KR20220068744A - Method of forming oxide nanoparticles through double synthesis - Google Patents

Method of forming oxide nanoparticles through double synthesis Download PDF

Info

Publication number
KR20220068744A
KR20220068744A KR1020200155841A KR20200155841A KR20220068744A KR 20220068744 A KR20220068744 A KR 20220068744A KR 1020200155841 A KR1020200155841 A KR 1020200155841A KR 20200155841 A KR20200155841 A KR 20200155841A KR 20220068744 A KR20220068744 A KR 20220068744A
Authority
KR
South Korea
Prior art keywords
oxide nanoparticles
zinc oxide
solution
solvent
present
Prior art date
Application number
KR1020200155841A
Other languages
Korean (ko)
Inventor
문대규
박다영
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR1020200155841A priority Critical patent/KR20220068744A/en
Publication of KR20220068744A publication Critical patent/KR20220068744A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

The present invention relates to a method for forming oxidized nanoparticles through dual synthesis. According to the method of the present invention, oxide nanoparticles are formed by repeating a sol-gel method, which is one of the synthesis methods of the oxide nanoparticles and thus has an effect of having a wider range of sizes unlike the conventional synthesis methods having a limited size range.

Description

이중 합성을 통한 산화 나노입자의 형성 방법{Method of forming oxide nanoparticles through double synthesis}Method of forming oxide nanoparticles through double synthesis

본 발명은 이중 합성을 통한 산화 나노입자의 형성 방법에 관한 것이다.The present invention relates to a method for forming oxidized nanoparticles through dual synthesis.

산화물 나노입자는 금속이 산소와 공유결합을 이루고 있는 무기 소재로 입자의 크기가 작아짐에 따라 마이크론 크기에서 나타나지 않는 광학적, 전기적, 기계적 등 다양한 특성들이 변화한다. 특히 산화물 반도체는 Si, GaAs 기반의 반도체 물질과 비교하면 밴드갭 (bandgap)이 넓으며 이동도가 높고 전기·광학적인 특성이 우수하여 다양한 영역에서 활용할 수 있다. 또한 용액 상태에서의 공정이 가능하여 우수한 특성을 가지면서 저렴한 과정을 통해 우수한 박막의 형성이 가능하다. 특히 Zn이 포함된 산화물 나노입자의 경우, 우수한 광학적, 전기적 특성을 가지며 발광 다이오드, 가스 센서, 평판 다이오드, 디스플레이의 전도막 등 폭넓은 응용 분야에서 연구가 진행되고 있다.Oxide nanoparticles are inorganic materials in which metal forms a covalent bond with oxygen, and as the size of the particles decreases, various properties such as optical, electrical, and mechanical that do not appear at the micron size change. In particular, oxide semiconductors have a wide bandgap compared to Si and GaAs-based semiconductor materials, have high mobility, and have excellent electrical and optical properties, so they can be used in various fields. In addition, since it is possible to process in a solution state, it is possible to form an excellent thin film through an inexpensive process with excellent properties. In particular, oxide nanoparticles containing Zn have excellent optical and electrical properties and are being studied in a wide range of applications such as light emitting diodes, gas sensors, flat panel diodes, and conductive films of displays.

본 발명은 산화물 나노입자의 제조방법을 제공하는 것이다.The present invention provides a method for producing oxide nanoparticles.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 산화물 나노입자의 합성법 중 하나인 졸-겔 방식을 반복하여 산화물 나노입자의 제조방법을 제공한다.The present invention provides a method for producing oxide nanoparticles by repeating the sol-gel method, which is one of the synthesis methods of oxide nanoparticles.

본 발명의 방법에 따르면 산화물 나노입자의 합성법 중 하나인 졸-겔 방식을 반복하여 산화물 나노입자를 형성함으로써 한정된 크기 범위를 가졌던 기존의 합성법과 다르게 보다 넓은 범위의 크기를 갖는 효과가 있다.According to the method of the present invention, by repeating the sol-gel method, which is one of the synthesis methods of oxide nanoparticles, to form oxide nanoparticles, there is an effect of having a larger size range, unlike the conventional synthesis method having a limited size range.

도 1은 UV 파장 영역에서 촬영된 합성 산화물 나노입자를 나타낸 것이다( 좌: 기존 합성, 우: 이중 합성).
도 2는 에탄올에 분산된 이중 합성 산화물 나노입자의 박막 형태를 나타낸 것이다.
도 3은 산화물 나노입자의 PL intensity 데이터를 나타낸 것이다.
도 4는 산화물 나노입자의 투과도 데이터를 나타낸 것이다.
도 5는 산화물 나노입자의 흡수도 데이터를 나타낸 것이다.
도 6은 산화물 나노입자의 밴드갭 데이터를 나타낸 것이다.
도 7은 산화물 나노입자를 사용하여 제작한 EOD 데이터를 나타낸 것이다.
1 shows synthetic oxide nanoparticles photographed in the UV wavelength region (left: conventional synthesis, right: double synthesis).
Figure 2 shows the thin film form of the double synthetic oxide nanoparticles dispersed in ethanol.
3 shows PL intensity data of oxide nanoparticles.
4 shows the transmittance data of oxide nanoparticles.
5 shows the absorbance data of oxide nanoparticles.
6 shows bandgap data of oxide nanoparticles.
7 shows EOD data prepared using oxide nanoparticles.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 산화물 나노입자의 합성법 중 하나인 졸-겔 방식을 반복하여 산화물 나노입자를 형성함으로써 한정된 크기 범위를 가졌던 기존의 합성법과 다르게 보다 넓은 범위의 크기를 갖도록 하는 것에 관한 것이다.The present invention relates to forming oxide nanoparticles by repeating the sol-gel method, which is one of the synthesis methods of oxide nanoparticles, to have a larger size range, unlike the conventional synthesis method having a limited size range.

본 발명의 산화물 나노입자는 약 5 ~ 20 nm의 넓은 범위를 가지며 크기에 따라 산화물 나노입자의 에너지 밴드 등의 물성이 변화한다. 크기에 따라 형성된 산화물 나노입자는 반도체, OLEDs(Organic Light-Emitting Didoes), QLEDs(Quantum dot Light-Emitting Diodes) 등에 적용이 가능하다.The oxide nanoparticles of the present invention have a wide range of about 5 to 20 nm, and physical properties such as energy bands of the oxide nanoparticles change depending on the size. Oxide nanoparticles formed according to their size can be applied to semiconductors, organic light-emitting diodes (OLEDs), and quantum dot light-emitting diodes (QLEDs).

본 발명은 산화물 나노입자를 제조하는 방법으로, 보다 자세하게는 졸-겔(sol-gel) 방식을 이용한 이중 합성을 통한 산화물 나노입자의 형성에 관한 것이다.The present invention relates to a method for preparing oxide nanoparticles, and more particularly, to the formation of oxide nanoparticles through dual synthesis using a sol-gel method.

구체적으로 본 발명은 산화물 나노입자의 합성법 중 하나인 졸-겔 방식을 반복하여 산화물 나노입자를 형성함으로써 한정된 크기 범위를 가졌던 기존의 합성법과 다르게 보다 넓은 범위의 크기를 갖도록 하는 것에 관한 것이다.Specifically, the present invention relates to forming oxide nanoparticles by repeating the sol-gel method, which is one of the synthesis methods of oxide nanoparticles, to have a larger size range, unlike the conventional synthesis method having a limited size range.

본 발명의 산화물 나노입자는 약 5 ~ 20 nm의 넓은 범위를 가지며 크기에 따라 산화물 나노입자의 에너지 밴드 등의 물성이 변화한다. 크기에 따라 형성된 산화물 나노입자는 반도체, OLEDs(Organic Light-Emitting Didoes), QLEDs(Quantum dot Light-Emitting Diodes) 등에 적용이 가능하다.The oxide nanoparticles of the present invention have a wide range of about 5 to 20 nm, and physical properties such as energy bands of the oxide nanoparticles change depending on the size. Oxide nanoparticles formed according to their size can be applied to semiconductors, organic light-emitting diodes (OLEDs), and quantum dot light-emitting diodes (QLEDs).

본 발명의 산화물 나노입자는 ZnO, Zn을 포함한 산화물 나노입자를 사용하며, Zn을 포함한 산화물 나노입자의 경우, Zn1-XYXO(이때, 0<X≤0.3, Y는 Mg, Ca 등의 금속)의 구조를 갖는다. ZnO와 Zn을 포함한 산화물 나노입자의 합성 방법에 따라 다양한 크기를 형성할 수 있다.The oxide nanoparticles of the present invention use oxide nanoparticles containing ZnO and Zn, and in the case of oxide nanoparticles containing Zn, Zn1-XYXO (where 0<X≤0.3, Y is a metal such as Mg, Ca) have a structure Depending on the synthesis method of ZnO and Zn-containing oxide nanoparticles, various sizes can be formed.

본 발명의 산화물 나노입자는 졸-겔 법으로 제조되며, 용매에 분산한 형태로 스핀 코팅, 딥 코팅, 드롭 캐스팅 등의 과정을 통해 박막으로 형성할 수 있다.The oxide nanoparticles of the present invention are prepared by a sol-gel method, and in the form of dispersion in a solvent, can be formed into a thin film through processes such as spin coating, dip coating, drop casting, and the like.

산화물 나노입자의 제작은 메커니즘에 따라 물리적, 화학적, 기계적 방법으로 분류된다. 본 발명은 화학적 방법의 하나인 졸-겔 방법을 이용한 것으로 용매에 전구체가 되는 재료를 추가하여 반응시켜 산화물 나노입자를 형성한다.Production of oxide nanoparticles is classified into physical, chemical, and mechanical methods according to the mechanism. The present invention uses a sol-gel method, which is one of chemical methods, and reacts by adding a precursor material to a solvent to form oxide nanoparticles.

본 발명은 이중으로 합성하여 넓은 범위를 갖는 산화물 나노입자의 제조 방법을 제공하고자 한다.An object of the present invention is to provide a method for preparing oxide nanoparticles having a wide range by double synthesis.

본 발명의 산화물 나노입자의 제조는 졸-겔법을 이용하여 형성한다. 실제 예로 ZnO의 경우를 서술한다. 첫 번째로 DMSO(dimethyl sulfoixde) 용액 안에 전구체가 되는 zinc acetate dihydrate를 용해한다. 두 번째로 TMAH (tetramethylammoniumhydroixde)를 에탄올(ethanol)을 용해하여 두 가지의 용액을 준비한다. The oxide nanoparticles of the present invention are prepared using a sol-gel method. The case of ZnO is described as an actual example. First, zinc acetate dihydrate as a precursor is dissolved in DMSO (dimethyl sulfoixde) solution. Second, prepare two solutions by dissolving tetramethylammoniumhydroixde (TMAH) in ethanol.

Zn을 포함한 산화물 나노입자의 합금은 Mg, Ca 등이 있으며 전구체가 되는 zinc acetate dihydrate와 함께 DMSO 용액에 용해한다. 합금의 농도 범위는 0 ~ 30 %까지 가능하다.The alloy of oxide nanoparticles containing Zn contains Mg and Ca, and is dissolved in DMSO solution together with zinc acetate dihydrate as a precursor. The concentration range of the alloy is possible from 0 to 30%.

준비 된 DMSO 용액에 TMAH 용액을 추가하여 투명한 용액임을 확인하고 원하는 크기의 산화물 나노입자의 제조를 위해 0 ~ 48 hr 동안 스터링(stirring)을 진행한다.TMAH solution is added to the prepared DMSO solution to confirm that it is a transparent solution, and stirring is performed for 0 to 48 hr to prepare oxide nanoparticles of a desired size.

핵 성장을 중단시키기 위해 극성이 다른 용매(예: ethyl acetate)를 추가하면 성장이 완료된 산화물 나노입자가 침전된다.When a solvent with a different polarity (eg, ethyl acetate) is added to stop nuclear growth, the grown oxide nanoparticles are precipitated.

침전된 산화물 나노입자를 원심분리하여 젤 상태로 모아둔다.The precipitated oxide nanoparticles are collected in a gel state by centrifugation.

이중 합성을 위해 합성이 완료된 산화물 나노입자를 DMSO 용액에 용해하고 TMAH가 용해된 에탄올을 준비한다. 에탄올을 DMSO 용액에 추가한 후 0 ~ 48 hr 동안 스터링을 진행한다.For double synthesis, the synthesized oxide nanoparticles are dissolved in DMSO solution, and ethanol in which TMAH is dissolved is prepared. After adding ethanol to the DMSO solution, stirring is performed for 0 to 48 hr.

합성을 종료하기 위해 극성이 다른 용매를 추가하여 산화물 나노입자를 침전시킨다.To complete the synthesis, a solvent with a different polarity is added to precipitate the oxide nanoparticles.

침전이 완료된 산화물 나노입자를 원심분리한 후 용매(ethanol, toluene 등)에 분산한다.After the precipitated oxide nanoparticles are centrifuged, they are dispersed in a solvent (ethanol, toluene, etc.).

이중 합성된 산화물 나노입자의 실시예는 (사진첨부)에 추가되어 있으며, 이는 기존의 합성 방법으로 형성된 8 nm의 ZnO와 비교하였다.An example of the double synthesized oxide nanoparticles is added (photo attached), which was compared with 8 nm ZnO formed by the conventional synthesis method.

형성된 산화물 나노입자는 기존 합성법으로 형성된 산화물 나노입자와 비교하면 투과도와 흡수도의 차이를 크게 보이지 않으나 밴드갭의 차이를 보인다. 본 발명의 한 예로 합성된 산화물 나노입자가 다양한 밴드갭을 보임에 따라 주입과 이동 특성을 고려한 산화물 나노입자의 선택을 통해 발광 다이오드의 charge balance를 조절하여 특성을 향상할 수 있다.Compared with oxide nanoparticles formed by the conventional synthesis method, the formed oxide nanoparticles do not show a significant difference in transmittance and absorbance, but show a difference in bandgap. As an example of the present invention, as synthesized oxide nanoparticles exhibit various band gaps, properties can be improved by controlling the charge balance of the light emitting diode through selection of oxide nanoparticles in consideration of injection and migration characteristics.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특히 청구범위에 나타나 있으며, 그와 동등한 범위내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is particularly indicated in the claims rather than the foregoing description, and all differences within an equivalent scope should be construed as being included in the present invention.

Claims (5)

아연 아세테이트 다이하이드레이트(zinc acetate dihydrate)를 DMSO(dimethyl sulfoixde) 용매에 첨가한 제1용액을 준비하는 단계(단계 A1);
TMAH(tetra methyl ammonium hydroixde)를 에탄올(ethanol) 용매에 첨가한 제2용액을 준비하는 단계(단계 A2);
제1용액 및 제2용액을 혼합하고 교반하며 아연 산화물 나노입자의 핵 성장을 유도하는 단계(단계 A3);
에틸아세테이트를 첨가하여 아연 산화물 나노입자의 핵 성장을 종료시키고, 성장이 완료된 아연 산화물 나노입자를 침전시키는 단계(단계 A4);
침전된 아연 산화물 나노입자를 원심분리하여 젤(gel) 상태로 수집하는 단계(단계 A5);
상기 단계 A5에서 수집한 아연 산화물 나노입자를 DMSO 용매에 용해시킨 제3용액을 준비하는 단계(단계 B1);
TMAH(tetra methyl ammonium hydroixde)를 에탄올(ethanol) 용매에 첨가한 제4용액을 준비하는 단계(단계 B2);
제3용액 및 제4용액을 혼합하고 교반하여 아연 산화물 나노입자의 핵 성장을 추가로 유도하는 단계(단계 B3);
에틸아세테이트를 첨가하여 아연 산화물 나노입자의 핵 성장을 종료시키고, 성장이 완료된 아연 산화물 나노입자를 침전시키는 단계(단계 B4); 및
침전된 아연 산화물 나노입자를 원심분리한 다음, 유기용매에 분산하여 보관하는 단계(단계 B5);를 포함하는,
아연 산화물 나노입자의 합성방법.
preparing a first solution in which zinc acetate dihydrate was added to dimethyl sulfoixde (DMSO) solvent (step A1);
preparing a second solution in which tetra methyl ammonium hydroixde (TMAH) was added to an ethanol solvent (step A2);
mixing and stirring the first solution and the second solution to induce nuclear growth of zinc oxide nanoparticles (step A3);
adding ethyl acetate to terminate the nuclear growth of the zinc oxide nanoparticles, and precipitating the zinc oxide nanoparticles upon which the growth is completed (step A4);
Collecting the precipitated zinc oxide nanoparticles in a gel state by centrifugation (step A5);
preparing a third solution in which the zinc oxide nanoparticles collected in step A5 were dissolved in a DMSO solvent (step B1);
preparing a fourth solution in which tetra methyl ammonium hydroixde (TMAH) was added to an ethanol solvent (step B2);
mixing and stirring the third solution and the fourth solution to further induce nuclear growth of zinc oxide nanoparticles (step B3);
adding ethyl acetate to terminate the nuclear growth of the zinc oxide nanoparticles, and precipitating the grown zinc oxide nanoparticles (step B4); and
Containing; centrifuging the precipitated zinc oxide nanoparticles, and then dispersing and storing them in an organic solvent (step B5);
A method for synthesizing zinc oxide nanoparticles.
제1항에 있어서,
상기 단계 A1에서 아연 산화물 나노입자의 합금 원료로서 Mg 및 Ca 중 1종 이상을 추가로 첨가하는 것을 특징으로 하는, 아연 산화물 나노입자의 합성방법.
The method of claim 1,
A method of synthesizing zinc oxide nanoparticles, characterized in that at least one of Mg and Ca is additionally added as a raw material for alloying zinc oxide nanoparticles in step A1.
제1항에 있어서,
상기 단계 A3의 교반 시간은 0-48시간인 것을 특징으로 하는, 아연 산화물 나노입자의 합성방법.
The method of claim 1,
The stirring time of step A3 is characterized in that 0-48 hours, the synthesis method of zinc oxide nanoparticles.
제1항에 있어서,
상기 단계 B3의 교반 시간은 0-48시간인 것을 특징으로 하는, 아연 산화물 나노입자의 합성방법.
The method of claim 1,
The stirring time of step B3 is a method of synthesizing zinc oxide nanoparticles, characterized in that 0-48 hours.
제1항에 있어서,
상기 B5의 유기용매는 에탄올 또는 톨루엔인 것을 특징으로 하는, 아연 산화물 나노입자의 합성방법.
The method of claim 1,
The organic solvent of B5 is ethanol or toluene, characterized in that, the synthesis method of zinc oxide nanoparticles.
KR1020200155841A 2020-11-19 2020-11-19 Method of forming oxide nanoparticles through double synthesis KR20220068744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200155841A KR20220068744A (en) 2020-11-19 2020-11-19 Method of forming oxide nanoparticles through double synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200155841A KR20220068744A (en) 2020-11-19 2020-11-19 Method of forming oxide nanoparticles through double synthesis

Publications (1)

Publication Number Publication Date
KR20220068744A true KR20220068744A (en) 2022-05-26

Family

ID=81808838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200155841A KR20220068744A (en) 2020-11-19 2020-11-19 Method of forming oxide nanoparticles through double synthesis

Country Status (1)

Country Link
KR (1) KR20220068744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239031A1 (en) 2022-06-07 2023-12-14 주식회사 엘지에너지솔루션 Method for manufacturing separator for lithium secondary battery, separator for lithium secondary battery manufactured thereby, and method for manufacturing lithium secondary battery using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023239031A1 (en) 2022-06-07 2023-12-14 주식회사 엘지에너지솔루션 Method for manufacturing separator for lithium secondary battery, separator for lithium secondary battery manufactured thereby, and method for manufacturing lithium secondary battery using same

Similar Documents

Publication Publication Date Title
Deng et al. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence
US11525084B2 (en) II-II-VI alloy quantum dot, preparation method therefor and application thereof
Chen et al. Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots
KR100768648B1 (en) Method for preparing core/shell structure nanoparticles
Zhang et al. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters
Subila et al. Luminescence properties of CdSe quantum dots: role of crystal structure and surface composition
EP1384757B1 (en) Method for producing semiconductor nanoparticles
JP6729554B2 (en) Composition and optically functional film containing the same
Ko et al. Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands
JP2008056511A (en) Method for producing metal sulfide nanoparticle and photoelectric conversion element
KR20100071700A (en) Semiconductor nanocrystal and preparation method thereof
KR20080107578A (en) Core/shell nanocrystals and method for preparing the same
KR20070053293A (en) Water-soluble fluorescent material and method for producing same
WO2006009124A1 (en) Fluorescent material and process for producing the same
Wang et al. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging
TW202045684A (en) Small molecule passivation of quantum dots for increased quantum yield
EP2303771B1 (en) Methods for isolating and purifying nanoparticles from a complex medium
WO2016156264A1 (en) Nanoplatelets and high temperature process for manufacture thereof
KR20220068744A (en) Method of forming oxide nanoparticles through double synthesis
EP3694952B1 (en) Semiconductor light emitting nanoparticle
WO2019193910A1 (en) Masterbatch containing quantum dots
He et al. Preparation and characterization of ZnSe quantum dots by the cation-inverting-injection method in aqueous solution
KR100590784B1 (en) A highly luminescent type I structure core/double shell quantum dot consisting of II-VI semiconductor compounds and a method for preparing the same
US20220220376A1 (en) Group ii-iii-v-vi quantum dot, preparation method therefor and quantum dot optoelectronic device
KR101923431B1 (en) Method for manufacturing single crystalline CdTe nanowire by self assembly under light

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal