KR20220064257A - Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same - Google Patents

Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same Download PDF

Info

Publication number
KR20220064257A
KR20220064257A KR1020200150572A KR20200150572A KR20220064257A KR 20220064257 A KR20220064257 A KR 20220064257A KR 1020200150572 A KR1020200150572 A KR 1020200150572A KR 20200150572 A KR20200150572 A KR 20200150572A KR 20220064257 A KR20220064257 A KR 20220064257A
Authority
KR
South Korea
Prior art keywords
silicone
based thermal
high temperature
moisture
stable
Prior art date
Application number
KR1020200150572A
Other languages
Korean (ko)
Other versions
KR102559169B1 (en
Inventor
이학민
이준화
최소연
이수련
Original Assignee
주식회사 에이치앤에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치앤에스 filed Critical 주식회사 에이치앤에스
Priority to KR1020200150572A priority Critical patent/KR102559169B1/en
Publication of KR20220064257A publication Critical patent/KR20220064257A/en
Application granted granted Critical
Publication of KR102559169B1 publication Critical patent/KR102559169B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a silicone-based heat mediation material composition which is stable at a high temperature, and a method for producing the same. Provided are a silicone-based heat mediation material composition which is formed by mixing a silicone-based heat mediation material and an organic acid; and a method for producing a silicone-based heat mediation material composition which is stable at a high temperature, wherein the method comprises: a step of producing a mixture by mixing a silicone precursor for generating silicone by reaction, and a dispersed phase inorganic filler containing free alkali metal ions; and a step of further adding an organic acid to the mixture.

Description

흡습에 의한 경시변화를 개선한 실리콘계 열매개물질 조성물 및 그 제조방법{Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same}Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same

본 발명은 유리알칼리금속이온(Free Alkaline Metal Ion) 및 수분을 함유하는 무기 충전제(Inorganic Filler)가 포함된 실리콘계 열매개물질(Thermal Interface Material)의 조성물에 수분제거제(Moisture Scavenger)를 첨가함으로써 고온의 작동온도에서 경도변화가 거의 없으며, 파열에 대한 안정성을 보유하는 실리콘계 열매개물질 조성물 및 그 제조방법에 관한 것이다.The present invention is by adding a moisture scavenger to a composition of a silicone-based thermal interface material containing free alkali metal ions and an inorganic filler containing moisture. The present invention relates to a silicone-based thermal intermediary material composition having little change in hardness at operating temperature and stability against rupture, and a method for manufacturing the same.

반도체, 트랜지스터, 집적회로 등 전자부품과 TV, 모니터 등 디스플레이 제품이 고성능화되면서 발열량이 크게 늘고 있다. 아울러, 각종 건전지의 충전기 등도 작동시 열이 다량 발생되는 경향이 존재한다. 열의 발생은 필연적이며, 따라서, 이러한 열의 냉각, 제거를 위한 기술도 상당수준으로 개발되고 있다. As electronic components such as semiconductors, transistors, integrated circuits, and display products such as TVs and monitors have improved in performance, the amount of heat generated is increasing significantly. In addition, there is a tendency that a large amount of heat is generated during operation of the charger of various batteries. Generation of heat is inevitable, and therefore, technologies for cooling and removal of such heat are being developed at a considerable level.

이러한 전자부품 등에서 발생된 열을 충분히 제거하지 못하면 결국 열 발생원의 내부에 열이 축적되어 부품 성능의 열화로 인하여 오작동이 발생되거나, 평균무장애시간(Mean Time between Failures)이 단축되거나, 또는 열 폭주(Thermal Runaway)에 의한 화재발생 등의 원인이 된다.If the heat generated from these electronic components is not sufficiently removed, heat will eventually accumulate inside the heat source, causing malfunctions due to deterioration of component performance, shortening the mean time between failures, or thermal runaway ( It may cause fire due to thermal runaway).

이러한 문제점들을 해결하기 위해 능동(Active) 혹은 수동(Passive) 방열판(Heat Sink)으로 열을 전달시켜 상기 열 발생원으로부터 발생된 열을 제거하는 방법 등이 사용되고 있다.In order to solve these problems, a method of removing heat generated from the heat source by transferring heat to an active or passive heat sink is used.

한편 상기 열 발생원을 외부에서 감싸는 하우징(Housing) 재료인 플라스틱, 세라믹 혹은 금속과, 방열판(Heat Sink)으로 사용되는 금속의 표면은 상당부분 요철을 형성하고 있어 접촉 면적을 넓히고는 있으나 한계가 있으며, 하우징과 열 발생원 사이의 공간은 열 부도체인 공기가 채워져 있어 실제로 열 발생원과 방열판(Heat Sink) 사이에는 열 저항(Thermal Impedance)이 발생하므로 열을 효율적으로 제거하기 어려운 문제점이 있다.On the other hand, the surface of the plastic, ceramic, or metal, which is a housing material that surrounds the heat generating source from the outside, and the metal used as a heat sink form a considerable amount of irregularities, so that the contact area is widened, but there is a limit, Since the space between the housing and the heat source is filled with air, which is a thermal insulator, there is actually a thermal impedance between the heat source and the heat sink, making it difficult to efficiently remove heat.

이에 열 발생원과 방열판(Heat Sink) 사이에 다양한 형태의 열매개물질(Thermal Interface Material, TIM)을 개재시켜 열 전달의 효율을 높임으로써, 열 저항(Thermal Impedance)을 감소시키는 방법이 일반화되어 있다(대한민국 등록특허 제10-1011940호, 대한민국 공개특허 제10-2017-0058382호, 대한민국 공개특허 제10-2020-0110808호 등).Accordingly, a method of reducing thermal impedance by interposing various types of thermal interface material (TIM) between a heat generating source and a heat sink to increase the efficiency of heat transfer has been generalized ( Korean Patent Registration No. 10-1011940, Korean Patent Publication No. 10-2017-0058382, Korean Patent Publication No. 10-2020-0110808, etc.).

대부분의 열매개물질(Thermal Interface Material, TIM)은 열경화성 혹은 열가소성 수지에 열 전도성이 큰 무기 충전제(Inorganic Filler)와 산화방지제 및 분산제 등 첨가제를 혼합, 분산시켜 제조한다. 상기 수지는 연속상(Continuous Phase)을 형성하는 기지물질인데, 상기 수지로서는 저온에서 고온까지 넓은 온도영역에서 탄성을 유지하고 내열성이 우수한 실리콘고무가 주로 사용되고 있다. 또한, 분산상(Dispersed Phase)으로는 비교적 저렴한 가격의 알루미나(Alumina)가 주로 사용되는데, 상기 알루미나는 충전밀도를 높이기 용이한 구상구조를 가지며, 열전도도가 우수한 특성이 있다.Most thermal interface materials (TIMs) are manufactured by mixing and dispersing additives such as inorganic fillers with high thermal conductivity, antioxidants and dispersants in thermosetting or thermoplastic resins. The resin is a matrix material for forming a continuous phase, and silicone rubber having excellent heat resistance and maintaining elasticity in a wide temperature range from low to high temperature is mainly used as the resin. In addition, as the dispersed phase, relatively inexpensive alumina is mainly used. The alumina has a spherical structure that facilitates increasing packing density and has excellent thermal conductivity.

그러나, 상술한 알루미나는 제조공법 상 보크사이트(Bauxite)를 가성소다(Sodium Hydroxide)에 용해시켜 수산화알루미늄(Aluminium Tri-hydroxide, ATH)을 제조한 후 이를 하소(Calcination)시켜 제조하므로 제품에 나트륨이온(Sodium Ion)으로 대표되는 다량의 유리알칼리금속이온(Free Alkaline Metal Ion)을 함유하고 있다.However, the above-described alumina is manufactured by dissolving bauxite in sodium hydroxide in the manufacturing method to prepare aluminum tri-hydroxide (ATH) and then calcining it. It contains a large amount of free alkali metal ions represented by sodium ions.

유리알칼리금속이온(Free Alkaline Metal Ion)은 강한 산화력으로 100℃ 이상의 고온에서 유기물인 실리콘고무와 반응하여 추가 경화반응을 유도함으로써 실리콘고무의 경도를 지속적으로 상승시키는 작용을 한다(도 1 참조).Free alkali metal ion (Free Alkaline Metal Ion) acts to continuously increase the hardness of silicone rubber by inducing an additional curing reaction by reacting with silicone rubber, which is an organic material, at a high temperature of 100° C. or higher with strong oxidizing power (see FIG. 1).

아울러, 유리알칼리금속이온(Free Alkaline Metal Ion)은 강한 흡수성(흡습성)을 가지고 있어 상온에서 장시간 보존시 흡습이 이루어지며, 통상 2,000ppm 이하의 수분을 함유하고 있고, 이러한 수분이 100℃ 이상의 고온에서 기화하면서 실리콘계 열매개물질을 파열시켜 성능 저하의 원인이 되고 있다.In addition, free alkali metal ion (Free Alkaline Metal Ion) has strong water absorption (hygroscopicity), so it absorbs moisture when stored for a long time at room temperature, and usually contains less than 2,000 ppm of moisture. It ruptures the silicon-based heating medium during vaporization, which causes performance degradation.

따라서 실리콘고무의 지속적 경도상승은 열 발생원과 방열판(Heat Sink) 사이에 열매개물질(Thermal Interface Material, TIM)을 개재시켜 접촉면적을 확대시킴으로써 열 발생원과 방열판 사이 공간에서의 열 저항(Thermal Impedance)을 줄이려는 본래의 사용목적에 반하는 작용을 하게되는 문제점이 존재한다.Therefore, the continuous hardness increase of silicone rubber increases the contact area by interposing a thermal interface material (TIM) between the heat generating source and the heat sink, thereby increasing the thermal impedance in the space between the heat generating source and the heat sink. There is a problem that works against the original purpose of use to reduce the

아울러, 경도가 높아지면 열 발생원과 히트싱크(heat sink) 각각에 대해서 형성되는 열매개물질과의 계면에서 열 발생원 및 히트싱크에 의하여 형성된 요철을 탄성에 의하여 메꾸는 성능이 저하되는 바, 공극이 다량 생성되므로 계면에서 열저항이 증가되는 문제점이 있다.In addition, when the hardness increases, the performance of filling the unevenness formed by the heat generating source and the heat sink by elasticity at the interface between the heat generating source and the heat sink formed for each of the heat sinks by elasticity is lowered. Since a large amount is generated, there is a problem in that thermal resistance is increased at the interface.

대한민국 등록특허 제10-1011940호Republic of Korea Patent Registration No. 10-1011940 대한민국 공개특허 제10-2017-0058382호Republic of Korea Patent Publication No. 10-2017-0058382 대한민국 공개특허 제10-2020-0110808호Republic of Korea Patent Publication No. 10-2020-0110808

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 100℃ 이상의 고온에서, 실리콘 고무 기지상에 분산상으로 첨가된 알루미나 내에 함유된 수분이 실리콘 고무의 경도 상승에 미치는 영향을 최소화(Shore 00 경도 초기치±10을 목표로 함) 시키고, 파열현상을 예방할 수 있는 열매개물질(Thermal Interface Material, TIM) 조성물을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the problems described above, and the present invention minimizes the effect of moisture contained in alumina added as a dispersed phase on a silicone rubber matrix on the increase in hardness of silicone rubber at a high temperature of 100° C. or more ( Shore 00 hardness initial value ±10) and aims to provide a thermal interface material (TIM) composition that can prevent rupture.

또한, 본 발명은 상기 조성물에 진공하에서의 열처리 공정을 추가하여 100℃ 이상의 고온에서 알루미나 내에 포함된 수분이 실리콘 고무의 경도 상승에 미치는 영향을 최소화시킬 수 있는 열매개물질(Thermal Interface Material, TIM)의 제조방법을 제공하는 것을 다른 목적으로 한다.In addition, the present invention is a thermal interface material (TIM) that can minimize the effect of moisture contained in alumina on the increase in hardness of silicone rubber at a high temperature of 100° C. or more by adding a heat treatment process under vacuum to the composition. Another object is to provide a manufacturing method.

본 발명은 전술한 목적을 달성하기 위하여, 실리콘계 고분자물질과 분산상 무기 충전제가 혼합된 실리콘계 열매개물질에 수분제거제가 첨가되어 구성되는 것을 특징으로 하는 실리콘계 열매개물질 조성물을 제공한다.In order to achieve the above object, the present invention provides a silicone-based thermal intermediary composition comprising a silicone-based thermal intermediary material in which a silicone-based polymer material and a dispersed inorganic filler are mixed, and a moisture removing agent is added.

상기 수분제거제는 하기 화학식1과 같은 구조를 갖는 옥사졸리딘유도체인 것이 바람직하다.The moisture removing agent is preferably an oxazolidine derivative having a structure as shown in Formula 1 below.

