된 바와 같이, 본 개시의 일 실시예에 따르면, 해상도가 큰 원본 영상(105)을 AI 다운스케일(110)하여 제 1 영상(115)을 획득한다. 그리고, 상대적으로 작은 해상도의 제 1 영상(115)을 대상으로 하여 부호화(120) 및 복호화(130)를 수행하므로, 원본 영상(105)을 대상으로 하여 부호화(120) 및 복호화(130)를 수행하는 경우에 비해 비트레이트를 크게 감소시킬 수 있다.
도 1을 참조하여 상세히 설명하면, 일 실시예는 AI 부호화 과정에서, 원본 영상(105)을 AI 다운스케일(110)하여 제 1 영상(115)을 획득하고, 제 1 영상(115)을 부호화(120)한다. AI 복호화 과정에서는, AI 부호화 결과 획득된 AI 데이터와 영상 데이터를 포함하는 AI 부호화 데이터를 수신하고, 복호화(130)를 통해 제 2 영상(135)을 획득하고, 제 2 영상(135)을 AI 업스케일(140)하여 제 3 영상(145)을 획득한다.
AI 부호화 과정을 좀 더 상세히 살펴보면, 원본 영상(105)을 입력 받으면, 소정 해상도 및/또는 소정 화질의 제 1 영상(115)을 획득하기 위해 원본 영상(105)을 AI 다운스케일(110)한다. 이때, AI 다운스케일(110)은 AI 기반으로 수행되는데, AI 다운스케일(110)을 위한 AI는 제 2 영상(135)의 AI 업스케일(140)을 위한 AI와 연계되어 훈련되어야(joint trained) 한다. 왜냐하면, AI 다운스케일(110)을 위한 AI와 AI 업스케일(140)을 위한 AI가 분리되어 훈련되는 경우, AI 부호화 대상인 원본 영상(105)과 AI 복호화를 통해 복원된 제 3 영상(145) 사이의 차이가 커지게 되기 때문이다.
본 개시의 실시예에서는, AI 부호화 과정과 AI 복호화 과정에서 이러한 연계 관계를 유지하기 위해, AI 데이터를 이용할 수 있다. 따라서, AI 부호화 과정을 통해 획득된 AI 데이터는 업스케일 타겟을 나타내는 정보를 포함하여야 하고, AI 복호화 과정에서는 AI 데이터에 기초하여 확인되는 업스케일 타겟에 따라 제 2 영상(135)을 AI 업스케일(140)하여야 한다.
AI 다운스케일(110)을 위한 AI 및 AI 업스케일(140)을 위한 AI는 DNN(deep neural network)으로 구현될 수 있다. 이하에서는, 설명의 편의를 위해, AI 다운스케일(110)을 위해 이용되는 DNN을 제1 DNN이라 하고, AI 업 스케일(140)을 위해 이용되는 DNN을 제2 DNN이라 한다. 도 2 및 도 3을 참조하여 후술하는 바와 같이, 제 1 DNN과 제 2 DNN은 소정 타겟 하에 손실 정보의 공유를 통해 연계 훈련되므로, AI 부호화 장치는 제 1 DNN과 2 DNN이 연계 훈련할 때 이용된 타겟 정보를 AI 복호화 장치로 제공하고, AI 복호화 장치는 제공받은 타겟 정보에 기초하여 제 2 영상(135)을 타겟하는 화질 및/또는 해상도로 AI 업스케일(140)할 수 있다.
도 1에 도시된 부호화(120) 및 복호화(130)에 대해 상세히 설명하면, 원본 영상(105)으로부터 AI 다운스케일(110)된 제 1 영상(115)은 부호화(120)를 통해 정보량이 감축될 수 있다. 부호화(120)는, 제 1 영상(115)을 예측하여 예측 데이터를 생성하는 과정, 제 1 영상(115)과 예측 데이터 사이의 차이에 해당하는 잔차 데이터를 생성하는 과정, 공간 영역 성분인 잔차 데이터를 주파수 영역 성분으로 변환(transformation)하는 과정, 주파수 영역 성분으로 변환된 잔차 데이터를 양자화(quantization)하는 과정 및 양자화된 잔차 데이터를 엔트로피 부호화하는 과정 등을 포함할 수 있다. 이와 같은 부호화 과정(120)은 MPEG-2, H.264 AVC(Advanced Video Coding), MPEG-4, HEVC(High Efficiency Video Coding), VC-1, VP8, VP9 및 AV1(AOMedia Video 1) 등 주파수 변환을 이용한 영상 압축 방법들 중의 하나를 통해 구현될 수 있다.
제 1 영상(115)에 대응하는 제 2 영상(135)은 영상 데이터의 제 1 복호화(130)를 통해 복원될 수 있다. 복호화(130)는, 영상 데이터를 엔트로피 복호화하여 양자화된 잔차 데이터를 생성하는 과정, 양자화된 잔차 데이터를 역양자화하는 과정, 주파수 영역 성분의 잔차 데이터를 공간 영역 성분으로 변환하는 과정, 예측 데이터를 생성하는 과정 및 예측 데이터와 잔차 데이터를 이용하여 제 2 영상(135)을 복원하는 과정 등을 포함할 수 있다. 이와 같은 복호화(130) 과정은 부호화(120) 과정에서 사용된 MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 등 주파수 변환을 이용한 영상 압축 방법들 중의 하나에 대응되는 영상 복원 방법을 통해 구현될 수 있다.
AI 부호화 과정을 통해 획득된 AI 부호화 데이터는, 제 1 영상(115)의 부호화(120) 결과 획득된 영상 데이터 및 제 2 영상(135)의 AI 업스케일(140)과 관련된 AI 데이터를 포함할 수 있다. 영상 데이터는 복호화(130) 과정에서 이용될 수 있으며, AI 데이터는 AI 업스케일(140) 과정에서 이용될 수 있다.
영상 데이터는 비트스트림 형태로 전송될 수 있다. 영상 데이터는 제 1 영상(115) 내 픽셀 값들에 기초하여 획득되는 데이터, 예를 들어, 제 1 영상(115)과 제 1 영상(115)의 예측 데이터 사이의 차이인 잔차 데이터를 포함할 수 있다. 또한, 영상 데이터는 제 1 영상(115)의 제 1 부호화(120) 과정에서 이용된 정보들을 포함한다. 예를 들어, 영상 데이터는 제 1 영상(115)을 제 1 부호화(120)하는데 이용된 예측 모드(mode) 정보, 움직임 정보, 및 제 1 부호화(120)에서 이용된 양자화 파라미터 관련 정보 등을 포함할 수 있다. 영상 데이터는 MPEG-2, H.264 AVC, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 등 주파수 변환을 이용하는 영상 압축 방법들 중 제 1 부호화(120) 과정에서 이용된 영상 압축 방법의 규칙, 예를 들어, 신택스(syntax)에 따라 생성될 수 있다.
AI 데이터는 제 2 DNN에 기반한 AI 업스케일(140)에 이용된다. 전술한 바와 같이, 제 1 DNN과 제 2 DNN은 연계 훈련되기 때문에, AI 데이터는 제 2 DNN을 통한 제 2 영상(135)의 정확한 AI 업스케일(140)이 수행될 수 있게 하는 정보를 포함한다. AI 복호화 과정에서는 AI 데이터에 기반하여 제 2 영상(135)을 타겟하는 해상도 및/또는 화질로 AI 업스케일(140)할 수 있다.
AI 데이터는 비트스트림의 형태로 영상 데이터와 함께 전송될 수 있다. 구현예에 따라, AI 데이터는 프레임이나 패킷 형태로 영상 데이터와 구분되어 전송될 수도 있다. 또는 구현예에 따라, AI 데이터는 영상 데이터에 포함되어 전송될 수도 있다. 영상 데이터와 AI 데이터는 동일한 네트워크 또는 서로 상이한 네트워크를 통해 전송될 수 있다.
이하에서는, 도 2를 참조하여, 제 1 DNN과 제 2 DNN을 연계 훈련시키는 방법에 대해 설명한다.
도 2는 일 실시예에 따른 제 1 DNN 및 제 2 DNN을 훈련시키는 방법을 설명하기 위한 도면이다.
일 실시예에서 AI 부호화 과정을 통해 AI 부호화된 원본 영상(105)이 AI 복호화 과정을 통해 제 3 영상(145)으로 복원되는데, AI 복호화 결과 획득된 제 3 영상(145)과 원본 영상(105)과의 유사성을 유지하기 위해서는 AI 부호화 과정 및 AI 복호화 과정에 연관성이 필요하다. 즉, AI 부호화 과정에서 손실된 정보를 AI 복호화 과정에서 복원할 수 있어야 하는데, 이를 위해 제 1 DNN(200, AI 다운스케일을 위해 이용되는 DNN)과 제 2 DNN(300, AI 업스케일을 위해 이용되는 DNN)의 연계 훈련이 요구된다.
정확한 AI 복호화를 위해서는 궁극적으로 도 2에 도시된 제 3 훈련 영상(204)과 원본 훈련 영상(201) 사이의 비교 결과에 대응하는 퀄리티 손실 정보(230)를 감소시킬 필요가 있다. 따라서, 퀄리티 손실 정보(230)는 제 1 DNN(200) 및 제 2 DNN(300)의 훈련 모두에 이용된다.
먼저, 도 2에 도시된 훈련 과정에 대해 설명한다.
도 2에서, 원본 훈련 영상(original training image)(201)은 AI 다운스케일의 대상이 되는 영상이고, 제 1 훈련 영상(first training image)(202)은 원본 훈련 영상(201)로부터 AI 다운스케일된 영상이다. 또한, 제 3 훈련 영상(third training image)(204)은 제 1 훈련 영상(202)으로부터 AI 업스케일된 영상이다.
원본 훈련 영상(201)은 정지 영상 또는 복수의 프레임으로 이루어진 동영상을 포함한다. 일 실시예에서, 원본 훈련 영상(201)은 정지 영상 또는 복수의 프레임으로 이루어진 동영상으로부터 추출된 휘도 영상을 포함할 수도 있다. 또한, 일 실시예에서, 원본 훈련 영상(201)은 정지 영상 또는 복수의 프레임으로 이루어진 동영상에서 추출된 패치 영상을 포함할 수도 있다. 원본 훈련 영상(201)이 복수의 프레임으로 이루어진 경우, 제 1 훈련 영상(202) 및 제 3 훈련 영상(204) 역시 복수의 프레임으로 구성된다. 원본 훈련 영상(201)의 복수의 프레임이 순차적으로 제 1 DNN(200)에 입력되면, 제 1 DNN(200) 및 제 2 DNN(300)을 통해 제 1 훈련 영상(202) 및 제 3 훈련 영상(204)의 복수의 프레임이 순차적으로 획득될 수 있다.
제 1 DNN(800) 및 제 2 DNN(300)의 연계 훈련을 위해, 원본 훈련 영상(201)이 제 1 DNN(200)으로 입력된다. 제 1 DNN(200)으로 입력된 원본 훈련 영상(201)은 AI 다운스케일되어 제 1 훈련 영상(202)으로 출력되고, 제 1 훈련 영상(202)이 제 2 DNN(300)에 입력된다. 제 1 훈련 영상(202)에 대한 AI 업스케일 결과 제 3 훈련 영상(204)이 출력된다.
도 2를 참조하면, 제 2 DNN(300)으로 제 1 훈련 영상(202)이 입력되고 있는데, 구현예에 따라, 제 1 훈련 영상(202)의 부호화 및 복호화 과정을 거쳐 획득된 제 2 훈련 영상(second training image)이 제 2 DNN(300)으로 입력될 수도 있다. 제 2 훈련 영상을 제 2 DNN으로 입력시키기 위해 MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 중 어느 하나의 코덱이 이용될 수 있다. 구체적으로, 제 1 훈련 영상(202)의 부호화 및 제 1 훈련 영상(202)에 대응하는 영상 데이터의 복호화에, MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 중 어느 하나의 코덱이 이용될 수 있다.
도 2를 참조하면, 제 1 DNN(200)을 통해 제 1 훈련 영상(202)이 출력되는 것과 별개로, 원본 훈련 영상(201)으로부터 레거시 다운스케일된 축소 훈련 영상(203)이 획득된다. 여기서, 레거시 다운스케일은 바이리니어(bilinear) 스케일, 바이큐빅(bicubic) 스케일, 란조스(lanczos) 스케일 및 스테어스탭(stair step) 스케일 중 적어도 하나를 포함할 수 있다.
원본 영상(105)의 구조적 특징을 기준으로 제 1 영상(115)의 구조적 특징이 크게 벗어나는 것을 방지하기 위해, 원본 훈련 영상(201)의 구조적 특징을 보존하는 축소 훈련 영상(203)을 획득하는 것이다.
훈련의 진행 전 제 1 DNN(200) 및 제 2 DNN(300)은 미리 결정된 DNN 설정 정보로 세팅될 수 있다. 훈련이 진행됨에 따라 구조적 손실 정보(210), 복잡성 손실 정보(220) 및 퀄리티 손실 정보(230)가 결정될 수 있다.
구조적 손실 정보(210)는 축소 훈련 영상(203)과 제 1 훈련 영상(202)의 비교 결과에 기초하여 결정될 수 있다. 일 예에서, 구조적 손실 정보(210)는 축소 훈련 영상(203)의 구조적 정보와 제 1 훈련 영상(202)의 구조적 정보 사이의 차이에 해당할 수 있다. 구조적 정보는, 영상의 휘도, 대비, 히스토그램 등 영상으로부터 추출 가능한 다양한 특징을 포함할 수 있다. 구조적 손실 정보(210)는 원본 훈련 영상(201)의 구조적 정보가 제 1 훈련 영상(202)에서 어느 정도로 유지되고 있는지를 나타낸다. 구조적 손실 정보(210)가 작을수록 제 1 훈련 영상(202)의 구조적 정보가 원본 훈련 영상(201)의 구조적 정보와 유사해진다.
복잡성 손실 정보(220)는 제 1 훈련 영상(202)의 공간적 복잡도에 기반하여 결정될 수 있다. 일 예에서, 공간적 복잡도로서, 제 1 훈련 영상(202)의 총 분산(total variance)값이 이용될 수 있다. 복잡성 손실 정보(220)는 제 1 훈련 영상(202)을 제 1 부호화하여 획득한 영상 데이터의 비트레이트와 관련된다. 복잡성 손실 정보(220)가 작을수록 영상 데이터의 비트레이트가 작은 것으로 정의된다.
퀄리티 손실 정보(230)는 원본 훈련 영상(201)과 제 3 훈련 영상(204)의 비교 결과에 기초하여 결정될 수 있다. 퀄리티 손실 정보(230)는 원본 훈련 영상(201)과 제 3 훈련 영상(204)의 차이에 대한 L1-norm 값, L2-norm 값, SSIM(Structural Similarity) 값, PSNR-HVS(Peak Signal-To-Noise Ratio-Human Vision System) 값, MS-SSIM(Multiscale SSIM) 값, VIF(Variance Inflation Factor) 값 및 VMAF(Video Multimethod Assessment Fusion) 값 중 적어도 하나를 포함할 수 있다. 퀄리티 손실 정보(230)는 제 3 훈련 영상(204)이 원본 훈련 영상(201)과 어느 정도로 유사한지를 나타낸다. 퀄리티 손실 정보(230)가 작을수록 제 3 훈련 영상(204)이 원본 훈련 영상(201)에 더 유사해진다.
도 2를 참조하면, 구조적 손실 정보(210), 복잡성 손실 정보(220) 및 퀄리티 손실 정보(230)가 제 1 DNN(200)의 훈련에 이용되고, 퀄리티 손실 정보(230)는 제 2 DNN(300)의 훈련에 이용된다. 즉, 퀄리티 손실 정보(230)는 제 1 DNN(200) 및 제 2 DNN(300)의 훈련에 모두 이용된다.
제 1 DNN(200)은 구조적 손실 정보(210), 복잡성 손실 정보(220) 및 퀄리티 손실 정보(230)에 기초하여 결정된 최종 손실 정보가 감소 또는 최소화되도록 파라미터를 갱신할 수 있다. 또한, 제 2 DNN(300)은 퀄리티 손실 정보(230)가 감소 또는 최소화되도록 파라미터를 갱신할 수 있다.
제 1 DNN(200) 및 제 2 DNN(300)의 훈련을 위한 최종 손실 정보는 아래의 수학식 1과 같이 결정될 수 있다.
Figure pat00001
상기 수학식 1에서, LossDS는 제 1 DNN(200)의 훈련을 위해 감소 또는 최소화되어야 할 최종 손실 정보를 나타내고, LossUS는 제 2 DNN(300)의 훈련을 위해 감소 또는 최소화되어야 할 최종 손실 정보를 나타낸다. 또한, a, b, c, d는 미리 결정된 소정의 가중치에 해당할 수 있다.
즉, 제 1 DNN(200)은 수학식 1의 LossDS가 감소되는 방향으로 파라미터들을 갱신하고, 제 2 DNN(300)은 LossUS가 감소되는 방향으로 파라미터들을 갱신하게 된다. 훈련 과정에서 도출된 LossDS에 따라 제 1 DNN(200)의 파라미터들이 갱신되면, 갱신된 파라미터에 기초하여 획득되는 제 1 훈련 영상(202)이 이전 훈련 과정에서의 제 1 훈련 영상(202)과 달라지게 되고, 그에 따라 제 3 훈련 영상(204) 역시 이전 훈련 과정에서의 제 3 훈련 영상(204)과 달라지게 된다. 제 3 훈련 영상(204)이 이전 훈련 과정에서의 제 3 훈련 영상(204)과 달라지게 되면, 퀄리티 손실 정보(230) 역시 새롭게 결정되며, 그에 따라 제 2 DNN(300)은 파라미터들을 갱신한다. 퀄리티 손실 정보(230)가 새롭게 결정되면, LossDS 역시 새롭게 결정되므로, 제 1 DNN(200)은 새롭게 결정된 LossDS에 따라 파라미터들을 갱신한다. 즉, 제 1 DNN(200)의 파라미터 갱신은, 제 2 DNN(300)의 파라미터 갱신을 야기하고, 제 2 DNN(300)의 파라미터 갱신은 제 1 DNN(200)의 파라미터 갱신을 야기하는 것이다. 다시 말하면, 제 1 DNN(200) 및 제 2 DNN(300)은 퀄리티 손실 정보(230)의 공유를 통해 연계 훈련되므로, 제 1 DNN(200)의 파라미터들과 제 2 DNN(300)의 파라미터들이 서로 연관성을 가지고 최적화될 수 있는 것이다.
수학식 1을 참조하면, LossUS가 퀄리티 손실 정보(230)에 따라 결정되는 것을 알 수 있으나, 이는 하나의 예시이며, LossUS는 구조적 손실 정보(210) 및 복잡성 손실 정보(220) 중 적어도 하나와, 퀄리티 손실 정보(230)에 기초하여 결정될 수도 있다.
일 실시예에 따른 AI 부호화 장치 및 AI 복호화 장치는 복수의 DNN 설정 정보를 저장할 수 있다. AI 부호화 장치 및 AI 복호화 장치에 저장되는 복수의 DNN 설정 정보 각각을 훈련시키는 방법에 대해 설명한다.
수학식 1과 관련하여 설명한 바와 같이, 제 1 DNN(200)의 경우, 제 1 훈련 영상(202)의 구조적 정보와 원본 훈련 영상(201)의 구조적 정보 사이의 유사 정도(구조적 손실 정보(210)), 제 1 훈련 영상(202)의 제 1 부호화 결과 획득되는 영상 데이터의 비트레이트(복잡성 손실 정보(220)) 및 제 3 훈련 영상(204)과 원본 훈련 영상(201) 사이의 차이(퀄리티 손실 정보(230))를 고려하여 파라미터를 갱신하게 된다.
자세히 설명하면, 원본 훈련 영상(201)의 구조적 정보와 유사하면서, 제 1 부호화를 하였을 때 획득되는 영상 데이터의 비트레이트가 작은 제 1 훈련 영상(202)이 획득 가능하도록 하는 동시에, 제 1 훈련 영상(202)을 AI 업스케일하는 제 2 DNN(300)이 원본 훈련 영상(201)에 유사한 제 3 훈련 영상(204)을 획득할 수 있도록, 제 1 DNN(200)의 파라미터가 갱신될 수 있다.
수학식 1의 a, b, c의 가중치가 조절됨으로써, 제 1 DNN(200)의 파라미터들이 최적화되는 방향이 상이해지게 된다. 예를 들어, b의 가중치를 높게 결정하는 경우, 제 3 훈련 영상(204)의 퀄리티보다 비트레이트가 낮아지는 것에 더 중요도를 두고 제 1 DNN(200)의 파라미터가 갱신될 수 있다. 또한, c의 가중치를 높게 결정하는 경우, 비트레이트가 높아지는 것이나, 원본 훈련 영상(201)의 구조적 정보가 유지되는 것보다 제 3 훈련 영상(204)의 퀄리티가 증가하도록 하는 것에 더 중요도를 두고 제 1 DNN(200)의 파라미터가 갱신될 수 있다.
또한, 제 1 훈련 영상(202)을 제 1 부호화하는데 이용되는 코덱의 타입에 따라 제 1 DNN(200)의 파라미터들이 최적화되는 방향이 상이해질 수 있다. 왜냐하면, 코덱의 종류에 따라, 제 2 DNN(300)으로 입력될 제 2 훈련 영상이 달라질 수 있기 때문이다.
즉, 가중치 a, 가중치 b, 가중치 c 및 제 1 훈련 영상(202)의 제 1 부호화를 위한 코덱의 종류에 기반하여 제 1 DNN(200)의 파라미터들과 제 2 DNN(300)의 파라미터들이 연계하여 갱신될 수 있는 것이다. 따라서, 가중치 a, 가중치 b, 가중치 c 각각을 소정의 값으로 결정하고, 코덱의 종류를 소정의 종류로 결정한 후, 제 1 DNN(200)과 제 2 DNN(300)을 훈련시키면, 서로 연계되어 최적화된 제 1 DNN(200)의 파라미터들과 제 2 DNN(300)의 파라미터들이 결정될 수 있다.
그리고, 가중치 a, 가중치 b, 가중치 c 및 코덱의 종류를 변경한 후, 제 1 DNN(200)과 제 2 DNN(300)을 훈련시키면, 서로 연계되어 최적화된 제 1 DNN(200)의 파라미터들과 제 2 DNN(300)의 파라미터들이 결정될 수 있다. 다시 말하면, 가중치 a, 가중치 b, 가중치 c 및 코덱의 종류 각각의 값을 변경하면서 제 1 DNN(200)과 제 2 DNN(300)을 훈련시키면 서로 연계되어 훈련된 복수의 DNN 설정 정보가 제 1 DNN(800) 및 제 2 DNN(300)에서 결정될 수 있는 것이다.
일 실시예에 따른 제 1 DNN(200) 및 제 2 DNN(300)의 복수의 DNN 설정 정보들은 제 1 영상(115) 관련 정보들에 매핑되어 있을 수 있다. 이러한 매핑 관계의 설정을 위해, 제 1 DNN(200)에서 출력되는 제 1 훈련 영상(202)을 특정 비트레이트에 따라 특정 코덱으로 부호화하고, 부호화 결과 획득된 비트스트림을 복호화하여 획득한 제 2 훈련 영상을 제 2 DNN(300)으로 입력할 수 있다. 즉, 특정 해상도의 제 1 훈련 영상(202)이 특정 코덱에 의해 특정 비트레이트로 부호화되도록 환경을 설정한 후, 제 1 DNN(200) 및 제 2 DNN(300)을 훈련시킴으로써, 제 1 훈련 영상(202)의 해상도, 제 1 훈련 영상(202)의 제 1 부호화에 이용된 코덱의 종류 및 제 1 훈련 영상(202)의 부호화 결과 획득된 비트스트림의 비트레이트에 매핑된 DNN 설정 정보 쌍이 결정될 수 있는 것이다. 제 1 훈련 영상(202)의 해상도, 제 1 훈련 영상(202)의 제 1 부호화에 이용된 코덱의 종류 및 제 1 훈련 영상(202)의 제 1 부호화에 따라 획득되는 비트스트림의 비트레이트를 다양하게 변경시킴으로써, 제 1 DNN(200) 및 제 2 DNN(300)의 복수의 DNN 설정 정보들과 제 1 영상(115) 관련 정보들 사이의 매핑 관계가 결정될 수 있다.
도 3은 일 실시예에 따른 제 1 DNN 및 제 2 DNN의 훈련 과정을 설명하기 위한 도면이다.
도 2와 관련하여 설명한 제 1 DNN(200) 및 제 2 DNN(300)의 훈련은 훈련 장치(301)에 의해 수행될 수 있다. 훈련 장치(301)는 제 1 DNN(200) 및 제 2 DNN(300)을 포함한다. 훈련 장치(301)는 예를 들어, AI 부호화 장치 또는 별도의 서버일 수 있다. 훈련 결과 획득된 제 2 DNN(300)의 DNN 설정 정보들은 AI 복호화 장치에 저장된다.
도 3을 참조하면, 훈련 장치(301)는 제 1 DNN(200) 및 제 2 DNN(300)의 DNN 설정 정보를 초기 세팅한다(S310, S320). 이에 의해, 제 1 DNN(200) 및 제 2 DNN(300)은 미리 결정된 DNN 설정 정보에 따라 동작할 수 있다. DNN 설정 정보는 제 1 DNN(200) 및 2 DNN(300)에 포함되는 컨볼루션 레이어의 수, 컨볼루션 레이어 별 필터 커널의 개수, 컨볼루션 레이어 별 필터 커널의 크기 및 각 필터 커널의 파라미터 중 적어도 하나에 대한 정보를 포함할 수 있다.
훈련 장치(301)는 원본 훈련 영상(201)을 제 1 DNN(200)으로 입력한다(S330). 원본 훈련 영상(201)은 정지 영상 또는 동영상을 구성하는 적어도 하나의 프레임을 포함할 수 있다.
제 1 DNN(200)은 초기 세팅된 DNN 설정 정보에 따라 원본 훈련 영상(201)을 처리하고, 원본 훈련 영상(201)으로부터 AI 다운스케일된 제 1 훈련 영상(202)을 출력한다(S340). 도 3은 제 1 DNN(200)으로부터 출력된 제 1 훈련 영상(202)이 제 2 DNN(300)으로 바로 입력되는 것으로 도시되어 있으나, 제 1 DNN(200)으로부터 출력된 제 1 훈련 영상(202)이 훈련 장치(301)에 의해 제 2 DNN(300)으로 입력될 수 있다. 또한, 훈련 장치(301)는 제 1 훈련 영상(202)을 소정의 코덱으로 제 1 부호화 및 제 1 복호화한 후, 제 2 훈련 영상을 제 2 DNN(300)으로 입력할 수 있다.
제 2 DNN(300)은 제 1 훈련 영상(202) 또는 제 2 훈련 영상을 초기 세팅된 DNN 설정 정보에 따라 처리하고, 제 1 훈련 영상(202) 또는 제 2 훈련 영상으로부터 AI 업스케일된 제 3 훈련 영상(204)을 출력한다(S350).
훈련 장치(301)는 제 1 훈련 영상(202)에 기초하여 복잡성 손실 정보(220)를 산출한다(S360).
훈련 장치(301)는 축소 훈련 영상(203)과 제 1 훈련 영상(202)을 비교하여 구조적 손실 정보(210)를 산출한다(S370).
훈련 장치(301)는 원본 훈련 영상(201)과 제 3 훈련 영상(204)을 비교하여 퀄리티 손실 정보(230)를 산출한다(S380).
제 1 DNN(200)은 최종 손실 정보에 기초한 역전사(back propagation) 과정을 통해 초기 세팅된 DNN 설정 정보를 갱신한다(S390). 훈련 장치(301)는 복잡성 손실 정보(220), 구조적 손실 정보(210) 및 퀄리티 손실 정보(230)에 기초하여 제 1 DNN(200)의 훈련을 위한 최종 손실 정보를 산출할 수 있다.
제 2 DNN(300)은 퀄리티 손실 정보 또는 최종 손실 정보에 기초한 역전사 과정을 통해 초기 세팅된 DNN 설정 정보를 갱신한다(S395). 훈련 장치(301)는 퀄리티 손실 정보(230)에 기초하여 제 2 DNN(300)의 훈련을 위한 최종 손실 정보를 산출할 수 있다.
이후, 훈련 장치(301), 제 1 DNN(200) 및 제 2 DNN(300)은 최종 손실 정보들이 최소화될 때까지 S330 내지 S395 과정을 반복하면서 DNN 설정 정보를 갱신한다. 이 때, 각 반복 과정 동안 제 1 DNN(200) 및 제 2 DNN(300)은 이전 과정에서 갱신된 DNN 설정 정보에 따라 동작한다.
아래의 표 1은 본 개시의 일 실시예에 따라 원본 영상(105)을 AI 부호화 및 AI 복호화한 경우와, HEVC로 원본 영상(105)을 부호화 및 복호화한 경우의 효과를 나타낸다.
Figure pat00002
표 1에서 알 수 있듯이, 본 개시의 일 실시예에 따라 8K 해상도의 300개의 프레임들로 이루어진 컨텐츠들을 AI 부호화 및 AI 복호화한 경우의 주관적 화질이 HEVC로 부호화 및 복호화한 경우의 주관적 화질보다 높음에도, 비트레이트가 50% 이상 감소한 것을 알 수 있다.
도 4는 일 실시예에 따른 AI 부호화 장치의 구성을 나타내는 블록도이다.
도 4를 참조하면, AI 부호화 장치(400)는 AI 부호화부(401) 및 전송부(460)를 포함할 수 있다. AI 부호화부(401)는 AI 다운스케일부(410), AI 데이터 설정부(430), AI 데이터 생성부(440), 부호화부(420), 및 스트림 생성부(450)를 포함할 수 있다.
도 4는 AI 부호화부(401) 및 전송부(460)를 개별적인 구성으로 도시하고 있으나, AI 부호화부(401) 및 전송부(460)는 하나의 프로세서를 통해 구현될 수 있다. 이 경우, 전용 프로세서로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 범용 프로세서와 S/W의 조합을 통해 구현될 수도 있다. 또한, 전용 프로세서의 경우, 본 개시의 실시예를 구현하기 위한 메모리를 포함하거나, 외부 메모리를 이용하기 위한 메모리 처리부를 포함할 수 있다.
또한, AI 부호화부(401) 및 전송부(460)는 복수의 프로세서로 구성될 수도 있다. 이 경우, 전용 프로세서들의 조합으로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 다수의 범용 프로세서들과 S/W의 조합을 통해 구현될 수도 있다. 일 실시예에서, 부호화부(420)는 제 1 프로세서로 구성되고, AI 다운스케일부(410), AI 데이터 설정부(430), AI 데이터 생성부(440), 및 스트림 생성부(450)는 제 1 프로세서와 상이한 제 2 프로세서로 구현되고, 전송부(460)는 제 1 프로세서 및 제 2 프로세서와 상이한 제 3 프로세서로 구현될 수 있다.
AI 부호화부(401)는 원본 영상(105)의 AI 다운스케일 및 제 1 영상(115)의 부호화를 수행할 수 있다. 또한, AI 부호화부(401)는 하나 이상의 입력 정보를 획득하고, 획득한 입력 정보에 기초하여, AI 데이터를 생성할 수 있다. AI 부호화부(401)는 부호화 결과 획득된 영상 데이터와 AI 데이터를 포함하는 AI 부호화 데이터를 전송부(460)로 전달한다. 전송부(460)는 AI 부호화 데이터를 AI 복호화 장치로 전송한다.
일 실시예에 따른 AI 다운스케일부(410)는 제 1 DNN을 통해 원본 영상(105)으로부터 AI 다운스케일된 제 1 영상(115)을 획득할 수 있다. AI 다운스케일부(410)는 AI 데이터 설정부(430)로부터 제공된 다운스케일 타겟에 대응하는 제1 영상의 타겟 해상도 정보를 이용하여 원본 영상(105)을 AI 다운스케일할 수 있다.
AI 데이터 설정부(430)는 미리 결정된 기준에 기초하여 원본 영상(105)의 다운스케일 타겟을 결정할 수 있다. 이때, 다운스케일 타겟은 원본 영상(105)으로부터 얼마나 해상도가 감소한 제 1 영상(115)을 획득해야 하는지를 나타내는 정보를 나타낸다. 예를 들어, AI 데이터 설정부(430)는 원본 영상(105)의 해상도와 제1 영상의 타겟 해상도 정보의 차이에 기초하여, 다운스케일 비율(down-scaling ratio)을 결정할 수 있으며, 결정된 다운 스케일 비율을 AI 다운스케일부(410)로 전달할 수 있다. AI 데이터 설정부(430)에서는 원본 영상의 해상도 정보를 설정하는 대신에, 제1 영상의 다운스케일 타겟 해상도를 설정하여 AI 업스케일(140)에 이용할 제2 DNN의 설정 정보 결정에 활용한다.
AI 다운스케일부(410)는, 다운스케일 타겟에 부합하는 제 1 영상(115)의 획득을 위해, 제 1 DNN에 설정 가능한 복수의 DNN 설정 정보를 저장할 수 있다. AI 다운스케일부(410)는 복수의 DNN 설정 정보 중 다운스케일링 비율에 대응하는 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 제1 DNN에 설정할 수 있다.
상기 복수의 DNN 설정 정보 각각은 미리 결정된 다양한 해상도 및/또는 미리 결정된 화질의 제 1 영상(115)을 획득하기 위해 훈련된 것일 수 있다. 예를 들어, 복수의 DNN 설정 정보 중 어느 하나의 DNN 설정 정보는 원본 영상(105)의 해상도보다 1/2배만큼 작은 해상도의 제 1 영상(115), 예를 들어, 4K(3840*2160)의 원본 영상(105)보다 1/2배 작은 2K(1920x1080)의 제 1 영상(115)을 획득하기 위한 정보들을 포함할 수 있고, 다른 하나의 DNN 설정 정보는 원본 영상(105)의 해상도보다 1/4배만큼 작은 해상도의 제 1 영상(115), 예를 들어, 4K(3840*2160)의 원본 영상(105)보다 1/4배 작은 1K(960*540)의 제 1 영상(115)을 획득하기 위한 정보들을 포함할 수 있다.
구현예에 따라, DNN 설정 정보를 구성하는 정보들(예를 들어, 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수, 각 필터 커널의 파라미터 등)이 룩업 테이블 형태로 저장되어 있는 경우, AI 다운스케일부(410)는 다운스케일 타겟에 따라 룩업 테이블 값들 중에서 선택된 일부를 조합하여 DNN 설정 정보를 획득하고, 획득한 DNN 설정 정보를 제1 DNN에 설정할 수 있다.
구현예에 따라, AI 다운스케일부(410)는 다운스케일 타겟에 대응되는 DNN의 구조를 결정하고, 결정된 DNN의 구조에 대응하는 DNN 설정 정보, 예를 들어, 필터 커널의 파라미터들을 획득할 수도 있다.
원본 영상(105)의 AI 다운스케일을 위한 복수의 DNN 설정 정보는, 제 1 DNN과 제 2 DNN이 연계 훈련됨으로써, 최적화된 값을 가질 수 있다. 여기서, 각 DNN 설정 정보는 제 1 DNN에 포함되는 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수 및 각 필터 커널의 파라미터 중 적어도 하나를 포함한다.
AI 다운스케일부(410)는 원본 영상(105)의 AI 다운스케일을 위해 결정된 DNN 설정 정보로 제 1 DNN을 설정하여, 제1 DNN을 통해 소정 해상도 및/또는 소정 화질의 제 1 영상(115)을 획득할 수 있다. 복수의 DNN 설정 정보 중 원본 영상(105)의 AI 다운스케일을 위한 DNN 설정 정보가 획득되면, 제 1 DNN 내 각 레이어는 DNN 설정 정보에 포함된 정보들에 기초하여 입력된 데이터를 처리할 수 있다.
AI 다운스케일부(410)는 제 1 DNN을 통해 원본 영상(105)으로부터 AI 다운스케일된 제 1 영상(115)을 부호화부(420)로 전달할 수 있다.
부호화부(420)는 AI 다운스케일부(410)로부터 제 1 영상(115)을 전달받아, 주파수 변환 기반의 영상 압축 방법에 따라 제 1 영상(115)을 부호화하여 제 1 영상(115)이 가지는 정보량을 감축시킬 수 있다. 소정의 코덱(예를 들어, MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 또는 AV1)을 통한 부호화 결과, 영상 데이터가 획득된다. 영상 데이터는 소정의 코덱의 규칙, 즉 신택스에 따라 획득된다. 영상 데이터는 제 1 영상(115) 내 픽셀 값들에 기초하여 획득되는 데이터, 예를 들어, 제 1 영상(115)과 제 1 영상(115)의 예측 데이터 사이의 차이인 잔차 데이터를 포함할 수 있다. 또한, 영상 데이터는 제 1 영상(115)의 부호화 과정에서 이용된 정보들을 포함한다. 예를 들어, 영상 데이터는 제 1 영상(115)을 부호화하는데 이용된 픽쳐 타입 정보, 예측 모드 정보, 움직임 정보 및 제 1 영상(115)을 부호화하는데 이용된 양자화 파라미터 관련 정보(예를 들어, 양자화 레벨) 등을 포함할 수 있다.
부호화부(420)의 부호화 결과 획득된 영상 데이터는 스트림 생성부(450)로 제공된다.
일 실시예에 따른 AI 데이터 설정부(430)는 하나 이상의 입력 정보를 획득할 수 있다. 예를 들어, 도 5를 참조하면, AI 데이터 설정부(430)는 제 1 영상 (115)의 타겟 해상도, 제 1 영상의 비트 심도(bit depth), 원본 영상(입력 영상)의 특성 정보, 타겟 선명도(detail) 강도, 인코딩 제어 정보, 디코딩 제어 정보 등을 획득할 수 있다.
또한, AI 데이터 설정부(430)는 영상 데이터의 타겟 비트레이트, 영상 데이터의 비트레이트 타입(예를 들어, variable bitrate 타입, constant bitrate 타입 또는 average bitrate 타입 등), AI 다운스케일이 적용되는 컬러 포맷(휘도 성분, 색차 성분, 레드 성분, 그린 성분 또는 블루 성분 등), 제 1 영상(115)의 부호화를 위한 코덱 타입, 압축 히스토리 정보 중 적어도 하나를 입력 정보로써, 더 획득할 수 있다.
이때, 하나 이상의 입력 정보는 AI 부호화 장치(400)에 미리 저장되거나, 사용자로부터 입력 받은 정보를 포함할 수 있다.
AI 데이터 설정부(430)는 입력 정보에 기초하여 AI 다운스케일부(410)의 동작을 제어할 수 있다. 일 실시예에서, AI 데이터 설정부(430)는 입력 정보에 따라 다운스케일 타겟을 결정하고, 결정된 다운스케일 타겟을 AI 다운스케일부(410)로 제공할 수 있다.
일 실시예에서, AI 데이터 설정부(430)는 입력 정보의 적어도 일부를 부호화부(420)로 전달하여 부호화부(420)가 특정 값의 비트레이트, 특정 타입의 비트레이트 및 특정 코덱으로 제 1 영상(115)을 부호화하게 할 수도 있다.
일 실시예에서, AI 데이터 설정부(430)는 압축율(다운스케일링 비율, 예를 들어, 원본 영상(105)과 제 1 영상(115) 사이의 해상도 차이, 타겟 비트레이트), 압축 품질(예를 들어, 비트레이트 타입), 압축 히스토리 정보 및 원본 영상(105)의 타입 중 적어도 하나에 기초하여 다운스케일 타겟을 결정할 수 있다.
일 예에서, AI 데이터 설정부(430)는 미리 설정되거나, 사용자로부터 입력 받은 압축률 또는 압축 품질 등에 기반하여 다운스케일 타겟을 결정할 수 있다.
다른 예로, AI 데이터 설정부(430)는 AI 부호화 장치(400)에 저장된 압축 히스토리 정보를 이용하여 다운스케일 타겟을 결정할 수도 있다. 예를 들어, AI 부호화 장치(400)가 이용할 수 있는 압축 히스토리 정보에 따르면, 사용자가 선호하는 부호화 품질 또는 압축률 등이 결정될 수 있으며, 압축 히스토리 정보에 기초하여 결정된 부호화 품질 등에 따라 다운스케일 타겟이 결정될 수 있다. 예를 들면, 압축 히스토리 정보에 따라 가장 많이 이용된 적이 있는 부호화 품질에 따라 제 1 영상(115)의 해상도, 화질 등이 결정될 수 있다.
또 다른 예로, AI 데이터 설정부(430)는 압축 히스토리 정보에 따라 소정의 임계 값보다 많이 이용된 적이 있는 부호화 품질(예를 들면, 소정의 임계값보다 많이 이용된 적이 있는 부호화 품질들의 평균 품질)에 기초하여 다운스케일 타겟을 결정할 수도 있다.
또 다른 예로, AI 데이터 설정부(430)는 원본 영상(105)의 해상도, 타입(예를 들어, 파일의 형식)등에 기초하여 다운스케일 타겟을 결정할 수도 있다.
일 실시예에 따른 AI 데이터 설정부(430)는 원본 영상의 영상 품질을 결정할 수 있다. 예를 들어, 도 6을 참조하면, AI 데이터 설정부(430)는 영상 품질 측정 네트워크(610)를 포함할 수 있으며, 영상 품질 측정 네트워크(610)에 원본 영상이 입력되면, 영상 품질 측정 네트워크(610)는 영상의 품질 정보(620)를 출력할 수 있다. 이때, 영상의 품질 정보(620)는, 고품질(high quality), 저품질(low quaility), 및 잡음 품질(noisy quality) 중 어느 하나로 결정될 수 있다. 영상 품질 측정 네트워크(610)는 입력된 원본 영상의 선명도, 잡음, 및 명암비 중 적어도 하나를 나타내는 특징을 추출하고, 추출된 특징에 기초하여, 품질 정보(620)를 결정할 수 있다. 예를 들어, 영상의 선명도 레벨이 제1 값 이상이고, 노이즈가 제2 값 미만인 경우, 영상의 품질은 고품질로 결정될 수 있다. 또한, 영상의 선명도 레벨이 제1 값 미만이고, 노이즈가 제2 값 미만인 경우, 영상의 품질은 저품질로 결정될 수 있다. 또한, 영상의 선명도 레벨이 제1 값 미만이고, 노이즈가 제2 값 이상인 경우, 영상의 품질은 잡음 품질로 결정될 수 있다.
AI 데이터 설정부(430)는 결정된 영상의 품질 정보(620)에 기초하여, 타겟 선명도 강도(630)를 결정할 수 있다. 예를 들어, AI 데이터 설정부(430)는 영상의 품질이 작으면, 타겟 선명도 강도를 강하게 하도록 결정할 수 있다. 다만, 이에 한정되지 않는다.
다시 도 5를 참조하면, 일 실시예에 따른 AI 데이터 생성부(440)는, AI 데이터 설정부(430)에서 획득한 입력 정보에 기초하여, AI 데이터를 생성할 수 있다. 일 실시예에 따른 AI 데이터는, 제1 영상의 타겟 해상도, 제1 영상의 비트 심도, 제2 DNN 셋 식별 정보, 양자화 레벨(양자화 파라미터) 초기화 값, 픽쳐 타입 초기화 값, 제2 DNN 업데이트 정보, 업 스케일링 비율(up-scaling ratio)중 적어도 하나를 포함할 수 있다.
일 실시예에 따른 AI 부호화 장치(400) 및 AI 복호화 장치(700) 사이에 미리 동작 방식을 규정한 경우, AI 데이터는, 픽쳐 타입 정보, 제2 DNN 업데이트 정보, 및 업 스케일링 비율(up-scaling ratio)을 포함하지 않을 수 있다.
예를 들어, 도 5를 참조하면, AI 데이터 생성부(440)는 제1 영상의 타겟 해상도, 타겟 선명도 강도, 원본 영상의 영상 특성 정보에 기초하여, 제2 DNN 셋 식별 정보를 생성할 수 있다. 또한, AI 데이터 생성부(440)는 인코딩 제어 정보에 기초하여, 양자화 레벨의 초기화 값 및 픽쳐 타입 초기화 값을 생성할 수 있다. 또한, AI 데이터 생성부(440)는 디코딩 제어 정보에 기초하여, 제2 DNN 업데이트 정보 및 업 스케일링 비율을 결정할 수 있다. 다만, 이에 한정되지 않으며, AI 데이터 생성부(440)는 후술하는 AI 복호화 장치(700)의 업 스케일부가 다운스케일 타겟에 대응하는 업스케일 타겟으로, 제2 영상(135)을 AI 업스케일할 수 있게 하는 다양한 정보들을 포함할 수 있다.
AI 데이터 생성부(440)는 생성된 AI 데이터를 스트림 생성부(450)로 전달할 수 있다.
일 실시예에 따른 스트림 생성부(450)는 부호화부(420)로부터 수신된 영상 데이터와 AI 데이터 생성부(440)로부터 수신된 AI 데이터를 포함하는 AI 부호화 데이터를 생성한다.
일 실시예에서, 스트림 생성부(450)는 AI 부호화 데이터 내에 AI 데이터와 영상 데이터가 분리되어 포함되도록 AI 부호화 데이터를 생성할 수 있다. 이때, AI 부호화 데이터는 MP4, AVI, MKV, FLV 등의 컨테이너 포맷일 수 있으며, AI 부호화 데이터는 메타데이터 박스와 미디어데이터 박스로 구성될 수 있다.
예를 들어, 미디어데이터 박스는 소정의 영상 압축 방식의 신택스에 따라 생성된 영상 데이터를 포함할 수 있으며, 메타 데이터 박스는 미디어데이터 박스에 포함된 영상 데이터에 관한 정보 및 일 실시예에 따른 AI 데이터를 포함할 수 있다. 이때, AI 데이터는 소정 컨테이너 포맷에서 제공하는 부호화 방식에 따라 부호화되어, 메타데이터 박스에 저장될 수 있다.
또한, 일 실시예에 따른 스트림 생성부(450)는 AI 데이터가 영상 데이터에 포함되도록 AI 부호화 데이터를 생성할 수 있다. AI 데이터가 영상 데이터에 포함되는 경우, AI 데이터는 영상 데이터의 부가 정보 영역인 SEI(Supplemental enhancement information)에 포함될 수 있다.
스트림 생성부(450)에서 생성된 AI 부호화 데이터는 전송부(460)로 전송된다. 전송부(460)는 네트워크를 통해 AI 부호화 결과 획득된 AI 부호화 데이터를 AI 복호화 장치로 전송할 수 있다.
일 실시예에서, AI 부호화 데이터는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium) 등을 포함하는 데이터 저장 매체에 저장될 수도 있다.
도 7은 일 실시예에 따른 AI 복호화 장치의 구성을 나타내는 블록도이다.
도 7을 참조하면, 일 실시예에 따른 AI 복호화 장치(700)는 수신부(710) 및 AI 복호화부(702)를 포함한다. AI 복호화부(702)는 파싱부(720), 복호화부(750), AI 데이터 복원부(730), 모델 결정부(740), 및 AI 업스케일부(760)를 포함할 수 있다.
도 7에는 수신부(710) 및 AI 복호화부(702)가 개별적인 장치로 도시되어 있으나, 수신부(710) 및 AI 복호화부(702)는 하나의 프로세서를 통해 구현될 수 있다. 이 경우, 수신부(710) 및 AI 복호화부(702)는 전용 프로세서로 구현될 수도 있고, AP(application processor) 또는 CPU(central processing unit), GPU(graphic processing unit)와 같은 범용 프로세서와 S/W의 조합을 통해 구현될 수도 있다. 또한, 전용 프로세서의 경우, 본 개시의 실시예를 구현하기 위한 메모리를 포함하거나, 외부 메모리를 이용하기 위한 메모리 처리부를 포함할 수 있다.
수신부(710) 및 AI 복호화부(702)는 복수의 프로세서로 구성될 수도 있다. 이 경우, 전용 프로세서들의 조합으로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 다수의 범용 프로세서들과 S/W의 조합을 통해 구현될 수도 있다. 일 실시예에서, 수신부(710)는 제 1 프로세서로 구현되고, 복호화부(750)는 제 1 프로세서와 상이한 제 2 프로세서로 구현되고, 파싱부(720), AI 데이터 복원부(730), 모델 결정부(740), 및 AI 업스케일부(760)는 제 1 프로세서 및 제 2 프로세서와 상이한 제 3 프로세서로 구현될 수 있다.
수신부(710)는 AI 부호화 결과 획득된 AI 부호화 데이터를 수신한다. 일 예로, AI 부호화 데이터는 mp4, mov등의 파일 형식을 갖는 비디오 파일일 수 있다.
수신부(710)는 네트워크를 통해 전달되는 AI 부호화 데이터를 수신할 수 있다. 수신부(710)는 AI 부호화 데이터를 AI 복호화부(702)로 출력할 수 있다.
일 실시예에서, AI 부호화 데이터는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium) 등을 포함하는 데이터 저장 매체로부터 획득된 것일 수도 있다.
파싱부(720)는 AI 부호화 데이터를 파싱하여 제 1 영상(115)의 제 1 부호화 결과로 생성된 영상 데이터를 복호화부(750)로 전달하고, AI 데이터를 AI 데이터 복원부(730)로 전달한다.
일 실시예에서, 파싱부(720)는 AI 부호화 데이터 내에 서로 분리되어 포함된 영상 데이터와 AI 데이터를 파싱할 수 있다. 파싱부(720)는 AI 부호화 데이터 내의 헤더를 읽어 AI 부호화 데이터 내에 포함되어 있는 AI 데이터와 영상 데이터를 구분할 수 있다.
다른 실시예에서, 파싱부(720)는 AI 부호화 데이터에서 영상 데이터를 파싱하고, 영상 데이터로부터 AI 데이터를 추출한 후, AI 데이터를 AI 데이터 복원부(730)로 전달하고, 나머지 영상 데이터를 복호화부(750)로 전달할 수 있다. 즉, AI 데이터는 영상 데이터에 포함될 수 있는데, 예를 들어, AI 데이터는 영상 데이터에 해당하는 비트스트림의 부가 정보 영역인 SEI(Supplemental enhancement information)에 포함될 수 있다.
다른 실시예에서, 파싱부(720)는 영상 데이터에 해당하는 비트스트림을 복호화부(750)에서 처리될 비트스트림과 AI 데이터에 해당하는 비트스트림으로 분할하고, 분할된 각각의 비트스트림을 복호화부(750)와 AI 데이터 복원부(730)로 출력할 수 있다.
파싱부(720)는 AI 부호화 데이터에 포함된 영상 데이터가 소정의 코덱(예를 들어, MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 또는 AV1)을 통해 획득된 영상 데이터인 것으로 확인할 수도 있다. 이 경우, 영상 데이터가 상기 확인된 코덱으로 처리될 수 있도록, 해당 정보를 복호화부(750)로 전달할 수 있다.
복호화부(750)는 파싱부(720)로부터 수신된 영상 데이터에 기초하여 제 1 영상(115)에 대응하는 제 2 영상(135)을 복원한다. 복호화부(750)에 의해 획득된 제 2 영상(135)은 AI 업스케일부(760)로 제공된다.
구현예에 따라, 예측 모드 정보, 움직임 정보, 양자화 파라미터 정보 등의 복호화 관련 정보가 파싱부(720)로부터 AI 데이터 복원부(730) 또는 모델 결정부(740)로 제공될 수 있다. 복호화 관련 정보는 제2 DNN 설정 정보를 획득하는데 이용될 수 있다.
AI 데이터 복원부(730)는 수신한 AI 데이터로부터 제 2 영상(135)을 AI 업스케일할 수 있게 하는 정보들을 추출할 수 있다. 이때, 제 2 영상(135)의 업스케일 타겟은 제 1 DNN(200)의 다운스케일 타겟에 대응하여야 한다. 따라서, AI 데이터는 제 1 DNN(200)의 다운스케일 타겟을 확인할 수 있는 정보가 포함되어야 한다.
도 8을 참조하면, 일 실시예에 따른, AI 데이터 복원부(730)는 AI 데이터 파싱부(810) 및 인코딩 제어 정보 업데이트부(820)를 포함할 수 있다.
AI 데이터 파싱부(810)는 수신한 AI 데이터를 파싱하여, AI 데이터에 포함된 제1 인코딩 제어 정보, 제1 영상의 해상도, 제1 영상의 비트 심도, 제2 DNN 셋 식별 정보, 디코딩 제어 정보를 획득할 수 있다.
일 실시예에 따른 AI 부호화 장치(400)와 AI 복호화 장치(700) 사이에 미리 동작 방식을 규정한 경우, AI 데이터는, 제1 인코딩 제어 정보 중 픽쳐 타입 정보와 디코딩 제어 정보(제2 DNN 업데이트 정보 및 업 스케일링 비율)를 포함하지 않을 수 있다.
한편, AI 데이터로부터 획득된 제1 인코딩 제어 정보는 픽쳐 타입 정보와 양자화 레벨 정보를 포함할 수 있으며, AI 데이터로부터 획득된 픽쳐 타입 정보와 양자화 레벨 정보는 임의로 설정된 초기값일 수 있다.
인코딩 제어 정보 업데이트부(820)는 제2 인코딩 제어 정보를 획득할 수 있다. 제2 인코딩 제어 정보는, AI 부호화 데이터(예를 들어, 비트스트림)의 헤더 정보로부터 획득된 정보로, 제1 영상을 부호화할 때 적용된 실제 인코딩 제어 정보일 수 있다. 인코딩 제어 정보 업데이트부(820)는 제1 인코딩 제어 정보와 제2 인코딩 제어 정보를 비교하여, 제1 인코딩 제어 정보를 제2 인코딩 제어 정보로 업데이트할 수 있다.
일 실시예에 따른 모델 결정부(740)는 업데이트된 인코딩 제어 정보, 제1 영상의 해상도 정보, 제1 영상의 비트 심도 정보, 제2 DNN 셋 식별 정보, 및 디코딩 제어 정보 중 적어도 하나에 기초하여, AI 업 스케일에 이용할 제2 DNN의 설정 정보를 결정할 수 있다. 모델 결정부(740)는 디코딩 제어 정보의 업스케일 비율로 제 2 영상(135)의 업스케일 타겟을 결정할 수 있다. 업스케일 타겟은 예를 들어, 제 2 영상(135)을 어느 정도의 해상도로 업스케일하여야 하는지를 나타낼 수 있다. 만약 AI 데이터에 업스케일 비율이 포함되어 있지 않으며 미리 정해진 출력 해상도에 의해서 제 2 영상(135)의 업스케일 타겟을 결정할 수 있다.
일 실시예에서, 모델 결정부(740)는 제 2 DNN에 설정 가능한 복수의 DNN 설정 정보를 저장할 수 있다. 여기서, DNN 설정 정보는 제2 DNN에 포함되는 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수 및 각 필터 커널의 파라미터 중 적어도 하나에 대한 정보를 포함할 수 있다.
복수의 DNN 설정 정보는 다양한 업스케일 타겟에 각각 대응될 수 있으며, 특정 업스케일 타겟에 대응되는 DNN 설정 정보에 기반하여 제 2 DNN이 동작할 수 있다. DNN 설정 정보에 따라 제 2 DNN이 서로 다른 구조를 가질 수 있다. 예를 들어, 어느 DNN 설정 정보에 따라 제 2 DNN이 3개의 컨볼루션 레이어를 포함할 수 있고, 다른 DNN 설정 정보에 따라 제 2 DNN이 4개의 컨볼루션 레이어를 포함할 수 있다.
일 실시예에서, DNN 설정 정보는 제 2 DNN에서 사용되는 필터 커널의 파라미터만을 포함할 수도 있다. 이 경우, 제 2 DNN의 구조는 변경되지 않는 대신, DNN 설정 정보에 따라 내부의 필터 커널의 파라미터만이 달라질 수 있다.
모델 결정부(740)는 복수의 DNN 설정 정보 중 제 2 영상(135)의 AI 업스케일을 위한 DNN 설정 정보를 획득할 수 있다. 여기서 사용되는 복수의 DNN 설정 정보 각각은 미리 결정된 출력 해상도 및/또는 미리 결정된 화질의 제 3 영상(145)을 획득하기 위한 정보로, 제 1 DNN과 연계하여 훈련된 것이다.
예를 들어, 복수의 DNN 설정 정보 중 어느 하나의 DNN 설정 정보는 제 2 영상(135)의 해상도보다 2배 큰 해상도의 제 3 영상(145), 예를 들어, 2K(1920x1080)의 제 2 영상(135)보다 2배 큰 4K(3840x2160)의 제 3 영상(145)을 획득하기 위한 정보들을 포함할 수 있고, 다른 하나의 DNN 설정 정보는 제 2 영상(135)의 해상도보다 4배 큰 해상도의 제 3 영상(145), 예를 들어, 1K(960x540)의 제 2 영상(135)보다 4배 큰 4K(3840x2160)의 제 3 영상(145)을 획득하기 위한 정보들을 포함할 수 있다.
복수의 DNN 설정 정보 각각은 AI 부호화 장치(400)의 제 1 DNN의 DNN 설정 정보와 연계되어 만들어진 것이며, 모델 결정부(740)는 제 1 DNN의 DNN 설정 정보의 축소 비율에 대응되는 확대 비율에 따라 복수의 DNN 설정 정보 중 하나의 DNN 설정 정보를 결정한다.
일 실시예에 따른, 모델 결정부(740)는 AI 부호화 장치(400)로부터 수신되는 정보들을 이용하여, 제 1 영상(115)을 획득하기 위해 이용된 제 1 DNN의 DNN 설정 정보가 타겟하는 정보를 확인하고, 그와 연계 훈련된 제 2 DNN의 DNN 설정 정보를 획득할 수 있는 것이다.
도 9는 일 실시예에 따른 모델 결정부가 AI 업 스케일에 이용할 제2 DNN의 설정 정보를 결정하는 예를 나타내는 도면이다.
도 9를 참조하면, 모델 결정부(740)는 복수의 DNN 설정 정보를 포함한다. 복수의 DNN 설정 정보 각각은 제1 DNN의 DNN 설정 정보와 연계 훈련을 통해 결정된 것이다. 복수의 DNN 설정 정보는 복수의 그룹들로 나눠질 수 있으며, 그룹들 각각에는 제2 DNN 셋 식별 정보(CNN Model Set Id)가 부여될 수 있다. 예를 들어, 복수의 그룹들은 제2 DNN 셋 식별 정보가 0인 제1 그룹(911)과 제2 DNN 셋 식별 정보가 1인 제2 그룹(912)을 포함할 수 있다.
모델 결정부(740)는 AI 데이터에 포함된 제2 DNN 셋 식별 정보에 기초하여, 복수의 그룹들 중 하나의 그룹을 선택하고, 해상도 정보, 비트 심도 및 양자화 레벨에 따라, 선택된 그룹 내에 포함되는 복수의 DNN 설정 정보 중에서 하나의 DNN 설정 정보를 결정할 수 있다.
예를 들어, 제2 DNN 셋 식별 정보가 0인 경우, 제1 그룹(911)을 선택하고, 해상도가 1920 X 1080이며, 비트 심도가 8이고, 양자화 레벨이 L3인 경우, 모델 결정부(740)는 제1 그룹(911)에 포함된 복수의 DNN 설정 정보 중 제3 설정 정보(930)를 선택할 수 있다.
모델 결정부(740)는 선택된 DNN 설정 정보를 AI 업스케일부(760)로 전달하고, DNN 설정 정보에 따라 동작하는 제 2 DNN에 기초하여 입력 데이터가 처리될 수 있다.
AI 업스케일부(760)는 업스케일 타겟이 결정되면, 업스케일 타겟에 대응하는 제 3 영상(145)을 획득하기 위해 제 2 DNN을 통해 제 2 영상(135)을 AI 업스케일한다.
AI 업 스케일부(760)는 어느 하나의 DNN 설정 정보가 획득되면, 제2 DNN에 포함되는 레이어들 각각에 필터 커널의 개수와 필터 커널의 파라미터들을, 상기 획득된 DNN 설정 정보에 포함된 값으로 설정하고, 설정된 파라미터들을 이용하여, 제2 영상을 AI 업스케일할 수 있다.
도 10은 일 실시예에 따른 AI 데이터의 신택스 테이블을 나타내는 도면이다.
도 10을 참조하면, AI 데이터의 신택스 테이블(1010)은, MPEG 표준 등을 따르는 코덱(codec)에 의해 부호화된 비트스트림에서 AI 데이터 전송을 위한 SEI 신택스 테이블의 일 실시예이다.
AI 데이터 신택스 테이블(1010)은, 영상 데이터에 따라 복원된 제2 영상의 AI 업스케일에 사용되는 제2 DNN 정보에 관련된 엘리먼트들을 포함한다.
도 10의 AI 데이터 신택스 테이블(1010)에 따르면, input_picture_width_in_luma 및 input_picture_height_in_luma는 각각 다운스케일된 입력 영상(제1 영상)의 너비 정보와 다운스케일된 입력 영상(제1 영상)의 높이 정보를 나타낸다. 예를 들어, input_picture_width_in_luma 및 input_picture_height_in_luma는 다운스케일된 입력 영상(제1 영상)의 해상도와 관련된 정보이다. input_bit_depth는 다운스케일된 입력 영상(제1 영상)의 비트 심도를 나타내며, input_bit_depth는 8 또는 10일 수 있다. cnn_model_update_type은 제2 DNN 업데이트와 관련된 정보이다. quantization_level은 입력되는 비디오 스트림의 양자화 레벨을 나타내며, 양자화 레벨의 초기값은 12일 수 있으나, 이에 한정되지 않는다. picture_type은 인코딩 제어 방식과 관련된 값으로, I, P, B 중에 어느 하나를 나타내는 값이다. up_scaling_factor는 업 스케일링 비율을 나타내는 정보이다. cnn_model_set_index는 AI 업스케일에 이용되는 상호 약속된 제2 DNN 셋 식별 정보를 나타낸다.
일 실시예에 따른 모델 결정부(740)는 AI 데이터 신택스 테이블에 포함되는 엘리먼트들에 기초하여, 미리 저장된 AI 업 스케일을 위한 복수의 설정 정보들 중에 하나를 제2 DNN(300)의 설정 정보로 결정할 수 있다.
도 11은 다른 실시예에 따른 AI 데이터의 신택스 테이블을 나타내는 도면이다.
도 11의 AI 데이터 신택스 테이블(1110)은 영상 데이터에 따라 복원된 제2 영상의 AI 업스케일에 사용되는 제2 DNN 정보에 관련된 엘리먼트들을 포함한다.
input_picture_width_in_luma, input_picture_height_in_luma, input_bit_depth, quantization_level, cnn_model_set_index에 대해서는 도 10에서 설명하였으므로 동일한 설명은 생략하기로 한다.
도 11의 AI 데이터 신택스 테이블(1110)은, 도 10의 AI 데이터 신텍스 테이블(1010)에서 cnn_model_update_type, picture_type, up_scaling_factor가 생략되었다.
일 실시예에 따른 모델 결정부(740)는 AI 데이터 신택스 테이블에 포함되는 엘리먼트들에 기초하여, 미리 저장된 AI 업 스케일을 위한 복수의 설정 정보들 중에 하나를 제2 DNN의 설정 정보로 결정할 수 있다.
도 12는 일 실시예에 따른 AI 복호화 장치가 별개의 복호화 장치와 AI 업스케일링 장치로 구성되는 예를 나타낸다.
복호화 장치(1200)와 AI 업스케일 장치(1300)는 HDMI 케이블로 연결될 수 있다. 복호화 장치(1200)의 HDMI 송신부(1250)와 AI 업스케일 장치(1300)의 HDMI 수신부(1310)가 HDMI 케이블로 연결되면, TMDS 데이터 채널 및 TMDS 클럭 채널을 제공하는 4개 채널의 페어링이 수행될 수 있다. TMDS 데이터 채널은, 3개의 데이터 전송 채널들을 포함하며, 비디오 데이터, 오디오 데이터 및 부가 데이터를 전달하는데 사용될 수 있다. 이때, TMDS 데이터 채널을 통해 오디오 데이터 및 부가 데이터를 전송하기 위해서는 패킷 구조가 사용된다.
추가로, 복호화 장치(1200)의 HDMI 송신부(1250)와 AI 업스케일 장치(1300)의 HDMI 수신부(1310)는 디스플레이 데이터 채널(DDC: Display data channel)을 제공할 수 있다. DDC는 VESA(Video Electronics Standard Association)에서 정의한 모니터 및 컴퓨터 그래픽 어댑터 간의 디지털 정보 전송을 위한 프로토콜 표준이다. DDC는 하나의 소스 기기(예를 들어, 복호화 장치)와 하나의 싱크 기기(예를 들어, AI 업 스케일 장치)간의 구성 및 상태 정보 교환에 사용된다.
도 12를 참조하면, 복호화 장치(1200)는 수신부(1210), 파싱부(1220), 복호화부(1230), VSIF 구조화부(1240) 및 HDMI 송신부(1250)를 포함할 수 있다.
도 12의 수신부(1210), 파싱부(1220), 및 복호화부(1230)는 도 7의 수신부(710), 파싱부(720) 및 복호화부(750)에 각각 대응되므로, 구체적인 설명은 생략하기로 한다.
VSIF 구조화부(1240)는 파싱부(1220)로부터 전달된 AI 데이터를 VSIF 패킷 형태로 구조화할 수 있다.
일 실시예에 따른 VSIF 구조화부(1240)는 복수의 프레임들 각각에 대응하는 VSIF 패킷을 생성할 수 있다. 예를 들어, 복수의 프레임들에 대하여, AI 데이터가 1회 수신되는 경우, VSIF 구조화부(1240)는, 1회 수신된 AI 데이터를 이용하여, 복수의 프레임들 각각에 대응하는 VSIF 패킷을 생성할 수 있다. 예를 들어, 복수의 프레임들에 대응하는 VSIF 패킷들은 동일한 AI 데이터에 기초하여 생성될 수 있다.
반면에, 복수의 프레임들에 대하여, AI 데이터가 여러 번 수신되는 경우, VSIF 구조화부(1240)는 새로 수신되는 AI 데이터를 이용하여, 새로운 VSIF 패킷을 생성할 수 있다.
VSIF 구조화부(1240)가 생성하는 VSIF 패킷에 대해서, 도 13 및 도 14를 참조하여 자세히 설명하기로 한다.
도 13은 일 실시예에 따른 VSIF(Vendor Specific Infoframe) 패킷의 헤더 구조 및 컨텐츠 구조를 나타내는 도면이다.
도 13을 참조하면, VSIF 패킷은 VSIF 패킷 헤더(1410)와 VSIF 패킷 컨텐츠(1420)를 포함한다. VSIF 패킷 헤더(1410)는 3바이트로 구성될 수 있으며, 제1 바이트(HB0)는 타입을 나타내는 값으로, VSIF의 타입 값은 0x01로 나타나고, 제2 바이트(HB1)는 버전 정보를 나타내며, VSIF의 버전은 0x01로 나타나고, 제3 바이트(HB2)의 하위 5비트(0~4)는 VSIF 패킷의 컨텐츠 길이를 나타낸다.
일 실시예에 따른 VSIF 구조화부(1240)는 AI 데이터를 VSIF 패킷의 형태로 구조화할 수 있다. 예를 들어, VSIF 구조화부(1240) VSIF 패킷 컨텐츠(1420)에 AI 데이터를 포함되도록 VSIF 패킷을 생성할 수 있다.
일 실시예에 따른 VSIF 구조화부(1240)는 AI 데이터의 양에 따라 AI 데이터를 기술하기 위한 패킷 바이트를 결정할 수 있다. VSIF 구조화부(1240)는 도 10에서 도시하고 설명한 AI 데이터가, VSIF 패킷 컨텐츠에 포함된 5번 내지 18번 패킷 바이트들(PB4~PB17)에 기술되도록 VSIF 패킷 컨텐츠를 생성할 수 있다.
예를 들어, VSIF 구조화부(1240)는 PB05 및 PB06을 이용하여, input_picture_width_in_luma를 정의할 수 있으며, PB07 및 PB08을 이용하여, input_picture_height_in_luma를 정의할 수 있다. input_picture_width_in_luma 및 input_picture_height_in_luma는 각각 다운스케일된 제1 영상의 해상도를 나타낸다.
VSIF 구조화부(1240)는 PB09를 이용하여, input_bit_depth를 정의할 수 있다. input_bit_depth는 제1 영상의 비트 심도를 나타낸다.
VSIF 구조화부(1240)는 PB10을 이용하여, quantization_level을 정의할 수 있다. quantization_level은 입력되는 비디오 스트림의 양자화 레벨을 나타낸다.
VSIF 구조화부(1240)는 PB11 및 PB12를 이용하여, cnn_model_set_index를 정의할 수 있다. cnn_model_set_index는 AI 업스케일에 이용되는 상호 약속된 제2 DNN 셋 식별 정보를 나타낸다.
다만, 이에 한정되지 않으며, 다양한 방법으로 AI 데이터를 VSIF 패킷의 형태로 구조화할 수 있다.
도 14는 다른 실시예에 따른 VSIF(Vendor Specific Infoframe) 패킷의 헤더 구조 및 컨텐츠 구조를 나타내는 도면이다.
도 14의 VSIF 패킷 헤더(1415)는 도 13의 VSIF 패킷 헤더(1410)와 동일하게 구성될 수 있다.
일 실시예에 따른 VSIF 구조화부(1240)는 도 11에서 도시하고 설명한 AI 데이터가, VSIF 패킷 컨텐츠에 포함된 5번 내지 18번 패킷 바이트들(PB4~PB17)에 기술되도록 VSIF 패킷 컨텐츠를 생성할 수 있다. 이때, 도 에서 도시하고 설명한 AI 데이터는, 도 11에서 도시하고 설명한 AI 데이터는 cnn_model_update_type, picture_type, up_scaling_factor를 더 포함할 수 있다.
이에 따라, VSIF 구조화부(1240)는 PB05 및 PB06을 이용하여, input_picture_width_in_luma를 정의할 수 있으며, PB07 및 PB08을 이용하여, input_picture_height_in_luma를 정의할 수 있다. input_picture_width_in_luma 및 input_picture_height_in_luma는 각각 다운스케일된 제1 영상의 해상도를 나타낸다.
VSIF 구조화부(1240)는 PB13의 비트 1 및 2를 이용하여, picture_type을 정의할 수 있으며, picture_type은 인코딩 제어 방식과 관련된 값으로, I, P, B 중에 어느 하나를 나타낸다.
VSIF 구조화부(1240)는 PB13의 비트 3 및 4를 이용하여, cnn_model_update_type을 정의할 수 있으며, cnn_model_update_type은 AI 업스케일링 뉴럴 네트워크 모델 업데이트와 관련된 정보를 나타낸다.
VSIF 구조화부(1240)는 PB13의 비트 5 내지 8을 이용하여, input_bit_depth를 정의할 수 있다. input_bit_depth는 제1 영상의 비트 심도를 나타낸다.
VSIF 구조화부(1240)는 PB14를 이용하여, quantization_level을 정의할 수 있다. quantization_level은 입력되는 비디오 스트림의 양자화 레벨을 나타낸다.
VSIF 구조화부(1240)는 PB15를 이용하여, up_scaling_factor을 정의할 수 있다. up_scaling_factor는 업 스케일링 비율을 나타낸다.
VSIF 구조화부(1240)는 PB16 및 PB17을 이용하여, cnn_model_set_index를 정의할 수 있다. cnn_model_set_index는 AI 업스케일에 이용되는 상호 약속된 제2 DNN 셋 정보를 나타낸다.
다만, 이에 한정되지 않으며, 다양한 방법으로 AI 데이터를 VSIF 패킷의 형태로 구조화할 수 있다.
한편, 도 13 및 도 14에 도시된 VSIF 패킷의 구조는 일 예들에 불과하므로 이에 한정되지 않는다. 필요에 따라, 도 13 및 도 14의 VSIF 패킷에 포함되는 AI 데이터들이 정의되는 필드들의 위치나 크기가 변경될 수도 있으며, 추가적인 데이터들이 VSIF 패킷에 더 포함될 수도 있다.
다시, 도 12를 참조하면, VSIF 구조화부(1240)는 생성된 VSIF 패킷을 HDMI 송신부(1250)로 전달할 수 있으며, HDMI 송신부(1250)는 TMDS 채널을 통하여, VSIF 패킷을 AI 업스케일 장치(1300)로 전송할 수 있다.
또한, HDMI 송신부(1250)는 복호화부(1230)로부터 전달받은 제2 영상을 TMDS 채널을 통하여, AI 업스케일 장치(1300)로 전송할 수 있다.
또한, AI 업스케일 장치(1300)는 HDMI 수신부(1310), AI 데이터 복원부(1320), 모델 결정부(1330), 및 AI 업스케일부(1340)를 포함할 수 있다.
일 실시예에 따른 AI 업 스케일 장치(1300)는 EDID (Extended Display Identification Data) 정보를 저장할 수 있다. EDID 정보는, AI 업 스케일 장치에 대한 다양한 정보를 포함하는 데이터 구조로서, DDC 채널을 통해 복호화 장치(1200)로 전송될 수 있다.
일 실시예에 따른 EDID 정보는, AI 업스케일 장치(1300)의 AI 업스케일 능력(capability)에 대한 정보를 포함할 수 있다. 예를 들어, EDID 정보는, AI 업스케일 장치(1300)가 AI 업스케일을 수행할 수 있는지, 없는지에 대한 정보를 포함할 수 있다.
일 실시예에 따른 AI 업스케일 장치(1300)의 HDMI 수신부(1310)는, TMDS 채널을 통해, 제2 영상 및 VSIF 패킷의 형태로 구조화된 AI 데이터를 수신할 수 있다.
일 실시예에 따른 AI 업스케일 장치(1300)의 HDMI 수신부(1310) 는, HDMI 패킷의 헤더 정보를 확인하여, VSIF 패킷을 검색한 후, VSIF 패킷에 AI 데이터가 포함되어 있는지 여부를 판단할 수 있다.
예를 들어, HDMI 수신부(1310)는 수신한 HDMI 패킷의 헤더 정보 중 패킷 타입을 나타내는 제1 바이트(HB0)가 0x01인지 확인하여, 수신한 HDMI 패킷이 VSIF 패킷 인지를 판단할 수 있다. 또한, HDMI 수신부(1310)는 HDMI 패킷이 VSIF 패킷인 것으로 판단되면, VSIF 패킷 컨텐츠에 AI 데이터가 포함되어 있는지 여부를 판단할 수 있다.
예를 들어, HDMI 수신부(1310)는 VSIF 패킷 컨텐츠에 포함된 비트 값들을 이용하여, AI 데이터를 획득할 수 있다. 예를 들어, AI 데이터 복원부(1320)는 VSIF 패킷 컨텐츠의 PB05 내지 PB08을 이용하여, 제1 영상의 해상도 정보를 획득할 수 있다.
또한, AI 데이터 복원부(1320)는 PB13의 비트 4~7 또는 PB09를 이용하여, 제1 영상의 비트 심도를 획득할 수 있으며, PB14 또는 PB10을 이용하여, 양자화 레벨 정보를 획득할 수 있다. 또한, PB16 및 PB17, 또는 PB11 및 PB12를 이용하여, 제2 DNN 셋 식별 정보를 획득할 수 있다.
또는 AI 데이터 복원부(1320)는 PB13의 비트 0~1을 이용하여, 픽쳐 타입 정보를 획득할 수 있으며, PB13의 비트 2~3을 이용하여, 제2 DNN 업데이트 정보를 획득할 수 있다.
AI 데이터 복원부(1320)는 VSIF 패킷 컨텐츠로부터 획득된 AI 데이터를 모델 결정부(1330)로 제공할 수 있으며, 모델 결정부(1330)는 획득된 AI 데이터에 기초하여, 미리 저장된 AI 업 스케일을 위한 복수의 설정 정보들 중에 하나를 제2 DNN의 설정 정보로 결정할 수 있다.
HDMI 수신부(1310)는 수신한 제2 영상을 AI 업스케일부(1340)로 제공할 수 있으며, AI 업스케일부(1340)는 결정된 DNN의 설정 정보를 이용하여, 제2 DNN의 파라미터들을 설정하고, 설정된 파라미터들을 이용하여, 제2 영상을 AI 업스케일할 수 있다.
한편, 도 12 내지 도 14 에서는, 복호화 장치(1200)와 AI 업 스케일 장치(1300)가 HDMI 케이블을 통해 연결되는 경우에 대해서 도시하고 설명하였지만, 이에 한정되지 않으며, 일 실시예에 따른 복호화 장치와 AI 업 스케일 장치는 DP 케이블을 통해 연결될 수 있다. 복호화 장치와 AI 업 스케일 장치가 DP 케이블을 통해 연결되는 경우, 복호화 장치는 HDMI 방식과 유사하게, DP를 통하여, 제2 영상 및 AI 데이터를 AI 업 스케일 장치로 전송할 수 있다.
또한, 일 실시예에 따른 복호화 장치(1200)는 HDMI 및 DP 이외에 다른 입/출력 인터페이스를 통하여, AI 업스케일 장치(1300)로 제2 영상 및 AI 데이터를 전송할 수 있다.
또한, 일 실시예에 따르면 복호화 장치(1200)는 제2 영상과 AI 데이터를 서로 다른 인터페이스를 통하여, AI 업스케일 장치(1300)로 전송할 수 있다. 예를 들어, 제2 영상은 HDMI로 전송하고, AI 데이터는 DP를 통하여 전송할 수 있다. 또는, 제2 영상은 DP를 통하여 전송하고, AI 데이터는 HDMI로 전송할 수 있다.
도 15는 일 실시예에 따른 AI 부호화 장치의 동작방법을 나타내는 흐름도이다.
도 15를 참조하면, 일 실시예에 따른 AI 부호화 장치(400)는 다운스케일 타겟을 결정할 수 있다(S1510). 예를 들어, AI 부호화 장치(400)는 제1 영상의 타겟 해상도에 기초하여, 다운스케일 비율을 결정할 수 있다.
AI 부호화 장치(400)는 다운스케일 타겟에 대응하는 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 이용하여, 제1 DNN의 파라미터들을 설정할 수 있다. AI 부호화 장치(400)는 파라미터가 설정된 제1 DNN을 통해 원본 영상을 AI 다운스케일하여, 제1 영상을 획득할 수 있다(S1520).
AI 부호화 장치(400)는 제1 영상을 부호화하여 영상 데이터를 생성할 수 있다(S1530).
AI 부호화 장치(400)는 AI 데이터를 설정하기 위한 하나 이상의 입력 정보를 획득할 수 있다. 예를 들어, AI 부호화 장치(400)는 제1 영상의 타겟 해상도, 제1 영상의 비트 심도(bit depth), 원본 영상의 특성 정보, 타겟 선명도(detail) 강도, 인코딩 제어 정보, 디코딩 제어 정보 등을 획득할 수 있다. 이때, 하나 이상의 입력 정보는 AI 부호화 장치(400)에 미리 저장되거나, 사용자로부터 입력 받은 정보를 포함할 수 있다. 일 실시예에 따른 AI 부호화 장치(400)는 영상 품질 측정 네트워크를 이용하여, 원본 영상의 품질을 결정할 수 있으며, 원본 영상의 품질 정보에 기초하여 타겟 선명도 강도가 결정될 수 있다.
AI 부호화 장치(400)는 제1 영상의 해상도, 타겟 선명도 강도, 원본 영상의 영상 특성 정보에 기초하여, 제2 DNN 셋 식별 정보를 생성할 수 있다(S1540).
AI 부호화 장치(400)는 획득한 입력 정보에 기초하여, AI 데이터를 생성할 수 있다(S1550). 일 실시예에 따른 AI 데이터는, 제1 영상의 해상도, 제1 영상의 비트 심도, 제2 DNN 셋 식별 정보, 양자화 레벨(양자화 파라미터) 초기화 값, 픽쳐 타입 초기화 값, 제2 DNN 업데이트 정보, 업 스케일링 비율(up-scaling ratio)중 적어도 하나를 포함할 수 있다.
AI 부호화 장치(400)는 영상 데이터와 AI 데이터를 포함하는 AI 부호화 데이터를 생성하고(S1560), 생성된 AI 부호화 데이터를 AI 복호화 장치(700)로 전송할 수 있다(S1570).
도 16은 일 실시예에 따른 AI 복호화 장치의 동작방법을 나타내는 흐름도이다.
도 16을 참조하면, 일 실시예에 따른 AI 복호화 장치(700)는 AI 부호화 데이터를 수신할 수 있다(S1610). 이때, 수신된 AI 부호화 데이터는 AI 데이터 및 영상 데이터를 포함할 수 있다.
AI 복호화 장치(700)는 AI 부호화 데이터를 영상 데이터와 AI 데이터로 구분할 수 있다(S1620). 예를 들어, AI 부호화 장치(700)는 AI 부호화 데이터 내의 헤더를 읽어 AI 부호화 데이터 내에 포함되어 있는 AI 데이터와 영상 데이터를 구분할 수 있다. 또는, AI 복호화 장치(700)는 영상 데이터에 해당하는 비트스트림의 부가 정보 영역인 SEI에 포함된 AI 데이터를 추출할 수 있다.
AI 복호화 장치(700)는 영상 데이터를 복호화하여 제2 영상을 획득할 수 있다(S1630).
AI 복호화 장치(700)는 AI 데이터로부터 제2 영상을 AI 업스케일할 수 있게 하는 AI 업스케일 관련 정보들을 추출할 수 있다(S1640). 예를 들어, AI 복호화 장치(700)는 제1 영상의 해상도, 제1 영상의 비트 심도, 제2 DNN 셋 식별 정보, 제1 인코딩 제어 정보를 추출할 수 있다. 이때, 제1 인코딩 제어 정보는, 픽쳐 타입 정보와 양자화 레벨 정보를 포함할 수 있으며, 제1 인코딩 제어 정보에 포함된 픽쳐 타입 정보와 양자화 레벨 정보는 임의로 설정된 초기값일 수 있다.
AI 복호화 장치(700)는 제1 영상을 부호화할 때 적용된 실제 인코딩 제어 정보인 제2 인코딩 제어 정보를 획득하고, 제1 인코딩 제어 정보와 제2 인코딩 제어 정보를 비교하여, 제1 인코딩 제어 정보를 제2 인코딩 제어 정보로 업데이트할 수 있다(S1650).
AI 복호화 장치(700)는 업데이트된 인코딩 제어 정보, 다운스케일된 제1 영상의 해상도 정보, 제1 영상의 비트 심도 정보, 제2 DNN 셋 식별 정보, 및 디코딩 제어 정보 중 적어도 하나에 기초하여, AI 업 스케일에 이용할 제2 DNN의 설정 정보를 결정할 수 있다(S1660). 예를 들어, AI 복호화 장치(700)는 업스케일 타겟에 대응하는 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 이용하여, 제2 DNN의 파라미터들을 설정할 수 있다.
AI 복호화 장치(700)는 설정된 파라미터들을 이용하여, 제2 영상을 AI 업스케일할 수 있다(S1670).
일 실시예에 따른 AI 부호화 장치의 동작방법 및 AI 복호화 장치의 동작방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
또한, 개시된 실시예들에 따른 AI 부호화 장치의 동작방법 및 AI 복호화 장치의 동작방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다.
컴퓨터 프로그램 제품은 S/W 프로그램, S/W 프로그램이 저장된 컴퓨터로 읽을 수 있는 저장 매체를 포함할 수 있다. 예를 들어, 컴퓨터 프로그램 제품은 전자 장치의 제조사 또는 전자 마켓(예, 구글 플레이 스토어, 앱 스토어)을 통해 전자적으로 배포되는 S/W 프로그램 형태의 상품(예, 다운로더블 앱)을 포함할 수 있다. 전자적 배포를 위하여, S/W 프로그램의 적어도 일부는 저장 매체에 저장되거나, 임시적으로 생성될 수 있다. 이 경우, 저장 매체는 제조사의 서버, 전자 마켓의 서버, 또는 SW 프로그램을 임시적으로 저장하는 중계 서버의 저장매체가 될 수 있다.
컴퓨터 프로그램 제품은, 서버 및 클라이언트 장치로 구성되는 시스템에서, 서버의 저장매체 또는 클라이언트 장치의 저장매체를 포함할 수 있다. 또는, 서버 또는 클라이언트 장치와 통신 연결되는 제3 장치(예, 스마트폰)가 존재하는 경우, 컴퓨터 프로그램 제품은 제3 장치의 저장매체를 포함할 수 있다. 또는, 컴퓨터 프로그램 제품은 서버로부터 클라이언트 장치 또는 제3 장치로 전송되거나, 제3 장치로부터 클라이언트 장치로 전송되는 S/W 프로그램 자체를 포함할 수 있다.
이 경우, 서버, 클라이언트 장치 및 제3 장치 중 하나가 컴퓨터 프로그램 제품을 실행하여 개시된 실시예들에 따른 방법을 수행할 수 있다. 또는, 서버, 클라이언트 장치 및 제3 장치 중 둘 이상이 컴퓨터 프로그램 제품을 실행하여 개시된 실시예들에 따른 방법을 분산하여 실시할 수 있다.
예를 들면, 서버(예로, 클라우드 서버 또는 인공 지능 서버 등)가 서버에 저장된 컴퓨터 프로그램 제품을 실행하여, 서버와 통신 연결된 클라이언트 장치가 개시된 실시예들에 따른 방법을 수행하도록 제어할 수 있다.
이상에서 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속한다.

Claims (20)

  1. AI 부호화 장치에 있어서,
    제1 영상의 타겟 해상도에 기초하여, 다운스케일 타겟을 결정하고,
    상기 다운스케일 타겟에 대응하는 AI 다운스케일 뉴럴 네트워크(Neural Network)를 이용하여, 원본 영상을 AI 다운스케일한 상기 제1 영상을 획득하고,
    상기 제1 영상을 부호화하여, 영상 데이터를 생성하고,
    상기 제1 영상의 타겟 해상도, 상기 원본 영상의 특성 정보, 및 타겟 선명도 강도에 기초하여, AI 업 스케일 뉴럴 네트워크(Neural Network) 셋(Set) 식별 정보를 결정하고,
    상기 제1 영상의 타겟 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 인코딩 제어 정보를 포함하는 AI 데이터를 생성하고,
    상기 영상 데이터와 상기 AI 데이터를 포함하는 AI 부호화 데이터를 생성하는 프로세서; 및
    상기 AI 부호화 데이터를 AI 복호화 장치로 전송하는 통신부를 포함하고,
    상기 AI 데이터는, 상기 AI 다운스케일 뉴럴 네트워크에 대응하는 AI 업 스케일 뉴럴 네트워크에 관한 정보를 나타내는, AI 부호화 장치.
  2. 제1항에 있어서,
    상기 프로세서는,
    품질 측정 네트워크를 이용하여, 상기 원본 영상의 품질 정보를 결정하고,
    상기 원본 영상의 품질 정보에 따라 상기 타겟 선명도 강도를 결정하는, AI 부호화 장치.
  3. 제2항에 있어서,
    상기 품질 정보는, 고품질(high quality), 저품질(low quaility), 및 잡음 품질(noisy quality) 중 어느 하나를 포함하고,
    상기 품질 측정 네트워크는, 상기 원본 영상의 선명도, 잡음, 및 명암비 중 적어도 하나를 나타내는 특징을 추출하고, 추출된 특징에 기초하여, 상기 품질 정보를 결정하는 네트워크인, AI 부호화 장치.
  4. 제1항에 있어서,
    상기 프로세서는,
    상기 AI 업 스케일 뉴럴 네트워크의 업데이트 방법 및 AI 업 스케일링 비율을 포함하는 디코딩 제어 정보를 더 포함하는 상기 AI 데이터를 생성하는, AI 부호화 장치.
  5. 제1항에 있어서,
    상기 인코딩 제어 정보는,
    양자화 레벨 및 픽쳐 타입 중 적어도 하나를 포함하고,
    상기 양자화 레벨은 기 설정된 제1 값으로 결정되고,
    상기 픽쳐 타입은 I(Intra), P(Predictive), 및 B(Bidirectional) 중 어느 하나의 값으로 결정되는, AI 부호화 장치.
  6. 제1항에 있어서,
    상기 AI 부호화 데이터는,
    메타 데이터 박스와 미디어 데이터 박스로 구성되며,
    상기 AI 데이터는 상기 메타 데이터 박스에 포함되고, 상기 영상 데이터는 상기 미디어 데이터 박스에 포함되는, AI 부호화 장치.
  7. 제1항에 있어서,
    상기 프로세서는,
    상기 AI 데이터가 상기 영상 데이터의 부가 정보 영역인 SEI(Supplemental enhancement information)에 포함되도록 상기 AI 부호화 데이터를 생성하는, AI 부호화 장치.
  8. AI 복호화 장치에 있어서,
    원본 영상의 AI 다운스케일 및 부호화 결과 생성된 AI 부호화 데이터를 수신하는 통신부; 및
    상기 AI 부호화 데이터를 영상 데이터와 AI 데이터로 구분하고,
    상기 영상데이터를 복호화하여, 상기 원본 영상을 상기 AI 다운스케일한 제1 영상에 대응하는 제2 영상을 획득하고,
    상기 AI 데이터로부터 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 제1 인코딩 제어 정보를 추출하고,
    상기 제1 영상의 부호화에 이용된 제2 인코딩 제어 정보를 획득하고,
    상기 제1 인코딩 제어 정보를 상기 제2 인코딩 제어 정보로 업데이트하고,
    상기 원본 영상의 해상도, 상기 원본 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 상기 제2 인코딩 제어 정보에 기초하여, AI 업 스케일 뉴럴 네트워크를 결정하고,
    상기 결정된 AI 업 스케일 뉴럴 네트워크를 이용하여, 상기 제2 영상을 AI 업스케일하는 프로세서를 포함하는, AI 복호화 장치.
  9. 제8항에 있어서,
    제1 인코딩 제어 정보는, 기 설정된 양자화 레벨의 초기 값을 나타내며,
    상기 제2 인코딩 제어 정보는, 상기 제1 영상의 부호화에 적용된 양자화 레벨 값을 나타내는, AI 복호화 장치.
  10. 제9항에 있어서,
    상기 프로세서는,
    상기 AI 업스케일 뉴럴 네트워크 셋 식별 정보에 대응하는 복수의 뉴럴 네트워크 설정 정보 중, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보 및 상기 제2 인코딩 제어 정보에 포함된 양자화 레벨 값에 따라 어느 하나의 설정 정보를 선택하고,
    상기 선택된 설정 정보를 이용하여, 상기 AI 업 스케일 뉴럴 네트워크의 파라미터들을 설정하는, AI 복호화 장치.
  11. 제8항에 있어서,
    상기 프로세서는,
    상기 AI 데이터로부터 업 스케일 뉴럴 네트워크의 업데이트 정보 및 업 샘플링 비율을 결정하고,
    상기 결정된 AI 업 스케일 뉴럴 네트워크, 상기 업데이트 정보 및 상기 업 샘플링 비율에 기초하여, 상기 제2 영상을 AI 업스케일하는 AI 복호화 장치.
  12. AI 부호화 장치의 동작방법에 있어서,
    제1 영상의 타겟 해상도에 기초하여, 다운스케일 타겟을 결정하는 단계;
    상기 다운스케일 타겟에 대응하는 AI 다운스케일 뉴럴 네트워크를 이용하여, 원본 영상을 AI 다운스케일한 상기 제1 영상을 획득하는 단계;
    상기 제1 영상을 부호화하여, 영상 데이터를 생성하는 단계;
    상기 제1 영상의 타겟 해상도, 상기 원본 영상의 특성 정보, 및 타겟 선명도 강도에 기초하여, AI 업 스케일 뉴럴 네트워크(Neural Network) 셋(Set) 식별 정보를 결정하는 단계;
    상기 제1 영상의 타겟 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 인코딩 제어 정보를 포함하는 AI 데이터를 생성하는 단계;
    상기 영상 데이터와 상기 AI 데이터를 포함하는 AI 부호화 데이터를 생성하는 단계; 및
    상기 AI 부호화 데이터를 AI 복호화 장치로 전송하는 단계를 포함하고,
    상기 AI 데이터는, 상기 AI 다운스케일 뉴럴 네트워크에 대응하는 AI 업 스케일 뉴럴 네트워크에 관한 정보를 나타내는, AI 부호화 장치의 동작방법.
  13. 제12항에 있어서,
    상기 동작방법은,
    품질 측정 네트워크를 이용하여, 상기 원본 영상의 품질 정보를 결정하고, 상기 원본 영상의 품질 정보에 따라 상기 타겟 선명도 강도를 결정하는 단계를 더 포함하는, AI 부호화 장치의 동작방법.
  14. 제13항에 있어서,
    상기 품질 정보는, 고품질(high quality), 저품질(low quaility), 및 잡음 품질(noisy quality) 중 어느 하나를 포함하고,
    상기 품질 측정 네트워크는, 상기 원본 영상의 선명도, 잡음, 및 명암비 중 적어도 하나를 나타내는 특징을 추출하고, 추출된 특징에 기초하여, 상기 품질 정보를 결정하는 네트워크인, AI 부호화 장치의 동작방법.
  15. 제12항에 있어서,
    상기 AI 데이터를 생성하는 단계는,
    상기 AI 업 스케일 뉴럴 네트워크의 업데이트 방법 및 AI 업 스케일링 비율을 포함하는 디코딩 제어 정보를 더 포함하는 상기 AI 데이터를 생성하는 단계를 포함하는, AI 부호화 장치의 동작방법.
  16. 제12항에 있어서,
    상기 인코딩 제어 정보는,
    양자화 레벨 및 픽쳐 타입 중 적어도 하나를 포함하고,
    상기 양자화 레벨은 기 설정된 제1 값으로 결정되고,
    상기 픽쳐 타입은 I(Intra), P(Predictive), 및 B(Bidirectional) 중 어느 하나의 값으로 결정되는, AI 부호화 장치의 동작방법.
  17. AI 복호화 장치의 동작방법에 있어서,
    원본 영상의 AI 다운스케일 및 부호화 결과 생성된 AI 부호화 데이터를 수신하는 단계;
    상기 AI 부호화 데이터를 영상 데이터와 AI 데이터로 구분하는 단계;
    상기 영상 데이터를 복호화하여, 상기 원본 영상을 상기 AI 다운스케일한 제1 영상에 대응하는 제2 영상을 획득하는 단계;
    상기 AI 데이터로부터 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 제1 인코딩 제어 정보를 추출하는 단계;
    상기 제1 영상의 부호화에 이용된 제2 인코딩 제어 정보를 획득하고, 상기 제1 인코딩 제어 정보를 상기 제2 인코딩 제어 정보로 업데이트하는 단계;
    상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보, 상기 AI 업 스케일 뉴럴 네트워크 셋 식별 정보, 및 상기 제2 인코딩 제어 정보에 기초하여, AI 업 스케일 뉴럴 네트워크를 결정하는 단계; 및
    상기 결정된 AI 업 스케일 뉴럴 네트워크를 이용하여, 상기 제2 영상을 AI 업스케일하는 단계를 포함하는, AI 복호화 장치의 동작방법.
  18. 제17항에 있어서,
    제1 인코딩 제어 정보는, 기 설정된 양자화 레벨의 초기 값을 나타내며,
    상기 제2 인코딩 제어 정보는, 상기 제1 영상의 부호화에 적용된 양자화 레벨 값을 나타내는, AI 복호화 장치의 동작방법.
  19. 제18항에 있어서,
    상기 AI 업 스케일 뉴럴 네트워크를 결정하는 단계는,
    상기 AI 업스케일 뉴럴 네트워크 셋 식별 정보에 대응하는 복수의 뉴럴 네트워크 설정 정보 중, 상기 제1 영상의 해상도, 상기 제1 영상의 비트 심도 정보 및 상기 제2 인코딩 제어 정보에 포함된 양자화 레벨 값에 따라 어느 하나의 설정 정보를 선택하는 단계; 및
    상기 선택된 설정 정보를 이용하여, 상기 AI 업 스케일 뉴럴 네트워크의 파라미터들을 설정하는 단계를 포함하는, AI 복호화 장치의 동작방법.
  20. 제17항에 있어서,
    상기 동작방법은,
    상기 AI 데이터로부터 업 스케일 뉴럴 네트워크의 업데이트 정보 및 업 샘플링 비율을 결정하는 단계를 더 포함하고,
    상기 제2 영상을 AI 업스케일하는 단계는,
    상기 결정된 AI 업 스케일 뉴럴 네트워크, 상기 업데이트 정보 및 상기 업 샘플링 비율에 기초하여, 상기 제2 영상을 AI 업스케일하는 단계를 포함하는 AI 복호화 장치의 동작방법.
KR1020200171373A 2020-12-09 2020-12-09 Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법 KR20220081648A (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020200171373A KR20220081648A (ko) 2020-12-09 2020-12-09 Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
CN202180082870.6A CN116584093A (zh) 2020-12-09 2021-10-07 Ai编码装置及其操作方法和ai解码装置及其操作方法
EP21903593.8A EP4195154A4 (en) 2020-12-09 2021-10-07 ARTIFICIAL INTELLIGENCE CODING APPARATUS AND OPERATION METHOD THEREFOR, AND ARTIFICIAL INTELLIGENCE DECODING APPARATUS AND OPERATION METHOD THEREFOR
PCT/KR2021/013814 WO2022124546A1 (ko) 2020-12-09 2021-10-07 Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
US17/522,579 US20220180568A1 (en) 2020-12-09 2021-11-09 Ai encoding apparatus and operation method of the same, and ai decoding apparatus and operation method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200171373A KR20220081648A (ko) 2020-12-09 2020-12-09 Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법

Publications (1)

Publication Number Publication Date
KR20220081648A true KR20220081648A (ko) 2022-06-16

Family

ID=81973707

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200171373A KR20220081648A (ko) 2020-12-09 2020-12-09 Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법

Country Status (2)

Country Link
KR (1) KR20220081648A (ko)
WO (1) WO2022124546A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3259920A1 (en) * 2015-02-19 2017-12-27 Magic Pony Technology Limited Visual processing using temporal and spatial interpolation
KR101990092B1 (ko) * 2017-03-24 2019-06-17 주식회사 엔씨소프트 영상 압축 장치 및 방법
KR102179436B1 (ko) * 2018-04-24 2020-11-16 주식회사 지디에프랩 변화 매크로블록 추출 기법을 이용한 동영상 화질 개선 시스템
WO2020080751A1 (ko) * 2018-10-19 2020-04-23 삼성전자 주식회사 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102525578B1 (ko) * 2018-10-19 2023-04-26 삼성전자주식회사 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Also Published As

Publication number Publication date
WO2022124546A1 (ko) 2022-06-16

Similar Documents

Publication Publication Date Title
US11810332B2 (en) Apparatus and method for performing artificial intelligence (AI) encoding and AI decoding on image
KR102525578B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR102520957B1 (ko) 인코딩 장치, 디코딩 장치 및 이의 제어 방법
KR102500761B1 (ko) 영상의 ai 부호화 및 ai 복호화 방법, 및 장치
JP2016220216A (ja) エンコーダおよび符号化方法
US11200639B1 (en) Apparatus and method for performing artificial intelligence encoding and decoding on image by using low-complexity neural network
KR102287942B1 (ko) 전처리를 이용한 영상의 ai 부호화 및 ai 복호화 방법, 및 장치
US20240048738A1 (en) Methods, apparatuses, computer programs and computer-readable media for processing configuration data
US11816872B2 (en) Method and apparatus for performing artificial intelligence encoding and artificial intelligence decoding
KR20220081648A (ko) Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
EP4195154A1 (en) Ai encoding apparatus and operation method thereof, and ai decoding apparatus and operation method thereof
KR20220063063A (ko) 인공지능 부호화 및 인공지능 복호화를 수행하기 위한 방법 및 장치
KR102421718B1 (ko) 인공지능 부호화 및 인공지능 복호화를 수행하기 위한 방법 및 장치
KR102421719B1 (ko) 저복잡도 신경망을 이용한 영상의 ai 부호화 장치 및 방법, ai 복호화 장치 및 방법
KR102589858B1 (ko) 복호화 장치 및 그 동작방법, 및 ai 업 스케일 장치 및 그 동작방법
US20230196505A1 (en) Artificial intelligence-based image providing apparatus and method, and artificial intelligence-based display apparatus and method
US20230052330A1 (en) Image providing method and apparatus using artificial intelligence, and display method and apparatus using artificial intelligence
KR20210154700A (ko) 화상통화시 업스케일을 위한 적응적 인공지능 다운스케일 방법 및 장치
KR20230025279A (ko) Ai 기반의 영상 제공 장치 및 이에 의한 방법, 및 ai 기반의 디스플레이 장치 및 이에 의한 방법
KR20230094838A (ko) Ai 기반의 영상 제공 장치 및 이에 의한 방법, 및 ai 기반의 디스플레이 장치 및 이에 의한 방법
KR20220063061A (ko) 영상 내 관심 오브젝트 영역을 위한 ai 부호화 장치 및 방법, 및 ai 복호화 장치 및 방법
KR20210127412A (ko) Ai 다운스케일 장치 및 그 동작방법, 및 ai 업스케일 장치 및 그 동작방법

Legal Events

Date Code Title Description
A201 Request for examination