KR20220071542A - 광케이블 내 음파감지를 통한 누수 탐지 시스템 - Google Patents

광케이블 내 음파감지를 통한 누수 탐지 시스템 Download PDF

Info

Publication number
KR20220071542A
KR20220071542A KR1020200158801A KR20200158801A KR20220071542A KR 20220071542 A KR20220071542 A KR 20220071542A KR 1020200158801 A KR1020200158801 A KR 1020200158801A KR 20200158801 A KR20200158801 A KR 20200158801A KR 20220071542 A KR20220071542 A KR 20220071542A
Authority
KR
South Korea
Prior art keywords
leak
water
unit
optical cable
frequency
Prior art date
Application number
KR1020200158801A
Other languages
English (en)
Other versions
KR102596045B1 (ko
Inventor
박석원
이일우
정구열
Original Assignee
주식회사 아리안
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아리안 filed Critical 주식회사 아리안
Priority to KR1020200158801A priority Critical patent/KR102596045B1/ko
Publication of KR20220071542A publication Critical patent/KR20220071542A/ko
Application granted granted Critical
Publication of KR102596045B1 publication Critical patent/KR102596045B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

본 발명은 광케이블 내부에 조사된 광의 산란파의 주파수를 분석하여 광섬유 케이블이 내설된 구간 내의 누수 여부를 판단하고, 누수데이터에 의해 생성된 기계 학습 알고리즘을 통해 상하수도관의 상태 정보를 판단할 수 있는 광케이블 내 음파감지를 통한 누수 탐지 시스템에 관한 것이다. 본 발명은 광케이블 내부에 조사된 광의 산란파의 주파수별 진폭의 평균값 및 최대값을 측정하여 누수 여부를 판단하되, 누수가 발생된 구간의 유량과 수압을 계측하여 실제로 누수가 되었는지 여부를 판단함으로서, 기존 광통신용 광케이블을 이용하여 별도의 센서 장비 없이 누수를 판단할 수 있는 이점이 있다. 또한, 본 발명은 누수데이터에 대한 특징 정보를 통해 기계 학습 알고리즘을 생성하고, 생성된 기계 학습 알고리즘을 통해 상하수도관의 상태 정보를 판단함으로서, 누수 및 상하수도관의 이상 상황을 예측할 수 있는 이점이 있다.

Description

광케이블 내 음파감지를 통한 누수 탐지 시스템 {Leakage detection system through sound wave detection in optical cables}
본 발명은 광케이블 내 음파감지를 감지하여 누수를 탐지하는 시스템에 관한 것으로, 보다 상세하게는 광케이블 내부에 조사된 광의 산란파의 주파수를 분석하여 광섬유 케이블이 내설된 구간 내의 누수 여부를 판단하고, 누수데이터에 의해 생성된 기계 학습 알고리즘을 통해 상하수도관의 상태 정보를 판단할 수 있는 광케이블 내 음파감지를 통한 누수 탐지 시스템에 관한 것이다.
누수란 상하수도 등의 관로에서 물이 새는 현상을 말한다. 누수가 시작되는 지점을 정확하게 탐지하는 것을 누수탐지라고 부르는데, 누수탐지는 크게 가정집, 빌라, 아파트 등의 건물 내부의 내부누수탐지와 건물외부, 공장, 창고 등의 외부누수탐지로 나눌 수 있다.
기존의 누수 탐지는 일반적으로 사용자가 직접 장비를 들고 이동하면서 누수 발생 탐지를 하는 방식으로 진행하기 때문에 작업 속도도 느리며, 작업자의 경험에 많은 부분을 의존해야 한다. 또한 누수 탐지의 정확도를 높이기 위해서는 물 사용이 적은 심야시간에 탐지를 해야 하기 때문에 작업에 어려움이 따른다.
종래의 수도관용 누수감지장치는 수도관의 누수시에 발생되는 수압강하를 검출하는 압력센서나 음향센서를 통해 수도관의 누수를 감지하는 방식이 주로 사용되고 있다.
이에 한국등록특허 제10-1406507호(이하 '선행문헌'이라 칭함)는 도관의 누수시에 발생되는 수압강하를 검출하는 압력센서와 수도관의 누수시에 발생되는 음파를 검출하는 음향센서가 함께 구비됨에 따라 수도관의 누수 여부가 정확하면서도 신속하게 감지될 수 있도록 한 음향/압력 복합센서를 구비한 상수도관용 누수감지장치에 관한 것이다. 선행문헌은 수도관의 누수시에 발생되는 수압강하를 검출하는 압력센서와 수도관의 누수시에 발생되는 음파를 검출하는 음향센서가 함께 구비됨에 따라 수도관의 미미한 누수 여부까지도 정확하면서도 신속하게 감지될 수 있는 장점이 있다.
선행문헌은 압력센서와 음향센서를 모두 사용하여 수도관의 누수를 측정하고 있으나, 음향센서나 압력센서 중 어느 하나가 누수로 판단하지 않을 경우, 누수의 진위 여부를 판단하는데 어려움이 발생된다. 단순히 2개의 센서를 구비함에 따라 누수 감지 성능이 뛰어나다고 할수 만은 없다.
이에 한국등록특허 제10-1406507호(발명의 명칭 : 음향/압력 복합센서를 구비한 상수도관용 누수감지장치, 등록일 : 2014.06.03)
본 발명은 위와 같은 문제점을 해결하기 위해 광케이블 내부에 조사된 광의 산란파의 주파수별 진폭의 평균값 및 최대값을 측정하여 누수 여부를 판단하되, 누수가 발생된 구간의 유량과 수압을 계측하여 실제로 누수가 되었는지 여부를 판단하는데 그 목적이 있다.
또한, 본 발명은 누수데이터에 대한 특징 정보를 통해 기계 학습 알고리즘을 생성하고, 생성된 기계 학습 알고리즘을 통해 상하수도관의 상태 정보를 판단하는데 그 목적이 있다.
본 발명의 광케이블 내부에 광을 조사하고, 외부 이벤트에 의해 발생된 산란파를 수신하여 분포형음파센싱부, 및 기 설정된 알고리즘을 통해 상기 산란파의 주파수를 분석하여 상기 광케이블이 내설된 구간 내의 누수 여부를 판단하는 누수판단부를 포함하는 음향측정부와 상수도의 유량과 수압을 계측하는 센서부와 상기 음향측정부에 의해 누수가 발생된 구간이 식별되면, 상기 센서부를 통해 상기 누수가 발생된 구간의 유량과 수압을 계측하여 실제로 누수가 되었는지 여부를 판단하는 관제서버를 포함함한다.
본 발명의 상기 음향측정부는 상기 산란파의 주파수성분을 분석하는 주파수분석부, 설정된 시간에 대한 주파수별 진폭의 평균값 및 최대값을 측정하는 진폭측정부, 및 상기 측정된 진폭의 최대값이 기 설정된 수치보다 높거나, 상기 최대값이 상기 평균값보다 임계치 이상인지 여부를 판단하는 판단부, 및 상기 관제서버에 의해 실제 누수가 된것으로 판단되지 않으면, 상기 기 설정된 알고리즘을 수정하는 알고리즘수정부를 포함한다.
본 발명의 상기 관제서버는 실제 누수가 된것으로 판단되면, 상기 누수데이터를 저장하는 데이터저장부, 상기 누수데이터에 대한 특징 정보를 추출하는 특징정보추출부, 상기 추출된 특징정보를 통해 기계 학습 알고리즘을 생성하는 알고리즘생성부, 및 상기 생성된 기계 학습 알고리즘을 통해 상기 광케이블이 내설된 구간 내의 상태 정보를 판단하는 인공지능판단부를 포함한다.
본 발명의 상기 특징정보추출부는 상기 누수데이터의 주파수성분을 분석하여 주파수 영역을 식별하는 주파수영역식별부, 및 상기 주파수 영역에 기 설정된 필터를 적용하고, 각 주파수의 대역별 세기를 측정하여 상기 주파수 영역의 고유한 특징을 추출하는 주파수특징추출부를 포함한다.
본 발명의 상기 관제서버는 상기 구간 내의 누수 및 상기 상태정보가 비정상인 것으로 판단되면, 상기 누수 및 비정상 상태에 대한 이벤트정보를 외부 단말기로 전송한다.
본 발명은 광케이블 내부에 조사된 광의 산란파의 주파수별 진폭의 평균값 및 최대값을 측정하여 누수 여부를 판단하되, 누수가 발생된 구간의 유량과 수압을 계측하여 실제로 누수가 되었는지 여부를 판단함으로서, 기존 광통신용 광케이블을 이용하여 별도의 센서 장비 없이 누수를 판단할 수 있는 이점이 있다.
또한, 본 발명은 누수데이터에 대한 특징 정보를 통해 기계 학습 알고리즘을 생성하고, 생성된 기계 학습 알고리즘을 통해 상하수도관의 상태 정보를 판단함으로서, 누수 및 상하수도관의 이상 상황을 예측 및 모니터링할 수 있는 이점이 있다.
도 1은 광케이블 내부에 광을 조사하여 상수관로의 누수를 탐지하는 방식을 설명하기 위한 도면이다.
도 2는 본 발명에 따른 광케이블 내 음파감지를 통한 누수 탐지 시스템의 구성도이다.
도 3은 본 발명에 따른 음향신호를 통한 누수감지 및 기계 학습 알고리즘 생성방법을 설명하기 위한 플로우챠트이다.
도 4는 본 발명에 따른 산란파의 주파수를 분석하여 누수를 판단하는 알고리즘이다.
도 5는 Cepstrum 분석을 나타내는 도면이다.
도 6은 본 발명에 따른 기계 학습 알고리즘을 기반으로 하는 누수 탐지 방법을 설명하기 위한 플로우챠트이다.
이하, 본 발명의 바람직한 실시 예에 대하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. 본 발명의 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
도 1은 광케이블 내부에 광을 조사하여 상수관로의 누수를 탐지하는 방식을 설명하기 위한 도면이다. 도 1을 참조하면, 본 발명은 분포형음파센싱(DAS : Distributed Acoustic Sensing) 계측 기술을 통해 상수관로 근접 및 교차구간의 발생하는 미세한 누수를 감지할 수 있다. 분포형음파센싱부(100)는 광케이블 (200)내로 광선을 조사한다. 광케이블(200)에 인접한 곳에서 소리 등의 이벤트가 발생되면, 광케이블(200)에 변형이 가해지며, 조사된 광의 산란이 변경된다. 산란파는 이벤트에 따라 서로 다른 성격을 가지며, 분포형음파센싱부(100)는 반사된 산란파를 측정/처리한다.
도 2는 본 발명에 따른 광케이블 내 음파감지를 통한 누수 탐지 시스템의 구성도이다.
도 2를 참조하면, 음향측정부(1000)는 상수도관의 누수를 측정하기 위해 복수개(n)로 구성될 수 있으며, 음향측정부(1000)는 측정된 누수감지이벤트와 energe/trace 정보를 관제서버(2000)로 전송한다. 음향측정부(1000)는 분포형음파센싱부(100)와 누수판단부(110)으로 구성될 수 있다. 분포형음파센싱부(100)에 의해 측정된 산란파는 MEC(Mobile Edge Computing)를 기반으로 누수판단부(120)로 전송된다. 누수판단부(120)는 기 설정된 알고리즘을 통해 산란파의 주파수를 분석하여 광케이블(200)이 내설된 구간 내의 누수 여부를 판단한다. 누수를 판단하는 알고리즘은 후술하도록 한다.
관제서버(2000)는 센서부(3000)로부터 누수가 발생된 구간의 유량과 수압을 계측정보를 수신하며, 실제로 누수가 발생되었는지 여부를 판단한다.
센서부(3000)는 상수도관의 유량과 수압을 계측하기 위한 유량계실(310), 유량계실(310)에서 계측된 유량과 수압의 정보를 수집하기 위한 센서정보수집부(320), 유량과 수압정보를 관제서버(2000)로 전송하기 위한 센서통신부(320)를 포함할 수 있다.
관제서버(2000)는 실제 누수가 된것으로 판단되면, 누수데이터를 데이터저장부(210)에 저장한다. 특정정보추출부(220)는 누수데이터에 대한 기계 학습 알고리즘을 생성하기 위한 특징 정보를 추출한다. 특징정보는 Spectrogram, MFCC 등이 활용될 수 있으며, 주파수성분을 분석하여 주파수 영역을 식별하는 주파수영역식별부와 주파수 영역에 기 설정된 필터를 적용하고, 각 주파수의 대역별 세기를 측정하여 주파수 영역의 고유한 특징을 추출하는 주파수특징추출부를 포함할 수 있다.
알고리즘생성부(230)는 추출된 특징정보를 통해 기계 학습 알고리즘을 생성하며, Train Model외 Gaussian Mixture Model (GMM), Hidden Markov Model(HMM), Naive Bayes (NB), Restricted Boltzmann Machine (RBM), Thompson Sampling과 같은 알고리즘이 적용될 수 있다.
인공지능판단부(240)는 생성된 기계 학습 알고리즘을 통해 광케이블(200)이 내설된 구간 내의 상태를 판단한다.
서버통신부(250)는 누수 및 상수도관의 상태정보에 대한 이벤트정보를 외부 단말기로 전송한다.
한편, 관제서버(2000)에 의해 실제 누수가 된것으로 판단되지 않으면, 음향측정부(1000)는 기 설정된 알고리즘을 수정한다.
도 3은 본 발명에 따른 음향신호를 통한 누수감지 및 기계 학습 알고리즘 생성방법을 설명하기 위한 플로우챠트이다.
도 3을 참조하면, 음향측정부(1000)는 광케이블(200)에 광신호를 조사하여 실시간으로 누수를 계측한다(S1010). 음향측정부(1000)는 기 설정된 알고리즘을 통해 반사되어 수신된 산란판의 주파수를 분석하여 누수를 감지한다(1030).
도 4는 본 발명에 따른 산란파의 주파수를 분석하여 누수를 판단하는 알고리즘이다. 도 4를 참조하면. 음향측정부(1000)는 분포형음파센싱(DAS : Distributed Acoustic Sensing) 계측 기술을 통해 산란파의 DAS 데이터(1600 samples/sec)를 수집한다(1031). 음향측정부(1000)의 주파수영역식별부는 퓨리에변환(FFT)를 통해 시간 영역(time domain)으로 표현된 산란파를 주파수 영역(Frequency domain)으로 변환한다(S1032). 퓨리에변환(FFT)에 의해 산란파가 Spectrum으로 표현되면, 가로축의 단위는 주파수가 되고, 세로축의 단위는 데시벨(dB)이 된다. 따라서 산란파의 Spectrum을 통해 각 주파수대의 강도를 dB단위로 확인할 수 있다.
진폭측정부는 산란파의 Spectrum을 통해 1분(60s)간 주파수별 진폭의 평균값을 계산한다(S1033). 이는 진폭값이 일정하게 유지 되지 않는 주파수를 상쇄하기 위함이다.
판단부는 측정된 진폭의 최대값이 기 설정된 수치(100Hz)보다 높거나, 최대값이 평균값보다 임계치 이상인지 여부를 판단((max / avg) > 임계치)한다.
임계치의 경우, 통상적으로 최한시(매일 하루중 01~04시로, 물사용량이 가장 적은 시간대)의 한달 정도의 평균 데이터를 기준으로 선정한다. 수집되는 데이터를 학습 및 통계화하여 해당 시간대의 데이터를 축척하며, 축척된 데이터가 기준 데이터 대비 일정 수준 이상을 넘어서는지 여부와, 기간 등을 고려하여 임계치를 설정한다. 일 예로, 기준 데이터 대비 20%이상, 48시간과 같이 임계치를 설정할 수 있을 것이며, 이는 관리자에 의해 변경 설계 가능한 사항이다.
Spectrum은 중요한 정보를 모두 담고 있지만, 그 값의 범위가 일정하지 않은 문제가 있음에 따라 spectrum 신호 전체를 균일하게 시각화하기 위한 Cepstrum 분석을 실시한다.
도 5는 Cepstrum 분석을 나타내는 도면이다. 도 5와 같이, Spectrum 신호의 로그값에 역퓨리에 변환(IFF)을 하면 Cepstrum이 된다. 로그함수는 두 개의 곱으로 형성된 함수를 합으로 분리하여 낼 수 있음에 따라, 주파수 영역으로 변환된 신호의 크기와 위상을 분리할 수 있다.
다시 도 3을 살펴보면, 음향측정부(1000)는 누수가 감지되면, 관제서버(2000)로 누수감지이벤트를 전송한다(S1040). 관제서버(2000)는 누수감지이벤트가 수신되면, 센서부(3000)로 유량/수압 계측 정보를 요청한다(S1050). 센서부(3000)는 실시간으로 유량/수입을 계측하되(S1020), 관제서버(2000)로부터 전송된 요청신호에 따라 실시간 유량/수압 계측정보를 관제서버(2000)로 전송한다(S1060).
관제서버(2000)는 수신된 유량/수압 계측정보를 통해 실제로 누수가 되었는지 여부를 판단한다(S1070). 관제서버(2000)에 의해 실제로 누수가 되지 않은것으로 판단되면, 음향측정부(1000)는 누수를 판단하는 알고리즘을 수정한다(S1080).
반면, 관제서버(2000)는 실제 누수가 된것으로 판단되면, 누수데이터를 데이터저장부(210)에 저장한다(S1090). 관제서버(2000)는 누수데이터에 대한 기계 학습 알고리즘을 생성하기 위한 특징 정보를 추출한다(S1100). 관제버(2000)는 추출된 특징정보를 통해 기계 학습 알고리즘을 생성한다(S1120).
이하 도 6을 통해 본 발명에 따른 기계 학습 알고리즘을 기반으로 하는 누수 탐지 방법을 설명한다. 도 6을 살펴보면, 음향측정부(1000)는 광케이블(200)에 광신호를 조사하여 실시간으로 누수를 계측한다(S2010). 음향측정부(1000)는 산란판의 주파수를 분석하여 누수를 감지한다(2020). 음향측정부(1000)는 누수가 감지되면, 1차 누수감지정보를 관제서버(2000)로 전송한다(S2020). 관제서버(2000)는 1차적으로 누수 의심을 예측(S2030)하며, 센서부(3000)로 유량/수압 계측 정보를 수신받는다(S2040). 관제서버(2000)는 수신된 유량/수압 계측정보를 통해 실제로 누수가 된것으로 판단하면, 기계 학습 알고리즘을 통해 1차적으로 상수도관의 상태를 예측한다(S2050). 관제서버(2000)는 1차 누수 의심 및 비정상 상태 및 누수 계측 정보를 시각화한다(S2060).
음향측정부(1000)는 1차 누수 의심을 예측한 이후, 소정 시간이 지나면, 일 예시로 익일 동일한 시간대(일반적으로 물 사용이 적은 심야시간)에 2차적으로 누수를 계측한다. 음향측정부(1000)는 2차적으로 누수 감지가 예측되면, 2차 누수감지정보를 관제서버(2000)로 전송한다(S2070). 관제서버(2000)는 2차적으로 누수 의심을 예측(S2080)하며, 센서부(3000)로 유량/수압 계측 정보를 재수신한다(S2090). 관제서버(2000)는 수신된 유량/수압 계측정보를 통해 실제로 누수가 된것으로 재판단하면, 기계 학습 알고리즘을 통해 2차적으로 상수도관의 상태를 예측한다(S2100). 관제서버(2000)는 2차 누수 의심 및 비정상 상태 및 누수 계측 정보를 시각화한다(S2110).
관제서버(2000)는 누수 의심 및 비정상 상태에 대한 이벤트 정보를 외부단말기(4000)로 전송한다(S2120). 여기서 외부단말기(4000)는 누수가 발생되는 현장을 탐사하는 관리자의 단말기를 의미하며, 외부단말기(4000)는 수신된 이벤트 정보를 통해 누수가 발생된 상수도관의 정보를 확인한다(S2130). 관리자는 누수가 발생된 상수도관의 현장을 방문하여 누수에 대한 조치를 취한다(S2140). 누수 조치가 완료되며, 외부단말기(4000)는 누수 조치 알림을 관제서버(2000)로 전송한다(S2150).
관제서버(2000)는 수신된 누수 조치 알림에 따라 누수된 상수도관이 정비된 것으로 판단하고, 누수 이벤트를 종료한다(S2160).
본 발명을 활용한 누수 감시시스템은 IWA(International Water Association)에서 추천된 지표인 누수평가지표(ILI : Infrastructure Leakage Index) 4단계 등급 중 B등급 이상의 평가를 받기 위해 누수 감지정확도를 10개 이상 자체 누수탐지 검증하였으며, 상수도사업본부와 함께 추가 10개 이상의 누수 탐지를 통해 80%이상의 누수 감지정확도를 확보한 만큼 우수한 누수 감시능력을 가지고 있다.
누수평가지표(ILI)는 연간 실질손실량 (CARL : Current Annual volume of Real Losses)과 허용손실량 (UARL : Unvoidable Annual Real Losses)의 비율로 아래와 같이 계산된다.
Figure pat00001
CARL(ML/year)은 상수도관로에서 실제로 발생하는 누수량을 나타내며, UARL(ML/year)은 관로에서 발생하는 이론적 최소 누수량을 나타낸다.
누수평가지표(ILI)는 다른 상수도관로와 비교할 수 있도록 개발된 지표이므로 WBI(World Bank Institute)에서는 Banding system을 만들어 ILI를 기준으로 4단계로 등급을 나누고 관로를 평가하고 있다.
본 발명은 2019년10월부터 2020년12월까지 과학기술정보통신부와 한국정보화진흥원이 지원하고, 대구광역시 상수도사업본부가 주관(참여기업 : 주식회사 아리안)하여 국가인프라 지능정보화 사업에 의해 추진되는 “DAS 및 IoT 기반 스마트 상수도 통합관리체계 구축” 과제에 의한 성과물이다.
1000 : 음향측정부 2000 : 관제서버
3000 : 센서부 4000 : 외부단말기

Claims (6)

  1. 광케이블 내부에 광을 조사하고, 외부 이벤트에 의해 발생된 산란파를 수신하여 분포형음파센싱부; 및 기 설정된 알고리즘을 통해 상기 산란파의 주파수를 분석하여 상기 광케이블이 내설된 구간 내의 누수 여부를 판단하는 누수판단부;를 포함하는 음향측정부;
    상수도의 유량과 수압을 계측하는 센서부; 및
    상기 음향측정부에 의해 누수가 발생된 구간이 식별되면, 상기 센서부를 통해 상기 누수가 발생된 구간의 유량과 수압을 계측하여 실제로 누수가 되었는지 여부를 판단하는 관제서버를 포함하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템
  2. 제1항에 있어서,
    상기 음향측정부는 상기 산란파의 주파수성분을 분석하는 주파수분석부;
    기 설정된 시간에 대한 주파수별 진폭의 평균값 및 최대값을 측정하는 진폭측정부; 및
    상기 측정된 진폭의 최대값이 기 설정된 수치보다 높거나, 상기 최대값이 상기 평균값보다 임계치 이상인지 여부를 판단하는 판단부;를 포함하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템
  3. 제1항에 있어서,
    상기 음향측정부는 상기 관제서버에 의해 실제 누수가 된것으로 판단되지 않으면, 상기 기 설정된 알고리즘을 수정하는 알고리즘수정부;를 더 포함하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템
  4. 제1항에 있어서,
    상기 관제서버는 실제 누수가 된것으로 판단되면, 상기 누수데이터를 저장하는 데이터저장부;
    상기 누수데이터에 대한 특징 정보를 추출하는 특징정보추출부;
    상기 추출된 특징정보를 통해 기계 학습 알고리즘을 생성하는 알고리즘생성부; 및
    상기 생성된 기계 학습 알고리즘을 통해 상기 광케이블이 내설된 구간 내의 상태 정보를 판단하는 인공지능판단부;를 포함하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템
  5. 제4항에 있어서,
    상기 특징정보추출부는 상기 누수데이터의 주파수성분을 분석하여 주파수 영역을 식별하는 주파수영역식별부; 및
    상기 주파수 영역에 기 설정된 필터를 적용하고, 각 주파수의 대역별 세기를 측정하여 상기 주파수 영역의 고유한 특징을 추출하는 주파수특징추출부;를 포함하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템
  6. 제4항에 있어서,
    상기 관제서버는 상기 구간 내의 누수 및 상기 상태정보가 비정상인 것으로 판단되면, 상기 누수 및 비정상 상태에 대한 이벤트정보를 외부 단말기로 전송하는 것을 특징으로 하는 광케이블 내 음파감지를 통한 누수 탐지 시스템


KR1020200158801A 2020-11-24 2020-11-24 광케이블 내 음파감지를 통한 누수 탐지 시스템 KR102596045B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200158801A KR102596045B1 (ko) 2020-11-24 2020-11-24 광케이블 내 음파감지를 통한 누수 탐지 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200158801A KR102596045B1 (ko) 2020-11-24 2020-11-24 광케이블 내 음파감지를 통한 누수 탐지 시스템

Publications (2)

Publication Number Publication Date
KR20220071542A true KR20220071542A (ko) 2022-05-31
KR102596045B1 KR102596045B1 (ko) 2023-10-31

Family

ID=81780700

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200158801A KR102596045B1 (ko) 2020-11-24 2020-11-24 광케이블 내 음파감지를 통한 누수 탐지 시스템

Country Status (1)

Country Link
KR (1) KR102596045B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963030A (zh) * 2022-06-21 2022-08-30 杭州水务数智科技股份有限公司 一种供水管道监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406507B1 (ko) 2014-03-17 2014-06-11 아이에스테크놀로지 주식회사 음향/압력 복합센서를 구비한 상수도관용 누수감지장치
US20190331513A1 (en) * 2016-06-16 2019-10-31 Hifi Engineering Inc. Method of estimating flowrate in a pipeline

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406507B1 (ko) 2014-03-17 2014-06-11 아이에스테크놀로지 주식회사 음향/압력 복합센서를 구비한 상수도관용 누수감지장치
US20190331513A1 (en) * 2016-06-16 2019-10-31 Hifi Engineering Inc. Method of estimating flowrate in a pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963030A (zh) * 2022-06-21 2022-08-30 杭州水务数智科技股份有限公司 一种供水管道监测方法

Also Published As

Publication number Publication date
KR102596045B1 (ko) 2023-10-31

Similar Documents

Publication Publication Date Title
Tejedor et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system
Sevillano et al. DYNAMAP–Development of low cost sensors networks for real time noise mapping
Martini et al. Automatic leak detection in buried plastic pipes of water supply networks by means of vibration measurements
EP3867617A1 (en) System and method for mechanical failure classification, condition assessment and remediation recommendation
US20140165731A1 (en) Pipeline fault detection system, sensor head and method of detecting pipeline faults
KR20190018293A (ko) 딥러닝을 통한 음향기반 상수도 누수 진단 방법
US10386261B2 (en) High repetition rate thermometry system and method
CN102235575A (zh) 用于检查管道泄露的数据处理方法及系统
US20140311245A1 (en) Pipe inspection system and related methods
CN110332466A (zh) 基于分布式光纤声传感器的供水管道泄漏探测方法
Gong et al. Detection of emerging through-wall cracks for pipe break early warning in water distribution systems using permanent acoustic monitoring and acoustic wave analysis
WO2016038527A1 (en) Device and method for fluid leakage detection in pressurized pipes
KR102596045B1 (ko) 광케이블 내 음파감지를 통한 누수 탐지 시스템
KR20070060221A (ko) 실시간 악취 모니터링/관리 시스템 및 그 방법
CN1808087A (zh) 数字化高智能地下管线定位检漏方法及其仪器
CN109933933B (zh) 一种噪声治理方法和设备
El-Zahab et al. Development of a clustering-based model for enhancing acoustic leak detection
RU2461807C1 (ru) Устройство детектирования течей пароводяной смеси из трубопровода
KR20200092503A (ko) 입출력 음향 데이터 기반의 딥러닝을 활용한 하수관 상태 판별 방법
Mahmoud et al. Elimination of rain-induced nuisance alarms in distributed fiber optic perimeter intrusion detection systems
JP6789042B2 (ja) 漏水場所の特定方法
CA2164315C (en) Continuous monitoring of reinforcements in structures
JP2008298568A (ja) 騒音源の影響度解析システム
Moschioni et al. Sound source identification using coherence-and intensity-based methods
CN112182959A (zh) 一种配水管网泄漏检测方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant