KR20220076779A - Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis - Google Patents
Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis Download PDFInfo
- Publication number
- KR20220076779A KR20220076779A KR1020200165603A KR20200165603A KR20220076779A KR 20220076779 A KR20220076779 A KR 20220076779A KR 1020200165603 A KR1020200165603 A KR 1020200165603A KR 20200165603 A KR20200165603 A KR 20200165603A KR 20220076779 A KR20220076779 A KR 20220076779A
- Authority
- KR
- South Korea
- Prior art keywords
- insulin
- hepatic steatosis
- value
- fgf21
- adiponectin
- Prior art date
Links
- 206010019708 Hepatic steatosis Diseases 0.000 title claims abstract description 79
- 239000000090 biomarker Substances 0.000 title abstract description 20
- 238000003745 diagnosis Methods 0.000 title abstract description 11
- 230000002438 mitochondrial effect Effects 0.000 title abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 29
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 60
- 102000003973 Fibroblast growth factor 21 Human genes 0.000 claims description 44
- 108090000376 Fibroblast growth factor 21 Proteins 0.000 claims description 44
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 42
- 108010082126 Alanine transaminase Proteins 0.000 claims description 42
- 102100031734 Fibroblast growth factor 19 Human genes 0.000 claims description 35
- 101710153349 Fibroblast growth factor 19 Proteins 0.000 claims description 35
- 210000004185 liver Anatomy 0.000 claims description 31
- 102000004877 Insulin Human genes 0.000 claims description 30
- 108090001061 Insulin Proteins 0.000 claims description 30
- 229940125396 insulin Drugs 0.000 claims description 30
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 29
- 229940039781 leptin Drugs 0.000 claims description 26
- 102000009027 Albumins Human genes 0.000 claims description 23
- 108010088751 Albumins Proteins 0.000 claims description 23
- 102000016267 Leptin Human genes 0.000 claims description 19
- 108010092277 Leptin Proteins 0.000 claims description 19
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 claims description 19
- 102000011690 Adiponectin Human genes 0.000 claims description 18
- 108010076365 Adiponectin Proteins 0.000 claims description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- 210000002966 serum Anatomy 0.000 claims description 14
- 230000006609 metabolic stress Effects 0.000 claims description 13
- 231100000240 steatosis hepatitis Toxicity 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 12
- 210000004369 blood Anatomy 0.000 claims description 9
- 239000008280 blood Substances 0.000 claims description 9
- 239000012472 biological sample Substances 0.000 claims description 7
- 238000003556 assay Methods 0.000 claims description 5
- 238000003018 immunoassay Methods 0.000 claims description 5
- 230000007863 steatosis Effects 0.000 claims description 4
- 238000007398 colorimetric assay Methods 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 claims description 3
- 229940050528 albumin Drugs 0.000 claims description 2
- 239000003102 growth factor Substances 0.000 claims description 2
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 description 35
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 18
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 18
- 230000035945 sensitivity Effects 0.000 description 16
- 102000000597 Growth Differentiation Factor 15 Human genes 0.000 description 15
- 108010041834 Growth Differentiation Factor 15 Proteins 0.000 description 15
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 208000004930 Fatty Liver Diseases 0.000 description 13
- 206010019668 Hepatic fibrosis Diseases 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 206010016654 Fibrosis Diseases 0.000 description 9
- 208000010706 fatty liver disease Diseases 0.000 description 9
- 238000012045 magnetic resonance elastography Methods 0.000 description 8
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 7
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 7
- 102000004889 Interleukin-6 Human genes 0.000 description 7
- 108090001005 Interleukin-6 Proteins 0.000 description 7
- 102100038246 Retinol-binding protein 4 Human genes 0.000 description 7
- 235000012000 cholesterol Nutrition 0.000 description 7
- 208000019425 cirrhosis of liver Diseases 0.000 description 7
- 206010012601 diabetes mellitus Diseases 0.000 description 7
- 238000010988 intraclass correlation coefficient Methods 0.000 description 7
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 101710173228 Glutathione hydrolase proenzyme Proteins 0.000 description 6
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 6
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- WGXUDTHMEITUBO-YFKPBYRVSA-N glutaurine Chemical compound OC(=O)[C@@H](N)CCC(=O)NCCS(O)(=O)=O WGXUDTHMEITUBO-YFKPBYRVSA-N 0.000 description 6
- 108020004206 Gamma-glutamyltransferase Proteins 0.000 description 5
- 101000665882 Homo sapiens Retinol-binding protein 4 Proteins 0.000 description 5
- 208000001145 Metabolic Syndrome Diseases 0.000 description 5
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 description 5
- 230000004769 mitochondrial stress Effects 0.000 description 5
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 208000032928 Dyslipidaemia Diseases 0.000 description 4
- 108010010234 HDL Lipoproteins Proteins 0.000 description 4
- 102000015779 HDL Lipoproteins Human genes 0.000 description 4
- 206010020772 Hypertension Diseases 0.000 description 4
- 206010022489 Insulin Resistance Diseases 0.000 description 4
- 208000017170 Lipid metabolism disease Diseases 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000004761 fibrosis Effects 0.000 description 4
- 238000012417 linear regression Methods 0.000 description 4
- 238000007477 logistic regression Methods 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- VOUAQYXWVJDEQY-QENPJCQMSA-N 33017-11-7 Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)CCC1 VOUAQYXWVJDEQY-QENPJCQMSA-N 0.000 description 3
- 208000004611 Abdominal Obesity Diseases 0.000 description 3
- 238000010989 Bland-Altman Methods 0.000 description 3
- 108010075254 C-Peptide Proteins 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 206010065941 Central obesity Diseases 0.000 description 3
- 238000008157 ELISA kit Methods 0.000 description 3
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 3
- 108010023302 HDL Cholesterol Proteins 0.000 description 3
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 230000007882 cirrhosis Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- 230000003284 homeostatic effect Effects 0.000 description 3
- 238000009533 lab test Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 description 3
- 239000003642 reactive oxygen metabolite Substances 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- -1 A/L Proteins 0.000 description 2
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 102000004237 Decorin Human genes 0.000 description 2
- 108090000738 Decorin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108010056852 Myostatin Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 101710137011 Retinol-binding protein 4 Proteins 0.000 description 2
- 238000008050 Total Bilirubin Reagent Methods 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002220 antihypertensive agent Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 238000012317 liver biopsy Methods 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 230000004065 mitochondrial dysfunction Effects 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 208000007848 Alcoholism Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000008964 Chemical and Drug Induced Liver Injury Diseases 0.000 description 1
- 208000000419 Chronic Hepatitis B Diseases 0.000 description 1
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010072268 Drug-induced liver injury Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000027761 Hepatic autoimmune disease Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 101001000206 Homo sapiens Decorin Proteins 0.000 description 1
- 101000886562 Homo sapiens Growth/differentiation factor 8 Proteins 0.000 description 1
- 206010068961 Hypo HDL cholesterolaemia Diseases 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000001358 Pearson's chi-squared test Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 238000011869 Shapiro-Wilk test Methods 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 239000003524 antilipemic agent Substances 0.000 description 1
- 230000006851 antioxidant defense Effects 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 230000002715 bioenergetic effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008244 carcinogenesis pathway Effects 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000016350 chronic hepatitis B virus infection Diseases 0.000 description 1
- 208000020403 chronic hepatitis C virus infection Diseases 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011984 electrochemiluminescence immunoassay Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 235000020937 fasting conditions Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 102000045840 human DCN Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 208000018191 liver inflammation Diseases 0.000 description 1
- 208000016332 liver symptom Diseases 0.000 description 1
- 238000011551 log transformation method Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000008437 mitochondrial biogenesis Effects 0.000 description 1
- 230000006676 mitochondrial damage Effects 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010202 multivariate logistic regression analysis Methods 0.000 description 1
- 238000012314 multivariate regression analysis Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/42—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
- G01N2333/50—Fibroblast growth factors [FGF]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/08—Hepato-biliairy disorders other than hepatitis
- G01N2800/085—Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medical Informatics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Data Mining & Analysis (AREA)
- Genetics & Genomics (AREA)
- Databases & Information Systems (AREA)
- Biophysics (AREA)
- Primary Health Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Endocrinology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
본 발명은 간지방증의 비침습적 진단용 미토콘드리아 바이오마커 및 이의 용도에 관한 것으로, 구체적으로 간지방증의 비침습적 진단용 미토콘드리아 바이오마커 및 이를 기반으로 한 간지방증의 비침습적 진단용 지표를 이용한 간지방증 예측 또는 진단을 위한 정보제공 방법에 관한 것이다.The present invention relates to a mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis and uses thereof, and specifically, to a mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis, and hepatic steatosis prediction or diagnosis using a non-invasive diagnostic index of hepatic steatosis based thereon. It relates to a method of providing information for
Description
본 발명은 간지방증의 비침습적 진단용 미토콘드리아 바이오마커 및 이의 용도에 관한 것으로, 구체적으로 간지방증의 비침습적 진단용 미토콘드리아 바이오마커 및 이를 기반으로 한 간지방증의 비침습적 진단용 지표를 이용한 간지방증 예측 또는 진단을 위한 정보제공 방법에 관한 것이다.The present invention relates to a mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis and uses thereof, and specifically, to a mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis, and hepatic steatosis prediction or diagnosis using a non-invasive diagnostic index of hepatic steatosis based thereon. It relates to a method of providing information for
비알코올성 지방간 질환(Non-alcoholic fatty liver disease; NAFLD)은 단순 간지방증에서 지방간염(NASH)에 이르기까지 전 세계적으로 만성 간 질환의 가장 흔한 원인 중 하나이다. 단순 간지방증은 양성 특성을 가지고 있는 반면, NASH는 간경변과 암으로 진행될 가능성이 더 높다. NASH 환자의 약 10 내지 29 %는 10 년 이내에 간경변에 걸리고, 이 중 4 내지 27%가 간세포 암종으로 발전한다. 높은 유병률과 심각한 진행으로 인해 NAFLD에 대한 신뢰할 수 있는 진단 및 예후 전략이 필요한 실정이다. 그러나 현재까지 NAFLD 환자의 질병 중증도 및 치료 계획에 대한 비침습적 평가를 위한 간단한 혈액 검사 패널이나 평가 시스템이 없다.Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide, ranging from simple hepatic steatosis to steatohepatitis (NASH). Simple hepatic steatosis has a benign character, whereas NASH is more likely to progress to cirrhosis and cancer. About 10-29% of NASH patients develop cirrhosis within 10 years, of which 4-27% develop hepatocellular carcinoma. Due to its high prevalence and severe progression, there is a need for reliable diagnostic and prognostic strategies for NAFLD. However, to date, there is no simple blood test panel or evaluation system for non-invasive evaluation of disease severity and treatment plan in NAFLD patients.
NAFLD의 병인으로 비만 및 인슐린 저항성과 관련된 대사 스트레스 및 미토콘드리아 기능 장애를 들 수 있다. 따라서 NAFLD는 종종 대사 증후군의 간 증상으로 간주된다. 고지방 식단이나 신체 활동이 없으면 간에 유리 지방산과 트리글리세리드(triglyceride)가 축적되어 세포질과 미토콘드리아에서 활성산소종(reactive oxygen species; ROS)을 생성한다. 결과적으로 이러한 산화 스트레스는 심각한 미토콘드리아 기능 장애와 소포체(ER) 스트레스를 유발하여 미토콘드리아와 ER에서 과도한 ROS 생성을 더욱 악화시킨다. 산화 스트레스와 세포소기관 기능 장애 사이의 '악순환'은 간 염증과 세포 독성을 포함한 부작용을 유발한다.The etiology of NAFLD includes metabolic stress and mitochondrial dysfunction associated with obesity and insulin resistance. Therefore, NAFLD is often considered a liver symptom of metabolic syndrome. In the absence of a high-fat diet or physical activity, free fatty acids and triglycerides accumulate in the liver, generating reactive oxygen species (ROS) in the cytoplasm and mitochondria. Consequently, this oxidative stress causes severe mitochondrial dysfunction and endoplasmic reticulum (ER) stress, further exacerbating excessive ROS production in mitochondria and ER. The 'vicious cycle' between oxidative stress and organelle dysfunction leads to side effects including liver inflammation and cytotoxicity.
질병을 유발하는 미토콘드리아 스트레스에 대한 적응 반응으로 미토콘드리아 생물 발생 증가, 생체 에너지 상태 개선, 상향조절된 항산화 방어 시스템 및 미토콘드리아 기능 관리를 들 수 있다. 이러한 통합 스트레스 반응(integrated stress response; ISR)은 NAFLD의 발병을 감소시키거나 지연시켜 대사 및 미토콘드리아 유연성에 기여한다. ISR은 마이코카인(mitokine)이라 불리는 미토콘드리아 스트레스 유발 체액 인자에 의해 유발될 수 있다고 추정하고 있다. 간 및 기타 조직에서 생성되는 섬유아세포 성장 인자 21(Fibroblast growth factor 21; FGF21)과 성장 분화 인자 15(growth differentiation factor 15; GDF15)는 미토콘드리아 스트레스에 의해 유도되고 분비되며 미토콘드리아 손상 및 대사 악화에 대한 보호 역할을 한다. FGF21 및 GDF15의 회복 노력에도 불구하고, 지속적이고 보상되지 않은 대사 스트레스는 이들 인자의 유도를 계속 자극하고 혈청 내 이들 수준을 높게 유지하도록 한다.Adaptive responses to disease-causing mitochondrial stress include increased mitochondrial biogenesis, improved bioenergetic status, upregulated antioxidant defense systems, and management of mitochondrial function. This integrated stress response (ISR) contributes to metabolic and mitochondrial flexibility by reducing or delaying the onset of NAFLD. It is hypothesized that ISR may be induced by a mitochondrial stress-induced humoral factor called mitokine. Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) produced in the liver and other tissues are induced and secreted by mitochondrial stress and protect against mitochondrial damage and metabolic deterioration. plays a role Despite efforts to restore FGF21 and GDF15, persistent and uncompensated metabolic stress continues to stimulate the induction of these factors and keep their levels in serum high.
최근 혈청 바이오마커 분석 결과 비만 및 인슐린 저항성과 관련된 대사성 질환 환자에서 FGF21 수치가 상승한 것으로 나타났다. 특히 지방간 및 지방간염을 포함한 NAFLD 환자는 대조군에 비해 혈청 FGF21 값이 유의하게 높게 나타나는 것으로 보고되고 있다. 그러나 혈청 FGF21 농도는 개인마다 매우 다양해 단일 지표로의 유용성을 저해할 수 있다. A recent serum biomarker analysis showed that FGF21 levels were elevated in patients with obesity and metabolic diseases related to insulin resistance. In particular, it has been reported that NAFLD patients, including fatty liver and steatohepatitis, have significantly higher serum FGF21 values than controls. However, serum FGF21 concentrations vary widely from individual to individual, which may impair their usefulness as a single indicator.
또한, 혈청 GDF15 수치가 간경화 및 만성 B형 간염 또는 C형 간염 바이러스의 감염과 관련된 간세포 암종 질환 환자에서 증가하는 것으로 나타났다. 간 질환에 있어서의 GDF15의 역학적 역할은 분명하지 않지만, GDF15는 성장 인자 β1(transforming growth factor beta 1; TGF-β1)의 발현을 자극할 뿐만 아니라 간 섬유화/발암 경로에서 중요한 역할을 하는 SMAD 신호 시스템을 직접 활성화하는 것으로 밝혀졌다.In addition, serum GDF15 levels have been shown to be increased in patients with hepatocellular carcinoma disease associated with cirrhosis and chronic hepatitis B or hepatitis C virus infection. Although the epidemiological role of GDF15 in liver disease is unclear, GDF15 stimulates the expression of transforming growth factor beta 1 (TGF-β1) as well as the SMAD signaling system that plays an important role in the liver fibrosis/carcinogenesis pathway. was found to directly activate
따라서 본 발명자들은 기존 간지방증에 대한 비침습적 진단 지표보다 더 정확하고 민감도가 우수한 진단 지표를 개발하기 위해 노력한 결과, NAFLD의 다양한 분석 방법을 이용하여 FGF21을 포함한 미토콘드리아 바이오마커 패널의 혈청값을 획득하였고, 미토콘드리아 스트레스 바이오마커들 및 상기 인자들의 조합이 간지방증을 예측하기 위한 알고리즘의 유용성과 효과를 크게 향상시킨다는 점을 확인함으로써, 본 발명을 완성하게 되었다.Therefore, as a result of the present inventors' efforts to develop a more accurate and more sensitive diagnostic index than the non-invasive diagnostic index for hepatic steatosis, the serum values of the mitochondrial biomarker panel including FGF21 were obtained using various analysis methods of NAFLD. , by confirming that mitochondrial stress biomarkers and the combination of these factors greatly improve the usefulness and effectiveness of the algorithm for predicting hepatic steatosis, thereby completing the present invention.
본 발명의 목적은 간지방증의 비침습적 진단용 미토콘드리아 바이오마커 및 이를 기반으로 한 간지방증의 비침습적 진단용 지표를 이용한 간지방증 예측 또는 진단을 위한 정보제공 방법에 관한 것이다.An object of the present invention relates to a mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis and a method of providing information for predicting or diagnosing hepatic steatosis using an indicator for non-invasive diagnosis of hepatic steatosis based thereon.
본 발명의 목적을 달성하기 위하여, 본 발명은 In order to achieve the object of the present invention, the present invention
1) 개체로부터 측정한 허리 및 엉덩이 둘레 측정값으로부터 허리 대 엉덩이 비율(waist-to-hip ratio; WHR)을 산정하는 단계;1) calculating a waist-to-hip ratio (WHR) from waist and hip circumference measurements measured from the subject;
2) 상기 개체에서 분리된 생물학적 샘플로부터 섬유아세포 성장 인자 21(fibroblast growth factor 21; FGF21), 섬유아세포 성장 인자 19(fibroblast growth factor 19; FGF19), 아디포넥틴(adiponectin), 렙틴(leptin), 인슐린(insulin), 알부민(albumin), 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT) 농도를 측정하는 단계;2) fibroblast growth factor 21 (FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin ( insulin), albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT) concentrations;
3) 상기에서 측정한 아디포넥틴 및 렙틴 농도로부터 아디포넥틴 대 렙틴 비율(adiponectin-to leptin ration; A/L)을 산정하는 단계;3) calculating an adiponectin-to-leptin ratio (A/L) from the adiponectin and leptin concentrations measured above;
4) 상기에서 산정한 WHR 및 A/L, 상기에서 측정한 FGF21, FGF19, 인슐린, 알부민 농도값을 하기 [수학식 1]에 대입하여 간지방증에 대한 대사 스트레스 지표(metabolic stress index for hepetic steatosis; MSI-S)를 산정하는 단계; 및4) WHR and A/L calculated above, and FGF21, FGF19, insulin, and albumin concentration values measured above are substituted for [Equation 1] below, and the metabolic stress index for hepetic steatosis; calculating MSI-S); and
[수학식 1][Equation 1]
5) 상기 MSI-S 값과 cut-off 값을 비교하는 단계를 포함하는 간지방증 예측 또는 진단을 위한 정보제공 방법을 제공한다.5) It provides an information providing method for predicting or diagnosing hepatic steatosis, including comparing the MSI-S value with the cut-off value.
또한, 본 발명은 Also, the present invention
1) 개체에서 분리한 생물학적 샘플 중 성장 인자 21(fibroblast growth factor 21; FGF21), 섬유아세포 성장 인자 19(fibroblast growth factor 19; FGF19), 아디포넥틴(adiponectin), 렙틴(leptin), 인슐린(insulin), 알부민(albumin), 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT) 농도를 측정하는 시약 세트; 및1) Among biological samples isolated from individuals, growth factor 21 (fibroblast growth factor 21; FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin (insulin), a set of reagents for determining the concentrations of albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT); and
2) 개체의 허리 및 엉덩이 둘레를 측정하는 장치를 포함하는 간지방증 예측 또는 진단용 키트를 제공한다.2) It provides a kit for predicting or diagnosing hepatic steatosis, including a device for measuring the waist and hip circumference of an individual.
본 발명에서는 허리-엉덩이 비율, GDF15, FGF21, FGF19, 아디포넥틴 대 렙틴 비율(adiponectin-to leptin ration; A/L), 인슐린, 알부민, 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT)가 간지방증에 대한 독립적인 예측 인자임을 확인하였고, 이를 이용하여 간지방증에 대한 대사 스트레스 지표 (metabolic stress index for hepatic steatosis; MSI-S)를 도출하였다. 또한, 상기 MSI-S를 이용할 경우 기존의 간지방증 비침습적 지표에 비해 진단 정확도가 우수하고, 간지방 함량을 예측할 수 있는바, 상기 바이오마커 및 이에 기반한 새로운 비침습적 지표를 간지방증 진단을 위한 강력한 바이오마커로 용이하게 이용할 수 있다.In the present invention, waist-hip ratio, GDF15, FGF21, FGF19, adiponectin-to leptin ratio (A/L), insulin, albumin, triglyceride (TG), total cholesterol (TC) and It was confirmed that alanine-aminotransferase (ALT) is an independent predictor of hepatic steatosis, and using this, a metabolic stress index for hepatic steatosis (MSI-S) was derived. . In addition, when the MSI-S is used, the diagnostic accuracy is superior to that of the existing non-invasive indicators of hepatic steatosis, and the liver fat content can be predicted. It can be easily used as a biomarker.
도 1은 본 발명의 일 실시예에 따른 시험 참여자 모집 및 분석된 하위 그룹의 흐름도를 모식화한 도이다.
도 2는 본 발명에 따른 간지방증에 대한 대사 스트레스 지표(metabolic stress index for hepatic steatosis; MSI-S)와 다른 간지방증 지표를 비교한 도로서, 도 2A는 간지방증을 예측하기 위한 비침습적 스코어의 ROC 곡선을 나타낸 도이고(* p <0.002, ** p <0.001 vs. MSI-S; ¶ 결실 데이터 (n = 2)), 도 2B는 지방간 등급에 따른 비침습적 예측 스코어를 나타낸 도이다. 여기서 FLI는 지방간 지수이고, NLFS는 비-알코올성 지방간 질환 (NAFLD) 간 지방 점수이며, HSI는 간지방증 지수이다.
도 3은 간 지방 함량에 대한 MSI-S의 예측성을 확인한 도로서, 자기공명영상-양자밀도 지방비율(Magnetic resonance imaging-proton density fat fraction; MRI-PDFF)에 의해 측정된 간 지방 함량과 MSI-S에서 사용된 것과 동일한 바이오마커를 사용한 다변량 선형 회귀 모델에 의한 예측값 간의 관계를 나타낸다. Scatter plot(왼쪽) 및 Bland-Altman plot(오른쪽)은 측정값과 예측값 간의 관계가 일치함을 보여준다. 평균차와 95% 일치 한계(오차의 SD ± 1.96)는 각각 검은색과 점선으로 표시하였다.
도 4는 민감도와 특이도가 90%인 간지방증 예측 지표의 임상적 유용성을 나타낸 도이다.1 is a diagram schematically illustrating a flow chart of a test participant recruitment and analysis subgroup according to an embodiment of the present invention.
Figure 2 is a road comparing the metabolic stress index for hepatic steatosis (MSI-S) and other hepatic steatosis indicators according to the present invention, Figure 2A is a non-invasive score for predicting hepatic steatosis It is a diagram showing the ROC curve (* p <0.002, ** p <0.001 vs. MSI-S; ¶ deletion data (n = 2)), and FIG. 2B is a diagram showing the non-invasive predictive score according to the fatty liver grade. where FLI is the fatty liver index, NLFS is the non-alcoholic fatty liver disease (NAFLD) liver fat score, and HSI is the hepatic steatosis index.
3 is a road confirming the predictability of MSI-S for liver fat content, and hepatic fat content and MSI measured by magnetic resonance imaging-proton density fat fraction (MRI-PDFF) -S represents the relationship between predicted values by a multivariate linear regression model using the same biomarkers as used in S. Scatter plots (left) and Bland-Altman plots (right) show that the relationship between measured and predicted values is consistent. The mean difference and 95% concordance limit (SD ± 1.96 of error) are indicated by black and dotted lines, respectively.
4 is a diagram showing the clinical usefulness of a hepatic steatosis predictive index having a sensitivity and specificity of 90%.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은the present invention
1) 개체로부터 측정한 허리 및 엉덩이 둘레 측정값으로부터 허리 대 엉덩이 비율(waist-to-hip ratio; WHR)을 산정하는 단계;1) calculating a waist-to-hip ratio (WHR) from waist and hip circumference measurements measured from the subject;
2) 상기 개체에서 분리된 생물학적 샘플로부터 섬유아세포 성장 인자 21(fibroblast growth factor 21; FGF21), 섬유아세포 성장 인자 19(fibroblast growth factor 19; FGF19), 아디포넥틴(adiponectin), 렙틴(leptin), 인슐린(insulin), 알부민(albumin), 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT) 농도를 측정하는 단계;2) fibroblast growth factor 21 (FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin ( insulin), albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT) concentrations;
3) 상기에서 측정한 아디포넥틴 및 렙틴 농도로부터 아디포넥틴 대 렙틴 비율(adiponectin-to leptin ration; A/L)을 산정하는 단계;3) calculating an adiponectin-to-leptin ratio (A/L) from the adiponectin and leptin concentrations measured above;
4) 상기에서 산정한 WHR 및 A/L, 상기에서 측정한 FGF21, FGF19, 인슐린, 알부민 농도값을 하기 [수학식 1]에 대입하여 간지방증에 대한 대사 스트레스 지표(metabolic stress index for hepetic steatosis; MSI-S)를 산정하는 단계; 및4) WHR and A/L calculated above, and FGF21, FGF19, insulin, and albumin concentration values measured above are substituted for [Equation 1] below, and the metabolic stress index for hepetic steatosis; calculating MSI-S); and
[수학식 1][Equation 1]
5) 상기 MSI-S 값과 cut-off 값을 비교하는 단계를 포함하는 간지방증 예측 또는 진단을 위한 정보제공 방법을 제공한다.5) It provides an information providing method for predicting or diagnosing hepatic steatosis, including comparing the MSI-S value with the cut-off value.
본 발명에 따른 방법에 있어서, 상기 개체는, 예를 들어, 인간, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그, 바람직하게는 포유류, 보다 바람직하게는 인간일 수 있으나, 이에 한정되는 것은 아니다.In the method according to the invention, the subject is, for example, a human, a monkey, a cow, a horse, a sheep, a pig, a chicken, a turkey, a quail, a cat, a dog, a mouse, a rat, a rabbit or a guinea pig, preferably a guinea pig It may be a mammal, more preferably a human, but is not limited thereto.
본 발명에 따른 방법에 있어서, 상기 단계 1)에서 허리 및 엉덩에 둘레 측정값은 통상의 허리 및 엉덩이 둘레 측정 수단에 의하여 측정될 수 있다. 또한, 상기 WHR은 상기 허리 둘레 측정값을 신장 둘레 측정값으로 나눈 값인 것이 바람직하다.In the method according to the present invention, the waist and hip circumference measurements in step 1) may be measured by a general waist and hip circumference measurement means. In addition, it is preferable that the WHR is a value obtained by dividing the measured waist circumference by the measured height circumference.
본 발명에 따른 방법에 있어서, 상기 단계 2)에서 생물학적 샘플은 전혈, 혈장 또는 혈청일 수 있고, 바람직하게는 전혈일 수 있다. 상기 생물학적 샘플은 개체로부터 통상의 임상병리학적 수단에 의하여 분리될 수 있으며, 바람직하게는 주사 바늘에 의한 채혈에 의하여 수득될 수 있다.In the method according to the present invention, the biological sample in step 2) may be whole blood, plasma or serum, preferably whole blood. The biological sample may be isolated from the subject by conventional clinicopathological means, preferably obtained by blood collection with an injection needle.
또한, 상기 단계 2)에서 FGF21, FGF19, 아디포넥틴, 렙틴, 인슐린, 알부민, TG, TC 및 ALT 농도를 측정하는 방법은, 특별히 제한되지는 않으나, 예를 들어, 면역 검정 (예를 들어, 화학발광 면역검정), 비색 검정, 또는 비탁 검정으로 측정될 수 있다.In addition, the method for measuring the concentrations of FGF21, FGF19, adiponectin, leptin, insulin, albumin, TG, TC and ALT in step 2) is not particularly limited, but for example, an immunoassay (eg, chemiluminescence). immunoassay), colorimetric assay, or turbidity assay.
또한, 상기 단계 2)에서 FGF21 및 FGF19 농도 단위는 pg/mL이고, 아디포넥틴 농도 단위는 ㎍/mL이며, 렙틴 농도 단위는 ng/mL이고, 인슐린 농도 단위는 mU/L이며, 알부민 농도 단위는 g/dL이고, TG 및 TC 농도 단위는 mg/dL이며, ALT 농도 단위는 IU/L인 것이 바람직하다.In addition, in step 2), the FGF21 and FGF19 concentration units are pg/mL, the adiponectin concentration unit is μg/mL, the leptin concentration unit is ng/mL, the insulin concentration unit is mU/L, and the albumin concentration unit is g /dL, TG and TC concentration units are mg/dL, and ALT concentration units are preferably IU/L.
본 발명에 따른 방법에 있어서, 상기 MSI-S 값이 cut-off 값 이상이면 간지방증 환자로 판별할 수 있다. 바람직하게는, 상기 MSI-F 값이 23.9 이상이면, 보다 바람직하게는 49.43 이상이면 간지방증 환자로 판단하기 위한 정보로서 제공될 수 있다. 본 발명의 일 실시예에서, 상기 cut-off 값이 49.43일 때 MSI-S는 특이도 83%로 간지방증을 판별하였고, 민감도 78%로 간지방증을 배제하였다.In the method according to the present invention, if the MSI-S value is equal to or greater than the cut-off value, it can be determined as a hepatic steatosis patient. Preferably, if the MSI-F value is 23.9 or more, more preferably, if it is 49.43 or more, it may be provided as information for judging a patient with hepatic steatosis. In one embodiment of the present invention, when the cut-off value was 49.43, MSI-S discriminated hepatic steatosis with a specificity of 83%, and excluded hepatic steatosis with a sensitivity of 78%.
본 발명에 따른 방법에 있어서, 상기에서 산정한 WHR 및 A/L, 상기에서 측정한 FGF21, FGF19, 인슐린, 알부민, TG, TC 및 ALT 농도값을 하기 [수학식 2]에 대입하여 간 지방 함량을 예측하는 단계를 더 포함할 수 있다.In the method according to the present invention, the liver fat content by substituting the WHR and A/L calculated above, the FGF21, FGF19, insulin, albumin, TG, TC, and ALT concentration values measured above into the following [Equation 2] It may further include the step of predicting.
[수학식 2][Equation 2]
. .
상기 간 지방 함량 값은 MRI를 사용하여 측정된 간 지방 함량과 상관 관계를 나타내므로, 상기 간 지방 함량 값으로부터 간지방증의 심각성을 식별할 수 있고, 불필요한 MRI 검사를 줄이는데 효과적이다.Since the liver fat content value correlates with the liver fat content measured using MRI, the severity of hepatic steatosis can be identified from the liver fat content value, and it is effective in reducing unnecessary MRI scans.
본 발명의 구체적인 실시예에서, 본 발명자들은 인구 기반 일반 코호트의 참가자를 대상으로 임상 및 실험실검정 특성을 획득하였고, 단변량 로지스틱 회귀분석(univariate logistic regression)을 통해 FGF21이 높은 유의계수(Wald = 42.2, p <0.001)로 간지방증과 상관 관계가 있음을 확인하였다. In a specific embodiment of the present invention, the present inventors obtained clinical and laboratory test characteristics for participants in a population-based general cohort, and FGF21 had a high significance coefficient (Wald = 42.2) through univariate logistic regression. , p <0.001), confirming that there is a correlation with hepatic steatosis.
또한, 본 발명자들은 다변량 회귀 분석을 통해,WHR, FGF21, FGF19, A/L, 인슐린, 알부민, TG, TC 및 ALT가 간지방증에 대한 독립적인 예측 인자임을 확인하였고, 이를 이용하여 간지방증에 대한 대사 스트레스 지표(MSI-S)를 도출하였다. In addition, the present inventors confirmed that WHR, FGF21, FGF19, A/L, insulin, albumin, TG, TC and ALT were independent predictors for hepatic steatosis through multivariate regression analysis, and using this, Metabolic stress index (MSI-S) was derived.
아울러, 본 발명자들은 상기 지표가 다른 간지방증 지표보다 AUROC [0.886 (0.85-0.92)] 및 진단 정확도(81.1%)가 더 높고, 상기 지표를 이용하여 간지방증의 중증도를 구분할 수 있음을 확인하였다. In addition, the present inventors confirmed that the above index had higher AUROC [0.886 (0.85-0.92)] and diagnostic accuracy (81.1%) than other hepatic steatosis indexes, and that the severity of hepatic steatosis could be distinguished using the index.
따라서, 상기 예측 인자들 및 이를 이용하여 도출한 지표 MSI-S는 간지방증의 비침습적 진단을 위한 강력한 바이오마커로 유용하게 이용될 수 있다.Therefore, the predictors and the index MSI-S derived using them can be usefully used as strong biomarkers for non-invasive diagnosis of hepatic steatosis.
또한, 본 발명은Also, the present invention
1) 개체에서 분리한 생물학적 샘플 중 섬유아세포 성장 인자 21(fibroblast growth factor 21; FGF21), 섬유아세포 성장 인자 19(fibroblast growth factor 19; FGF19), 아디포넥틴(adiponectin), 렙틴(leptin), 인슐린(insulin), 알부민(albumin), 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT) 농도를 측정하는 시약 세트; 및1) Among biological samples isolated from individuals, fibroblast growth factor 21 (FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin (insulin) ), albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT) concentrations; and
2) 개체의 허리 및 엉덩이 둘레를 측정하는 장치를 포함하는 간지방증 예측 또는 진단용 키트를 제공한다.2) It provides a kit for predicting or diagnosing hepatic steatosis, including a device for measuring the waist and hip circumference of an individual.
본 발명에서, 상기 키트는 개체의 허리 및 엉덩이 둘레를 측정하기 위한 장치를 포함할 수 있다. In the present invention, the kit may include a device for measuring the waist and hip circumference of an individual.
또한, 상기 키트는 개체에서 분리한 생물학적 샘플 중 상기 바이오마커의 농도를 측정 및 분석하고, 개체가 간지방증을 가지는 것을 확인하기 위한 시약 및 물질을 포함할 수 있다. 구체적으로, 본 발명의 진단 키트는 개체로부터 샘플을 얻고/얻거나 이를 담기 위한 바늘, 주사기, 바이알, 또는 다른 기구를 포함할 수 있다. 또한, 상기 키트는 본원에서 개시된 바이오마커를 검출 또는 정량하기 위해 특이적으로 사용되는 적어도 하나의 시약을 포함할 수 있다. 즉, 적합한 시약 및 기법은 바이오마커를 검출 또는 정량하기 위한 키트에 포함하기 위해 당업자에 의해 쉽게 선택될 수 있다. In addition, the kit may include reagents and materials for measuring and analyzing the concentration of the biomarker in a biological sample isolated from an individual, and confirming that the individual has hepatic steatosis. Specifically, a diagnostic kit of the present invention may include a needle, syringe, vial, or other device for obtaining and/or containing a sample from a subject. In addition, the kit may include at least one reagent specifically used to detect or quantify the biomarkers disclosed herein. That is, suitable reagents and techniques can be readily selected by one of ordinary skill in the art for inclusion in a kit for detecting or quantifying a biomarker.
또한, 상기 시약은 단백질의 농도를 측정하는 것이 바람직하다. 구체적으로, 면역 검정 (예를 들어, 화학발광 면역 검정), 비색 검정, 또는 비탁 검정을 사용하여 단백질을 검출하기 위한 적절한 시약 (예를 들어, 항체)을 포함할 수 있다. 또한, 상기 시약에는 추출 완충제 또는 시약, 증폭 완충제 또는 시약, 반응 완충제 또는 시약, 혼성화 완충제 또는 시약, 면역검출 완충제 또는 시약, 표지 완충제 또는 시약, 및 검출 수단을 포함할 수도 있다.In addition, it is preferable that the reagent measures the concentration of the protein. Specifically, it may include an appropriate reagent (eg, an antibody) for detecting a protein using an immunoassay (eg, a chemiluminescent immunoassay), a colorimetric assay, or a turbidity assay. The reagents may also include extraction buffers or reagents, amplification buffers or reagents, reaction buffers or reagents, hybridization buffers or reagents, immunodetection buffers or reagents, labeling buffers or reagents, and detection means.
또한, 상기 키트는 대조군 샘플, 참조 샘플, 내부 표준, 또는 이전에 생성된 실험 데이터일 수 있는 대조군을 포함할 수 있다. 대조군은 정상의 건강한 개체 또는 알려진 질환 상태를 갖는 개체에 상응할 수 있다. 추가로, 대조군은 각각의 바이오마커에 대해 제공될 수 있거나 또는 대조군은 참조 위험 스코어일 수 있다.The kit may also include a control, which may be a control sample, a reference sample, an internal standard, or previously generated experimental data. Controls may correspond to normal healthy individuals or individuals with a known disease state. Additionally, a control may be provided for each biomarker or a control may be a reference risk score.
또한, 상기 키트는 각각의 개별 시약에 대해 하나 이상의 용기를 포함할 수 있다. 키트는 임의의 규제 요건에 따라 본원에서 설명되는 방법의 수행 및/또는 결과의 해석을 위한 설명서를 추가로 포함할 수 있다. 추가로, 검출된 바이오마커 농도의 분석, 위험 스코어의 계산 등을 위한 소프트웨어가 키트에 포함될 수 있다. 바람직하게는, 키트는 상업적인 배포, 판매 및/또는 사용을 위해 적합한 용기에 포장된다.The kit may also include one or more containers for each individual reagent. The kit may further comprise instructions for performing the methods described herein and/or for interpreting the results in accordance with any regulatory requirements. Additionally, software for analysis of detected biomarker concentrations, calculation of risk scores, and the like may be included in the kit. Preferably, the kit is packaged in a container suitable for commercial distribution, sale and/or use.
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following Examples and Experimental Examples.
<실시예 1> 시험 참여자<Example 1> Test participants
시험 대상은 계층화된 무작위 샘플링을 통해, 인구 기반 일반 코호트인 KoGES-ARIRANG(the Korean Genome and Epidemiology Study on Atherosclerosis Risk of Rural Areas in the Korean General Population)에서 모집한 343 명의 지원자로 하였다. 시험 계획서는 헬싱키 선언의 윤리 기준에 의거하여 원주 세브란스 기독병원 기관심의위원회(IRB No. CR317131)의 승인을 받았다. 모든 시험 참여자는 시험의 이론적 근거와 가능한 위험에 대한 정보를 받았으며 참여 전에 서면 동의를 하였다.The subjects were 343 volunteers recruited from the Korean Genome and Epidemiology Study on Atherosclerosis Risk of Rural Areas in the Korean General Population (KoGES-ARIRANG), a general population-based cohort, through stratified random sampling. The trial protocol was approved by the Wonju Severance Christian Hospital Institutional Review Committee (IRB No. CR317131) based on the ethical standards of the Declaration of Helsinki. All trial participants were informed about the trial rationale and possible risks and gave written informed consent prior to participation.
구체적으로, 도 1에 나타낸 바와 같이 시험 대상은 인구 기반 일반 코호트인 KoGES-ARIRANG에 이미 등록된 사람들 중 3차 후속 조사(2011 년 5 월부터 2017 년 10 월까지)를 완료한 1894 명의 개인으로부터 모집하였다. 노인(85 세 이상), 알코올 남용(남성, > 30 g/day; 여성, > 20 g/day), 악성 종양, 만성 바이러스 간염(B 형 및/또는 C 형 간염), 약물-유발성 간 손상, 자가면역 간 질환 및 윌슨병(Wilson disease)를 포함하여 간지방증의 이차 원인 또는 대체 진단의 임상 병력이 있는 피험자는 제외하였다.Specifically, as shown in Figure 1, test subjects were recruited from 1894 individuals who completed the third follow-up survey (May 2011 to October 2017) among those already enrolled in the population-based general cohort, KoGES-ARIRANG. did Elderly (85 years and older), alcohol abuse (male, > 30 g/day; female, > 20 g/day), malignancy, chronic viral hepatitis (hepatitis B and/or C), drug-induced liver injury , subjects with a clinical history of secondary causes or alternative diagnoses of hepatic steatosis, including autoimmune liver disease and Wilson disease, were excluded.
2018 년 5 월 8 일부터 2019 년 8 월 8 일까지 총 348 명의 피험자를 이메일 또는 전화 모집에 응답한 순서대로 최종 등록하였다. 348 명의 등록된 개인 중 343 명의 참여자(남자 124 명, 여자 219 명)가 분석에 포함되었고, 5 명의 피험자를 제외하였다. 간의 종합적인 평가에 근거하여, 135 명의 비알코올성 지방간 질환 (NAFLD) 환자와 199 명의 대조군 피험자(간섬유증만 있는 9 명의 피험자 제외)가 간지방증 예측 모델로 선택되었다. NAFLD 집단의 간섬유증 예측 모델을 위해, 심각한 간섬유증 환자 22 명과 섬유증이 없는 간지방증 환자 122 명을 선택하였다.From May 8, 2018 to August 8, 2019, a total of 348 subjects were finally enrolled in the order in which they responded to the e-mail or phone recruitment. Of the 348 enrolled individuals, 343 participants (124 males and 219 females) were included in the analysis and 5 subjects were excluded. Based on a comprehensive evaluation of the liver, 135 patients with nonalcoholic fatty liver disease (NAFLD) and 199 control subjects (excluding 9 subjects with hepatic fibrosis only) were selected as hepatic steatosis predictive models. For the predictive model of hepatic fibrosis in the NAFLD population, 22 patients with severe liver fibrosis and 122 patients with hepatic steatosis without fibrosis were selected.
<실시예 2> 초음파 검사(Ultrasonography)<Example 2> Ultrasonography
모든 초음파 검사는 저주파 볼록 변환기(low frequency convex transducer)를 포함한 Aplio i500(Canon Medical Systems, Otawara, Japan)을 사용하여 간 전문의가 수행하였다. 지방간의 중증도를 검정하기 위해 4가지 초음파 징후(비정상적 간신장 에코, 간문맥의 에코 발생성 상실, 횡격막 시각화 불량 및 후방 빔 감쇠)를 평가하였다.All ultrasound examinations were performed by a hepatologist using an Aplio i500 (Canon Medical Systems, Otawara, Japan) with a low frequency convex transducer. Four ultrasound signs (abnormal hepatorenal echo, loss of echogenicity of portal vein, poor diaphragm visualization and posterior beam attenuation) were evaluated to assess the severity of fatty liver.
<실시예 3> 자기공명영상-양자밀도 지방비율(Magnetic resonance imaging-proton density fat fraction; MRI-PDFF)<Example 3> Magnetic resonance imaging-proton density fat fraction (MRI-PDFF)
MRI는 30-channel body 및 32-channel spine matrix coil이 장착된 3T 시스템(Magnetom Skyra; Siemens, Erlangen, Germany)에서 수행하였다. 피험자들은 supine position에서 조사되었고, 모든 이미지는 호기 호흡을 참는 동안 획득하였다. 간 지방 및 철분 함량을 평가하기 위해 Multi-echo Dixon mapping을 수행하였다: 에코 시간(echo time; TE) = 1.05, 2.46, 3.69, 4.92, 6.15 및 7.38 ms; 반복 시간(repetition time; TR) = 9.00 ms; 플립 각도(flip angle) = 4°; 시야(field of view, FOV) = 450 × 393 mm2; 매트릭스 크기(matrix size) = 160 × 111; 슬라이스 두께 = 3.5 mm; 슬라이스 수 = 72 개; 더 높은 가속 계수에서의 병렬 이미징 결과에서 제어된 aliasing = 2 × 2; 획득 시간(acquisition time) = 13 s. Screening Dixon 및 multi-echo Dixon sequence는 순차적으로 수행하였다. 물 이미지(Water image), 지방 이미지(fat image), 피트 이미지(fit image), MRI-PDFF map 및 스크리닝 보고서 및 Multi-echo Dixon이 자동으로 수집되었다. 간지방증은 다음 기준에 따라 등급을 매겼다: 등급 0, PDFF < 6.4%; 등급 1, 6.4% ≤ PDFF < 16.3%; 등급 2, 16.3% ≤ PDFF < 21.7%; 3 등급, PDFF ≥ 21.7%.MRI was performed on a 3T system (Magnetom Skyra; Siemens, Erlangen, Germany) equipped with a 30-channel body and a 32-channel spine matrix coil. Subjects were examined in the supine position, and all images were acquired while holding exhaled breaths. Multi-echo Dixon mapping was performed to evaluate liver fat and iron content: echo time (TE) = 1.05, 2.46, 3.69, 4.92, 6.15 and 7.38 ms; repetition time (TR) = 9.00 ms; flip angle = 4°; field of view (FOV) = 450 × 393 mm 2 ; matrix size = 160 × 111; slice thickness = 3.5 mm; number of slices = 72; Controlled aliasing = 2 × 2 in parallel imaging results at higher acceleration factors; acquisition time = 13 s. Screening Dixon and multi-echo Dixon sequences were performed sequentially. Water image, fat image, fit image, MRI-PDFF map and screening report and Multi-echo Dixon were automatically collected. Hepatic steatosis was graded according to the following criteria:
<실시예 4> 자기공명 탄성영상(Magnetic resonance elastography(MRE)<Example 4> Magnetic resonance elastography (MRE)
전흉벽(anterior chest wall)에 음압파를 전달하는 드라이버 장치를 사용하여 60Hz에서 연속적인 종방향 기계파를 생성하였다. spin-echo echo-planar imaging sequence를 세 개의 축 평면에서 무호흡 중에 획득하였다: TR = 500 ms; TE = 39 ms; FOV = 380 × 309 mm2; 매트릭스 크기 = 100 × 100 mm; 슬라이스 두께 = 5 mm; 부분 병렬 획득을 일반화된 자동 교정하기 위한 가속 계수 = 2, 획득 시간 = 6 s.A continuous longitudinal mechanical wave was generated at 60 Hz using a driver device that delivered sound pressure waves to the anterior chest wall. Spin-echo echo-planar imaging sequences were acquired during apnea in three axial planes: TR = 500 ms; TE = 39 ms; FOV = 380 × 309 mm 2 ; matrix size = 100 × 100 mm; slice thickness = 5 mm; Acceleration factor = 2, acquisition time = 6 s for generalized autocorrection of partially parallel acquisitions.
MRE로부터 얻어진 각 MR 이미지에서, MRE 경험이 각각 5 년 및 6 년인 두 명의 전문가가 간의 실질(parenchyma)만 포함하도록 관심 영역(regions of interest; ROI)을 수동으로 설정하였다. 반복성을 평가하기 위해, 2 주 간격으로 두 번의 측정 세션을 수행하였다. 이때, 환자의 생화학 및 지방 정량 데이터 정보는 모르는 상태로 하였다. 해당 크기 이미지, 해부학 이미지 및 파동 이미지를 동시에 평가하여 driver 바로 아래 영역, 담관, 혈관 및 기타 파동 전파가 일관되지 않은 영역을 제외하였다. 측정은 경직도(stiffness) 복원의 신뢰도 매개변수가 95% 이상인 영역으로 제한하였다. 전체 간에서 수동으로 선택한 3 개의 ROI(각 이미지 슬라이스에 1개의 ROI)에서 얻은 값으로부터 간 경직도를 평균화하였다. 2 주 간격으로 두 번 측정한 후, 각 환자에 대해 multi-echo Dixon 획득에서 얻은 지방 분율을 기록하였다. 두 판독 사이의 재현성과 MRE를 사용한 간 경직성 측정의 반복성은 ICC를 판별하여 평가하였다. 하기 표 1과 같이 재현성을 위한 ICC 및 MRE를 사용하여 얻은 간 경직성 값의 반복성은 거의 완벽하게 일치함을 확인하였다.In each MR image obtained from MRE, regions of interest (ROI) were manually set to include only the parenchyma of the liver by two experts with 5 and 6 years of MRE experience, respectively. To evaluate repeatability, two measurement sessions were performed at 2-week intervals. At this time, the patient's biochemical and fat quantitative data information was not known. Corresponding size images, anatomical images, and wave images were simultaneously evaluated to exclude regions directly under the driver, bile ducts, blood vessels, and other regions in which wave propagation was not consistent. The measurement was limited to the area where the reliability parameter of the stiffness restoration was 95% or more. Liver stiffness was averaged from values obtained from three manually selected ROIs (one ROI for each image slice) of the whole liver. After two measurements at 2-week intervals, the fat fraction obtained from the multi-echo Dixon acquisition was recorded for each patient. The reproducibility between the two readings and the repeatability of liver spasticity measurements using MRE were evaluated by discriminating ICC. As shown in Table 1 below, it was confirmed that the repeatability of the liver stiffness values obtained using ICC and MRE for reproducibility was almost perfectly consistent.
간섬유증은 다음 기준에 따라 등급을 매겼다: 정상, 경직도 < 2.5 kPa; 정상 내지 염증, 2.5 kPa ≤ 경직도 < 2.9 kPa; 1- 2기 간섬유증, 2.9 kPa ≤ 경직도 < 3.5 kPa; 2-3기, 3.5 kPa ≤ 경직도 < 4.0 kPa, 3-4기, 4.0 kPa≤ 경직도 < 5.0 kPa.Hepatic fibrosis was graded according to the following criteria: normal, stiffness < 2.5 kPa; normal to inflammatory, 2.5 kPa ≤ stiffness < 2.9 kPa; Stage 1-2 hepatic fibrosis, 2.9 kPa ≤ stiffness < 3.5 kPa; Stage 2-3, 3.5 kPa ≤ Stiffness < 4.0 kPa, Stage 3-4, 4.0 kPa ≤ Stiffness < 5.0 kPa.
<실시예 5> 임상 및 실험실검정<Example 5> Clinical and laboratory tests
몸무게, 신장, 허리, 엉덩이 둘레 등의 인체 측정값을 측정한 후 체질량지수(BMI), 허리-신장 비율(waist-to-height ratio; WHtR), 허리-엉덩이 비율(waist-to-hip ratio; WHR)을 계산하였다. Body mass index (BMI), waist-to-height ratio (WHtR), waist-to-hip ratio; WHR) was calculated.
참여자들은 가벼운 옷을 입고 신발을 착용하지 않은 상태에서 신장과 몸무게를 측정하였다. 허리 둘레는 장골 능선의 가장 낮은 늑골과 위쪽 경계 사이의 중간에서 측정하였다. 엉덩이 둘레는 엉덩이의 가장 넓은 부분을 중심으로 측정하였다. 둘레는 0.1 cm에 가장 가까운 두 측정값의 평균으로 제공하였다. 체질량 지수 (BMI)는 kg 단위의 체중을 m 단위의 높이 제곱으로 나눈 값으로 계산하였다.Participants were measured for height and weight in light clothes and without shoes. Waist circumference was measured midway between the lowest rib and the upper border of the iliac crest. Hip circumference was measured around the widest part of the hip. The circumference was given as the average of the two measurements closest to 0.1 cm. Body mass index (BMI) was calculated by dividing the weight in kg by the square of the height in m.
최소 10 시간 동안의 금식 조건에서 생화학적 매개변수 및 NAFLD 관련 바이오마커 분석을 위해 전주정맥에서 혈액 샘플을 채취하였다. 분리한 혈청은 추가 시험을 위해 즉시 -80℃에 보관하였다. c702a 및 e801 모듈로 구성된 교정된 Roche Cobas®8000 모듈형 분석기를 사용하여 제조사의 시약 및 교정 장치(Roche, Mannheim, Germany)를 사용하여 생화학 분석물의 혈청 농도를 측정하였다. 트리글리세라이드(TG), 총 콜레스테롤(TC), 고밀도 지단백 콜레스테롤(high-density lipoprotein cholesterol; HDL-C), γ- 글루타밀 트랜스퍼라아제(γ-GT) 및 요산은 효소 비색법(enzymatic-colorimetric method)으로 측정하였다. 아스파르테이트 아미노트랜스퍼라아제(Aspartate aminotransferase; AST), 알라닌 아미노트랜스퍼라아제(alanine aminotransferase; ALT), 알칼리성 포스파타제(alkaline phosphatase; ALP), 크레아티닌(creatinine), 알부민, 혈액요소질소(BUN), 단백질 및 총 빌리루빈(total bilirubin)을 비색법으로 측정하였다. 공복혈당은 헥소키나아제법(hexokinase method)으로 측정하였다. 인슐린과 C-펩티드는 전기-화학발광 면역분석법(electro-chemiluminescence immunoassay)으로 확인하였다. 인과 칼슘은 각각 Molybdate UV 및 NM-BAPTA 방법으로 측정하였다. 혈소판 수는 자동혈액세포계수기(automated blood cell counter, ADVIA 2110I, Bayer, NY, USA)를 사용하여 분석하였다.Blood samples were taken from the antecubital vein for analysis of biochemical parameters and NAFLD-related biomarkers under fasting conditions for at least 10 hours. The isolated serum was immediately stored at -80°C for further testing. Serum concentrations of biochemical analytes were measured using a calibrated Roche Cobas®8000 modular analyzer configured with c702a and e801 modules using the manufacturer's reagents and calibration equipment (Roche, Mannheim, Germany). Triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), γ-glutamyl transferase (γ-GT) and silver urate enzymatic-colorimetric method was measured. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, albumin, blood urea nitrogen (BUN), protein and total bilirubin were measured by a colorimetric method. Fasting blood glucose was measured by the hexokinase method. Insulin and C-peptide were identified by electro-chemiluminescence immunoassay. Phosphorus and calcium were measured by Molybdate UV and NM-BAPTA methods, respectively. Platelet count was analyzed using an automated blood cell counter (ADVIA 2110I, Bayer, NY, USA).
간기능 매개변수를 포함한 일상적인 생화학적 검사는 자동화된 임상 화학 분석기를 사용하여 수행하였다. FGF21 및 GDF15를 포함하는 10 개의 대사 스트레스 관련 바이오마커의 혈청 농도는 제조사의 절차에 따라 시판되는 ELISA 키트를 사용하여 정량화하였다. FGF21, FGF19, GDF15, 아디포넥틴(adiponectin), 렙틴(leptin), RBP4, IL6, TGF-β1 및 마이오스타틴(myostatin)의 혈청 농도는 human Quantikine ELISA 키트(R & D Systems, Minneapolis, MN, USA)를 사용하여, 데코린 농도는 Raybio human DCN ELISA 키트 (RayBiotech, Norcross, GA, USA)를 사용하여 제조사의 절차에 따라 정량화하였다. 각 분석은 4 개의 개별 배치(batch)에서 수행하였다. 모든 평균 분석-내 및 분석-간 변동 계수는 10% 미만이었다.Routine biochemical tests including liver function parameters were performed using an automated clinical chemistry analyzer. Serum concentrations of 10 metabolic stress-related biomarkers, including FGF21 and GDF15, were quantified using a commercially available ELISA kit according to the manufacturer's procedure. Serum concentrations of FGF21, FGF19, GDF15, adiponectin, leptin, RBP4, IL6, TGF-β1 and myostatin were measured using a human Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA). Using , decorin concentration was quantified according to the manufacturer's procedure using a Raybio human DCN ELISA kit (RayBiotech, Norcross, GA, USA). Each assay was performed in 4 separate batches. All mean intra- and inter-assay coefficients of variation were less than 10%.
항상성 모델 평가 지수(homeostatic model assessment index; HOMA-IR)는 [공복 인슐린 (μU/ml) × 공복 포도당 (mg/dl)] / 405]으로 계산하였다. 당뇨병은 공복 혈당치 ≥126 mg/dL, 이전에 당뇨병 진단받은 경우 또는 항당뇨제를 사용하는 경우로 정의하였다. 고혈압은 혈압 ≥140/90 mmHg, 이전에 고혈압 진단받은 경우 및/또는 항고혈압 약물을 사용하는 경우로 정의하였다. 이상지질혈증은 총 콜레스테롤 ≥240 mg/dL, HDL- 콜레스테롤 <40 mg/dL (남성), <50 mg/dL (여성) 및/또는 항이상지질혈증 치료제를 사용하는 경우로 정의하였다. 대사증후군은 국제당뇨병연맹 (International Diabetes Federation) 기준에 따라 정의하였다 - 중심성 비만 (남성의 경우 허리 둘레 ≥90 cm, 여성의 경우 ≥ 80cm) 및 다음 성분 중 2 가지 이상 존재하는 경우: (1) 혈청 트리글리세라이드 ≥150 mg/dL 또는 이상지질혈증의 특정 치료를 받은 경우; (2) 남성의 경우, 혈청 고밀도 지단백 (HDL) < 40 mg/dL, 여성의 경우 <50 mg/dL 또는 저HDL-콜레스테롤혈증에 대한 특정 치료를 받은 경우; (3) 수축기 혈압 (blood pressure; BP) ≥130 mmHg 또는 이완기 BP ≥ 85 mmHg, 또는 이전에 진단된 고혈압 치료를 받은 경우; 및 (4) 공복 혈장 포도당> 100 mg/dL 또는 이전에 제2형 당뇨병으로 진단받은 경우.The homeostatic model assessment index (HOMA-IR) was calculated as [Fasting insulin (μU/ml) × Fasting glucose (mg/dl)] / 405]. Diabetes was defined as a fasting blood glucose level of ≥126 mg/dL, a previous diagnosis of diabetes, or the use of antidiabetic drugs. Hypertension was defined as blood pressure ≥140/90 mmHg, previously diagnosed with hypertension and/or using antihypertensive drugs. Dyslipidemia was defined as total cholesterol ≥240 mg/dL, HDL-cholesterol <40 mg/dL (male), <50 mg/dL (female), and/or anti-dyslipidemia treatment. Metabolic syndrome was defined according to the International Diabetes Federation criteria - central obesity (waist circumference ≥90 cm in men and ≥ 80 cm in women) and the presence of two or more of the following components: (1) Serum Triglycerides ≥150 mg/dL or on specific treatment of dyslipidemia; (2) Serum high-density lipoprotein (HDL) < 40 mg/dL for men, <50 mg/dL for women, or if receiving specific treatment for hypoHDL-cholesterolemia; (3) systolic blood pressure (BP) ≥ 130 mmHg or diastolic BP ≥ 85 mmHg, or has received treatment for previously diagnosed hypertension; and (4) fasting plasma glucose > 100 mg/dL or previously diagnosed with
<실시예 6> 간지방증 또는 간섬유증의 기존 예측 지표<Example 6> Existing predictive index of hepatic steatosis or liver fibrosis
간지방증 또는 심각한 간섬유증에 대한 진단 성능을 비교하기 위해 임상 및 실험실 지표에서 파생된 여러 예측 점수를 계산하였다. 비침습성 간지방증 지표로 지방간 지수 (fatty liver index; FLI), NAFLD 간 지방 지수 (NAFLD liver fat score; NLFS) 및 간지방증 지수 (hepatic steatosis index; HIS)를 계산하였다. 간섬유증 지표로서 AST 대비 혈소판 비율 지수 (AST to platelet ratio index; APRI), 섬유증-4 지수 (fibrosis-4 index; FIB4) 및 NAFLD 간섬유증 스코어 (NAFLD fibrosis score; NFS)를 계산하였다. 간지방증 또는 간섬유증에 대한 모든 예측 지표는 임상 및 실험실 매개변수를 사용하기 때문에 자유롭게 사용할 수 있으며 파생 모집단에서 공정하거나 우수한 정확도를 가지고 있다. 파생 모집단에 대한 진단 컷오프 포인트가 보고되었지만 본 코호트를 기반으로 최대 성능을 달성하기 위해 점수의 최적 컷오프값을 다시 계산하였다. 각 방정식은 하기 [표 2]에 나타내었다.Several predictive scores derived from clinical and laboratory indicators were calculated to compare diagnostic performance for hepatic steatosis or severe hepatic fibrosis. Fatty liver index (FLI), NAFLD liver fat score (NLFS) and hepatic steatosis index (HIS) were calculated as non-invasive hepatic steatosis index. As indicators of liver fibrosis, AST to platelet ratio index (APRI), fibrosis-4 index (FIB4), and NAFLD fibrosis score (NFLD fibrosis score; NFS) were calculated. All predictive indicators for hepatic steatosis or hepatic fibrosis are freely available because they use clinical and laboratory parameters and have fair or good accuracy in the derived population. Although diagnostic cut-off points for the derivation population were reported, the optimal cut-off values of the scores were recalculated to achieve maximum performance based on this cohort. Each equation is shown in [Table 2] below.
FLI - 지방간 지수(fatty liver index); NLFS - NAFLD 간지방 스코어(non-alcoholic fatty liver disease (NAFLD) liver fat score); HSI - 간지방증 지표(hepatic steatosis index); APRI - AST/혈소판 비율 지수(AST to platelet ratio index); FIB-4 - 섬유증-4 지수(Fibrosis-4 index); NFS - NAFLD 간섬유증 스코어(non-alcoholic fatty liver disease (NAFLD) fibrosis score); AST - 아스파르테이트 아미노트랜스퍼라아제(aspartate-aminotransferase); ALT - 알라닌 아미노트랜스퍼라아제(alanine-aminotransferase); γ-GT - γ- 글루타밀 트랜스퍼라아제(γ-glutamyltransferase); ULN - 정상상한치(upper limit of normal). FLI - fatty liver index; NLFS - non-alcoholic fatty liver disease (NAFLD) liver fat score; HSI - hepatic steatosis index; APRI—AST to platelet ratio index; FIB-4 - Fibrosis-4 index; NFS - NAFLD non-alcoholic fatty liver disease (NAFLD) fibrosis score; AST—aspartate-aminotransferase; ALT - alanine-aminotransferase; γ-GT - γ-glutamyl transferase (γ-glutamyltransferase); ULN - upper limit of normal.
<실시예 7> 통계분석<Example 7> Statistical analysis
데이터는 SPSS 25.0 software (IBM Corp., Armonk, N.Y., USA)를 사용하여 분석하였다. 0.05 미만의 2-sided P-value는 통계적으로 유의한 것으로 간주하였다. 단변량 기술 통계(univariate descriptive statistic)를 사용하여 간지방증 또는 현저한 간섬유증이 있거나/없는 피험자를 비교하였다. 연속성 데이터는 Shapiro-Wilk test를 사용하여 정규성 검정을 하고 사분위수 범위(interquartile range; IQR)의 중앙값으로 표시하였다. 범주형 데이터는 비율이 있는 빈도로 표시하였다. 하위 그룹 간의 연속성 데이터 비교는 Student 's t-test, Mann-Whitney 's U test 또는 Kruskal Wallis test에 이어 Dunnett's T3 hoc test로 적절히 수행하였다. 범주형 데이터는 카이-제곱 검정을 사용하여 분석하였다. 연속성 데이터 간의 상관 관계는 Spearman의 상관 계수 (r)로 평가하였다.Data were analyzed using SPSS 25.0 software (IBM Corp., Armonk, NY, USA). A 2-sided P-value of less than 0.05 was considered statistically significant. A univariate descriptive statistic was used to compare subjects with/without hepatic steatosis or significant hepatic fibrosis. The continuity data were tested for normality using the Shapiro-Wilk test and expressed as the median of the interquartile range (IQR). Categorical data are expressed as proportioned frequencies. Comparison of continuity data between subgroups was appropriately performed by Student's t-test, Mann-Whitney's U test, or Kruskal Wallis test followed by Dunnett's T3 hoc test. Categorical data were analyzed using a chi-square test. Correlation between continuity data was evaluated by Spearman's correlation coefficient (r).
모든 변수는 NAFLD 또는 간섬유증의 유무와 독립적으로 관련된 변수를 식별하기 위해 다변량 전진 단계별 로지스틱 회귀분석(multivariate forward stepwise logistic regression analysis)에 포함하였다. 다변량 로지스틱 회귀 분석에 의해 P < 0.05인 변수를 예측 스코어링 시스템을 구성하는 데 사용하였다. 비모수 데이터(Non-parametric data)는 자연 로그 변환 후 독립 변수로 사용하였다. Hosmer-Lemeshow goodness-of-fit test를 사용하여 전체 모델 교정을 하고, Nagelkerke R2을 사용하여 글로벌 성능 및 예측 가능성을 검정하였다. 다변량 모델에 대한 각 변수의 기여도는 표준 오차로 나눈 회귀 계수의 비율을 제곱하여 계산한 Wald 카이-제곱 값(Wald χ2)으로 평가하였다.All variables were included in multivariate forward stepwise logistic regression analysis to identify variables independently related to the presence or absence of NAFLD or hepatic fibrosis. Variables with P < 0.05 by multivariate logistic regression analysis were used to construct the predictive scoring system. Non-parametric data were used as independent variables after natural log transformation. The whole model was calibrated using the Hosmer-Lemeshow goodness-of-fit test, and global performance and predictability were tested using Nagelkerke R 2 . The contribution of each variable to the multivariate model was evaluated as a Wald chi-square value (Wald χ 2 ) calculated by squaring the ratio of the regression coefficient divided by the standard error.
수용자-작업 특성 곡선(receiver-operator characteristics curve; AUROC)의 곡선 아래 영역은 예측 모델의 진단 성능을 평가하기 위해 계산하였다. 민감도, 특이성, 양의 우도비 (LR+), 음의 우도비 (LR-), 양의 예측값 (positive predictive value, PPV) 및 음의 예측값 (negative likelihood ratio, NPV)과 같은 다른 평가도 모델 성능을 평가하는 데 사용하였다. 스코어링 시스템의 진단 정확도는 다음과 같이 평가하였다: 정확도 = 민감도 × 유병률 + 특이성 × (1-유병률).The area under the curve of the receiver-operator characteristics curve (AUROC) was calculated to evaluate the diagnostic performance of the predictive model. Other measures such as sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), positive predictive value (PPV), and negative predictive value (NPV) also affect model performance. used for evaluation. The diagnostic accuracy of the scoring system was evaluated as follows: Accuracy = sensitivity × prevalence + specificity × (1-prevalence).
AUROC는 DeLong's method를 사용하여 비교하였다. Youden 지수에서 민감도와 특이도의 합을 최대화하여 최적의 컷오프값(cut-off)을 확인하였다: 여기에는 민감도와 특이도를 최대화하는 가장 높은 Youden 지수에 해당하는 값과 ≥ 90% 민감도(ruling-out을 위한 낮은 임계값) 및 ≥90 % 특이도(ruling-in을 위한 상위 임계값)에 해당하는 값을 포함한다. 간 지방 비율과 간 경직성 수준의 예측 방정식을 구축하기 위해, NAFLD 또는 간섬유증에 대한 스코어링 시스템에서 사용한 동일한 변수를 사용하여 다변량 전진 단계적 선형 회귀 분석(multivariate forward stepwise linear regression analyses)을 수행하였다. 정량적 예측의 신뢰도를 평가하기 위해 급내상관계수(intraclass correlation coefficient; ICC)를 계산하였다. 0.90-1.00, 0.75-0.90, 0.5-0.75 및 0-0.50의 ICC 값은 각각 우수, 좋음, 보통 및 불량으로 간주하였다. Bland-Altman plot을 구성하여 측정값과 예측값 사이의 동일성을 평가하였다.AUROC was compared using DeLong's method. The optimal cut-off was identified by maximizing the sum of sensitivity and specificity in the Youden index: the value corresponding to the highest Youden index maximizing sensitivity and specificity and ≥ 90% sensitivity (ruling- low threshold for out) and values corresponding to ≥90% specificity (high threshold for ruling-in). To construct predictive equations for liver fat percentage and level of liver stiffness, multivariate forward stepwise linear regression analyzes were performed using the same variables used in the scoring system for NAFLD or hepatic fibrosis. To evaluate the reliability of quantitative prediction, intraclass correlation coefficient (ICC) was calculated. ICC values of 0.90-1.00, 0.75-0.90, 0.5-0.75, and 0-0.50 were considered good, good, average and poor, respectively. A Bland-Altman plot was constructed to evaluate the equivalence between the measured and predicted values.
<실험예 1> 시험 참여자 특성 확인<Experimental Example 1> Confirmation of test participant characteristics
시험 참여자의 평균 연령 및 BMI는 각각 66세[사분위 범위(interquartile range; IQR) 61-72]와 25.0 kg/m2(IQR 23.2-27.5)임을 확인하였다. 시험 대상자 중 21.6%, 46.9%, 39.4% 및 6.4%가 각각 제2형 당뇨병, 대사증후군, NAFLD(MRI-PDFF ≥ 6.4 %) 및 간섬유증 (MRE ≥ 2.9 kPa)을 가지는 것으로 나타났다. 피험자의 임상 및 실험실검정 특성은 표 3에 나타내었다.It was confirmed that the average age and BMI of the test participants were 66 years (interquartile range; IQR: 61-72) and 25.0 kg/m 2 (IQR 23.2-27.5), respectively. It was found that 21.6%, 46.9%, 39.4% and 6.4% of the test subjects had
(MRI-PDFF < 6.4)Subjects without hepatic steatosis
(MRI-PDFF < 6.4)
(MRI-PDFF ≥6.4)Subjects with hepatic steatosis
(MRI-PDFF ≥6.4)
<실험예 2> 간지방증에 대한 대사 스트레스 지표 확인<Experimental Example 2> Confirmation of metabolic stress index for hepatic steatosis
NAFLD를 종속변수로 사용하는 로지스틱 회귀 분석에서 파생된 독립 예측 변수는 표 4에 나타내었다.Independent predictors derived from logistic regression analysis using NAFLD as a dependent variable are shown in Table 4.
단변량 로지스틱 분석에서 미토콘드리아 스트레스 바이오마커는 높은 유의계수(FGF21의 경우 Wald c2; 42.2, p < 0.001)를 나타내고, 그 다음으로 중심성 비만(WHR의 경우 Wald c2; 43.5, p <0.001) 순임을 확인하였다. 혈청 FGF19 및 아디포넥틴(adiponectin) 대 렙틴(leptin) 비율(adiponectin-to-leptin ratio; A/L)은 간지방증과 음의 상관관계를 보임을 확인하였다. 다변량 로지스틱 분석에서, WHR과 FGF21, FGF19, A/L, 인슐린, 알부민, 총 트리글리세라이드(total triglyceride; TG), 총 콜레스테롤 (total cholesterol; TC) 및 아미노트랜스퍼라아제(aminotransferase; ALT)의 자연 로그를 유의한 독립 예측 인자로 선택하였고(상기 인자들은 Wald c2 값 순으로 나열함), 하기 [수학식 1]의 간지방증에 대한 대사 스트레스 지표(metabolic stress index for steatosis; MSI-S)를 도출하기 위해 사용하였다.In univariate logistic analysis, the mitochondrial stress biomarker showed a high significance coefficient (Wald c 2 for FGF21; 42.2, p < 0.001), followed by central obesity (Wald c 2 for WHR; 43.5, p <0.001). was confirmed. It was confirmed that serum FGF19 and adiponectin to leptin ratio (adiponectin-to-leptin ratio; A/L) showed a negative correlation with hepatic steatosis. In multivariate logistic analysis, natural logarithm of WHR and FGF21, FGF19, A/L, insulin, albumin, total triglyceride (TG), total cholesterol (TC) and aminotransferase (ALT) was selected as a significant independent predictor (the factors are listed in order of Wald c 2 values), and the metabolic stress index for steatosis (MSI-S) for hepatic steatosis of the following [Equation 1] was derived. was used to
Hosmer-Lemeshow 통계는 유의미하지 않았고(χ2 = 4.24, p = 0.835), Nagelkerke R 2는 0.547로 MSI-S 모델의 우수한 적합성을 나타냄을 확인하였다. MSI-S에 대한 예측 확률값의 AUROC는 0.886(95% CI 0.85-0.92)으로, FLI(AUROC [95 % CI]; 0.807 [0.76 -0.85]), NLFS(0.755 [0.70-0.81]) 및 HSI(0.770 [0.72-0.82])를 포함하여 기존 간지방증을 위한 지표와 비교하여 우수한 진단 성능을 나타냄을 확인하였다(도 2A). USG(0.825 [0.78-0.87])와 비교하여, MSI-S 또한 USG를 겪는 참여자에서 더 높은 AUROC(0.884, [0.85-0.92])를 나타냄을 확인하였다. 최적의 컷오프값 49.43에서 MSI-S는 민감도 78%(95% CI 70-83)와 음의 우도비(negative likelihood ratio) 0.27 (95% CI 0.19-0.37)로 NAFLD를 배제하고, 특이도 83% (95% CI 78-88)및 양의 우도비(positive likelihood ratio) 4.6 (95% CI 3.4-6.5)으로 NAFLD를 판별함을 확인하였다. 따라서, MSI-S는 다른 간지방증 지표보다 진단 정확도(81.1 %)가 현저히 우수함을 알 수 있다(표 5).Hosmer-Lemeshow statistic was not significant (χ 2 = 4.24, p = 0.835), and Nagelkerke R 2 was 0.547, confirming the excellent fit of the MSI-S model. AUROC of predicted probability values for MSI-S was 0.886 (95% CI 0.85-0.92), with FLI (AUROC [95 % CI]; 0.807 [0.76 -0.85]), NLFS (0.755 [0.70 - 0.81]) and HSI ( 0.770 [0.72-0.82]), and it was confirmed that it showed excellent diagnostic performance compared to the existing indicators for hepatic steatosis (FIG. 2A). Compared to USG (0.825 [0.78-0.87]), it was found that MSI-S also exhibited a higher AUROC (0.884, [0.85-0.92]) in participants suffering from USG. At the optimal cutoff value of 49.43, MSI-S excluded NAFLD with a sensitivity of 78% (95% CI 70-83) and a negative likelihood ratio of 0.27 (95% CI 0.19-0.37), and a specificity of 83% It was confirmed that NAFLD was discriminated with (95% CI 78-88) and a positive likelihood ratio of 4.6 (95% CI 3.4-6.5). Therefore, it can be seen that MSI-S has significantly better diagnostic accuracy (81.1%) than other hepatic steatosis indicators (Table 5).
MSI-S, metabolic stress index for liver steatosis; FLI, fatty liver index; NLFS, non-alcoholic fatty liver disease (NAFLD) liver fat score; HSI, hepatic steatosis index; SN, sensitivity; SP, specificity; LR+, positive likelihood ratio; LR-, negative likelihood ratio; PPV, positive predictive value; NPV, negative predictive value.Data are presented as percentage (95% CI).
MSI-S, metabolic stress index for liver steatosis; FLI, fatty liver index; NLFS, non-alcoholic fatty liver disease (NAFLD) liver fat score; HSI, hepatic steatosis index; SN, sensitivity; SP, specificity; LR+, positive likelihood ratio; LR-, negative likelihood ratio; PPV, positive predictive value; NPV, negative predictive value.
간지방증 등급에 따른 분석을 비교해 보면, MSI-S의 Kruskal-Wallis 카이-제곱값 (KW χ2 = 146.5, p = 2e-32)이 다른 지표보다 높음을 확인하였다. 중증 간지방증에 대한 MSI-S 값은 경도 등급의 경우보다 유의하게 높게 나타났다(중앙값 [95 % CI]; 등급 1의 경우 68.6 [59.6-69.4], 등급 2의 경우 86.9 [71.6-90.7], p = 0.009) (도 2B).Comparing analysis according to hepatic steatosis grade, it was confirmed that the Kruskal-Wallis chi-square value (KW χ 2 = 146.5, p = 2e-32) of MSI-S was higher than that of other indicators. MSI-S values for severe hepatic steatosis were significantly higher than those for mild grades (median [95 % CI]; 68.6 [59.6-69.4] for
<실험예 3> 간지방 함량 예측<Experimental Example 3> Prediction of liver fat content
간지방 함량을 예측하는 방정식은 MSI-S에 사용된 동일한 변수를 사용하여 다변량 단계적 선형 회귀 분석으로부터 도출하였다(표 6 및 수학식 2). Equations for predicting liver fat content were derived from multivariate stepwise linear regression analysis using the same variables used for MSI-S (Table 6 and Equation 2).
R2 = 0.489; Adj R2 = 0.475, SEE = 0.565F(9, 324) = 34.494; p = 2.2E-42; Durbin-Watson score: 1.913
R 2 =0.489; Adj R 2 = 0.475, SEE = 0.565
Dependent variable: liver fat content (ln %, MRI-PDFF)B, unstandardized regression coefficient; SE, standard error; SEE, standard error of estimate; β, standardized regression coefficient; VIF, variance inflation factor; ln, natural logarithm; WHR, waist-to-hip ratio; ALT, alanine-aminotransferase; A/L, adiponectin-to-leptin ratio; FGF21, fibroblast growth factor 21; FGF19, fibroblast growth factor 19.
Dependent variable: liver fat content (ln %, MRI-PDFF)
도출한 간 지방 함량은 MRI를 사용하여 측정된 PDFF와 좋은 상관관계를 가지며 일치하는 것을 확인하였다. 모델의 조정된 R 2는 0.475이고 ICC는 0.79 (95 % CI 0.74-0.83)로 나타났다(표 6 및 도 3). Bland-Altman plot은 시험 대상의 94.9%가 평균차(mean difference; MD)의 한계 내에 있음을 확인하였다(도 3).It was confirmed that the derived liver fat content had a good correlation with the PDFF measured using MRI and was consistent. The adjusted R 2 of the model was 0.475 and the ICC was 0.79 (95% CI 0.74-0.83) (Table 6 and Figure 3). The Bland-Altman plot confirmed that 94.9% of the test subjects were within the limit of the mean difference (MD) (FIG. 3).
예측 지표의 임상적 적용 가능성을 개선하기 위해, TP(true positive) 또는 TN(true negative)을 나타내는 환자에게 간 생검이 필요하지 않다는 가정하에 추가 분석을 수행하였다. 민감도와 특이도가 90% 이상인 MSI-S의 컷오프값은 각각 23.9와 60.8임을 확인하였다. 따라서 75.5 %의 사례는 간 생검이나 추가 평가를 피했을 것임을 알 수 있다. 결론적으로 MSI-S는 현재 사용 가능한 다른 지표보다 불필요한 침습적 검사를 줄이는데 더 효과적임을 알 수 있다(도 4, 표 7).To improve the clinical applicability of predictive indicators, additional analyzes were performed under the assumption that liver biopsies were not required in patients with TP (true positive) or TN (true negative). It was confirmed that the cutoff values of the MSI-S with sensitivity and specificity of 90% or more were 23.9 and 60.8, respectively. Thus, it can be seen that 75.5% of cases would have avoided a liver biopsy or further evaluation. In conclusion, it can be seen that MSI-S is more effective in reducing unnecessary invasive tests than other currently available indicators (Fig. 4, Table 7).
Claims (11)
2) 상기 개체에서 분리된 생물학적 샘플로부터 섬유아세포 성장 인자 21(fibroblast growth factor 21; FGF21), 섬유아세포 성장 인자 19(fibroblast growth factor 19; FGF19), 아디포넥틴(adiponectin), 렙틴(leptin), 인슐린(insulin), 알부민(albumin), 트리글리세리드(triglyceride; TG), 총 콜레스테롤(total choresterol; TC) 및 알라닌-아미노트랜스퍼라제(alanine-aminotransferase; ALT) 농도를 측정하는 단계;
3) 상기에서 측정한 아디포넥틴 및 렙틴 농도로부터 아디포넥틴 대 렙틴 비율(adiponectin-to leptin ration; A/L)을 산정하는 단계;
4) 상기에서 산정한 WHR 및 A/L, 상기에서 측정한 FGF21, FGF19, 인슐린, 알부민 농도값을 하기 [수학식 1]에 대입하여 간지방증에 대한 대사 스트레스 지표(metabolic stress index for hepetic steatosis; MSI-S)를 산정하는 단계; 및
[수학식 1]
5) 상기 MSI-S 값과 cut-off 값을 비교하는 단계를 포함하는 간지방증 예측 또는 진단을 위한 정보제공 방법.
1) calculating a waist-to-hip ratio (WHR) from waist and hip circumference measurements measured from the subject;
2) fibroblast growth factor 21 (FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin ( insulin), albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT) concentrations;
3) calculating an adiponectin-to-leptin ratio (A/L) from the adiponectin and leptin concentrations measured above;
4) WHR and A/L calculated above, and FGF21, FGF19, insulin, and albumin concentration values measured above are substituted for [Equation 1] below, and the metabolic stress index for hepetic steatosis; calculating MSI-S); and
[Equation 1]
5) An information providing method for predicting or diagnosing hepatic steatosis, comprising comparing the MSI-S value and the cut-off value.
The method according to claim 1, wherein, in step 1), WHR is a value obtained by dividing a measured waist circumference by a hip circumference measurement.
The method according to claim 1, wherein the biological sample in step 2) is whole blood, plasma or serum.
The method of claim 1, wherein the concentrations of FGF21, FGF19, adiponectin, leptin, insulin, albumin, TG, TC and ALT in step 2) are measured by an immunoassay, a colorimetric assay, or a turbidity assay.
The method according to claim 1, wherein in step 2), the FGF21 and FGF19 concentration units are pg/mL, the adiponectin concentration unit is μg/mL, the leptin concentration unit is ng/mL, the insulin concentration unit is mU/L, and albumin The method of claim 1, wherein the concentration unit is g/dL, the TG and TC concentration units are mg/dL, and the ALT concentration unit is IU/L.
The method of claim 1, wherein A/L in step 3) is a value obtained by dividing an adiponectin concentration value by a leptin concentration value.
The method according to claim 1, wherein if the MSI-F value is equal to or greater than the cut-off value, the patient is determined to be a hepatic steatosis patient.
Method according to claim 7, characterized in that the cut-off value is 23.9.
The method according to claim 8, characterized in that the cut-off value is 49.43.
[수학식 2]
.
According to claim 1, wherein the WHR and A/L calculated above, the FGF21, FGF19, insulin, albumin, TG, TC and ALT concentration values measured above are substituted into the following [Equation 2] to predict the liver fat content A method, characterized in that it further comprises the step of:
[Equation 2]
.
2) 개체의 허리 및 엉덩이 둘레를 측정하는 장치를 포함하는 간지방증 예측 또는 진단용 키트.1) Among biological samples isolated from individuals, growth factor 21 (fibroblast growth factor 21; FGF21), fibroblast growth factor 19 (FGF19), adiponectin, leptin, insulin (insulin), a set of reagents for determining the concentrations of albumin, triglyceride (TG), total choresterol (TC) and alanine-aminotransferase (ALT); and
2) A kit for predicting or diagnosing hepatic steatosis including a device for measuring the waist and hip circumference of an individual.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200165603A KR20220076779A (en) | 2020-12-01 | 2020-12-01 | Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200165603A KR20220076779A (en) | 2020-12-01 | 2020-12-01 | Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220076779A true KR20220076779A (en) | 2022-06-08 |
Family
ID=81981274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200165603A KR20220076779A (en) | 2020-12-01 | 2020-12-01 | Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20220076779A (en) |
-
2020
- 2020-12-01 KR KR1020200165603A patent/KR20220076779A/en active Search and Examination
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Papatheodoridi et al. | Diagnosis of non-alcoholic fatty liver disease (NAFLD): current concepts | |
EP2359285B1 (en) | Non-invasive in vitro method for quantifying liver lesions | |
CA2575475C (en) | Method for diagnosing liver fibrosis | |
Pathik et al. | Fibroscan versus simple noninvasive screening tools in predicting fibrosis in high-risk nonalcoholic fatty liver disease patients from Western India | |
Choi et al. | Magnetic resonance-based assessments better capture pathophysiologic profiles and progression in nonalcoholic fatty liver disease | |
Altamirano et al. | Non-invasive diagnosis: non-alcoholic fatty liver disease and alcoholic liver disease | |
Tamaki et al. | Magnetic resonance elastography plus Fibrosis‐4 versus FibroScan–aspartate aminotransferase in detection of candidates for pharmacological treatment of NASH‐related fibrosis | |
Sporea et al. | Liver Stiffness Evaluation by Transient Elastography in Type 2 Diabetes Mellitus Patients with Ultrasound-proven Steatosis. | |
Mummadi et al. | Role of simple biomarkers in predicting fibrosis progression in HCV infection | |
US20070178442A1 (en) | Method for diagnosing liver fibrosis | |
Procino et al. | Reducing NAFLD‐screening time: A comparative study of eight diagnostic methods offering an alternative to ultrasound scans | |
Sumbul et al. | Renal cortical stiffness is markedly increased in pre-diabetes mellitus and associated with albuminuria | |
Pham et al. | Usefulness of Mac-2 binding protein glycosylation isomer in non-invasive probing liver disease in the Vietnamese population | |
Yamada et al. | Elevated serum uric acid is an independent risk factor for nonalcoholic fatty liver disease in Japanese undergoing a health checkup | |
Chaidez et al. | The discriminatory ability of FibroScan liver stiffness measurement, controlled attenuation parameter, and FibroScan–aspartate aminotransferase to predict severity of liver disease in children | |
Nakamura et al. | Diagnosis and pathogenesis of sarcopenia in chronic liver disease using liver magnetic resonance imaging | |
Atzori et al. | The accuracy of ultrasound Controlled Attenuation Parameter in diagnosing hepatic fat content | |
KR20220076779A (en) | Mitochondrial biomarker for non-invasive diagnosis of hepatic steatosis | |
WO2022014580A1 (en) | Marker for non-alcoholic fatty liver disease, method for detecting non-alcoholic fatty liver disease, and reagent and analysis kit for use in said method | |
Nakamura et al. | Mildly low serum sodium levels in chronic liver disease: at risk for sarcopenia and portal hypertension | |
Saitta et al. | Antibody to hepatitis B virus core antigen positivity is a predictor of non-alcoholic fatty liver disease severity | |
Avramovski et al. | The predictive value of the hepatorenal index for detection of impaired glucose metabolism in patients with non-alcoholic fatty liver disease | |
KR20220076778A (en) | Mitochondrial biomarker for non-invasive diagnosis of hepatic fiborsis | |
Morikawa et al. | Non-invasive diagnosis of liver fibrosis | |
RU2684201C1 (en) | Screening diagnosing method for fatty liver degeneration accompanying abdominal obesity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |