KR20220057697A - Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same - Google Patents

Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same Download PDF

Info

Publication number
KR20220057697A
KR20220057697A KR1020200142617A KR20200142617A KR20220057697A KR 20220057697 A KR20220057697 A KR 20220057697A KR 1020200142617 A KR1020200142617 A KR 1020200142617A KR 20200142617 A KR20200142617 A KR 20200142617A KR 20220057697 A KR20220057697 A KR 20220057697A
Authority
KR
South Korea
Prior art keywords
lightweight aggregate
epoxy
strength
tio
aggregate
Prior art date
Application number
KR1020200142617A
Other languages
Korean (ko)
Other versions
KR102505682B1 (en
Inventor
양근혁
주상현
정상미
임태경
문주현
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Priority to KR1020200142617A priority Critical patent/KR102505682B1/en
Publication of KR20220057697A publication Critical patent/KR20220057697A/en
Application granted granted Critical
Publication of KR102505682B1 publication Critical patent/KR102505682B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0036Microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2061Materials containing photocatalysts, e.g. TiO2, for avoiding staining by air pollutants or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

Disclosed are: new lightweight aggregate which solves a problem of brittle fracture, which was a fundamental problem of artificial lightweight aggregate, and provides an air pollution reduction function to be structurally and functionally excellent; and a manufacturing method thereof. More specifically, provided are: high-strength lightweight aggregate which is formed by coating a hyper-crosslinked polymer, formed by a chemical reaction with a crosslinker to form a chain network, on inner pores and outer surface of the lightweight aggregate with the inner pores; and a manufacturing method thereof.

Description

에폭시-TiO2 임베디드 고강도 경량골재 및 그 제조방법{Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same}Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same

본 발명은 시멘트에 혼합하면 골재가 콘크리트의 보강재와 충전재 역할을 하면서 강도는 향상시키고, 중량은 감소시키는 경량골재에 관한 것이다.The present invention relates to a lightweight aggregate that improves strength and reduces weight while acting as a reinforcement and filler for concrete when mixed with cement.

최근 건축 구조물들의 고층화, 대형화, 비정형화 및 특수화 경향이 가속화됨에 따라 가벼우면서도 뛰어난 강도를 지닌 경량골재(lightweight aggregates; LWA) 콘크리트에 대한 관심이 증가하고 있다. 경량화된 골재를 시멘트에 혼합하면 골재가 콘크리트의 보강재와 충전재 역할을 하면서 강도는 향상시키고, 중량은 감소시키게 된다. 따라서 구조물 자중과 구조부재의 단면은 줄이면서 반대로 구조물의 전용공간과 지진 저항성은 크게 향상시킬 수 있다. 또한 경량골재 원료를 배합할 때 약간의 첨가제를 추가하면 다양한 기능성을 지닌 경량골재를 제작할 수 있다는 장점이 있다.Recently, as the trend toward high-rise, large-scale, atypical and specialization of building structures is accelerated, interest in lightweight aggregates (LWA) concrete that is light and has excellent strength is increasing. When lightweight aggregate is mixed with cement, the aggregate acts as a reinforcement and filler for concrete, improving strength and reducing weight. Therefore, it is possible to greatly improve the structure's dedicated space and seismic resistance while reducing the structure's own weight and cross-section of structural members. In addition, it has the advantage of being able to manufacture lightweight aggregates with various functionalities by adding some additives when mixing lightweight aggregate raw materials.

경량골재는 입자형태, 표면구조, 다공성 분포, 원료 및 그 제조공정에 따라 경량골재의 비중, 강도 및 내구성이 달라진다. 일반적으로 인공경량골재는 천연골재에 비하여 내부에 공극이 많아 밀도와 단위용적질량이 낮고, 수분 흡수율이 높아 강도가 낮다는 단점이 있다(비특허문헌 1 참조). 이로 인해 인공경량골재를 경량 콘크리트에 적용시 경량 콘크리트 내에 관통 파괴가 발생하면 골재의 저항효과가 매우 작아지면서 취성적 파괴가 나타나게 된다. 이에 골재의 강도와 내구성을 높임과 동시에 다양한 기능성을 발휘할 수 있는 인공경량골재를 개발하려는 연구들이 다양하게 이뤄지고 있지만(비특허문헌 2 및 3 참조), 실제 고층 및 대형구조물에 적용할 수 있는 우수한 품질의 인공경량골재 개발은 아직 부족한 상황이다.The specific gravity, strength and durability of lightweight aggregate vary according to particle shape, surface structure, porosity distribution, raw material and its manufacturing process. In general, artificial lightweight aggregate has disadvantages in that the density and unit volume mass are low, and the water absorption rate is high and thus the strength is low (refer to Non-Patent Document 1), compared to natural aggregates. For this reason, when an artificial lightweight aggregate is applied to lightweight concrete, if penetration fracture occurs within the lightweight concrete, the resistance effect of the aggregate becomes very small and brittle fracture occurs. Accordingly, various studies are being conducted to develop artificial lightweight aggregates that can enhance the strength and durability of aggregates and exhibit various functions (see Non-Patent Documents 2 and 3), but excellent quality that can be applied to actual high-rise and large-scale structures. The development of artificial lightweight aggregates is still insufficient.

[비특허문헌][Non-patent literature]

1. Park, C.-B., et al., Production of Ready Mixed Concrete and Evaluation of Pumpability for Practical Use of Lightweight Aggregate Concrete. Magazine of RCR, 2018. 13(4): p. 54-60.1. Park, C.-B., et al., Production of Ready Mixed Concrete and Evaluation of Pumpability for Practical Use of Lightweight Aggregate Concrete. Magazine of RCR, 2018. 13(4): p. 54-60.

2. Li, J.j., et al., Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 2016. 118: p. 27-35.2. Li, J.j., et al., Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 2016. 118: p. 27-35.

3. Aslam, M., et al., Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 2017. 13: p. 53-62.3. Aslam, M., et al., Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 2017. 13: p. 53-62.

4. Hou, S., S. Razzaque, and B. Tan, Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019. 10(11): p. 1299-1311.4. Hou, S., S. Razzaque, and B. Tan, Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019. 10(11): p. 1299-1311.

5. Huang, J. and S.R. Turner, Hypercrosslinked Polymers: A Review. Polymer Reviews, 2018. 58(1): p. 1-41.5. Huang, J. and S.R. Turner, Hypercrosslinked Polymers: A Review. Polymer Reviews, 2018. 58(1): p. 1-41.

6. Gatti, G., et al., On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers, 2019. 11(4): p. 588.6. Gatti, G., et al., On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers, 2019. 11(4): p. 588.

7. Chen, Y., et al., Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN4 for High Performance Electrochemical Capacitors. Polymers, 2018. 10(12): p. 1339.7. Chen, Y., et al., Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN4 for High Performance Electrochemical Capacitors. Polymers, 2018. 10(12): p. 1339.

8. Castaldo, R., et al., Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review. Polymers, 2017. 9(12): p. 651.8. Castaldo, R., et al., Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review. Polymers, 2017. 9(12): p. 651.

9. Liu, Y., et al., Hydroxyl-Based Hyper-Cross-Linked Microporous Polymers and Their Excellent Performance for CO2 Capture. Industrial & Engineering Chemistry Research, 2018. 57(50): p. 17259-17265.9. Liu, Y., et al., Hydroxyl-Based Hyper-Cross-Linked Microporous Polymers and Their Excellent Performance for CO2 Capture. Industrial & Engineering Chemistry Research, 2018. 57(50): p. 17259-17265.

10. Li, B., et al., Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials, 2011. 138(1): p. 207-214.10. Li, B., et al., Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials, 2011. 138(1): p. 207-214.

11. Tan, L. and B. Tan, Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017. 46(11): p. 3322-3356.11. Tan, L. and B. Tan, Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017. 46(11): p. 3322-3356.

12. Wu, Z., et al., Liquid oxygen compatible epoxy resin: modification and characterization. RSC Advances, 2015. 5(15): p. 11325-11333.12. Wu, Z., et al., Liquid oxygen compatible epoxy resin: modification and characterization. RSC Advances, 2015. 5(15): p. 11325-11333.

13. Tercjak, A., Chapter 5 - Phase separation and morphology development in thermoplastic-modified thermosets, in Thermosets (Second Edition), Q. Guo, Editor. 2018, Elsevier. p. 147-171.13. Tercjak, A., Chapter 5 - Phase separation and morphology development in thermoplastic-modified thermosets, in Thermosets (Second Edition), Q. Guo, Editor. 2018, Elsevier. p. 147-171.

14. Lasek, J., Y.-H. Yu, and J.C.S. Wu, Removal of NOx by photocatalytic processes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 14: p. 29-52.14. Lasek, J., Y.-H. Yu, and JCS Wu, Removal of NO x by photocatalytic processes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 14: p. 29-52.

15. Dalton, J.S., et al., Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 2002. 120(2): p. 415-422.15. Dalton, JS, et al., Photocatalytic oxidation of NO x gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 2002. 120(2): p. 415-422.

16. Fernandes, C.N., et al., Using TiO2 nanoparticles as a SO2 catalyst in cement mortars. Construction and Building Materials, 2020. 257: p. 119542.16. Fernandes, C.N., et al., Using TiO2 nanoparticles as a SO2 catalyst in cement mortars. Construction and Building Materials, 2020. 257: p. 119542.

본 발명은 인공경량골재의 근본적인 문제점이었던 취성적 파괴 문제를 해결함과 동시에 추가적으로 대기오염저감 기능성을 부여하여 구조적 및 기능적으로 우수한 새로운 방식의 경량골재 및 그 제조방법을 제공하고자 한다.The present invention is to solve the problem of brittle fracture, which was a fundamental problem of artificial lightweight aggregate, and at the same time provide an additional air pollution reduction function to provide a new method of structurally and functionally excellent lightweight aggregate and a method for manufacturing the same.

상기 과제를 해결하기 위하여 본 발명은, 내부 기공이 형성된 경량골재에 가교제(crosslinker)와 화학반응하여 사슬망 구조(chain network)가 형성된 과교합 중합체(hyper-crosslinked polymer)가 상기 경량골재의 내부 기공 및 외부 표면에 코팅된 고강도 경량골재를 제공한다.In order to solve the above problems, the present invention provides a hyper-crosslinked polymer in which a chain network is formed by chemical reaction with a crosslinker in a lightweight aggregate having internal pores formed within the internal pores of the lightweight aggregate. And it provides a high-strength lightweight aggregate coated on the outer surface.

또한 상기 과교합 중합체는 상기 경량골재의 기계적 강도 및 기공 내 기체 투과도를 증대시키는 것을 특징으로 하는 고강도 경량골재를 제공한다.In addition, the cross-linking polymer provides a high-strength lightweight aggregate, characterized in that it increases the mechanical strength and gas permeability in the pores of the lightweight aggregate.

또한 상기 중합체는 에폭시 수지이고, 상기 가교제는 트리에틸렌테트라민(triethyeletetramine; TETA)인 것을 특징으로 하는 고강도 경량골재를 제공한다.In addition, the polymer is an epoxy resin, and the crosslinking agent provides a high-strength lightweight aggregate, characterized in that the triethylenetetramine (triethyeletetramine; TETA).

또한 광촉매성 무기입자가 함께 코팅된 것을 특징으로 하는 고강도 경량골재를 제공한다.In addition, it provides a high-strength lightweight aggregate characterized in that the photocatalytic inorganic particles are coated together.

또한 상기 무기입자는 TiO2 나노입자인 것을 특징으로 하는 고강도 경량골재를 제공한다.In addition, the inorganic particles provide a high-strength lightweight aggregate, characterized in that TiO 2 nanoparticles.

상기 또 다른 과제를 해결하기 위하여 본 발명은, 가교제(crosslinker) 및 상기 가교제와 반응하여 사슬망 구조(chain network)의 과교합 중합체(hyper-crosslinked polymer)를 형성하는 모노머(monomer) 또는 올리고머(oligomer)를 포함하는 혼합용액을 내부 기공이 형성된 경량골재에 임베디드시키는 단계;를 포함하는 고강도 경량골재 제조방법을 제공한다.In order to solve the another problem, the present invention provides a crosslinker and a monomer or oligomer that reacts with the crosslinker to form a hyper-crosslinked polymer of a chain network ) embedding the mixed solution containing the internal pore formed in the lightweight aggregate; provides a method for manufacturing high-strength lightweight aggregate comprising.

또한 상기 임베디드는 음압 조건에서 수행되는 것을 특징으로 하는 고강도 경량골재 제조방법을 제공한다.In addition, the embedding provides a method for manufacturing high-strength lightweight aggregate, characterized in that performed under negative pressure conditions.

또한 상기 가교제는 상기 모노머 또는 올리고머 100 중량부에 대하여 10 내지 40 중량부 함량으로 사용되는 것을 특징으로 하는 고강도 경량골재 제조방법을 제공한다.In addition, the crosslinking agent provides a method for producing high-strength lightweight aggregate, characterized in that used in an amount of 10 to 40 parts by weight based on 100 parts by weight of the monomer or oligomer.

또한 상기 혼합용액은 물 또는 알코올을 포함하고, 상기 모노머 또는 올리고머의 농도가 6 내지 12 중량%인 것을 특징으로 하는 고강도 경량골재 제조방법을 제공한다.In addition, the mixed solution includes water or alcohol, and the concentration of the monomer or oligomer is 6 to 12% by weight.

또한 상기 혼합용액은 광촉매성 무기입자를 더 포함하는 것을 특징으로 하는 고강도 경량골재 제조방법을 제공한다.In addition, the mixed solution provides a high-strength lightweight aggregate manufacturing method, characterized in that it further comprises photocatalytic inorganic particles.

본 발명은 과교합 중합체(hyper-crosslinked polymer; HCP)를 경량골재의 내부 공극에 결합시켜, 경량골재의 경량성을 유지하면서도 HCP와 공극 표면과의 추가적인 물리/화학결합에 의한 공극의 강도를 향상시키고자 하였다. 이를 위해 HCP인 에폭시(epoxy)가 포함된 용액을 음압조건하에서 경량골재의 내부 공극에 침투시키고, 후처리로 가교 및 고분자 중합하는 코팅 방법을 경량골재에 적용하였다. 또한 에폭시와 함께 광촉매(photocatalytic) 특성을 가진 TiO2 나노입자(titanium oxide nanoparticles(NPs))를 첨가하여 NOx와 SOx를 저감시키는 기능성도 부여하였다. 이를 통해 비와 같은 외부환경에도 경량골재 내부 기공 및 외부 표면에 코팅된 에폭시-TiO2가 경량골재로부터 분리되지 않아 골재의 강도, 소수성 및 NOx/SOx 저감 특성이 유지됨을 확인하였다.The present invention combines a hyper-crosslinked polymer (HCP) with the internal pores of a lightweight aggregate to improve the strength of the pores by additional physical/chemical bonding between the HCP and the pore surface while maintaining the lightweight of the lightweight aggregate wanted to do To this end, a solution containing HCP epoxy (epoxy) was penetrated into the internal pores of the lightweight aggregate under a negative pressure condition, and a coating method of crosslinking and polymer polymerization as a post-treatment was applied to the lightweight aggregate. In addition, TiO 2 nanoparticles (titanium oxide nanoparticles (NPs)) with photocatalytic properties were added together with epoxy to give functionality to reduce NO x and SO x . Through this, it was confirmed that the strength, hydrophobicity, and NO x /SO x reduction characteristics of the aggregate were maintained because the epoxy-TiO 2 coated on the internal pores and external surface of the lightweight aggregate was not separated from the lightweight aggregate even in an external environment such as rain.

도 1은 본 발명의 일 실시예에 따른 에폭시-TiO2 임베디드 경량골재 제작 과정을 설명하는 도면으로, (a) Hyper-crosslinked materials을 경량골재에 임베디드 시키는 방법 모식도, (b) 경량골재의 다공성 구조에 충진된 에폭시 수지 및 가교제의 화학구조 및 (c) 가교 후 에폭시 고분자의 화학구조를 나타내고 있다.
도 2는 본 발명의 실험예에서 코팅조건에 따른 경량골재 특성을 비교한 결과를 나타낸 도면으로, 일반 경량골재, 에폭시-TiO2를 상압 코팅한 경량골재 및 에폭시-TiO2를 음압 코팅한 경량골재의 (a) 표면 및 단면 이미지들, (b) 파쇄율 및 (c) 경량골재 단면의 ATR-FTIR spectra를 나타내고 있다.
도 3은 본 발명의 실험예에서 에폭시-TiO2 혼합용액(composite solution)의 농도에 따른 경량골재의 특성 최적화 결과를 나타낸 도면으로, (a) 6가지 에폭시 농도 조건(0, 3, 6, 9, 12 및 15 wt%)에 따른 에폭시-TiO2-임베디드 고강도 기능성 LWA의 이미지, (b) 9 wt% 농도의 에폭시-TiO2-임베디드 고강도 기능성 LWA의 SEM 이미지, C 및 Ti의 EDS 원소 분석 이미지와, 에폭시의 코팅 농도 조건 변화에 따른 에폭시-TiO2-임베디드 고강도 기능성 LWA의 (c) 파쇄율 및 (d) 무게 변화를 나타내고 있다.
도 4는 본 발명의 실험예에서 에폭시-TiO2-임베디드 고강도 기능성 LWA의NOx/SOx 흡착능 측정 결과를 나타낸 도면으로, (a) NOx/SOx 가스 분석 시스템의 외관 및 내부 반응 챔버 이미지와, 에폭시-TiO2-임베디드 고강도 기능성 LWA의 (b) NOx 및 (c) SOx 저감 측정 결과, (e) 5회 반복해서 물 세척 후 NOx 가스 저감 측정을 진행한 결과 및 (f) 물 세척 횟수별 NOx 가스 저감율 변동 추이를 나타내고 있다.
1 is a view for explaining the manufacturing process of an epoxy-TiO 2 embedded lightweight aggregate according to an embodiment of the present invention. Chemical structures of the epoxy resin and cross-linking agent filled in (c) and (c) chemical structures of the epoxy polymer after cross-linking are shown.
2 is a view showing the results of comparing the properties of lightweight aggregates according to the coating conditions in the experimental examples of the present invention, general lightweight aggregates, lightweight aggregates coated with epoxy-TiO 2 under atmospheric pressure, and lightweight aggregates coated with epoxy-TiO 2 under negative pressure. (a) surface and cross-sectional images, (b) fracture rate, and (c) ATR-FTIR spectra of a cross section of a lightweight aggregate are shown.
Figure 3 is a view showing the results of optimization of the properties of the lightweight aggregate according to the concentration of the epoxy-TiO 2 composite solution in the experimental example of the present invention, (a) six types of epoxy concentration conditions (0, 3, 6, 9 , 12 and 15 wt%) images of epoxy-TiO 2 -embedded high strength functional LWA, (b) SEM images of epoxy-TiO 2 -embedded high strength functional LWA at 9 wt% concentration, EDS elemental analysis images of C and Ti and (c) fracture rate and (d) weight change of epoxy-TiO 2 -embedded high-strength functional LWA according to changes in epoxy coating concentration conditions.
4 is a view showing the NOx / SOx adsorption capacity measurement result of the epoxy-TiO2-embedded high strength functional LWA in the experimental example of the present invention, (a) the exterior and internal reaction chamber image of the NO x /SO x gas analysis system, and the epoxy -(b) NO x and (c) SO x reduction measurement result of TiO2-embedded high-strength functional LWA, (e) NO x gas reduction measurement result after repeated washing with water 5 times, and (f) by the number of times of water washing The change trend of NO x gas reduction rate is shown.

이하 바람직한 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail through preferred embodiments. Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to conventional or dictionary meanings, and the inventor should properly understand the concept of the term in order to best describe his invention. Based on the principle that can be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. Accordingly, since the configuration of the embodiments described in the present specification is only the most preferred embodiment of the present invention and does not represent all the technical spirit of the present invention, various equivalents and modifications that can be substituted for them at the time of the present application It should be understood that there may be

본 발명은 내부 기공이 형성된 경량골재에 가교제(crosslinker)와 화학반응하여 사슬망 구조(chain network)가 형성된 과교합 중합체(hyper-crosslinked polymer)가 상기 경량골재의 내부 기공 및 외부 표면에 코팅된 고강도 경량골재를 개시한다.In the present invention, a hyper-crosslinked polymer in which a chain network is formed by chemical reaction with a crosslinker in a lightweight aggregate having internal pores is coated on the internal pores and external surfaces of the lightweight aggregate. Disclosed is a lightweight aggregate.

본 발명에서 상기 중합체는 경량골재 내부 기공 및 외부 표면에 코팅되어 경량골재의 강도를 향상시킬 수 있는 것이라면 적용 가능하나, 바람직하게는 에폭시 수지가 적용될 수 있고, 이때 상기 가교제로는 트리에틸렌테트라민(triethyeletetramine; TETA)인 것이 바람직하다.In the present invention, the polymer can be applied as long as it can be coated on the internal pores and external surfaces of the lightweight aggregate to improve the strength of the lightweight aggregate, but preferably an epoxy resin can be applied, and in this case, the crosslinking agent is triethylenetetramine ( triethyeletetramine (TETA) is preferred.

본 발명에서는 상기 에폭시와 함께 광촉매 특성을 가진 무기입자가 함께 코팅될 수 있고, 바람직하게는 TiO2 나노입자가 함께 코팅되도록 함으로써 NOx와 SOx를 저감시키는 기능성도 부여할 수 있다.In the present invention, inorganic particles having photocatalytic properties may be coated together with the epoxy, and preferably, TiO 2 nanoparticles may be coated together to provide functionality for reducing NO x and SO x .

본 발명에 따른 고강도 경량골재는 가교제(crosslinker) 및 상기 가교제와 반응하여 사슬망 구조(chain network)의 과교합 중합체(hyper-crosslinked polymer)를 형성하는 모노머(monomer) 또는 올리고머(oligomer)를 포함하는 혼합용액을 내부 기공이 형성된 경량골재에 임베디드시키는 단계;를 포함하여 제조된다. 본 발명의 일 구현예에서 상기 모노머 또는 올리고머는 에폭시의 모노머 또는 올리고머일 수 있다.The high-strength lightweight aggregate according to the present invention comprises a crosslinker and a monomer or oligomer that reacts with the crosslinker to form a hyper-crosslinked polymer of a chain network It is manufactured including; embedding the mixed solution into the lightweight aggregate having internal pores. In one embodiment of the present invention, the monomer or oligomer may be a monomer or oligomer of epoxy.

본 발명에서는 긴 중합체 사슬이 서로 얽혀 분자량 대비 큰 부피를 차지하고 있는 고분자의 경우 작은 공극에 침투되기 어려운 문제를 직시하고, 따라서 작은 부피를 갖는 에폭시 모노머 또는 올리고머 상태로 공극에 침투시키고 공극 내에 침투한 후에 가교 및 고분자 중합 반응이 진행될 수 있도록 한다.In the present invention, in the case of a polymer in which long polymer chains are entangled with each other and occupy a large volume compared to the molecular weight, it is difficult to penetrate into small pores. Allow the crosslinking and polymer polymerization reaction to proceed.

또한 본 발명에서는 에폭시 수지가 경량골재의 내부까지 효과적으로 침투되어 기공 표면까지 단단하게 결합시켜 강도를 향상시키도록 하는 수단이 고려되며, 이를 위해 상기 임베디드는 음압 조건에서 수행될 수 있다.In addition, in the present invention, a means is considered in which the epoxy resin effectively penetrates into the interior of the lightweight aggregate to improve strength by firmly bonding to the pore surface, and for this purpose, the embedding may be performed under negative pressure conditions.

상기 가교제의 사용량은 에폭시의 공극 침투 후 적정 가교반응 및 중합반응(polymerization) 유도를 통한 강도 향상 및 경량성 유지의 밸런스를 고려하여 상기 모노머 또는 올리고머 100 중량부에 대하여 10 내지 40 중량부 함량일 수 있고, 바람직하게는 20 내지 30 중량부일 수 있다.The amount of the crosslinking agent used may be 10 to 40 parts by weight based on 100 parts by weight of the monomer or oligomer in consideration of the balance of strength improvement and lightness maintenance through an appropriate crosslinking reaction and polymerization induction after penetration of the pores of the epoxy. and preferably 20 to 30 parts by weight.

한편, 본 발명에서는 상기 혼합용액 제조 시 TiO2 나노입자와 같은 광촉매성 무기입자를 더 첨가시켜 NOx와 SOx를 저감시키는 기능성도 부여한다.Meanwhile, in the present invention, when preparing the mixed solution, photocatalytic inorganic particles such as TiO 2 nanoparticles are further added to provide functionality to reduce NO x and SO x .

다른 한편, 본 발명에서는 에폭시-TiO2 복합 용액 제조 시 가교제와의 반응속도를 늦추기 위해 상기 혼합용액에는 고점도의 에폭시에 물 또는 에탄올, 메탄올, 이소프로필알코올과 같은 알코올을 첨가하여 점도를 낮추어 에폭시가 모노머 또는 올리고머 상태로 공극에 원활히 침투된 후 가교 및 고분자 중합반응이 진행되도록 할 수 있다. 이때, 상기 혼합용액은 모노머 또는 올리고머의 농도가 6 내지 12 중량%가 되도록 하는 것이 바람직하다.On the other hand, in the present invention, in order to slow the reaction rate with the crosslinking agent during the preparation of the epoxy-TiO2 composite solution, water or alcohol such as ethanol, methanol, or isopropyl alcohol is added to the high viscosity epoxy to lower the viscosity so that the epoxy is a monomer Alternatively, crosslinking and polymer polymerization may proceed after smoothly penetrating the pores in an oligomeric state. In this case, it is preferable that the concentration of the monomer or oligomer in the mixed solution is 6 to 12% by weight.

이하, 실험예를 들어 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to an experimental example.

실험방법Experimental method

(1) 에폭시-TiO2 임베디드 고강도 경량골재의 제조(1) Epoxy-TiO 2 Embedded high-strength lightweight aggregate

고강도 기능성 경량골재는 에폭시(mixture of epoxy resin and crosslinker; CM-ER-Thin, R&B Co. Ltd.)를 일반 인공경량골재(크기 입경 15 mm 이하, NDlite-LWA, 한국남동발전) 내부 기공에 임베디드 함과 동시에 외부 표면에 코팅하는 방식으로 제조되었다. 먼저, 인공경량골재의 표면에 존재하는 먼지를 포함한 오염물질을 저감하기 위해 흐르는 물에 일반 경량골재를 씻은 후 대기중에서 15시간 동안 건조시켰다. 이소프로필 알코올(IPA, DAEJUNG)에 에폭시를 0, 3, 6, 9, 12 및 15 wt%의 6가지 비율로 섞어 에폭시 용액(epoxy solution)을 제조하였다. 이때, 가교제(crosslinker)는 에폭시의 25 wt%로 고정시켰다. 그후 에폭시 용액과 TiO2(titanium(Ⅳ) oxide, ReagentPlus®, Sigma-Aldrich) NPs를 질량비 10:1로 혼합 후 초음파(sonication) 처리하여 에폭시-TiO2 혼합용액(epoxy-TiO2 composite solution)을 준비하였다. 제조한 에폭시-TiO2 혼합용액을 상압 또는 음압 코팅조건에서 경량골재에 임베디드 시켰다. 상압(Normal pressure) 코팅의 경우, 상온 상압(20℃, 1 atm)에서 경량골재를 에폭시-TiO2 혼합용액에 60분 동안 디핑(dipping)한 후, 경량골재를 용액에서 건져 대기중에서 8시간 동안 건조시켰다. 음압(Negative pressure) 코팅의 경우, 경량골재가 담긴 에폭시-TiO2 혼합용액을 진공 오븐(SH-VDO-08NG, SH SCIENTIFIC)에 위치시키고 600 Torr의 음압 상태에서 30분간 유지한후, 경량골재를 용액에서 건져 상온 상압(20℃, 1 atm)에서 8시간 동안 건조시켰다.High-strength functional lightweight aggregate is embedded with a mixture of epoxy resin and crosslinker; CM-ER-Thin, R&B Co. Ltd. At the same time, it was manufactured in a way that it was coated on the external surface. First, to reduce contaminants including dust on the surface of the artificial lightweight aggregate, the general lightweight aggregate was washed in running water and then dried in the air for 15 hours. An epoxy solution was prepared by mixing isopropyl alcohol (IPA, DAEJUNG) with epoxy in 6 ratios of 0, 3, 6, 9, 12 and 15 wt%. At this time, the crosslinker was fixed at 25 wt% of the epoxy. After that, the epoxy solution and TiO 2 (titanium(IV) oxide, ReagentPlus®, Sigma - Aldrich) NPs are mixed at a mass ratio of 10:1, and then ultrasonicated to prepare an epoxy-TiO2 composite solution. did The prepared epoxy-TiO 2 mixed solution was embedded in the lightweight aggregate under normal or negative pressure coating conditions. In the case of normal pressure coating, after dipping the lightweight aggregate in the epoxy-TiO 2 mixed solution for 60 minutes at room temperature and normal pressure (20℃, 1 atm), the lightweight aggregate is removed from the solution and in the air for 8 hours. dried. In the case of negative pressure coating, the epoxy-TiO 2 mixed solution containing the lightweight aggregate is placed in a vacuum oven (SH-VDO-08NG, SH SCIENTIFIC) and maintained at a negative pressure of 600 Torr for 30 minutes. It was taken out from and dried at room temperature and normal pressure (20°C, 1 atm) for 8 hours.

(2) 골재의 재료 특성(2) material properties of aggregate

일반 경량골재에 코팅된 에폭시-TiO2의 양을 확인하기 위하여, 에폭시-TiO2 코팅 전후 경량골재의 무게를 측정하였다. 에폭시-TiO2 코팅 전후의 경량골재 파쇄율은 골재 충격 시험기(aggregate impact testing machine, HJ-2230, HEUNG JIN TESTING MACHINE CO. LTD.)로 측정하였다. BS 812-112 규격(method for determination of aggregate impact value(AIV))에 따라 파쇄율은 14 kg 무게의 추를 골재 표면으로부터 381 mm 위에서 15회 수직낙하하여 골재를 파쇄하고, 파쇄된 골재를 눈 크기(aperture)가 2.36 mm인 체로 걸러낸 후, 파쇄 전/후 골재의 무게 차이를 백분율로 환산한 값이다. 경량골재 기공 내부에 에폭시가 균일하게 잘 삽입되었는지는 ATR-FTIR(Attenuated total reflection Fourier-transform infrared) spectroscopy(Nicolet iS50, Thermo-Fisher Scientific)로 분석하였다. FE-SEM(Field emission scanning electron microscopy, JSM-7610F PLUS, JEOL)과 EDS(energy dispersive X-ray spectrometer, Inca x-sight model 7557, Oxford Instruments)를 통해 경량골재 내부의 형상과 코팅된 TiO2의 존재를 확인하였다.In order to confirm the amount of epoxy-TiO 2 coated on the general lightweight aggregate, the weight of the lightweight aggregate before and after the epoxy-TiO 2 coating was measured. Epoxy-TiO 2 The crushing rate of lightweight aggregate before and after coating was measured with an aggregate impact testing machine (HJ-2230, HEUNG JIN TESTING MACHINE CO. LTD.). According to the BS 812-112 standard (method for determination of aggregate impact value (AIV)), the crushing rate is to crush the aggregate by vertically dropping a weight of 14 kg from 381 mm above the surface of the aggregate 15 times. After filtering through a sieve with an aperture of 2.36 mm, the difference in weight before/after crushing is converted into a percentage. Whether the epoxy was evenly inserted into the pores of the lightweight aggregate was analyzed by ATR-FTIR (Attenuated total reflection Fourier-transform infrared) spectroscopy (Nicolet iS50, Thermo-Fisher Scientific). Through FE-SEM (Field emission scanning electron microscopy, JSM-7610F PLUS, JEOL) and EDS (energy dispersive X - ray spectrometer, Inca x-sight model 7557, Oxford Instruments), existence was confirmed.

(3) 골재의 SOx 및 NOx 흡착 특성(3) SO x and NO x adsorption properties of aggregates

NOx/SOx 가스 분석 시스템(Invisible Co.)을 이용하여 에폭시-TiO2 임베디드 경량골재의 NOx 및 SOx 가스 저감 효과를 확인하였다. 에폭시-TiO2 임베디드 경량골재 500 g을 705mm (width, W) Х 210mm (length, L) Х 105mm (height, H) 크기의 오픈 박스(open box)에 담은 후 NOx/SOx 가스 분석 시스템의 메인 챔버(main chamber) 안에 위치시켰다. 그 후 경량골재와의 거리가 220 mm인 위치에서 자외선(UV light, UV intensity ~1.2 mW/㎠)를 조사하였다. 챔버에 주입되는 NO 및 SO2 가스량은 질량유량계(mass flow controller, 3660, KOFLOC)와 판독기(readout, MR-300, MJ technics)로 제어하였다. NOx 저감 측정 시에는 303.0 μmol/mol의 NO 가스와 N2 가스를 각각 3.8 sccm, 3 slm 속도로 챔버 내부에 공급하였다. SOx 저감 측정 시에는 300.0 μmol/mol의 SO2 가스와 N2 가스를 각각 19.5 sccm, 0.5 slm 속도로 챔버 내부에 공급하였다. 챔버 내부의 NO 또는 SO2의 농도가 1 ppm이 되도록 2시간 가량 주입한 후, 1 ppm 농도를 3시간 동안 유지하였다. 이후 자외선을 조사한 후 챔버 내부의 NOx 또는 SOx 농도를 측정하였다. 농도 측정에는 NOx 분석기(MEZUS-210, Kemik Corporation)와 SOx 분석기(MEZUS-110, Kemik Corporation)를 사용하였다.The NO x and SO x gas reduction effect of the epoxy-TiO 2 embedded lightweight aggregate was confirmed using the NO x /SO x gas analysis system (Invisible Co.). 500 g of epoxy-TiO 2 embedded lightweight aggregate was placed in an open box of 705mm (width, W) Х 210mm (length, L) Х 105mm (height, H) in an open box with the size of NO x /SO x gas analysis system. placed in the main chamber. After that, ultraviolet light (UV light, UV intensity ~1.2 mW/cm2) was irradiated at a position where the distance from the lightweight aggregate was 220 mm. The amount of NO and SO 2 gas injected into the chamber was controlled by a mass flow controller (3660, KOFLOC) and a reader (readout, MR-300, MJ technics). When measuring NO x reduction, 303.0 μmol/mol of NO gas and N 2 gas were supplied into the chamber at a rate of 3.8 sccm and 3 slm, respectively. When measuring SO x reduction, 300.0 μmol/mol of SO 2 gas and N 2 gas were supplied into the chamber at a rate of 19.5 sccm and 0.5 slm, respectively. After injecting for about 2 hours so that the concentration of NO or SO 2 in the chamber became 1 ppm, the concentration of 1 ppm was maintained for 3 hours. After irradiating ultraviolet rays, the NO x or SO x concentration inside the chamber was measured. A NO x analyzer (MEZUS-210, Kemik Corporation) and an SO x analyzer (MEZUS-110, Kemik Corporation) were used to measure the concentration.

(4) 물 세척(Water washing)에 따른 에폭시-TiO2 임베디드 경량골재의 NOx 저감 효율 변화(4) Change in NO x reduction efficiency of epoxy-TiO 2 embedded lightweight aggregate according to water washing

에폭시-TiO2 임베디드 경량골재의 세척 후, NOx의 저감 효율 변화를 확인하기 위해 다음과 같은 프로세스를 진행하였다. 먼저, NOx 저감 실험을 진행한 에폭시-TiO2 코팅 경량골재 500 g을 눈 크기(aperture)가 2 mm인 체(직경 ~175 mm)에 옮겨담았다. 에폭시-TiO2 임베디드 경량골재로부터 300 mm 위의 높이에 스프레이 건(spray gun, AS ONE)를 위치시킨 후, 에폭시-TiO2 임베디드 경량골재 전면에 물을 1,250 ㎖/min 속도로 10분간 분사하였다. 젖은 상태의 에폭시-TiO2 임베디드 경량골재는 완전히 드라이되도록 12시간 동안 상온에서 자연 건조하였다. 이후, 건조된 에폭시-TiO2 코팅 경량골재의 NOx 저감 효과를 측정하였다.After washing the epoxy-TiO 2 embedded lightweight aggregate, the following process was performed to confirm the change in the NO x reduction efficiency. First, 500 g of the epoxy-TiO 2 coated lightweight aggregate subjected to the NO x reduction experiment was transferred to a sieve (diameter ~175 mm) having an aperture of 2 mm. After placing a spray gun (AS ONE) at a height of 300 mm above the epoxy-TiO 2 embedded lightweight aggregate, water was sprayed on the entire surface of the epoxy-TiO 2 embedded lightweight aggregate at a rate of 1,250 ml/min for 10 minutes. The wet epoxy-TiO 2 embedded lightweight aggregate was naturally dried at room temperature for 12 hours to dry completely. Thereafter, the NO x reduction effect of the dried epoxy-TiO 2 coated lightweight aggregate was measured.

실험결과Experiment result

영구적인 미세다공성 폴리머 재료인 과교합 중합체(hyper-crosslinked polymer; HCP)는 모노머/올리고머 및 가교제의 화학반응에 의해 폴리머-사슬망(polymer-chain network)을 형성시킬 수 있는 소재이다. HCP는 다양한 합성방법, 쉬운 기능화, 높은 표면적, 온화한 반응조건(mild reaction condition)과 같은 많은 장점으로 인해, 가스 저장, 탄소 포집/제거, 오염물질 분리/제거, 촉매와 같은 에너지 및 환경 분야에 매우 활용도가 높다(비특허문헌 4 내지 7 참조). 이러한 HCP를 경량골재의 내부 공극에 결합시키면, 경량골재의 경량성을 유지하면서도 HCP와 공극 표면과의 물리/화학결합에 의해 경량골재의 강도를 향상시킬 수 있다. 이때, 본 발명에서는 HCP뿐만 아니라 대기오염물질인 SOx 및 NOx를 흡착 및 분해할 수 있는 TiO2 NPs을 HCP와 함께 균일하게 복합(composite)함으로써 경량골재를 기능화시킬 수 있는 방법을 제안하였다.A hyper-crosslinked polymer (HCP), a permanent microporous polymer material, is a material capable of forming a polymer-chain network by chemical reaction of a monomer/oligomer and a cross-linking agent. Because of its many advantages such as various synthesis methods, easy functionalization, high surface area, and mild reaction conditions, HCP is very suitable for energy and environmental fields such as gas storage, carbon capture/removal, pollutant separation/removal, and catalyst. The utility is high (refer to Non-Patent Documents 4 to 7). When this HCP is bonded to the internal pores of the lightweight aggregate, the strength of the lightweight aggregate can be improved by physical/chemical bonding between the HCP and the pore surface while maintaining the lightness of the lightweight aggregate. At this time, in the present invention, a method for functionalizing lightweight aggregates by uniformly compositing with HCP TiO 2 NPs capable of adsorbing and decomposing HCP as well as air pollutants SO x and NO x was proposed.

도 1(a)는 미세기공망(micropore network)을 형성시킬 수 있는 모노머 및 가교제를 음압조건하에서 경량골재의 내부 공극에 침투시키고, 후처리 가교 및 고분자 중합을 통해 HCP를 경량골재에 임베디드시키는 방법을 나타내고 있다. 긴 고분자 사슬이 서로 얽혀(entanglement) 분자량 대비 큰 부피를 차지하고 있는 고분자의 경우 작은 공극에 침투되기 어렵다. 따라서, 작은 부피를 갖는 모노머 또는 올리고머 상태로 공극에 침투시키고 공극 내에 침투한 후에 가교 및 고분자 중합 반응이 진행될 수 있도록 소재혼합 및 반응시간을 제어하는 것이 필요하다. 본 발명에서는 HCP 중에 대표적인 에폭시 수지(epoxy resin)를 이용하여 온화한 반응조건(mild reaction condition)에서 쉽게 가교반응 및 중합(polymerization)을 할 수 있도록 하였다. 여기서 가교 또는 중합을 통해 고분자로 전환될 수 있는 고점도 물질인 수지(resin)와 가교제(crosslinker 또는 hardener)를 혼합한 후 경화시켜 사용하였다. 가교반응(crosslinking reaction) 및 중합(polymerization) 중에 에폭시기(epoxide groups)가 경량골재의 내부 공극 표면과 화학결합되면, 경량골재의 경량성을 유지하면서도 에폭시와 공극 표면과의 추가적인 물리/화학결합에 의해 경량골재의 강도를 향상시킬 수 있다. 또한, 에폭시 용액에 광촉매인 TiO2 NPs를 함께 혼합하여 대표적인 대기오염물질인 NOx 및 SOx를 저감시킬 수 있도록 하였다. 에폭시-TiO2 혼합용액(composite solution) 제조는 가교제와의 반응속도를 늦추기 위해 고점도의 에폭시 수지(epoxy resin)에 IPA를 첨가하여 점도를 낮추고, TiO2 NPs를 혼합한 후 초음파를 통해 균일하게 분산시켰다. 제조된 에폭시-TiO2 혼합용액을 경량골재에 임베디드 시, 경량골재의 기공에 존재하고 있는 공기로 인하여 혼합용액이 기공에 침투되지 못하고 골재의 외부 표면에만 코팅된다. 이러한 문제점을 해결하기 위해 혼합용액에 경량골재를 담글 때 진공상태(600 Torr)를 유지함으로써, 경량골재의 내부 공기가 진공(vacuum)에 의해 빠져나온 후 모세관현상으로 혼합용액이 경량골재의 공극으로 쉽게 침투되도록 하였다.1(a) shows a method of infiltrating a monomer and a crosslinking agent capable of forming a micropore network into the internal pores of a lightweight aggregate under negative pressure conditions, and embedding HCP into the lightweight aggregate through post-treatment crosslinking and polymer polymerization. is indicating Long polymer chains are entangled with each other and, in the case of a polymer occupying a large volume relative to the molecular weight, it is difficult to penetrate into small pores. Therefore, it is necessary to control material mixing and reaction time so that crosslinking and polymer polymerization reactions can proceed after penetrating into the pores in the form of a monomer or oligomer having a small volume and penetrating into the pores. In the present invention, a typical epoxy resin among HCPs is used to facilitate crosslinking and polymerization under mild reaction conditions. Here, a high-viscosity material that can be converted into a polymer through cross-linking or polymerization was mixed with a cross-linking agent (crosslinker or hardener), and then cured. When epoxide groups are chemically bonded to the inner pore surface of the lightweight aggregate during the crosslinking reaction and polymerization, additional physical/chemical bonding between the epoxy and the pore surface while maintaining the light weight of the lightweight aggregate It is possible to improve the strength of lightweight aggregates. In addition, TiO 2 NPs, which are photocatalysts, were mixed with the epoxy solution to reduce NO x and SO x , which are typical air pollutants. Epoxy-TiO 2 Composite solution is prepared by adding IPA to a high-viscosity epoxy resin to slow the reaction rate with a crosslinking agent to lower the viscosity, mixing TiO 2 NPs, and then uniformly dispersing through ultrasonic waves made it When the prepared epoxy-TiO 2 mixed solution is embedded in a lightweight aggregate, the mixed solution cannot penetrate into the pores due to the air present in the pores of the lightweight aggregate and only the outer surface of the aggregate is coated. In order to solve this problem, by maintaining a vacuum state (600 Torr) when immersing the lightweight aggregate in the mixed solution, the internal air of the lightweight aggregate escapes by vacuum and then the mixed solution flows into the pores of the lightweight aggregate due to capillary action. to be easily penetrated.

도 1(b)는 HCP 중 하나인 말단에 에폭사이드 작용기(epoxide functional groups)가 있는 비스페놀-A-계 에폭시 수지(bisphenol-A-based epoxy resin)와 가교제 중 하나인 4개의 아민 작용기(amine functional groups)가 있는 TETA(triethylenetetramine)의 화학구조를 나타내고 있다. 에폭시 수지(epoxy resin)는 저분자(small molecules) 또는 올리고머(oligomer)로 가교 고분자(crosslinked polymer)에 비해 분자량 및 부피가 작아 경량골재의 공극에 쉽게 침투될 수 있다. 에폭시 수지 및 가교제를 경량골재 기공에 침투시키고 일정 시간이 지나면 가교반응(crosslinking reaction)에 의해 중합(polymerization)이 되면서 미세기공(micropore)을 가진 고분자 사슬(polymer chains)들의 망(network)이 경량골재 공극 내부에 형성되게 된다. 동시에 에폭시 수지의 에폭사이드 작용기와 TETA의 아민 작용기가 경량골재에 포함되어 있는 세라믹 성분(ceramic components, SiO2, Al2O3, Fe2O3, CaO, MaO, Na2O, etc.)들과도 화학반응 할 수 있기 때문에 골재의 기공표면과 결합하여 경량골재의 강도를 향상시킬 수 있다. 또한, 광촉매(photocatalytic) 특성을 가진 TiO2 NPs가 에폭시 내부로 삽입되더라도, HCP의 고유한 특성인 미세다공망(microporous network) 구조로 인해, SOx와 NOx 가스의 유입에는 아무런 영향이 없어, SOx와 NOx 가스 분해 기능성을 부여할 수 있다(비특허문헌 8 내지 11 참조).1(b) shows a bisphenol-A-based epoxy resin having an epoxide functional group at the end of one of the HCPs and four amine functional groups as one of the crosslinking agents. shows the chemical structure of TETA (triethylenetetramine) with groups. Epoxy resin is a small molecule or oligomer, and has a smaller molecular weight and volume compared to a crosslinked polymer, so it can easily penetrate into the pores of a lightweight aggregate. Epoxy resin and crosslinking agent are penetrated into the pores of the lightweight aggregate, and after a certain period of time, polymerization occurs by the crosslinking reaction, and the network of polymer chains with micropores becomes the lightweight aggregate. formed inside the void. At the same time, ceramic components (ceramic components, SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MaO, Na 2 O, etc.) Because it can react with excessive chemical reaction, the strength of lightweight aggregate can be improved by bonding with the pore surface of the aggregate. In addition, even if TiO 2 NPs with photocatalytic properties are inserted into the epoxy, due to the microporous network structure, which is a unique property of HCP, there is no effect on the inflow of SO x and NO x gases, SOx and NOx gas decomposition function can be provided ( refer nonpatent literature 8-11).

도 2는 대기오염물질 흡착용 고강도 경량골재 제작 시, 에폭시-TiO2 용액을 골재에 코팅시키는 방식에 따른 경량골재의 강도 차이 및 내부 침투 정도를 확인한 결과를 나타내고 있다. 경량골재의 강도는 충격저항과 정적 압축하중에 대한 저항성의 차이를 상대 비교할 수 있는 기기인 골재 충격 시험기(aggregate impact testing machine)를 이용하였다. 경량골재의 충격에 대한 저항성 및 파쇄량 측정을 통해 경량골재의 단단한 정도를 파악할 수 있다. 또한 에폭시-TiO2의 경량골재 내부 침투 정도는 코팅된 경량골재를 파쇄하여 경량골재의 중앙부분에 대한 ATR-FTIR spectroscopy 분석을 통해 확인하였다.2 shows the results of confirming the strength difference and the degree of internal penetration of the lightweight aggregate according to the method of coating the epoxy-TiO 2 solution on the aggregate when manufacturing high-strength lightweight aggregate for adsorption of air pollutants. For the strength of lightweight aggregates, an aggregate impact testing machine, a device that can relatively compare the difference between impact resistance and resistance to static compressive load, was used. It is possible to determine the hardness of lightweight aggregates by measuring the impact resistance and crushing amount of the lightweight aggregates. In addition, the degree of penetration of epoxy-TiO 2 into the lightweight aggregate was confirmed through ATR-FTIR spectroscopy analysis of the central part of the lightweight aggregate by crushing the coated lightweight aggregate.

도 2(a)는 미가공(pristine) LWA, 에폭시-TiO2를 상압 코팅한 경량골재, 에폭시-TiO2를 음압(600 Torr) 코팅한 경량골재를 나타내고 있다. 경량골재가 가진 기공에 존재하는 에어(air)로 인해 상압에서는 에폭시-TiO2 혼합용액이 기공 내부까지 침투하기 어렵다. 이에 경량골재에 에폭시-TiO2를 코팅 시, 600 Torr의 음압조건하에서 진행함으로써, 경량골재 기공에 존재하는 에어를 제거하고, 경량골재의 기공 내부까지 에폭시-TiO2 혼합용액이 모두 흡수되도록 유도하였다. 갈색을 띄는 미가공 LWA가 에폭시-TiO2 코팅을 진행함에 따라 전체적으로 회색 바탕에 흰색의 TiO2 NPs들이 분포된 형태를 보였다. 경량골재의 코팅 조건에 따른 강도 변화를 확인한 결과, 38.7 ± 1.5%의 파쇄율을 보이던 미가공 LWA가 에폭시-TiO2 코팅에 따라 31.6 ± 1.3%(상압 코팅) 및 21.1 ± 0.7%(음압 코팅)로 파쇄율 값이 감소하였다(도 2(b) 참조). 에폭시-TiO2 코팅이 골재의 강도를 증가시킴을 확인할 수 있었으며, 특히 음압 코팅을 통해 파쇄율을 일반 경량골재 대비 45% 가량 낮출 수 있었다. 이는 다수의 기공을 포함하고 있는 경량골재의 기공 표면에 가교 및 고분자화에 의해 코팅된 에폭시가 바인더 역할을 수행하기 때문이다. 코팅된 에폭시가 경량골재의 기공 사이에 충진된 후 단단하게 결합됨으로써 골재에 작용하는 충격을 흡수하여 골재의 강도가 증가하였다.Figure 2 (a) shows raw (pristine) LWA, a lightweight aggregate coated with epoxy-TiO 2 under normal pressure, and a lightweight aggregate coated with epoxy-TiO 2 under a negative pressure (600 Torr). Due to the air present in the pores of the lightweight aggregate, it is difficult for the epoxy-TiO 2 mixed solution to penetrate into the pores at normal pressure. Therefore, when coating the lightweight aggregate with epoxy-TiO 2 , by proceeding under a negative pressure condition of 600 Torr, the air present in the pores of the lightweight aggregate was removed, and the epoxy-TiO 2 mixed solution was all absorbed into the pores of the lightweight aggregate. . As the brown unprocessed LWA was coated with epoxy-TiO 2 , white TiO 2 NPs were distributed on a gray background as a whole. As a result of confirming the change in strength according to the coating conditions of the lightweight aggregate, the raw LWA, which showed a fracture rate of 38.7 ± 1.5%, was reduced to 31.6 ± 1.3% (normal pressure coating) and 21.1 ± 0.7% (negative pressure coating) depending on the epoxy-TiO 2 coating. The fracture rate value decreased (see Fig. 2(b)). It was confirmed that the epoxy-TiO 2 coating increased the strength of the aggregate, and in particular, the crushing rate could be reduced by 45% compared to general lightweight aggregates through negative pressure coating. This is because the epoxy coated by crosslinking and polymerization on the surface of the pores of the lightweight aggregate containing a large number of pores acts as a binder. After the coated epoxy was filled between the pores of the lightweight aggregate, it was firmly bonded to absorb the shock acting on the aggregate, thereby increasing the strength of the aggregate.

도 2(c)는 코팅 조건별 경량골재의 중앙 부분에 대하여 측정한 ATR-FTIR spectra 결과를 나타내고 있다. 미가공 LWA 및 에폭시-TiO2 상압 코팅 경량골재에서는 에폭시와 관련된 피크(peak)가 전혀 나타나지 않았다. 반면, 에폭시-TiO2를 음압 코팅한 경량골재에서는 에폭시에 대한 3355.75 cm-1의 O-H의 신축(stretching)에 의한 피크와 2970.34 cm-1의 CH3 그룹의 C-H 신축 진동 피크(stretching vibration peak)를 비롯하여, 1607.40 및 1508.08 cm-1의 aromatic peak 및 1227.00 cm-1의 C-O-C stretching peak를 확인할 수 있었다(비특허문헌 12 참조). 이와 같은 결과는, 상압 코팅의 경우 경량골재의 표면에만 에폭시가 코팅되고, 음압 코팅 시에는 에폭시가 경량골재의 내부까지 효과적으로 침투되어 기공 표면까지 단단하게 결합시켜 강도가 증가하였음을 증빙하는 것이다.Figure 2(c) shows the results of ATR-FTIR spectra measured for the central portion of the lightweight aggregate for each coating condition. In raw LWA and epoxy-TiO 2 atmospheric pressure coated lightweight aggregate, no peak related to epoxy was observed. On the other hand, in the lightweight aggregate coated with epoxy-TiO 2 under negative pressure, a peak due to stretching of OH of 3355.75 cm -1 to epoxy and a CH stretching vibration peak of a CH 3 group of 2970.34 cm -1 were observed. Including, aromatic peaks of 1607.40 and 1508.08 cm -1 and COC stretching peaks of 1227.00 cm -1 were confirmed (see Non-Patent Document 12). These results prove that, in the case of atmospheric pressure coating, only the surface of the lightweight aggregate is coated with epoxy, and in the case of negative pressure coating, the epoxy effectively penetrates into the interior of the lightweight aggregate and firmly bonds to the pore surface, thereby increasing the strength.

경량골재에 에폭시-TiO2 코팅을 진행함에 있어, 코팅의 방식뿐만 아니라 에폭시(epoxy resin 및 crosslinker)의 농도에 따라서도 에폭시-TiO2-임베디드 고강도 기능성 LWA(epoxy-TiO2-embedded high-strength-functional LWA)의 강도 차이가 발생하였다. 도 3은 경량골재에 코팅되는 에폭시-TiO2 혼합용액 내 에폭시의 농도에 따른 기능성 경량골재의 특성을 나타내고 있다. TiO2의 혼합양은 IPA 및 에폭시가 혼합된 에폭시 용액과 질량비 10:1로 혼합하여, 전체 에폭시-TiO2 혼합용액 내 TiO2 비율을 일정하게 유지하였다. 도 3(a)는 에폭시의 농도를 전체 에폭시-TiO2 혼합용액 대비 0, 3, 6, 9, 12 및 15 wt%로 제조한 용액으로 코팅한 에폭시-TiO2-임베디드 고강도 기능성 LWA를 촬영한 이미지를 나타내고 있다. 일반 경량골재에 에폭시-TiO2 코팅을 진행함에 따라 골재 내부 및 표면에 흰색의 TiO2 NPs이 고르게 분포하게 된다. 이때, 에폭시는 골재의 내부 기공 표면에서 바인더(binder)의 역할을 수행할 뿐만 아니라, TiO2가 골재의 내부 및 표면에 임베디드 형태로 안정적으로 위치할 수 있도록 잡아주는 역할을 수행한다. 한편, 에폭시-TiO2 혼합용액 내 에폭시의 농도가 12 wt%를 초과하면 에폭시 수지 양이 증가하면서 점도가 증가할 뿐만 아니라 농도가 높아짐으로 인해 가교반응의 반응이 빨라지면서 가교 에폭시 고분자의 분자량의 급격하게 증가하였다. 이런 경우, 에폭시 고분자(epoxy polymer)의 부피가 커져서 경량골재의 기공내부로 침투되기 어렵고, 에폭시 고분자의 용해도(solubility)가 감소하면서 상분리(phase separation)가 일어나 층분리되었다(비특허문헌 13 참조). 또한, 에폭시-TiO2 혼합용액 내 에폭시와 TiO2의 분산도가 감소함에 따라, 경량골재 내부 및 표면에 에폭시-TiO2가 균일하게 코팅되지 못하고 뭉쳐진 형태를 보였다.Epoxy-TiO 2 -embedded high-strength-functional LWA (epoxy-TiO2 - embedded high-strength-functional LWA (epoxy-TiO2-embedded high-strength-functional) LWA) strength difference occurred. 3 shows the characteristics of the functional lightweight aggregate according to the concentration of epoxy in the epoxy-TiO 2 mixed solution coated on the lightweight aggregate. The mixing amount of TiO 2 was mixed with the epoxy solution in which IPA and epoxy were mixed at a mass ratio of 10:1, thereby maintaining a constant TiO 2 ratio in the total epoxy-TiO 2 mixed solution. Figure 3(a) is an epoxy-TiO 2 -embedded high-strength functional LWA coated with a solution prepared at 0, 3, 6, 9, 12 and 15 wt% of the total epoxy-TiO 2 mixed solution. represents an image. As the general lightweight aggregate is coated with epoxy-TiO 2 , white TiO 2 NPs are evenly distributed inside and on the surface of the aggregate. At this time, the epoxy not only serves as a binder on the surface of the internal pores of the aggregate, but also serves to hold the TiO 2 so that it can be stably positioned inside and on the surface of the aggregate in an embedded form. On the other hand, when the concentration of epoxy in the epoxy-TiO 2 mixed solution exceeds 12 wt%, not only the viscosity increases as the amount of the epoxy resin increases, but also the reaction of the crosslinking reaction is accelerated due to the increase in the concentration, resulting in a rapid decrease in the molecular weight of the crosslinked epoxy polymer. increased significantly. In this case, the volume of the epoxy polymer increased and it was difficult to penetrate into the pores of the lightweight aggregate, and as the solubility of the epoxy polymer decreased, phase separation occurred and the layers were separated (see Non-Patent Document 13). . In addition, as the dispersion degree of epoxy and TiO 2 in the epoxy-TiO 2 mixed solution decreased, the epoxy-TiO 2 was not uniformly coated on the inside and surface of the lightweight aggregate, but agglomerated.

경량골재 내부에 에폭시-TiO2가 고르게 분포하는지 확인하기 위하여, EDS 측정을 진행하였다. 도 3(b)는 에폭시가 9 wt% 포함된 에폭시-TiO2 혼합용액으로 음압 코팅한 경량골재를 파쇄한 후 내부에 대하여 SEM 및 EDS를 측정한 결과를 나타내고 있다. SEM 이미지를 통해 경량골재 내부의 기공이 유지된 상태로 에폭시-TiO2가 기공 내부로 침투해 있음을 알 수 있으며, EDS 매핑(mapping)에서 측정된 C 및 Ti 요소(element)는은 경량골재 내부에 에폭시-TiO2가 고르게 분포하고 있음을 보여준다.In order to check whether the epoxy-TiO 2 is evenly distributed inside the lightweight aggregate, EDS measurement was performed. Figure 3(b) shows the results of SEM and EDS measurements for the inside after crushing the negative pressure-coated lightweight aggregate with an epoxy-TiO 2 mixed solution containing 9 wt% of epoxy. The SEM image shows that the epoxy-TiO 2 penetrates into the pores while maintaining the pores inside the lightweight aggregate, and the C and Ti elements measured in EDS mapping are inside the silver lightweight aggregate. It shows that the epoxy-TiO 2 is evenly distributed.

도 3(c) 및 3(d)는 에폭시 농도에 따른 에폭시-TiO2-임베디드 고강도 기능성 LWA의 파쇄율(AIV)과 무게 변화 경향성을 나타내고 있다. 에폭시 농도가 높아짐에 따라 에폭시-TiO2-임베디드 고강도 기능성 LWA의 파쇄율(AIV)은 35.8 ± 0.7, 27.2 ± 1.8, 24.7 ± 1.7, 21.1 ± 0.7, 21.8 ± 0.7 및 18.4 ± 1.3%(0, 3, 6, 9, 12 및 15 wt%)로 점차 감소하였다(도 3(c) 참조). 에폭시 농도가 높아짐에 따라 경량골재 내부로 침투한 에폭시-TiO2의 양이 증가하게 되고, 에폭시의 바인더 역할 및 충격 흡수 특성으로 인해 골재의 강도가 증가하는 결과를 보였다. 또한, 도 3(d)의 결과를 참조하면, 에폭시 농도가 높아짐에 따라 에폭시-TiO2-임베디드 고강도 기능성 LWA 내 에폭시-TiO2의 양이 증가함에 따라 무게가 0.6 ± 0.1, 9.9 ± 1.3, 12.1 ± 3.3, 17.3 ± 2.0, 18.2 ± 1.0 및 19.3 ± 2.6%(0, 3, 6, 9, 12 및 15 wt%)로 점차 증가하였다. 에폭시-TiO2의 응집현상이 발생하지 않는 최적 코팅 조건인 에폭시 농도 9 wt%를 기준으로 파쇄율은 절반 가량으로 줄어든 반면, 무게 증가는 0.2배 증가에 머물렀다.3(c) and 3(d) show the fracture rate (AIV) and weight change tendency of the epoxy-TiO 2 -embedded high strength functional LWA according to the epoxy concentration. As the epoxy concentration increased, the fracture rate (AIV) of the epoxy-TiO 2 -embedded high strength functional LWA was 35.8 ± 0.7, 27.2 ± 1.8, 24.7 ± 1.7, 21.1 ± 0.7, 21.8 ± 0.7 and 18.4 ± 1.3% (0, 3 , 6, 9, 12 and 15 wt%) were gradually decreased (see Fig. 3(c)). As the epoxy concentration increased, the amount of epoxy-TiO 2 penetrated into the lightweight aggregate increased, and the strength of the aggregate increased due to the role of the epoxy as a binder and shock absorbing properties. In addition, referring to the results of FIG. 3(d), as the epoxy concentration increases, the weight of the epoxy-TiO 2 -embedded high-strength functional LWA increases as the amount of epoxy-TiO 2 increases, 0.6 ± 0.1, 9.9 ± 1.3, 12.1 ± 3.3, 17.3 ± 2.0, 18.2 ± 1.0, and 19.3 ± 2.6% (0, 3, 6, 9, 12 and 15 wt%) were gradually increased. Based on the epoxy concentration of 9 wt%, which is the optimal coating condition in which the aggregation of epoxy-TiO 2 does not occur, the crushing rate was reduced by half, while the weight increase only increased by 0.2 times.

에폭시-TiO2-임베디드 고강도 기능성 LWA에 포함된 TiO2 NPs은 전형적인 광촉매 소재로서, 자외선 조사 시 대표적인 대기오염물질인 NOx 및 SOx 가스를 분해하여 저감하는 특성을 가진다. TiO2는 3.2 eV의 밴드갭을 지녀 386 nm 이하 파장의 자외선을 흡수하며, VB(valence band)에 있는 전자를 CB(conduction band)로 여기시킨다. 이를 통해 VB에는 hole(h+)이, CB에는 electron(e-)이 형성된다. VB의 hole은 골재에 흡착되어 있던 물 분자와 반응하여 하이드록실 라디칼(hydroxyl radicals, OH*?*)를 생성하는 산화 반응을 일으킨다. 한편, CB의 electron은 대기중의 산소를 환원시켜 수퍼옥사이드 종(superoxide species, O2-*?*)을 발생시킨다. 하이드록실 라디칼과 수퍼옥사이드 종은 반응을 통해 NOx 가스를 나이트레이트(nitrates)로, SOx 가스를 설파이트(sulfite) 및 설페이트(sulfate)로 변화시킨다(비특허문헌 14 내지 16 참조).TiO 2 NPs contained in epoxy-TiO 2 -embedded high-strength functional LWA is a typical photocatalytic material, and has the characteristic of decomposing and reducing NO x and SO x gases, which are typical air pollutants when irradiated with ultraviolet rays. TiO 2 has a band gap of 3.2 eV, absorbs ultraviolet rays with a wavelength of 386 nm or less, and excites electrons in the valence band (VB) to the conduction band (CB). Through this, a hole(h + ) is formed in VB and an electron(e - ) is formed in CB. The hole in VB reacts with water molecules adsorbed on the aggregate to cause an oxidation reaction to generate hydroxyl radicals (OH*?*). On the other hand, electrons in CB reduce oxygen in the atmosphere to generate superoxide species (O2 - *?*). The hydroxyl radical and superoxide species change NO x gas into nitrates and SO x gas into sulfites and sulfates through a reaction (see Non-Patent Documents 14 to 16).

도 4(a)는 NOx/SOx 가스 분석 시스템을 나타내고 있다. 에폭시-TiO2-임베디드 고강도 기능성 LWA는 메인 챔버 내에 위치시켰으며, 1.2 mW/㎠의 UV 강도(intensity) 조건에서 NOx 또는 SOx 가스 저감 효율을 측정하였다. 에폭시-TiO2-임베디드 고강도 기능성 LWA는 에폭시-TiO2의 응집현상이 발생하지 않으면서도 우수한 강도특성을 보인 9 wt%의 에폭시 농도로 제작되었다. 도 4(b) 및 4(c)는 에폭시-TiO2-임베디드 고강도 기능성 LWA의 NOx 및 SOx 저감 성능 특성을 나타내고 있다. 측정 진행 시, NOx/SOx 가스 분석 시스템 내부에 NOx 또는 SOx 가스를 주입하면서 챔버 내의 농도가 일정하게 유지될 때까지 5시간 동안 대기한 후, 자외선을 조사하였다. 자외선이 조사됨과 동시에 챔버 내 NOx 또는 SOx 가스 농도는 즉각 감소하기 시작하였으며, 최대 저감율은 90.3%(NOx) 및 92.8%(SOx)였다. NOx 가스 저감 특성의 경우, UV가 켜진 후 약 100분 경과까지 챔버 내 NOx 가스 농도가 급격히 감소한 후 12시간까지 약 0.1 ppm의 농도를 유지하였다. SOx 가스 저감 특성의 경우, UV가 켜진 후 약 6시간 경과까지 챔버 내 SOx 가스 농도가 지속적으로 감소한 후 12시간까지 약 0.1 ppm의 농도를 유지하였다.Fig. 4(a) shows a NO x /SO x gas analysis system. The epoxy-TiO 2 -embedded high-strength functional LWA was placed in the main chamber, and the NO x or SO x gas reduction efficiency was measured at a UV intensity condition of 1.2 mW/cm 2 . Epoxy-TiO 2 -embedded high-strength functional LWA was produced with an epoxy concentration of 9 wt%, which showed excellent strength characteristics without the occurrence of agglomeration of epoxy-TiO 2 . 4(b) and 4(c) show the NO x and SO x reduction performance characteristics of the epoxy-TiO 2 -embedded high-strength functional LWA. During the measurement, after waiting for 5 hours until the concentration in the chamber was maintained constant while injecting NO x or SO x gas into the NO x /SO x gas analysis system, ultraviolet rays were irradiated. Simultaneously with UV irradiation, the NO x or SO x gas concentration in the chamber immediately started to decrease, and the maximum reduction rates were 90.3% (NO x ) and 92.8% (SO x ). In the case of NO x gas reduction characteristics, the concentration of NO x gas in the chamber decreased rapidly until about 100 minutes after UV was turned on, and then the concentration of about 0.1 ppm was maintained until 12 hours. In the case of SO x gas reduction characteristics, the concentration of SO x gas in the chamber continued to decrease until about 6 hours after UV was turned on, and then the concentration of about 0.1 ppm was maintained until 12 hours.

경량골재들은 외부 환경에 노출되는 건축물에 적용됨에 따라, 비와 같은 세척(washing) 환경에 지속적으로 노출된다. 제작된 에폭시-TiO2-임베디드 고강도 기능성 LWA의 경우 TiO2 NPs이 에폭시와 함께 복합(composite)되어, 세척 환경에 안정적으로 견딜 수 있다. 도 4(e) 및 4(f)는 반복적인 물 세척(water washing)에 따른 저감 효율 지속성 결과를 나타내고 있다. 1회 NOx 가스 저감 측정을 진행한 에폭시-TiO2-임베디드 고강도 기능성 LWA을 물 세척한 후 NOx 가스 저감을 재측정하였으며, 총 5회 반복하여 세척 및 NOx 가스 저감 측정을 수행하였다. 5회 반복적인 세척에도 NOx 가스 저감율은 87.7, 86.5, 85.7, 84.0 및 86.1%로 안정적인 저감 특성을 보였다.As lightweight aggregates are applied to buildings exposed to external environments, they are continuously exposed to washing environments such as rain. In the case of the fabricated epoxy-TiO 2 -embedded high-strength functional LWA, TiO 2 NPs are composited with the epoxy, so that it can withstand the washing environment stably. 4(e) and 4(f) show the results of continuous reduction in efficiency according to repeated water washing. After washing with water the epoxy-TiO 2 -embedded high-strength functional LWA for which the NO x gas reduction measurement was performed once, the NO x gas reduction was re-measured, and the washing and the NO x gas reduction measurement were repeated a total of 5 times. Even after repeated washing 5 times, the NO x gas reduction rates were 87.7, 86.5, 85.7, 84.0 and 86.1%, showing stable reduction characteristics.

본 발명에서는 경량골재가 가진 약한 강도의 단점을 보완하기 위하여, HCP 중 하나인 에폭시를 경량골재 표면결합용 반응성 바인더 및 외부 충격 흡수체로 사용하였다. 또한, 에폭시와 함께 TiO2 NPs을 첨가하여 대기오염물질인 NOx와 SOx를 저감시키는 기능성도 부여하였다. 이때, 에폭시가 TiO2 NPs 표면에 코팅이 되더라도 고분자 중합 및 가교결합 시 미세기공(micropore)을 형성시키는 HCP의 특성에 의해 NOx/SOx 가스 및 TiO2 NPs에 의해 분해된 가스들이 쉽게 투과되도록 하였다. 음압 코팅법을 통해 에폭시-TiO2가 경량골재의 기공 내부까지 완전히 침투하였으며, 에폭시 농도를 0 wt%에서 15 wt%까지 조절하여 경량골재 무게가 많이 늘어나지 않으면서도 강도를 향상시킬 수 있는 특이 구간을 탐색하였다. 에폭시의 응집현상이 나타나지 않는 이상적인 조건인 9 wt%로 코팅한 에폭시-TiO2-임베디드 고강도 기능성 LWA의 파쇄율은 21.1%로 일반 경량골재의 파쇄율인 38.7% 대비 절반 가량 감소하였다. 또한, 광촉매 특성을 가진 TiO2 NPs로 인해, 자외선하에서 NOx 및 SOx 가스를 각각 90.9%와 92.8%까지 저감함을 확인하였다. TiO2 NPs은 에폭시와 혼합되어 있어 지속적인 반복 세정 후에도 안정적인 NOx 가스 저감 특성을 유지하였다. 본 발명에서 제안한 에폭시-TiO2-임베디드 고강도 기능성 LWA는 우수한 강도와 내구성뿐만 아니라 대기오염 저감의 기능성을 지녀, 다기능 경량골재 콘크리트 분야에 널리 적용될 수 있을 것으로 기대할 수 있다.In the present invention, in order to compensate for the weak strength of lightweight aggregates, one of HCPs, epoxy, was used as a reactive binder for surface bonding of lightweight aggregates and as an external shock absorber. In addition, by adding TiO 2 NPs together with epoxy, the functionality of reducing NO x and SO x which are air pollutants was also imparted. At this time, even if the epoxy is coated on the TiO 2 NPs surface, the NO x /SO x gas and the gases decomposed by the TiO 2 NPs can easily permeate due to the properties of HCP that forms micropores during polymer polymerization and crosslinking. did Epoxy-TiO 2 completely penetrated into the pores of the lightweight aggregate through the negative pressure coating method, and by controlling the epoxy concentration from 0 wt% to 15 wt%, a special section where the strength can be improved without significantly increasing the weight of the lightweight aggregate explored. The fracture rate of the epoxy-TiO 2 -embedded high-strength functional LWA coated with 9 wt%, which is an ideal condition in which the aggregation of epoxy does not occur, was 21.1%, which was reduced by half compared to the 38.7% of general lightweight aggregate. In addition, it was confirmed that, due to TiO 2 NPs having photocatalytic properties, NO x and SO x gases were reduced by 90.9% and 92.8%, respectively, under ultraviolet light. TiO 2 NPs were mixed with epoxy to maintain stable NO x gas reduction characteristics even after continuous repeated cleaning. The epoxy-TiO 2 -embedded high-strength functional LWA proposed in the present invention has excellent strength and durability as well as air pollution reduction functionality, so it can be expected to be widely applied to the multifunctional lightweight aggregate concrete field.

이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiment of the present invention has been described in detail above. The description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains will understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention.

따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Accordingly, the scope of the present invention is indicated by the claims described below rather than the above detailed description, and all changes or modifications derived from the meaning, scope, and equivalent concept of the claims are included in the scope of the present invention. should be interpreted

Claims (10)

내부 기공이 형성된 경량골재에 가교제(crosslinker)와 화학반응하여 사슬망 구조(chain network)가 형성된 과교합 중합체(hyper-crosslinked polymer)가 상기 경량골재의 내부 기공 및 외부 표면에 코팅된 고강도 경량골재.A high-strength lightweight aggregate in which a hyper-crosslinked polymer in which a chain network is formed by chemical reaction with a crosslinker in the lightweight aggregate having internal pores is coated on the internal pores and external surfaces of the lightweight aggregate. 제1항에 있어서,
상기 과교합 중합체는 상기 경량골재의 기계적 강도 및 기공 내 기체 투과도를 증대시키는 것을 특징으로 하는 고강도 경량골재.
The method of claim 1,
The hyper-occlusion polymer is a high-strength lightweight aggregate, characterized in that it increases the mechanical strength and gas permeability in the pores of the lightweight aggregate.
제1항에 있어서,
상기 중합체는 에폭시 수지이고, 상기 가교제는 트리에틸렌테트라민(triethyeletetramine; TETA)인 것을 특징으로 하는 고강도 경량골재.
The method of claim 1,
The polymer is an epoxy resin, and the crosslinking agent is a high-strength lightweight aggregate, characterized in that triethylenetetramine (TETA).
제1항에 있어서,
광촉매성 무기입자가 함께 코팅된 것을 특징으로 하는 고강도 경량골재.
The method of claim 1,
A high-strength lightweight aggregate, characterized in that it is coated with photocatalytic inorganic particles.
제4항에 있어서,
상기 무기입자는 TiO2 나노입자인 것을 특징으로 하는 고강도 경량골재.
5. The method of claim 4,
The inorganic particles are TiO 2 High-strength lightweight aggregate, characterized in that the nanoparticles.
가교제(crosslinker) 및 상기 가교제와 반응하여 사슬망 구조(chain network)의 과교합 중합체(hyper-crosslinked polymer)를 형성하는 모노머(monomer) 또는 올리고머(oligomer)를 포함하는 혼합용액을 내부 기공이 형성된 경량골재에 임베디드시키는 단계;를 포함하는 고강도 경량골재 제조방법.A mixed solution containing a crosslinker and a monomer or oligomer that reacts with the crosslinker to form a hyper-crosslinked polymer of a chain network is mixed with a light weight having internal pores High-strength lightweight aggregate manufacturing method comprising; embedding in the aggregate. 제6항에 있어서,
상기 임베디드는 음압 조건에서 수행되는 것을 특징으로 하는 고강도 경량골재 제조방법.
7. The method of claim 6,
The embedding is a high-strength lightweight aggregate manufacturing method, characterized in that performed under negative pressure conditions.
제6항에 있어서,
상기 가교제는 상기 모노머 또는 올리고머 100 중량부에 대하여 10 내지 40 중량부 함량으로 사용되는 것을 특징으로 하는 고강도 경량골재 제조방법.
7. The method of claim 6,
The high-strength lightweight aggregate manufacturing method, characterized in that the crosslinking agent is used in an amount of 10 to 40 parts by weight based on 100 parts by weight of the monomer or oligomer.
제6항에 있어서,
상기 혼합용액은 물 또는 알코올을 포함하고, 상기 모노머 또는 올리고머의 농도가 6 내지 12 중량%인 것을 특징으로 하는 고강도 경량골재 제조방법.
7. The method of claim 6,
The mixed solution contains water or alcohol, and the concentration of the monomer or oligomer is 6 to 12% by weight.
제6항에 있어서,
상기 혼합용액은 광촉매성 무기입자를 더 포함하는 것을 특징으로 하는 고강도 경량골재 제조방법.
7. The method of claim 6,
The mixed solution further comprises photocatalytic inorganic particles, high-strength lightweight aggregate manufacturing method.
KR1020200142617A 2020-10-30 2020-10-30 Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same KR102505682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200142617A KR102505682B1 (en) 2020-10-30 2020-10-30 Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200142617A KR102505682B1 (en) 2020-10-30 2020-10-30 Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same

Publications (2)

Publication Number Publication Date
KR20220057697A true KR20220057697A (en) 2022-05-09
KR102505682B1 KR102505682B1 (en) 2023-03-02

Family

ID=81581939

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200142617A KR102505682B1 (en) 2020-10-30 2020-10-30 Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same

Country Status (1)

Country Link
KR (1) KR102505682B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255381A (en) * 1996-03-16 1997-09-30 Ohbayashi Corp Lightweight aggregate and its production
KR100975389B1 (en) * 2009-12-31 2010-08-11 (주)폴리뱅크 Coating method of lightweight aggregate
KR101669163B1 (en) * 2016-01-29 2016-10-25 인제대학교 산학협력단 Method for providing eco-friendly color aggregate
JP2019529309A (en) * 2016-09-16 2019-10-17 ダウ グローバル テクノロジーズ エルエルシー Polymer coated particles for polymer concrete compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255381A (en) * 1996-03-16 1997-09-30 Ohbayashi Corp Lightweight aggregate and its production
KR100975389B1 (en) * 2009-12-31 2010-08-11 (주)폴리뱅크 Coating method of lightweight aggregate
KR101669163B1 (en) * 2016-01-29 2016-10-25 인제대학교 산학협력단 Method for providing eco-friendly color aggregate
JP2019529309A (en) * 2016-09-16 2019-10-17 ダウ グローバル テクノロジーズ エルエルシー Polymer coated particles for polymer concrete compositions

Also Published As

Publication number Publication date
KR102505682B1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
Hou et al. Preparation and dye removal capacities of porous silver nanoparticle-containing composite hydrogels via poly (acrylic acid) and silver ions
CN110669249B (en) Preparation method of super-amphiphobic nano cellulose aerogel
Zhan et al. Pervaporation separation of ethanol/water mixtures with chlorosilane modified silicalite-1/PDMS hybrid membranes
Khdary et al. Polymer-silica nanocomposite membranes for CO2 capturing
Zhu et al. Sonochemical fabrication of morpho-genetic TiO 2 with hierarchical structures for photocatalyst
Li et al. Preparation and characterization of poly (vinylidene fluoride)/TiO 2 hybrid membranes
Zhao et al. Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation
Wang et al. Improvement of wood properties by impregnation with TiO 2 via ultrasonic-assisted sol–gel process
Chang et al. Preparation and comparative properties of membranes based on PANI and three inorganic fillers.
Sivasankari et al. Hydroxyapatite integrated with cellulose acetate/polyetherimide composite membrane for biomedical applications
Branković et al. Mesoporous silica (MCM-41): Synthesis/modification, characterization and removal of selected organic micro-pollutants from water
Tajer et al. Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for SO2, CO2, and CH4 adsorption
CN114408924A (en) Fluoride-free waterproof and moistureproof super-hydrophobic activated carbon and preparation method and application thereof
Yue et al. Preparation and characterization of NaOH-activated carbons from phenolic resin
KR102505682B1 (en) Epoxy TiO2-embedded high-strength-functional lightweight aggregates and preparing method the same
Zhang et al. Ethylenediamine-functionalized reduced graphene oxide for enhanced methylene blue removal
Wang et al. Aminosilane-modified wood sponge for efficient CO2 capture
Huang et al. Ultrafast synthesis of 13X@ NaA composites through plasma treatment for highly selective carbon capture
Peng et al. Surfaced-modified TiO2 nanofibers with enhanced photodegradation under visible light
Liu et al. Aging resistance and photocatalytic activity of a wood surface coated with a Zr4+-doped SiO2/TiO2 film
Yan et al. Synthesis, characterization and adsorption properties of low-cost porous calcined dolomite microspheres for removal of dyes
KR100388630B1 (en) Manufacturing Method for Glass Fiber Reinforced Activated Carbon/Zeolite Composite Adsorbent with Waste Water Treatment Using Mixture of Zeolite and Phenolic Resin
Park et al. Evaluation of NOx removal performance of foam composites with titanium dioxide and active carbon
Al-Husseny et al. Water glass based superhydrophobic silica aerogel in different environmental of preparation
CN110437720B (en) Indoor harmful gas adsorption type waterborne polyurethane coating and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right