(화학식 1)(Formula 1)

Figure pat00001
Figure pat00001

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H).Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms, and R 3 is a methyl group ( CH 3 -) or hydrogen (H).

상기 수분제거제의 첨가량은 상기 분산상 무기 충전제(Inorganic Filler)에 포함된 수분 대비 20몰% 이상 100몰% 이하인 것이 바람직하다.It is preferable that the amount of the water remover added is 20 mol% or more and 100 mol% or less relative to the moisture contained in the dispersed inorganic filler (Inorganic Filler).

또한 본 발명은 전술한 조성물을 건조하여 제조되는 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질을 제공한다.In addition, the present invention provides a silicone-based thermal medium stable at high temperature, characterized in that it is prepared by drying the above-mentioned composition.

상기 건조시 온도는 70 ℃ 이상 120℃ 이하인 것이 바람직하다.The drying temperature is preferably 70 ℃ or more and 120 ℃ or less.

상기 건조시 시간은 1시간 이상 3시간 이하인 것이 바람직하다.The drying time is preferably 1 hour or more and 3 hours or less.

상기 건조시 70℃ 이상 120℃ 이하 및 감압 하에서 수행되는 것이 바람직하다.Preferably, the drying is carried out at 70°C or more and 120°C or less and under reduced pressure.

상기 감압은 10mmHg 이하의 진공상태로 감압하는 것이며, 건조 시간은 1시간 이상 3시간 이하인 것이 바람직하다.The reduced pressure is to reduce the pressure in a vacuum of 10 mmHg or less, and the drying time is preferably 1 hour or more and 3 hours or less.

또한 본 발명은, 반응에 의하여 실리콘이 생성되는 실리콘 전구체와 유리알칼리금속이온이 포함된 분산상 무기 충전제를 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물에 수분제거제를 더 첨가하는 단계;를 포함하는 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a mixture by mixing a silicon precursor, which is produced by the reaction, and a dispersed inorganic filler containing free alkali metal ions; And it provides a method for producing a silicone-based heat medium composition stable at high temperature comprising a; and the step of further adding a moisture remover to the mixture.

상기 수분제거제는 하기 화학식1과 같은 구조를 갖는 옥사졸리딘유도체인 것이 바람직하다.The moisture removing agent is preferably an oxazolidine derivative having a structure as shown in Formula 1 below.

(화학식 1)(Formula 1)

Figure pat00002
Figure pat00002

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H).Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms, and R 3 is a methyl group ( CH 3 -) or hydrogen (H).

상기 수분제거제의 첨가량은 상기 분산상 무기 충전제(Inorganic Filler)에 포함된 수분 대비 20몰% 이상 100몰% 이하인 것이 바람직하다.It is preferable that the amount of the water remover added is 20 mol% or more and 100 mol% or less relative to the moisture contained in the dispersed inorganic filler (Inorganic Filler).

이상과 같은 본 발명에 따르면, 열매개물질에 수분제거제를 첨가함으로써, 100℃ 이상의 고온에서, 실리콘 고무 기지상에 분산상으로 첨가된 알루미나 내에 함유된 수분이 실리콘 고무의 경도 상승에 미치는 영향을 최소화시키며, 따라서 방열효과의 향상, 열저항의 저감 등을 구현할 수 있는 효과가 기대된다.According to the present invention as described above, by adding a moisture remover to the heat medium, at a high temperature of 100° C. or higher, the moisture contained in the alumina added as a dispersed phase on the silicone rubber matrix minimizes the effect on the hardness increase of the silicone rubber, Therefore, the effect of improving the heat dissipation effect and reducing the heat resistance is expected.

도 1은 유리알칼리금속이온과 실리콘 고무의 반응에 의하여 경도가 상승하는 것을 나타내는 반응식이다.
도 2 내지 8은 실시예 1~7에 대응되는 사진이다.
도 9 내지 14는 비교예 1~6에 대응되는 사진이다.
1 is a reaction formula showing that hardness increases by the reaction of free alkali metal ions and silicone rubber.
2 to 8 are photographs corresponding to Examples 1 to 7;
9 to 14 are photographs corresponding to Comparative Examples 1 to 6;

이하에서는 본 발명을 첨부되는 도면과 바람직한 실시예를 기초로 상세히 설명하기로 한다. 본 발명은 여러 가지 상이한 형태로 구현할 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, the present invention will be described in detail based on the accompanying drawings and preferred embodiments. The present invention may be implemented in several different forms and is not limited to the embodiments described herein.

<제조예><Production Example>

본 발명은 플래니터리 믹서(Planetary Mixer)에 점도가 다른 1종 이상의 비닐말단폴리디메틸실록산(Vinyl Terminated Poly(dimethylsiloxane)), 디메틸실록산-메틸수소실록산공중합체(Poly(dimethylsiloxane-co-(methylhydrosiloxane)) 및 평균입경이 각 2㎛, 10㎛, 70㎛이고 평균 유리알칼리금속이온(Free Alkaline Metal Ion) 함량이 400ppm이고, 평균 수분함량이 700ppm인 알루미나를 첨가하여 균일하게 교반한 후, 70℃ 이상 120℃ 이하의 온도에서 1시간 이상 3시간 이하의 시간동안 수분을 제거하고, 여기에 수분제거제인 옥사졸리딘유도체(Oxazolidine Derivatives)를 분산상 무기충전제에 함유된 수분 대비 20몰% 이상 100몰% 이하 첨가하여 150℃ 이상 200℃ 이하의 고온에서 250시간 이상의 시간동안 방치한 후 Shore 00 경도가 초기치로부터 ±10 이내의 오차를 갖도록 안정한 상태를 유지하고 흡수한 수분의 증발에 의한 터짐현상이 없는 실리콘계 열매개물질(Thermal Interface Material, TIM)을 제조하였다. The present invention relates to one or more vinyl-terminated poly(dimethylsiloxane), dimethylsiloxane-methylhydrosiloxane copolymers having different viscosities in a planetary mixer (Poly(dimethylsiloxane-co-(methylhydrosiloxane)) ) and alumina having an average particle diameter of 2 μm, 10 μm, and 70 μm, an average free alkali metal ion content of 400 ppm, and an average moisture content of 700 ppm, followed by uniform stirring, and then at 70° C. or higher Moisture is removed at a temperature of 120°C or lower for 1 hour or more and 3 hours or less, and 20 mol% or more and 100 mol% or less of the moisture contained in the dispersed inorganic filler with Oxazolidine Derivatives After adding and leaving it at a high temperature of 150℃ or more and 200℃ or more for 250 hours or more, it maintains a stable state so that the Shore 00 hardness has an error within ±10 from the initial value and does not burst due to evaporation of absorbed moisture. A thermal interface material (TIM) was prepared.

상기 옥사졸리딘유도체는 하기 화학식1과 같은 구조를 갖는다.The oxazolidine derivative has a structure as shown in Formula 1 below.

(화학식 1)(Formula 1)

Figure pat00003
Figure pat00003

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(分枝形, Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(分枝形, Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H) 이다.Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, and R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms. hydrocarbon, and R 3 is a methyl group (CH 3 -) or hydrogen (H).

상기 조성물 중 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives)를 추가하기 전에 무기 충전제(Inorganic Filler)에 기 존재하는 수분을 70℃ 이상 120℃ 이하, 100㎜Hg 이하의 진공하에서 1시간 이상 3시간 이하로 건조하여 사전 제거함으로써, 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives)와 수분의 반응(아래 반응식1)으로 생성되는 아미노알코올(Aminoalcohol)과 키톤(Ketone) 혹은 알데하이드(Aldehyde)와 같은 부산물을 최소화 시켜 실리콘계 열매개물질(Thermal Interface Material, TIM)의 물성변화를 최소화 시키고, 상온에서 방치 시 흡습하는 수분과만 반응하도록 함으로써, 수분제거제(Moisture Scavenger)로서의 효율을 향상시킬 수 있다.Before adding Oxazolidine Derivatives, which are moisture scavengers, in the composition, the moisture pre-existing in the inorganic filler is reduced to 70°C or more and 120°C or less, 100 mmHg or less under vacuum for 1 hour. By drying for more than 3 hours and removing it in advance, aminoalcohol and ketone or aldehyde produced by the reaction of moisture (reaction formula 1) with oxazolidine derivatives, which are moisture scavengers, and water By minimizing by-products such as aldehyde, the change in the physical properties of silicone-based thermal interface material (TIM) is minimized, and when left at room temperature, it reacts only with moisture absorbed, improving the efficiency as a moisture scavenger. can do it

(반응식1)(Scheme 1)

Figure pat00004
Figure pat00004

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(分枝形, Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(分枝形, Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H) 이다.Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, and R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms. hydrocarbon, and R 3 is a methyl group (CH 3 -) or hydrogen (H).

또한 여기서, 상기 첨가하는 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives) 함량이 상기 하한 미만이면 실리콘계 열매개물질(Thermal Interface Material, TIM)의 상온 방치 시간(Shelf-life)이 감소하고, 상한을 초과할 경우에는 잉여의 옥사졸리딘유도체 및 수분과의 반응부산물이 누출(Bleeding)되어 계면에서의 열 저항(Thermal Impedance)의 증가를 야기하므로 상기 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives)의 첨가량은 상기 수치범위에서 임계적 의의가 있다. In addition, when the content of Oxazolidine Derivatives, which is the added moisture scavenger, is less than the lower limit, the shelf-life of the silicone-based Thermal Interface Material (TIM) decreases, and , when the upper limit is exceeded, excess oxazolidine derivative and reaction by-products with moisture leak, causing an increase in thermal impedance at the interface, so oxazolidine as a moisture scavenger The amount of derivatives (Oxazolidine Derivatives) added has a critical significance within the above numerical range.

또한 여기서, 수분제거 시간이 하한인 1시간 미만이면 분산상 무기충전제에 포함된 수분이 충분히 제거되지 않아 상온 방치시 추가 흡수되는 수분에 의한 경시변화가 커지고, 상한 이상 반응시켜도 더 이상의 수분량에 변화가 없으므로 생산성 측면에서 바람직하지 않다. 그러므로, 수분 제거 시간은 위 범위에서 임계적인 의의가 있다.In addition, here, if the water removal time is less than the lower limit of 1 hour, the moisture contained in the dispersed inorganic filler is not sufficiently removed and the change over time due to the additionally absorbed moisture when left at room temperature increases, and there is no further change in the amount of moisture even after reacting more than the upper limit. It is not preferable in terms of productivity. Therefore, the moisture removal time has a critical significance in the above range.

본 발명을 이용하여 제조된 실리콘계 열매개물질(Thermal Interface Material, TIM)의 평가 방법은 다음과 같다.The evaluation method of the silicon-based thermal interface material (TIM) manufactured using the present invention is as follows.

1. 분산상 무기 충전제(Inorganic Filler)에 함유된 유리알칼리금속이온(Free Alkaline Metal Ion)의 양의 정량화1. Quantification of the amount of free alkali metal ions contained in dispersed inorganic fillers

분산상 무기 충전제(Inorganic Filler) 100g을 비저항이 10㏁·㎝ 이상인 동량의 이온교환수(Deionized Water)에 넣고 80℃로 유지된 항온조에서 교반하면서 24시간 방치한 후 상등수를 채취한다.Put 100 g of dispersed inorganic filler in the same amount of deionized water with a specific resistance of 10㏁ cm or more, and leave it for 24 hours while stirring in a constant temperature bath maintained at 80°C, and then collect the supernatant water.

이후 유도결합플라즈마 분광분석기(모델명:ULTIMA Ⅱ, HORIBA)로 분석하여 유리알칼리금속이온(Free Alkaline Metal Ion)의 양을 구하였다. Thereafter, the amount of free alkali metal ions was obtained by analysis with an inductively coupled plasma spectrometer (model name: ULTIMA Ⅱ, HORIBA).

2. 분산상 무기 충전제(Inorganic Filler)에 함유된 수분량의 정량화 (Karl-Fischer 법)2. Quantification of moisture content in dispersed inorganic filler (Karl-Fischer method)

수분측정기(Model : 831 KF Coulometer, METROHM AG Karl-Fischer)를 사용하여 분산상 무기 충전제(Inorganic Filler)에 함유된 수분의 양을 측정하였다.The amount of moisture contained in the dispersed inorganic filler was measured using a moisture meter (Model: 831 KF Coulometer, METROHM AG Karl-Fischer).

3. 경도(Shore 00)3. Hardness (Shore 00)

ASTM D2240에 따라 8mm의 두께를 갖는 시료의 경도 값을 구하였다.The hardness value of the sample having a thickness of 8 mm was obtained according to ASTM D2240.

4. 열전도도 4. Thermal Conductivity

ASTM D5470에 따라 TIM TESTER 1401(ANALYSIS TECH)을 사용하여 열전도도값을 구하였다.Thermal conductivity values were obtained using TIM TESTER 1401 (ANALYSIS TECH) according to ASTM D5470.

5. 내열성 시험5. Heat resistance test

시료를 180℃로 유지된 건조오븐에 250시간 방치한 후 상온에서 2시간 이상 안정화시키고 상기 3항목의 경도 값과 상기 4항목의 열전도도 값을 구하여 초기치와 비교하였으며, 이로부터 내열성을 가늠하였다. 아울러, 하기 6항목의 파열 시험을 시행하였다.After leaving the sample in a drying oven maintained at 180° C. for 250 hours, the sample was stabilized at room temperature for 2 hours or more. The hardness values of the 3 items and the thermal conductivity values of the 4 items were obtained and compared with the initial values, and heat resistance was evaluated from this. In addition, the rupture test of the following 6 items was performed.

6. 파열 시험6. Burst test

시료를 상기 5항목의 내열섬 시험 조건으로 시험한 후, 칼로 절단하여 ㄷ다단면에서 파열 여부를 관찰하였다. After the sample was tested under the heat-resistance test conditions of the above 5 items, it was cut with a knife and ruptured in the cross section was observed.

이하에서는 본 발명의 이해를 돕기 위해 구체적인 실시예를 제시하며 하기 실시예는 본 발명을 구체적으로 설명하기 위한 예시일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, specific examples are presented to help the understanding of the present invention, and the following examples are only examples for describing the present invention in detail, and the scope of the present invention is not limited to the following examples.

실시예 1.Example 1.

(1) 25℃ 점도가 1,000cps인 비닐말단폴리디메틸실록산(Vinyl Terminated Poly(dimethylsiloxane)) 49g, 25℃ 점도가 2,000cps인 비닐말단폴리디메틸실록산(Vinyl Terminated Poly(dimethylsiloxane)) 49g, 디메틸실록산-메틸수소실록산공중합체(Poly(dimethylsiloxane-co-(methylhydrosiloxane)) 2g 및 평균입경이 각 2㎛, 10㎛, 70㎛이고 평균 유리알칼리금속이온(Free Alkaline Metal Ion) 함량이 400ppm, 평균수분함량이 700ppn인 알루미나(각각의 혼합비는 1:1:1) 900g을 플래니터리 믹서(Planetary Mixer)에 첨가하여 0.5시간 동안 균일하게 교반하였다.(1) 49g of Vinyl Terminated Poly(dimethylsiloxane) with a viscosity of 1,000cps at 25°C, 49g of Vinyl Terminated Poly(dimethylsiloxane) with a viscosity of 2,000cps at 25°C, dimethylsiloxane- 2g of methylhydrogensiloxane copolymer (Poly(dimethylsiloxane-co-(methylhydrosiloxane)) and average particle diameters of 2㎛, 10㎛, and 70㎛, respectively, with an average free alkali metal ion content of 400ppm and an average moisture content 900 g of 700 ppn alumina (each mixing ratio of 1:1:1) was added to a planetary mixer and uniformly stirred for 0.5 hours.

(2) 상기 조성물을 100℃, 10㎜Hg 진공 하에서 2시간 동안 건조하여 알루미나에 포함된 수분을 제거하였다.(2) The composition was dried at 100° C. under vacuum at 10 mmHg for 2 hours to remove moisture contained in alumina.

(3) 상기 건조한 조성물을 상온으로 냉각시킨 후, 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘[3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine]을 알루미나에 함유된 수분 함량 대비 50몰%인 3.24g로 칭량하여 첨가한 후 0.5시간 동안 균일하게 교반하였고, 이후 백금촉매를 가하고 원하는 형태로 성형하여 실리콘계 열매개물질(Thermal Interface Material, TIM)을 완성하였다. 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives) 함량은 하기 식으로 계산하였다.(3) After cooling the dry composition to room temperature, 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine[3-ethyl-2-methyl-2-(3) -methylbutyl)-1,3-oxazolidine] was weighed and added at 3.24 g, 50 mol% relative to the moisture content contained in alumina, and stirred uniformly for 0.5 hours. After that, a platinum catalyst was added and molded into a desired shape to form a silicone-based fruit. A thermal interface material (TIM) was completed. The content of Oxazolidine Derivatives, a moisture scavenger, was calculated by the following formula.

<식> 수분제거제 투입량(g)=[(700×900/(18×1,000,000)]×0.5×185<Formula> Water removal agent input amount (g)=[(700×900/(18×1,000,000)]×0.5×185

여기서, 700은 측정한 분산상 무기 충전제에 포함된 수분량(ppm), 18은 물의 분자량, 185는 수분제거제의 분자량이다.Here, 700 is the measured moisture content (ppm) contained in the dispersed inorganic filler, 18 is the molecular weight of water, and 185 is the molecular weight of the water removing agent.

실시예 2. Example 2.

실시예 1의 조성물에 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘을 알루미나에 함유된 수분함량 대비 100몰%인 6.48g을 첨가한 것을 제외하고 실시예 1과 동일하다.Except for adding 6.48 g of 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine 100 mol% to the composition of Example 1 based on the water content in alumina The same as in Example 1.

실시예 3. Example 3.

실시예 1의 조성물에 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘을 알루미나에 함유된 수분함량 대비 20몰%인 1.30g을 첨가한 것을 제외하고 실시예 1과 동일하다.Except for adding to the composition of Example 1, 1.30 g of 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine 20 mol% relative to the water content contained in alumina was added The same as in Example 1.

비교예 1.Comparative Example 1.

실시예 1의 조성물에 수분제거제(Moisture Scavenger)인 옥사졸리딘유도체(Oxazolidine Derivatives)를 첨가하지 않고 실시예 1과 동일하게 실리콘계 열매개물질(Thermal Interface Material, TIM)을 완성하였다.A silicone-based thermal interface material (TIM) was completed in the same manner as in Example 1 without adding Oxazolidine Derivatives, which are moisture scavengers, to the composition of Example 1.

비교예 2. Comparative Example 2.

실시예 1의 조성물에 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘을 알루미나에 함유된 수분함량 대비 10몰%인 0.65g을 첨가한 것을 제외하고 실시예 1과 동일하다.Except for adding 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine to the composition of Example 1, 0.65 g, 10 mol%, based on the water content contained in alumina The same as in Example 1.

비교예 3. Comparative Example 3.

실시예 1의 조성물에 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘을 알루미나에 함유된 수분함량 대비 150몰%인 9.71g을 첨가한 것을 제외하고 실시예 1과 동일하다.Except for adding 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine to the composition of Example 1, 9.71 g of 150 mol% based on the water content contained in alumina The same as in Example 1.

실시예 4. Example 4.

실시예 3의 조성물에 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘 대신 3-부틸-2-(1-메틸펜틸)-1,3-옥사졸리딘을 3.97g 첨가한 것을 제외하고 실시예 1과 동일하다.In the composition of Example 3, 3-butyl-2-(1-methylpentyl)-1,3-oxazolidine instead of 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine It is the same as in Example 1, except that 3.97 g of Dean was added.

실시예 5. Example 5.

실시예 1의 조성물을 100℃에서 건조하는 대신 70℃에서 건조한 것을 제외하고 실시예 1과 동일하다.The same as in Example 1 except that the composition of Example 1 was dried at 70° C. instead of drying at 100° C.

실시예 6. Example 6.

실시예 1의 조성물을 100℃에서 건조하는 대신 120℃에서 건조한 것을 제외하고 실시예 1과 동일하다.The same as in Example 1 except that the composition of Example 1 was dried at 120° C. instead of drying at 100° C.

비교예 4. Comparative Example 4.

실시예 1의 조성물을 100℃에서 건조하는 대신 50℃에서 건조한 것을 제외하고 실시예 1과 동일하다 . Same as Example 1 except that the composition of Example 1 was dried at 50°C instead of drying at 100°C .

비교예 5. Comparative Example 5.

실시예 1의 조성물을 100℃에서 건조하는 대신 150℃에서 건조한 것을 제외하고 실시예 1과 동일하다.It is the same as Example 1 except that the composition of Example 1 was dried at 150° C. instead of drying at 100° C.

실시예 7. Example 7.

실시예 1의 조성물을 100℃에서 2시간 건조하는 대신 100℃에서 3시간 건조한 것을 제외하고 실시예 1과 동일하다.It is the same as in Example 1 except that the composition of Example 1 was dried at 100° C. for 3 hours instead of drying at 100° C. for 2 hours.

비교예 6. Comparative Example 6.

실시예 1의 조성물을 100℃에서 2시간 건조하는 대신 추가로 100℃에서 5시간 건조한 것을 제외하고 실시예 1과 동일하다.It is the same as in Example 1, except that the composition of Example 1 was further dried at 100° C. for 5 hours instead of drying at 100° C. for 2 hours.

상기 실시예와 비교예의 주요 변수를 표 1에 정리하였고 평가한 결과를 표 2에 나타내었다.The main variables of Examples and Comparative Examples are summarized in Table 1, and the evaluation results are shown in Table 2.

시험 조건 비교Comparison of test conditions 구분division 변수variable 내용detail 비고note 실시예 1Example 1 수분제거제의 첨가량Addition amount of moisture remover 함유수분 대비 50몰%50 mol% of water content 기준배합standard formulation 실시예 2Example 2 함유수분 대비 100몰%100 mol% of water content 실시예 3Example 3 함유수분 대비 20몰%20 mol% of water content 비교예 1Comparative Example 1 함유수분 대비 0몰%0 mol% of water content 비교예 2Comparative Example 2 함유수분 대비 10몰%10 mol% of water content 비교예 3Comparative Example 3 함유수분 대비 150몰%150 mol% of water content 실시예 4Example 4 수분제거제 종류 Moisture remover type 3-에틸-2-메틸-2-(3-메틸부틸)-1,3-옥사졸리딘 대신 3-부틸-2-(1-메틸펜틸)-1,3-옥사졸리딘 첨가Addition of 3-butyl-2-(1-methylpentyl)-1,3-oxazolidine instead of 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine 실시예 5Example 5 건조온도 drying temperature 70℃ 2시간70℃ 2 hours 실시예 6Example 6 120℃ 2시간120℃ 2 hours 비교예 4Comparative Example 4 50℃ 2시간50℃ 2 hours 비교예 5Comparative Example 5 150℃ 2시간150℃ 2 hours 실시예 7Example 7 건조시간drying time 100℃ 3시간100℃ 3 hours 비교예 6Comparative Example 6 100℃ 5시간100℃ 5 hours

평가 결과Evaluation results 구분division 경도 (Shore 00)Hardness (Shore 00) 열전도도 (W/m·K)Thermal conductivity (W/m K) 터짐유무Explosion 구분division 초기Early 내열시험후After heat resistance test 초기Early 내열시험후After heat resistance test 터짐유무Explosion 관찰사진observation photo 실시예 1Example 1 5050 5353 3.23.2 3.23.2 radish 도2Figure 2 실시예 2Example 2 4747 5555 3.33.3 3.23.2 radish 도3Figure 3 실시예 3Example 3 5252 6060 3.23.2 3.13.1 radish 도4Figure 4 비교예 1Comparative Example 1 5252 6060 3.23.2 2.52.5 you 도9Figure 9 비교예 2Comparative Example 2 5555 6767 3.13.1 2.72.7 you 도10Figure 10 비교예 3Comparative Example 3 4545 5353 3.33.3 3.13.1 radish 도11Figure 11 실시예 4Example 4 5252 5757 3.23.2 3.13.1 radish 도5Figure 5 실시예 5Example 5 5050 5454 3.23.2 3.23.2 radish 도6Figure 6 실시예 6Example 6 5050 5252 3.23.2 3.23.2 radish 도7Figure 7 비교예 4Comparative Example 4 5050 6262 3.23.2 2.82.8 you 도12Figure 12 비교예 5Comparative Example 5 5050 5252 3.23.2 3.23.2 radish 도13Figure 13 실시예 7Example 7 5050 5353 3.23.2 3.13.1 radish 도8Figure 8 비교예 6Comparative Example 6 5050 5252 3.23.2 3.23.2 radish 도14Figure 14

실시예 1 내지 3과 비교예 1 및 2를 비교해 보면 수분제거제를 사용하지 않거나 적게 사용한 경우 흡수된 수분이 고온에서 증발하면서 시편이 팽창하여 터짐현상이 발생하고 이로 인해 열매개물질 (TIM) 내부에서 공극 (Void)이 발생되어 열전도도가 떨어짐을 알 수 있다. Comparing Examples 1 to 3 with Comparative Examples 1 and 2, when no water removal agent is used or a small amount is used, the sample expands and bursts as the absorbed water evaporates at a high temperature. It can be seen that voids are generated and thermal conductivity is lowered.

한편, 비교예 3에서 보듯이 수분제거제를 함유수분 대비 150몰% 이상 과량 첨가하여도 실시예 1 내지 3과 비교하여 터짐현상이나 열전도도의 추가 개선이 없는 반면, 동일 조성에서 초기 경도값이 낮아지는 현상만 있어 필요 이상의 과량 첨가는 의미가 없는 것으로 판단된다.On the other hand, as shown in Comparative Example 3, even when the moisture removing agent is added in excess of 150 mol% or more compared to the contained moisture, there is no bursting phenomenon or further improvement in thermal conductivity compared to Examples 1 to 3, whereas the initial hardness value is low in the same composition Since there is only a loss, it is judged that there is no meaning in adding more than necessary.

실시예 4에서 보면 수분제거제의 종류를 바꾸어 보아도 효과 면에서 별다른 차이가 없는 것으로 보아 옥사졸리딘 유도체의 치환기 종류에 관계없이 효과가 발현되는 것으로 판단된다.In Example 4, it is judged that the effect is expressed regardless of the type of the substituent of the oxazolidine derivative, as there is no significant difference in effect even when the type of the water remover is changed.

실시예 5 및 6과 비교예 4를 비교해 보면, 건조온도가 낮을 경우 함유된 수분이 충분히 제거되지 못하여 시편의 터짐현상이 발생하며 이로 인해 열매개물질 (TIM) 내부에서 공극(Void)이 발생되어 열전도도가 떨어짐을 알 수 있다. 한편 비교예 5에서 보듯이 150℃ 이상의 고온으로 건조하여도 실시예 5 및 6과 비교하여 터짐현상이나 열전도도의 추가 개선이 없는 것으로 보아 생산성 및 에너지 사용면에서 필요 이상의 건조온도는 의미가 없는 것으로 판단된다.Comparing Examples 5 and 6 with Comparative Example 4, when the drying temperature is low, the moisture contained therein is not sufficiently removed, and thus the specimen burst occurs. It can be seen that the thermal conductivity decreases. On the other hand, as shown in Comparative Example 5, even if it is dried at a high temperature of 150° C. or higher, compared to Examples 5 and 6, there is no burst phenomenon or further improvement in thermal conductivity. is judged

실시예 7과 비교예 6을 비교해 보면, 건조시간을 3시간에서 5시간으로 증가시켜도 추가되는 개선효과가 없는 것으로 보아 3시간 이상의 건조시간은 생산성 측면에서 바람직하지 않은 것으로 판단된다.Comparing Example 7 and Comparative Example 6, since there is no additional improvement effect even if the drying time is increased from 3 hours to 5 hours, it is judged that a drying time of 3 hours or more is not preferable in terms of productivity.

이상의 실시예 및 비교예들을 보면 옥사졸리딘유도체를 초기 수분함량 대비 20 내지 100몰% 첨가하면, 흡수되는 수분을 반응식1과 같이 aminoalcohol과 키톤 혹은 알데하이드로 변환시켜 고온 보존 시 흡수된 수분의 증발에 의한 터짐현상을 효과적으로 제어할 수 있음을 알 수 있다.Looking at the above Examples and Comparative Examples, when 20 to 100 mol% of the oxazolidine derivative is added relative to the initial moisture content, the absorbed moisture is converted into aminoalcohol and ketone or aldehyde as shown in Scheme 1, thereby increasing the evaporation of the absorbed moisture during high temperature storage. It can be seen that the burst phenomenon can be effectively controlled.

이상에서 실시예를 들어 본 발명을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것이 아니고 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the present invention has been described in more detail with reference to examples above, the present invention is not necessarily limited to these examples, and various modifications may be made within the scope without departing from the spirit of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (11)

실리콘계 고분자물질과 분산상 무기 충전제가 혼합된 실리콘계 열매개물질에 수분제거제가 첨가되어 구성되는 것을 특징으로 하는 실리콘계 열매개물질 조성물.A silicone-based thermal media composition comprising a silicone-based thermal media in which a silicone-based polymer material and a dispersed inorganic filler are mixed, and a moisture eliminator is added. 제1항에 있어서,
상기 수분제거제는 하기 화학식1과 같은 구조를 갖는 옥사졸리딘유도체인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물.
(화학식 1)
Figure pat00005

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H).
According to claim 1,
The moisture removing agent is a silicone-based thermal medium composition stable at high temperature, characterized in that it is an oxazolidine derivative having a structure as shown in the following Chemical Formula 1.
(Formula 1)
Figure pat00005

Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms, and R 3 is a methyl group ( CH 3 -) or hydrogen (H).
제2항에 있어서,
상기 수분제거제의 첨가량은 상기 분산상 무기 충전제(Inorganic Filler)에 포함된 수분 대비 20몰% 이상 100몰% 이하인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물.
3. The method of claim 2,
The added amount of the moisture remover is 20 mol% or more and 100 mol% or less of the moisture contained in the dispersed inorganic filler (Inorganic Filler).
제1항의 조성물을 건조하여 제조되는 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질.A silicone-based thermal medium stable at high temperature, characterized in that it is prepared by drying the composition of claim 1 . 제4항에 있어서,
상기 건조시 온도는 70 ℃ 이상 120℃ 이하인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질.
5. The method of claim 4,
The silicone-based thermal medium stable at high temperature, characterized in that the drying temperature is not less than 70 ℃ and not more than 120 ℃.
제4항에 있어서,
상기 건조시 시간은 1시간 이상 3시간 이하인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질.
5. The method of claim 4,
The silicone-based thermal medium stable at high temperature, characterized in that the drying time is 1 hour or more and 3 hours or less.
제4항에 있어서,
상기 건조시 70℃ 이상 120℃ 이하 및 감압 하에서 수행되는 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질.
5. The method of claim 4,
A silicone-based thermal medium stable at a high temperature, characterized in that the drying is carried out at 70°C or more and 120°C or less and under reduced pressure.
제7항에 있어서,
상기 감압은 10mmHg 이하의 진공상태로 감압하는 것이며, 건조 시간은 1시간 이상 3시간 이하인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질.
8. The method of claim 7,
The pressure reduction is to reduce the pressure in a vacuum state of 10 mmHg or less, and the drying time is a silicone-based thermal medium stable at high temperature, characterized in that it is 1 hour or more and 3 hours or less.
반응에 의하여 실리콘이 생성되는 실리콘 전구체와 유리알칼리금속이온이 포함된 분산상 무기 충전제를 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물에 수분제거제를 더 첨가하는 단계;
를 포함하는 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물의 제조방법.
preparing a mixture by mixing a silicon precursor in which silicon is produced by the reaction and a dispersed inorganic filler containing free alkali metal ions; and
further adding a moisture remover to the mixture;
A method for producing a silicone-based thermal medium composition, which is stable at high temperature, comprising:
제9항에 있어서,
상기 수분제거제는 하기 화학식1과 같은 구조를 갖는 옥사졸리딘유도체인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물의 제조방법.
(화학식 1)
Figure pat00006

여기서, R1은 탄소수 1에서 4까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소, R2는 탄소수 1에서 12까지의 선형(Linear) 혹은 분지형(Branched) 탄화수소 이고, R3은 메틸기(CH3-) 혹은 수소(H).
10. The method of claim 9,
The method for producing a silicone-based thermal medium composition stable at high temperature, characterized in that the moisture remover is an oxazolidine derivative having a structure as shown in Formula 1 below.
(Formula 1)
Figure pat00006

Here, R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms, R 2 is a linear or branched hydrocarbon having 1 to 12 carbon atoms, and R 3 is a methyl group ( CH 3 -) or hydrogen (H).
제10항에 있어서,
상기 수분제거제의 첨가량은 상기 분산상 무기 충전제(Inorganic Filler)에 포함된 수분 대비 20몰% 이상 100몰% 이하인 것을 특징으로 하는 고온에서 안정한 실리콘계 열매개물질 조성물의 제조방법.
11. The method of claim 10,
The method for producing a silicone-based thermal intermediary material composition stable at high temperature, characterized in that the amount of the water remover added is 20 mol% or more and 100 mol% or less relative to the moisture contained in the dispersed inorganic filler.
KR1020200150572A 2020-11-11 2020-11-11 Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same KR102559169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200150572A KR102559169B1 (en) 2020-11-11 2020-11-11 Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200150572A KR102559169B1 (en) 2020-11-11 2020-11-11 Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20220064257A true KR20220064257A (en) 2022-05-18
KR102559169B1 KR102559169B1 (en) 2023-07-25

Family

ID=81800814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200150572A KR102559169B1 (en) 2020-11-11 2020-11-11 Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR102559169B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100197309B1 (en) * 1991-08-15 1999-06-15 캔디 매드록 Iminoalcohol-oxazolidine mixtures and their use
KR20050074486A (en) * 2002-10-17 2005-07-18 다우 코닝 코포레이션 Heat softening thermally conductive compositions and methods for their preparation
KR101011940B1 (en) 2002-06-25 2011-02-08 다우 코닝 코포레이션 Thermal interface materials and methods for their preparation and use
JP2016079230A (en) * 2014-10-10 2016-05-16 株式会社カネカ Heat storage-type heat-conductive curable composition and heat storage-type heat-conductive resin hardened material
KR20170058382A (en) 2014-09-22 2017-05-26 다우 글로벌 테크놀로지스 엘엘씨 Thermal grease based on hyperbranched olefinic fluid
WO2020176612A1 (en) * 2019-02-27 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials
WO2020176437A1 (en) * 2019-02-25 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials based on two-part polyurethanes
KR20200110808A (en) 2018-02-15 2020-09-25 허니웰 인터내셔날 인코포레이티드 Gel-type thermal interface material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100197309B1 (en) * 1991-08-15 1999-06-15 캔디 매드록 Iminoalcohol-oxazolidine mixtures and their use
KR101011940B1 (en) 2002-06-25 2011-02-08 다우 코닝 코포레이션 Thermal interface materials and methods for their preparation and use
KR20050074486A (en) * 2002-10-17 2005-07-18 다우 코닝 코포레이션 Heat softening thermally conductive compositions and methods for their preparation
KR20170058382A (en) 2014-09-22 2017-05-26 다우 글로벌 테크놀로지스 엘엘씨 Thermal grease based on hyperbranched olefinic fluid
JP2016079230A (en) * 2014-10-10 2016-05-16 株式会社カネカ Heat storage-type heat-conductive curable composition and heat storage-type heat-conductive resin hardened material
KR20200110808A (en) 2018-02-15 2020-09-25 허니웰 인터내셔날 인코포레이티드 Gel-type thermal interface material
WO2020176437A1 (en) * 2019-02-25 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials based on two-part polyurethanes
WO2020176612A1 (en) * 2019-02-27 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials

Also Published As

Publication number Publication date
KR102559169B1 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US5137959A (en) Thermally conductive elastomer containing alumina platelets
CN112812740B (en) Double-component high-thermal-conductivity self-leveling pouring sealant and preparation method and application thereof
KR20180050392A (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THERMAL CONDUCTIVE SHEET
JP7066654B2 (en) Composition for low-dielectric heat-dissipating film and low-dielectric heat-dissipating film
CN101735619A (en) Halogen-free flame-retarded heat-conducting organic silicon electronic potting adhesive and preparation method thereof
CN115943186B (en) Silicone composition and thermally conductive silicone cured product having high thermal conductivity
EP3761355A1 (en) Insulating heat dissipation sheet
US20220002608A1 (en) Thermally Conductive Resin Sheet, Laminated Heat Dissipation Sheet, Heat Dissipation Circuit Board, and Power Semiconductor Device
CN111269689A (en) Flame-retardant, insulating and reliable pouring sealant based on phase-change microcapsules and preparation method thereof
JP2011501882A (en) Dielectric fluids for improved capacitor performance
CN113337103A (en) Low-dielectric and high-thermal-conductivity polymer-based composite material and preparation method thereof
KR20220064257A (en) Silicone based thermal interface material having improved characteristics of a change with the passage of time by water absorption and the manufacturing method of the same
EP1466356A2 (en) Organic compositions
KR20180089467A (en) High Porous Microporous Polyethylene
KR102630098B1 (en) Silicone based thermal interface material stable in high temperature and the manufacturing method of the same
CN113544798B (en) Insulating sheet
KR102400549B1 (en) Thermally conductive composition for thermal pads and thermal pads comprising the same
KR100422570B1 (en) Resin Composition for Heat Sink and a Method of Manufacturing Sheets for Heat Sink Using the Same
KR102642936B1 (en) Highly heat-dissipative polymer composition and an article comprising the same
WO2022218091A1 (en) Thermally conductive silicone grease and preparation method therefor, and chip assembly
CN114369369A (en) Low-volatility and low-oil-permeability heat conduction gasket and preparation method thereof
JP4097250B2 (en) Dielectric material and method for forming semiconductor device using the same
CN111278786B (en) Composite material and method for producing same
Yao Thermal Stability of Al₂O₃/Silicone Composites as High-Temperature Encapsulants
KR102403680B1 (en) Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant