KR20220073569A - Time calculation module for electric vehicle battery charging - Google Patents

Time calculation module for electric vehicle battery charging Download PDF

Info

Publication number
KR20220073569A
KR20220073569A KR1020200161757A KR20200161757A KR20220073569A KR 20220073569 A KR20220073569 A KR 20220073569A KR 1020200161757 A KR1020200161757 A KR 1020200161757A KR 20200161757 A KR20200161757 A KR 20200161757A KR 20220073569 A KR20220073569 A KR 20220073569A
Authority
KR
South Korea
Prior art keywords
battery
electric vehicle
calculation module
current
discharge current
Prior art date
Application number
KR1020200161757A
Other languages
Korean (ko)
Inventor
오세영
Original Assignee
한국전기차인프라기술(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기차인프라기술(주) filed Critical 한국전기차인프라기술(주)
Priority to KR1020200161757A priority Critical patent/KR20220073569A/en
Publication of KR20220073569A publication Critical patent/KR20220073569A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

본 발명은 전기 자동차 배터리 충전 소요 시간 계산 모듈에 관한 것으로, 보다 상세하게는 외부환경이나, 이에 영향받는 전기에너지 공급 시스템의 여러 요소들을 고려하여 적절한 전기를 전기 자동차에 효율적으로 공급하기 위하여, 전기 자동차 배터리가 완전 충전되는 데까지 소요되는 시간을 계산하는 모듈에 관한 것으로, 이러한 목적을 달성하기 위하여 본 발명에 따른 전기 자동차 배터리 충전 소요 시간 계산 모듈은 외부 공급 전력의 전압과 전력 및 외기 기온을 측정하고, 현재 배터리 충전 상태와 배터리의 단위시간 당 방전 전류량과 방전 전류에 고율 방전 용량을 연산하여 전기 자동차의 충전에 소요되는 시간을 산출함에 있어서, 상기 배터리 충전상태를 배터리 온도, 방전 전류 크기, 배터리 노후화를 곱하여 산출되는 배터리 효율에 배터리 초기 용량을 곱하여 실시간 방전 가용 용량이 고려된 배터리 현재 상태에 배터리의 방전 전류량을 연산하여 산출하는 모듈을 제공하는 것을 특징으로 한다.The present invention relates to an electric vehicle battery charging time calculation module, and more particularly, in order to efficiently supply appropriate electricity to the electric vehicle in consideration of the external environment and various elements of the electric energy supply system affected by it, the electric vehicle It relates to a module for calculating the time it takes for a battery to be fully charged, and in order to achieve this purpose, the electric vehicle battery charging time calculation module according to the present invention measures the voltage and power of external supply power and outdoor air temperature, In calculating the time required to charge the electric vehicle by calculating the high rate discharge capacity on the current battery charge state, the amount of discharge current per unit time of the battery, and the discharge current, It is characterized in that to provide a module that calculates the amount of discharge current of the battery by multiplying the battery efficiency calculated by the multiplication by the initial capacity of the battery to calculate the amount of discharge current of the battery in consideration of the real-time discharge available capacity.

Description

전기 자동차 배터리 충전 소요 시간 계산 모듈 {TIME CALCULATION MODULE FOR ELECTRIC VEHICLE BATTERY CHARGING}Electric vehicle battery charging time calculation module {TIME CALCULATION MODULE FOR ELECTRIC VEHICLE BATTERY CHARGING}

본 발명은 전기 자동차 배터리 충전 소요 시간 계산 모듈에 관한 것으로, 보다 상세하게는 외부환경이나, 이에 영향받는 전기에너지 공급 시스템의 여러 요소들을 고려하여 적절한 전기를 전기 자동차에 효율적으로 공급하기 위하여, 전기 자동차 배터리가 완전 충전되는 데까지 소요되는 시간을 계산하는 모듈에 관한 것이다.The present invention relates to an electric vehicle battery charging time calculation module, and more particularly, in order to efficiently supply appropriate electricity to the electric vehicle in consideration of the external environment and various elements of the electric energy supply system affected by it, the electric vehicle It is about a module that calculates the time it takes for a battery to be fully charged.

현재의 전기 자동차 전력 인프라는 중앙 집중적으로 생산한 후 일방적으로 송배전되고, 일방적으로 정해진 고정 전압에 기반해서 공급되고 있다. 그러나 각 가정이나 전기 자동체에서 필요로 하는 전압은 다 상이하며, 어떤 가정이나 자동차는 전력 사용량이 많아 더 큰 전압에 의하여 전력을 공급할 필요가 있고, 어떤 가정이나 자동차는 그 반대이다. 이에 직접 태양광 패널을 설치하여 생산되는 에너지를 자급하거나 오히려 남는 전력을 Utility 사업자에게 되파는 가정도 생겨나고 있다. 앞으로는 Plug-in Hybrid 자동차가 향후 20여 년간 급속한 성장세를 보일 것으로 예상되고 있는데, 이렇게 되면 이전에는 가솔린/디젤로만 움직이던 자동차들이 가정의 전력 소비량의 많은 부분을 차지하게 될 것이다. 또한, Utility 사업자로부터 계속적으로 전력을 공급받아 꼬박꼬박 비싼 전기요금을 내느니, 신재생에너지와 에너지 저장장치로 이루어진 자급자족형 에너지 Facility 또는 좀 더 큰 규모의 마이크로 그리드(Micro-Grid)를 가정별, 건물별, 지역별로 구성하고자 하는 니즈도 커지게 될 것이다. 마이크로 그리드는 기존에 소비만하던 수용가 중에서 전력공급망 상에 자체의 발전설비에 의한 자체 소비뿐만 아니라 전력을 공급할 수 있는 능력을 가진 수용가들이 등장하였지만, 기존의 전력공급망에서 이런 자체발전 수용가는 자금자족만 할 뿐, 전체 네트워크에는 기여하지 못하였던 것을 극복하기 위한 것으로, 전력공급망에 산재하는 자체발전 수용가에서 생산하는 전기에너지를 활용하여 전체 네트워크의 에너지 활용을 극대화 시키기 위한 기술이자 새로운 전력 생산/소비 모델이다. 이러한 그리드에 대해 지역적으로 작은 규모로 이루어 진 것을 Micro-Grid라 하고, 전국적인 차원에서 넓은 지역에 걸쳐 이루어 진 것을 Smart Grid, Super Grid, Smart Electric Grid 등 여러 이름으로 불려지고 있다. 대개 마이크로 그리드 시스템은 풍력발전, 태양광발전, 연료전 지 등 다수의 분산전원과 축전지저장장치 같은 에너지 저장장치, 복수의 부하로 구성되며, 각 구성들을 감시제어하기 위한 에너지관리시스템이 통신망을 통하여 연결되어 있다.The current electric vehicle power infrastructure is centrally produced, then unilaterally transmitted and distributed, and unilaterally supplied based on a fixed voltage. However, the voltage required by each household or electric vehicle is different, and some households or automobiles use a large amount of electricity, so it is necessary to supply power by a larger voltage, and in some households or automobiles, the opposite is true. As a result, there are also households in which the energy produced by directly installing solar panels is self-sufficient, or rather, the surplus power is sold back to utility operators. In the future, plug-in hybrid cars are expected to show rapid growth over the next 20 years, and if this happens, cars that previously operated only with gasoline/diesel will occupy a large portion of household electricity consumption. In addition, rather than paying high electricity bills by continuously receiving power from utility operators, a self-sufficient energy facility consisting of renewable energy and energy storage devices or a larger micro-grid for each household, The need to organize by building and by region will also increase. In the case of microgrids, consumers who have the ability to supply power as well as their own consumption by their own power generation facilities have appeared on the power supply network, but in the existing power supply network, these self-generation consumers are only financially self-sufficient. It is a new power generation/consumption model and a technology to maximize the energy utilization of the entire network by utilizing the electric energy produced by self-generated consumers scattered across the power supply network. . For such a grid, a small-scale localized microgrid is called a micro-grid, and a nationally large-scale one is called by various names such as Smart Grid, Super Grid, and Smart Electric Grid. Usually, a microgrid system consists of a plurality of distributed power sources such as wind power generation, solar power generation, and fuel cells, an energy storage device such as a storage battery storage device, and a plurality of loads. connected.

전 세계적인 인식의 변화와 정부의 추진, 또 이에 따른 시장의 흐름으로 보았을 때, 향후에는 다양한 에너지원과 새로운 형태 및 규모의 에너지 수요처를 유동적이면서 효율적으로 묶어 운영할 수 있는 시스템이 요구될 수 밖에 없지만, 이 시스템은 비선형적인 특성과 어려운 미래예측 특성으로 말미암아 상당한 기술적 어려움이 존재한다. 예로, Hybrid 자동차 같은 경우 단 두 개의 에너지원(엔진과 배터리)으로 이루어져 있지만, 에너지 소비 패턴의 다양성으로 말미암아 최적화가 상당히 어렵다. 따라서 보다 많은 에너지원과 더 다양한 에너지 수요처를 유동적으로 통합하고 운영하여 최적의 결과, 즉 최소의 전압만으로 에너지 소비 만족을 실현할 수 있는 시스템이 필요하다.In view of the global change of perception, the government's promotion, and the resulting market flow, a system that can flexibly and efficiently combine various energy sources and new types and sources of energy demand in the future will be required. However, this system presents significant technical difficulties due to its non-linear nature and difficult forward-looking nature. For example, a hybrid car consists of only two energy sources (engine and battery), but optimization is quite difficult due to the diversity of energy consumption patterns. Therefore, there is a need for a system that can flexibly integrate and operate more energy sources and more diverse energy demanders to achieve optimal results, that is, energy consumption satisfaction with minimal voltage.

그러기 위하여는 각 전기 자동차의 배터리 상태를 측정하고, 전기 자동차 배터리 충전에 소요되는 시간을 계산하는 것이 필요하다.To do this, it is necessary to measure the battery state of each electric vehicle and calculate the time required to charge the electric vehicle battery.

본 발명은 외부 환경과 이에 영향받는 전기 공급시스템의 여러 요소를 고려하여 시스템을 운영하기 위하여, 각 전기 자동차의 배터리충전에 소요되는 시간을 계산하는 모듈을 제공하기 위한 것을 목적으로 한다.An object of the present invention is to provide a module for calculating the time required to charge a battery of each electric vehicle in order to operate the system in consideration of the external environment and various factors of the electricity supply system affected therewith.

이러한 목적을 달성하기 위하여 본 발명에 따른 전기 자동차 배터리 충전 소요 시간 계산 모듈은 외부 공급 전력의 전압과 전력 및 외기 기온을 측정하고, 현재 배터리 충전 상태와 배터리의 단위시간 당 방전 전류량과 방전 전류에 고율 방전 용량을 연산하여 전기 자동차의 충전에 소요되는 시간을 산출함에 있어서, 상기 배터리 충전상태를 배터리 온도, 방전 전류 크기, 배터리 노후화를 곱하여 산출되는 배터리 효율에 배터리 초기 용량을 곱하여 실시간 방전 가용 용량이 고려된 배터리 현재 상태에 배터리의 방전 전류량을 연산하여 산출하는 모듈을 제공하는 것을 특징으로 한다.In order to achieve this object, the electric vehicle battery charging time calculation module according to the present invention measures the voltage, power, and outdoor air temperature of externally supplied power, and provides a high rate of the current battery charge state, the amount of discharge current per unit time of the battery, and the discharge current In calculating the time required to charge the electric vehicle by calculating the discharge capacity, the real-time discharge available capacity is considered by multiplying the battery efficiency calculated by multiplying the battery charge state by the battery temperature, the size of the discharge current, and the aging of the battery by the initial capacity of the battery It is characterized in that it provides a module for calculating and calculating the amount of discharge current of the battery in the current state of the battery.

이상에서 설명한 바와 같이 본 발명에 의하면, 많은 분산전원과 다양한 에너지 수요처를 유동적으로 통합하고 운영하여 최적의 결과, 즉 최소의 전압만으로 에너지 소비 만족을 실현할 수 있는 시스템 및 방을 운용함에 있어, 각 전기 자동차의 배터리충전에 소요되는 시간을 계산하는 모듈을 제공할 수 있다.As described above, according to the present invention, in operating a system and room that can realize energy consumption satisfaction with only a minimum voltage by flexibly integrating and operating many distributed power sources and various energy demanders, each electricity It is possible to provide a module for calculating the time required to charge the vehicle's battery.

도 1은 본 발명의 일실시예에 따른 전기 자동차 배터리 충전 소요 시간 계산 모듈을 도시한 도면이다.1 is a diagram illustrating a charging time calculation module for an electric vehicle battery according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예를 첨부된 도면 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일실시예에 따른 전기 자동차 배터리 충전 소요 시간 계산 모듈의 구성을 개략적으로 나타낸 것이다. 1 schematically shows the configuration of an electric vehicle battery charging time calculation module according to an embodiment of the present invention.

도 1을 참조하여 설명하면, 전기 자동차 배터리 충전 소요 시간 계산 모듈(10)은 배터리(1)의 모듈전압을 측정하는 전압센서부(11)와, 전지관리시스템(10) 외부에 구비된 충·방전 전류센서부(4)와 온도센서부(3)에서 측정된 충·방전 전류 및 온도를 입력받아 디지털 값으로 변환하는 A/D 컨버터부(12)로 구성된다.Referring to FIG. 1 , the electric vehicle battery charging time calculation module 10 includes a voltage sensor unit 11 for measuring the module voltage of the battery 1 , and a charging/recharging/recharging system provided outside the battery management system 10 . It is composed of a discharge current sensor unit 4 and an A/D converter unit 12 that receives the charge/discharge current and temperature measured by the temperature sensor unit 3 and converts it into a digital value.

상기 전압센서부(11)는 배터리(1)의 모듈전압을 28개까지 센싱(Sensing) 가능하고, 축전지(1)의 모듈전압 범위는 0∼18V가 된다. The voltage sensor unit 11 can sense up to 28 module voltages of the battery 1, and the module voltage range of the storage battery 1 is 0 to 18V.

상기 충·방전 전류센서부(4) 및 온도센서부(3)는 전지관리시스템(10)의 외부에 부착되고, 이들을 통해 감지된 충·방전 전류 및 온도는 전지관리시스템(10)의 A/D 컨버터부(12)를 통해 디지털 값으로 변환된다.The charge/discharge current sensor unit 4 and the temperature sensor unit 3 are attached to the outside of the battery management system 10, and the charge/discharge current and temperature sensed through them are A/ It is converted into a digital value through the D converter unit 12 .

일반적으로 배터리는 충전시 배터리 온도가 높을수록 충전완료 전압이 낮아지고, 그렇기 때문에 충전용량도 상대적으로 적어지는 현상이 발생된다. 또한, 충·방전 사이클(Cycle)이 증가할수록 내부 임피던스(Impedance)가 커짐으로 충전완료 전압에 도달하였을 때 충전용량이 상대적으로 적어지는 현상이 발생된다. 따라서, 일반적인 배터리는 전완료시 조건에 따라 충전용량이 동일하지 않은 특성을 갖는다.In general, when the battery is charged, the higher the battery temperature, the lower the charging completion voltage, and therefore the relatively small charging capacity occurs. In addition, as the charge/discharge cycle increases, the internal impedance increases, so that when the charging completion voltage is reached, the charging capacity is relatively decreased. Therefore, a typical battery has a characteristic that the charging capacity is not the same depending on the condition at the time of full completion.

본 발명에 따른 축전지의 충전상태 추정방법은 상술한 바와 같은 축전지의 충전완료 조건에 따라 동일하지 않은 충전 용량의 특성을 감안하여, 도시된 바와 같이 충전용량에 대한 온도와 충·방전 전류 횟수에 대한 함수를 도출하고, 이 함수로부터 얻어진 충전용량을 방전때의 기본 방전용량으로 이용하는 알고리즘(Algorithm)을 통하여 충전상태(State Of Charge; SOC) 추정에 있어 오차 발생을 방지한다.The method for estimating the state of charge of a storage battery according to the present invention takes into account the characteristics of the charging capacity that are not the same depending on the charging completion condition of the storage battery as described above, and the temperature for the charging capacity and the number of charge and discharge currents for the charging capacity as shown. An error in estimating the state of charge (SOC) is prevented through an algorithm that derives a function and uses the charge capacity obtained from this function as the basic discharge capacity at the time of discharging.

먼저, 전기 자동차 배터리 충전 소요 시간 계산 모듈(10)은 배터리 충전시 축전지의 전압, 전류, 온도 등에 의해 충전완료 조건을 결정한다. 이때, 전지관리시스템(10)은 전압센서부(11), 충·방전 전류 센서부(4), 온도센서부(3)에서 각각 감지된 전압, 충·방전 전류, 온도 등이 상기 결정된 축전지의 충전완료 조건을 만족하면 충전을 종료한다.First, the electric vehicle battery charging time calculation module 10 determines a charging completion condition according to the voltage, current, temperature, etc. of the storage battery when charging the battery. At this time, the battery management system 10 includes the voltage sensor unit 11, the charge/discharge current sensor unit 4, and the temperature sensor unit 3 respectively detected voltage, charge/discharge current, temperature, etc. of the determined storage battery. When the charging completion condition is satisfied, charging is terminated.

다음, 전기 자동차 배터리 충전 소요 시간 계산 모듈(10)은 배터리의 충전완료 조건과 축전지의 온도 및 충·방전 횟수에 따라 함수를 도출하고, 이 함수로부터 충전용량을 결정한다. 이때, 결정된 충전용량은 방전시의 기본 충전용량으로 이용된다.Next, the electric vehicle battery charging time calculation module 10 derives a function according to the charging completion condition of the battery, the temperature of the storage battery, and the number of times of charging and discharging, and determines the charging capacity from this function. In this case, the determined charging capacity is used as a basic charging capacity during discharging.

그리고, 축전지의 방전시 상기 결정된 충전용량에 따라 축전지의 사용가능용량(Ah-available)을 푸케방정식(Peukert's Formula)을 이용하여 계산한다.Then, when the battery is discharged, the usable capacity (Ah-available) of the storage battery is calculated according to the determined charging capacity using Peukert's Formula.

배터리의 충전 모드에서 충전되는 배터리의 전압 상태가 만충전의 영역에 도달하게 되면 도시되지 않은 배터리 관리 시스템(Battery Management System :BMS)은 서로 다른 전압을 유지하고 있는 전체 배터리 모듈의 전을 검출한 다음 이를 바탕으로 배터리 팩의 평균 전압을 검출한다. 이후, 검출된 평균 전압과 각 모듈의 전압을 비교하여 평균 전압 이상을 유지하는 모듈과 그 이하를 유지하는 모듈의 개수를 카운터 업 하여, 카운트된 개수가 설정치 이상, 즉 평균 전압 이하를 유지하고 있는 모듈의 개수가 전체 배터리 모듈의 개수 절반 이상을 초과하는지를 판단한다. 상기에서 카운트된 배터리 모듈의 개수가 설정치 이상, 즉 평균 전압 이하를 유지하고 있는 배터리 모듈의 개수가 전체 배터리 모듈 개수의 절반 이하인 상태이면 정상적인 충전상태를 유지하고 있는 것으로 판단하여 현재의 충전 전류 공급 상태를 유지하여 주고, 절반 이상인 상태로 검출되면 적어도 하나 이상의 배터리 모듈이 최고 전압으로 충전되어 있는 것으로 판단하여 충전 전류를 설정된 조건으로 감소시켜 공급하며, 설정된 일정시간의 경과가 검출되면 급속 충전 모드에서 정상 충전모드로 전이시켜 안정된 충전 전압의 공급을 유지하여 준다.In the battery charging mode, when the voltage state of the charged battery reaches the full charge range, a battery management system (BMS) (not shown) detects the charge of all battery modules maintaining different voltages, and then Based on this, the average voltage of the battery pack is detected. After that, by comparing the detected average voltage and the voltage of each module, the number of modules maintaining above the average voltage and the number of modules maintaining below it are counted up, and the counted number is above the set value, that is, below the average voltage. It is determined whether the number of modules exceeds half or more of the total number of battery modules. If the number of battery modules counted above is greater than or equal to the set value, that is, when the number of battery modules maintaining an average voltage or less is less than half of the total number of battery modules, it is determined that a normal charging state is maintained and the current charging current supply state When it is detected as half or more, it is determined that at least one battery module is charged with the highest voltage and the charging current is reduced to the set condition and supplied. It transitions to the charging mode and maintains a stable supply of charging voltage.

상기와 같은 과정을 통하여, 본 발명에 의한 전기 자동차 배터리 충전 소요시간 계산 모듈은 전력을 공급받는 전기 자동차 배터리의 충전 소요 시간을 정확하게 파악함으로써, 그리드 내에서 전력을 공급받는 전기 자동차들의 수요를 정확하게 파악함으로써, 전력을 효율적으로 공급할 수 있게 된다.Through the above process, the electric vehicle battery charging time calculation module according to the present invention accurately grasps the charging time of the electric vehicle battery receiving power, thereby accurately grasping the demand of electric vehicles supplied with power within the grid. This makes it possible to efficiently supply power.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

1: 배터리
2 : 부하
3 : 온도센서부
4 : 저항
11 : 전압 센서부
12 : A/D 컨버터부
1: battery
2: load
3: temperature sensor unit
4: resistance
11: voltage sensor unit
12: A/D converter unit

Claims (2)

외부 공급 전력의 전압과 전력 및 외기 기온을 측정하고, 현재 배터리 충전 상태와 배터리의 단위시간 당 방전 전류량과 방전 전류에 고율 방전 용량을 연산하여 전기 자동차의 충전에 소요되는 시간을 산출하는 전기 자동차 배터리 충전 소요 시간 계산 모듈.An electric vehicle battery that measures the voltage and power of externally supplied power and outdoor air temperature and calculates the high-rate discharge capacity based on the current battery charge state, the amount of discharge current per unit time of the battery, and the discharge current to calculate the time it takes to charge the electric vehicle Charging time calculation module. 제 1항에 있어, 상기 배터리 충전상태를 배터리 온도, 방전 전류 크기, 배터리 노후화를 곱하여 산출되는 배터리 효율에 배터리 초기 용량을 곱하여 실시간 방전 가용 용량이 고려된 배터리 현재 상태에 배터리의 방전 전류량을 연산하여 산출하는 전기 자동차 배터리 충전 소요 시간 계산 모듈.According to claim 1, wherein the battery charge state is multiplied by the battery efficiency calculated by multiplying the battery temperature, the size of the discharging current, and the aging of the battery by multiplying the initial capacity of the battery to calculate the amount of discharging current of the battery in the current state of the battery in which the real-time discharging available capacity is considered. Electric vehicle battery charging time calculation module that calculates.
KR1020200161757A 2020-11-26 2020-11-26 Time calculation module for electric vehicle battery charging KR20220073569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200161757A KR20220073569A (en) 2020-11-26 2020-11-26 Time calculation module for electric vehicle battery charging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200161757A KR20220073569A (en) 2020-11-26 2020-11-26 Time calculation module for electric vehicle battery charging

Publications (1)

Publication Number Publication Date
KR20220073569A true KR20220073569A (en) 2022-06-03

Family

ID=81982506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200161757A KR20220073569A (en) 2020-11-26 2020-11-26 Time calculation module for electric vehicle battery charging

Country Status (1)

Country Link
KR (1) KR20220073569A (en)

Similar Documents

Publication Publication Date Title
Kebede et al. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application
Li et al. Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems
Wi et al. Electric vehicle charging method for smart homes/buildings with a photovoltaic system
Qiu et al. A field validated model of a vanadium redox flow battery for microgrids
Ota et al. Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition
Jallouli et al. Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices
CN109713696A (en) Consider the electric car photovoltaic charge station Optimization Scheduling of user behavior
Hussein et al. Distributed battery micro-storage systems design and operation in a deregulated electricity market
Lu et al. Multi-objective optimal scheduling of a DC micro-grid consisted of PV system and EV charging station
CN102104257A (en) Energy storage system of apartment building, integrated power management system, and method of controlling the system
CN102130464A (en) Power storage apparatus, method of operating the same, and power storage system
CN109217290A (en) Meter and the microgrid energy optimum management method of electric car charge and discharge
CN106709610A (en) Micro-grid electricity energy storage and ice storage combined optimization scheduling method
Kong et al. A bridgeless PFC converter for on-board battery charger
Meiqin et al. Economic analysis of the microgrid with multi-energy and electric vehicles
Martinez Modeling and characterization of energy storage devices
Gundogdu et al. A fast battery cycle counting method for grid-tied battery energy storage system subjected to microcycles
Gong et al. Optimization of aggregated EV power in residential communities with smart homes
Purvins et al. Electric vehicle charging system model for accurate electricity system planning
Telaretti et al. A simple operation strategy of battery storage systems under dynamic electricity pricing: An Italian case study for a medium-scale public facility
Amir et al. Integration of EVs aggregator with microgrid and impact of V2G power on peak regulation
Ota et al. An autonomous distributed vehicle-to-grid control of grid-connected electric vehicle
CN107092975B (en) AC-DC hybrid micro-grid economic optimization method based on energy storage loss integral
Bhatti et al. Charging of electric vehicle with constant price using photovoltaic based grid-connected system
CN105098810A (en) Adaptive micro grid energy storage system energy optimization management method